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Chapter 1

Introduction

A.G. de Kok
Technische Universiteit, Eindhoven

Stephen C. Graves
Massachusetts Institute of Technology

1 Introduction

Supply Chain Management (SCM) has been a very visible and influential
research topic in the field of operations research (OR) over the course of the
last decade of the twentieth century. The problems and experiences that have
emerged from business practices have stimulated many researchers to
contribute to a deeper understanding about underlying phenomena and causal
relationships. Supply Chain Management has also served as an application
area, where existing OR methods and techniques have been applied to new
models for new problems, to new models for old problems that regained
attention and to existing models for old problems. In the last case we find that
progress has been made to extend existing results, stimulated by the apparent
need for such extensions.

One might naturally start a handbook on SCM with a definition of the term
Supply Chain Management. We have decided to resist this temptation as there
are already too many competing definitions, and we do not see value in
attempting to create a new definition or synthesize one from the current
contenders. SCM has developed into a notion that covers strategic, tactical
and operational management issues. We have made an attempt to structure
the area by means of the chapters in this handbook. By no means do we claim
to deal with all management issues commonly understood as being part of
Supply Chain Management. Nevertheless, we do believe that this handbook
covers a broad range of SCM issues that lend themselves to being formulated
and analysed with mathematical models.

As appropriate for an OR handbook, this volume focuses primarily on
supply chains as a context to apply OR methods and models. As a
consequence, we are concerned with the decision-making processes that arise
in SCM and are derived from managerial and economic considerations. In
particular, we investigate and explore how OR can support decisions in the
design, planning and operation of a supply chain. By doing so, we identify the
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richness of SCM as an OR application field, which promises another ‘Golden
Decade’ of research.

In this introduction we provide an overview of SCM as an OR application
area. Since many of the chapters in this handbook carefully position a
particular aspect of SCM in a business and economic context, we deliberately
restrict the introduction to a high-level of abstraction. This allows us to
discuss a number of relevant trends in the business environment that proved to
be the main impetus for the prospering of SCM during the last decade of the
twentieth century. The added value of such an overview should be to position
SCM in its business context and to provide a framework to understand and
position the subsequent chapters of this handbook in relation to each other.

2 Main business trends that created SCM

In this section we discuss the main business trends during the late eighties
and nineties of the twentieth century that provided the fertile soil from which
SCM developed.

2.1 Core competencies

Prahalad and Hamel (1990) argue that a number of companies have
achieved significantly better results than their competitors by focussing on
only a few competencies, so-called core competencies, and by outsourcing
other non-core activities to companies that have a core competence on those
activities. This reasoning has gained a lot of attention from large, highly
vertically-integrated companies, such as Philips Electronics, Unilever, P&G,
General Motors, etc. and has been adopted at a surprisingly fast pace.
Whereas implementation of a company-wide information systems, such as
an Enterprise Resource Planning (ERP) system, typically has taken three to
seven years within these large companies, the implementation of the core-
competency strategy has often been accomplished within one or two years.

In our effort to understand the success of the core-competency strategy in
terms of its adoption by global companies, we identify a number of circum-
stances that seem to characterize the late eighties business environment.

2.1.1 Short-term focus
In the Western economic world the eighties were a decade of relatively low

economic growth and high unemployment rates. In that climate a short-term
focus prevailed. The core-competency strategy allowed firms to increase their
return on investments (ROI) and related business performance indicators
almost instantaneously: outsourcing non-core competencies eliminated the
associated fixed cost in the denominator of ROI, which typically resulted in
increasing the ROI. The economic climate permitted big multinational
companies to outsource high-cost operations to companies with lower costs;
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for instance, companies with union operations and expensive labour contracts
would outsource these operations to non-union companies with more cost
flexibility. Thus, firms could substantially reduce not only fixed costs, but also
the variable product costs as well.

The first companies adopting the core-competency strategy showed
immediate improvements in their balance sheets, resulting in rapid increases
in their stock market value. Many companies decided to reap similar benefits
and started outsourcing, as well.

2.1.2 Technological improvements require high capital investments
By the end of the eighties, multinational companies with a tradition of

capital-intensive manufacturing, such as electronics, white goods, automotive
and consumer packaged goods, had invested for three decades in
manufacturing mechanization and automation. This process replaced labour
with capital, to the point that their capital–labour ratio approached that of
primary industries, such as chemicals and metals. In fact, most of these
vertically integrated companies found that more and more of the added value
from their manufacturing had shifted upstream in their supply chains, from
assembly to fabrication. Consequently, the investments required for further
improvements in labour productivity and process capabilities kept increasing.
A sector that was archetypical for such capital investment requirements was
the semiconductor industry that emerged in the early seventies and matured in
the eighties. Many multinational electronics manufacturers had their own
semiconductor division.

These capital investment requirements demanded a strategic assessment.
Most companies decided to concentrate on their brands, implying that they
concentrated on Marketing and Sales, and Research and Development of
their product portfolio as well as on Purchasing in order to leverage their
buying power. Upstream manufacturing activities were outsourced to
subcontractors. Interestingly, but logically, a number of these subcontractors
decided to consider manufacturing their core competence and started a
process of acquisitions that continues to date. In the electronics industry these
companies are currently called Electronics Manufacturing Services (EMS)
companies; in the semiconductor industry these companies are known as
foundries. Apparently it is possible for them to carry the burden of large
capital investments that could not be carried by the global multi-billion brand-
owners. A possible explanation can be found in the stock market, again. The
stock market analysts seem to have lower ROI expectations of these new
manufacturing conglomerates than of the brand-owners.

Whether the current situation with multinational brand-owners focussing
on Marketing and Sales, Research and Development, and Purchasing and
multinational ‘service companies’ focussing on manufacturing and logistics is
a stable economic equilibrium remains to be seen. In his thought-provoking
book Clockspeed, Fine (1998), provides empirical evidence of his theory
that the business environment shows a constant process of vertical integration
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and disintegration, stimulated by competition based on technological break-
throughs and fostered by internal inertia of large vertically-integrated companies.

2.1.3 SCM as core competence
In the early nineties a number of companies, such as Hewlett-Packard (HP),

recognized that SCM was one of their core competencies. Although HP was in
the test and measurement industry and the computer industry since the 1950’s,
by the early nineties the company had evolved from a business-to-business
company into a business-to-consumer company delivering PCs and printers
via a dealer network to the consumers. In parallel to concentration on
Research and Development (in particular software and printing technology),
Marketing and Sales, and outsourcing manufacturing, HP developed the skills
for ‘worldclass’ SCM. HP recognized that one of its key differentiators could
be to offer both speed of delivery and product diversity to the market, and that
this could be done without owning traditional manufacturing assets. Lee and
Billington (1993, 1995) discuss the main ideas behind the HP approach. They
introduce the term postponement in the SCM field, implying that product
diversity is created as close as possible to the consumer, thereby allowing for
efficiencies upstream in the supply chain. The postponement concept is
developed and explored in Chapter 5.

Another company that has made SCM its core competence is Dell. Prior to
Dell, PC manufacturers sold PCs through their dealer network, implying
substantial capital investments in inventory by the dealers and exposure to
obsolescence risk for the manufacturer. In contrast, Dell decided to sell direct
to the customer using the Internet as its marketing and sales channel. Dell is
then able to assemble to order each client’s PC, thereby eliminating the need
for final product inventory. The Dell business model requires that Dell’s
suppliers hold stocks of components in consignment at or near Dell’s assembly
factories. Thus Dell operates its supply chain with minimal inventories on its
books.

Whereas the above is a somewhat idealized description, Dell does operate
its supply chain with considerably less inventory than its competitors, while
providing customized products with short delivery lead times. The Dell
example should be considered a showcase of ‘worldclass’ SCM. It shows the
potential for operating low-inventory, high-flexibility and customized-product
supply chains. In many industrial sectors the potential must be huge, given the
fact that many sectors have much lower market diversity than the PC sector.

2.1.4 Relevance for Operation Research applied to supply chains
The disintegration of the brand-owning companies has led to an enormous

increase in the number of contractual relationships between brand-owners and
their subcontractors and suppliers, as well as between brand-owners and their
downstream channel partners. Contracts are the mechanisms by which the
brand-owner can leverage its buying power, yielding lower purchase prices,
higher product quality and greater delivery reliability and speed. As such, the
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careful design of contracts is paramount to the profitability of the brand-
owner. These contracts are also critical to assuring the sustainability of
the supplier or subcontractor, recognizing their need to obtain sufficient
economies of scale and scope. Furthermore, these contracts are essential
mechanisms for finding effective ways to spread the risk across a supply chain.
In Chapters 6 and 7 of this handbook supply chain contracts are extensively
discussed. Chapter 6 focuses on the design of contracts in general with an
emphasis on risk sharing, while Chapter 7 examines the design of contracts
with respect to sharing of demand and supply information.

The myriad of relationships between legally independent companies
operating a supply chain from commodities to consumers poses structurally
complex network design problems to each of these companies. Whereas
contractual relationships are one-to-one by definition, the network design
problem is a many-to-many problem. Apart from questions concerning
locations of factories and warehouses, tactical issues of safety stock
positioning, capacity slack positioning and transportation mode selection
have to be addressed. Operations research has wide applicability to
these issues, and has provided very useful decision support. In this volume,
Chapter 2 covers the application of optimization models and methods to
supply chain design. Chapter 3 discusses the strategic positioning of safety
stocks, while Chapter 4 focuses on investments in resources across the supply
chain so that a strategic trade-off between customer service, market diversity
and supply chain flexibility investments can be made.

2.2 The Bullwhip effect

One particular phenomenon that has attracted great attention in industry
and academia is the Bullwhip effect. In the late fifties Forrester (1958)
conducted experimental research that revealed that demand variations amplify
from link to link going upstream in the supply chain, i.e., from consumers to
raw materials. By means of simulation, he identified the root causes of this
variation amplification: information distortion and information delay.

Lee, Padmanabhan and Whang (1997) built upon and extended the ideas of
Forrester to identify common business practices that led to information
distortion and information delays. This paper stimulated a large amount of
work on understanding the phenomenon and developing counter measures.
This work drew upon and applied concepts from the OR literature, including
echelon stock concepts, inventory pooling and forecasting processes that
induced the best estimates of future demand. The latter seems obvious, but in
many situations incentives are not aligned between business functions,
yielding wishful thinking forecasts or target sales forecasts. Echelon stock
concepts and inventory pooling stimulated the implementation of Vendor
Managed Inventory (VMI) concepts.

The implementation and dissemination of these concepts improved the
overall knowledge base on Supply Chain Management. In general, one may
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conclude that communication of the Bullwhip effect and its root causes across
all business function has increased mutual understanding between different
business functions and between different companies. For many companies it
became clear that they were only one of the many players involved in the game
of satisfying the customer with a service or a product.

2.2.1 Relevance for Operations Research applied to supply chains
It is interesting to remark here that the Bullwhip effect is by now well

understood, yet it poses a challenging mathematical problem when incor-
porating the underlying dynamics into commonly studied multi-echelon
inventory management problems and multi-site production planning
problems. The main reason for this is the fact that the dynamics related to
the Bullwhip effect entail non-stationary random demands and dynamic
capacity availability amongst others, as well as analysis of transient processes.
Such non-stationary stochastic processes typically do not allow for a
straightforward and rigorous analysis. Still, the issue of non-stationarity must
be addressed. In this handbook first efforts are reported in several chapters. In
Chapter 2 the impact of non-stationarity on supply chain design and pricing is
discussed. Chapter 4 deals with the impact of non-stationarity on investments
in flexibility, i.e., slack resources. In Chapters 9 and 12 the rolling schedule
concept, commonly used in practice to deal with non-stationarities, is
discussed extensively. And in Chapter 13 dynamic models of transportation
operations are formulated and solved by a new generic method. Substantial
research efforts are required to provide models and methods that can be
applied to real-world problems.

2.3 Manufacturing as a global commodity

2.3.1 Final assembly is simple
Although capital has replaced quite a number of labour-intensive activities,

e.g. welding in automotive and printed circuit board mounting in electronics,
still a number of manual activities remain before a product can be delivered to
the customer. Most of these activities relate to the final assembly, test and
packaging of the product. For a while time manufacturers believed that even
these activities could be substituted by automation, giving birth to the concept
of Flexible Assembly Systems [cf. Suri, Sanders and Kamath (1993)], but soon
they discovered that such flexible systems are economically viable only in
complex assembly activities with very high requirements on consistent product
quality, or assembly activities that are no longer acceptable to be performed
by human beings. What remained was a collection of relatively simple labour-
intensive assembly activities, whose output quality could be controlled and
supported by the common-sense Japanese manufacturing concepts and
technology [cf. Chase, Aquilano and Jacobs (1999)], that have now been
embedded in best practice manufacturing.

6 Introduction



From this observation many companies concluded that their final assembly
activities could be outsourced as well, or that they could be treated as nomadic
activities, i.e., final assembly activities are started-up in a particular region of
the globe if labour is cheap and abandoned as soon as another region has
lower labour rates. This is an economically viable manufacturing concept
because the fixed investments for such facilities are perceived to be low and the
transportation costs for inbound and outbound shipments are thought to be low
relative to the other costs. Apart from labour rates, the reason for abandoning
final assembly activities in a region can be governmental support and incentives
from other regions that outweigh possible labour rate disadvantages.

The major impact of portable manufacturing is the geographical spread of
manufacturing activities. This has increased the complexity of physical
distribution activities, and hence the complexity of supply chain planning and
control activities. Where normally face-to-face contact enables fast and
informal communication, nowadays planners, schedulers, expediters, group
leaders and many others involved in supply chain activities have to rely on
information systems and formal communication. Furthermore, the location of
production is typically quite distant from the point of consumption or
demand; thus the logistics function is more complex.

2.3.2 Physical distribution is cheap
The outsourcing of the physical distribution function and its increased

impact on customer service have stimulated the emergence of third party
logistics (3PL)service providers, that take over the actual planning and control
functions involved in physical distribution from the Original Equipment
Manufacturers (OEM). By doing so, these 3PL service providers should be
able to improve the performance of the physical distribution function, while
leveraging scale to reduce physical distribution costs.

The emergence of 3PL service providers creates another interface between
two legally independent entities, i.e., the manufacturer (or supplier) and the
customer. This requires contractual relationships to assure performance. In
this context the difficulty lies in the fact that the 3PL provider indeed leverages
scale by engaging in several contractual relationships with OEMs, so that the
actual cost of a service towards each OEM cannot be separated from the costs
of services towards other OEMs. Typically 3PLs operate according to some
tariff structure combined with customer-specific rebates based on the power of
the customer. Issues related to the tariff structure 3PLs are discussed, amongst
other 3PL issues, in Chapter 2.

2.3.3 Relevance for Operations Research applied to supply chains
The complexity of planning and control of a geographically dispersed

supply chain, crossing multiple organizational boundaries, is huge and today
largely unsolved in practical terms. Though OR has contributed to the design
and planning of supply chains, there has been less success implementing the
control principles due to the lack of information systems that seamlessly

Ch. 1. Introduction 7



connect the various organizational entities, so that full transparency of
information is achieved. Most supply chains still consist of informational
silo’s that exchange information periodically. The exchange of information is
at best imperfectly orchestrated, requiring quite some management attention.
Although companies like Cisco and Dell claim to have IT architectures that
provide such seamless integration, one should be aware that this relates only
to the integration with 1st tier suppliers. This OEM-1st tier supplier interface
is responsible for only a small portion of the added value created in the supply
chain, albeit that the cumulated value at this interface is almost 100% of the
final product cost.

The control principles underlying the planning and control of supply chains
are discussed in Chapters 9–13. The strategic and tactical issues involved in
asset management in geographically dispersed supply chains are discussed in
Chapters 3–5 and 8.

2.4 Information technology

2.4.1 Enterprise resource planning systems
From the mid-eighties onwards, company-wide implementation of

so-called Enterprise Resource Planning (ERP) systems was used as a means
to introduce new business processes. A lot of attention was paid to the
identification of best practices across the company and at other (competing)
companies. External consultants supported the implementation process. The
typical throughput time of such implementation projects ranged from two to six
years, depending on the size and the change management culture of the
company. During the nineties many horror stories were published in both
scientific journals and the media about the problems occurring during the ERP
implementation process. In many cases it was stated that the benefits obtained
from the implementation did not have much to do with the IT system itself, but
rather from improvements in business processes. Yet, it should be emphasized
here, that without the information and transaction processing capabilities of
ERP systems, global companies would not be able to operate effectively and
efficiently. Without ERP systems implemented across a globally operating
company, information would not be available for taking the appropriate
measures. On top of that, ERP software vendors have shown that software
standardization and maintenance is possible, even for such functionally and
architecturally complex systems. The core competence of ERP software
vendors, i.e., developing and maintaining standard software to support
business processes across a wide range of industrial and public sectors, requires
an investment in human resources, that individual companies cannot afford.

Enterprise Resource Planning systems are systems that enable the execution
of all business processes, such as order processing, invoicing, transportation,
warehouse picking, work order release and purchase order release. Enterprise
Resource Planning systems are transactional systems that also support
various decision-making processes, such as inventory management, production
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planning, forecasting, etc. This mixture of transactional system and decision-
support system makes it hard to define an ERP system in a rigorous manner.
The emergence of so-called Advanced Planning and Scheduling (APS) systems
that focus entirely on decision-support permits one to view the ERP systems
as being primarily the transactional IT backbone of a company.

Enterprise Resource Planning systems are a ‘conditio sine qua non,’ a
prerequisite for implementation of intra- and inter-company Supply Chain
Management. Enterprise Resource Planning systems in their role of
transactional backbone provide the required data about future sales plans,
customer orders, actual inventories and work-in-process, available resources
and cost and pricing information. However, ERP systems are not sufficient for
true inter-company SCM. SCM requires information exchange between ERP
systems of different companies. From an IT perspective this implies
standardization of interfaces and the associated data models. In the late
eighties initiatives such as EDIFACT focussed on exchanging transactional
data, such as invoices and purchase orders. Only recently the concept of
Collaborative Planning, Forecasting and Replenishment (CPFR) requires the
exchange of planning data, such as sales plans and production plans.
Technically speaking this is similar to the exchange of transactional data.
However, planning data contain information about a company’s strategy.
Most companies are quite reluctant to share this information with suppliers
or customers, since this data might, accidentally or not, be shared with
competitors. The problem of information privacy has not been resolved and it
is quite likely that it cannot be resolved.

2.4.2 Advanced planning systems
During the seventies and eighties OR applications led to the implemen-

tation of tailor-made Decision Support Systems (DSS) for supply chains.
Initially such DSSs were run on mainframes, but soon after the emergence of
the PC such applications were run on this platform. DSSs supported
production planning, inventory management and transportation planning.
The required inputs were downloaded from IT backbone systems and the
outputs were uploaded again, either manually or using an IT interface.
Companies such as Manugistics and Numetrix originate from the early
eighties. However, these DSSs never raised the same interest with top
management as ERP systems. Despite this, we should remark here that DSSs
are widely spread across all business function, yet not recognized as such.
Virtually any planner, product manager, R&D manager or controller, has
developed some sort of DSS with spreadsheet programs, such as Excel. In
particular, planning functions are often supported by homemade spread-
sheets. In many cases such spreadsheets support the planner in ‘solving’
extremely complex planning problems.

The lack of attention of top management with respect to DSSs changed
fundamentally in the early nineties when the notion of a DSS was replaced by
the notion of an APS. One of the keys to the initial success of APS software was
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the claim of the APS software vendors that they sold, similar to ERP software
vendors, standard software. Furthermore, APS software vendors were top
management-geared. Statements weremade about the huge profits that could be
gained with the company-wide implementation of APS systems. In late 2001,
AMR Research concluded that the promises made were not realized and that
APS implementations were restricted to implementation of stand-alone
modules (e.g. production planning module and supply chain planning module)
instead of integrated APS suites supporting multiple business functions.

For OR researchers this conclusion did not come as a surprise. APS systems
are DSSs. Decision support requires a careful study of the business processes
to be supported, including all peculiarities. In most cases such peculiarities
translate into constraints on decision variables that make the problem to be
solved NP-hard, when assuming all relevant inputs are known, and even
impossible to formulate properly, when assuming some relevant inputs are
stochastic. As a consequence, to develop a DSS for such problems entails
careful engineering of tailor-made algorithms and requires very scarce human
resources. In Chapter 9 APS systems are discussed extensively. In all chapters
we will be confronted with the complexity of relevant SCM problems and
learn that many questions are left for further research. We should be aware
that the promises of APS software vendors led many top managers to believe
that all relevant SCM decision support problems can be routinely solved:
everything can be optimised, and there is no need for investments in problem-
driven research, as might be done by operations researchers.

Despite this scepticism, APS software vendors have drawn the attention of
top management to OR. Furthermore, APS software vendors are employers
of OR researchers, either directly or indirectly. APS software implementation
has given a boost to the development of solver engines based on LP and MIP,
requiring state-of-the-art scientific OR knowledge to solve large-scale
problems. Many researchers in stochastic OR filled in the gap left by the
leading APS software vendors related to addressing business issues under
uncertainty.

2.4.3 Internet and World Wide Web
A discussion on Information Technology related to SCM is not complete

without addressing the impact of the Internet and World Wide Web. The
World Wide Web enabled companies to reach out directly to consumers. In
fact, consumers have taken over in-company activities, such as order
configuration and order entry. Despite the meltdown of the New Economy,
sales over the Web contribute considerably to the revenue of many companies
and will increase in the future. The direct contact with consumers has allowed
firms to acquire individual consumer profiles. In turn, such profiles enable
improved forecasting of sales in parallel to mass customization (cf. Chapter 5).
Furthermore, with the consumer profiles, a firm can do dynamic pricing, so as
to set the right price for the right product, aimed at an increase in turnover
and a reduction in product obsolescence. In the business-to-consumer
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markets, the World Wide Web has created the means to create many-to-many
markets, such as auctions.

In the business-to-business environment, the World Wide Web has
provided similar opportunities to reduce costs of customer service and
purchase order processing, and to reach out to new customers. The Web has
also made it possible to share information across companies during joint
R&D projects. But most importantly, the Internet has created a low-cost
standard public IT infrastructure that enables communication around the
globe. Problems of information security have been addressed by applying
methods from cryptography. The remaining problem is the problem of
standardized messages and interfaces. In that sense the problems mentioned
above in relation to EDI still stand. Much effort is put into making progress
here by developing voluntary standards, such as XML, and companies join in
consortia developing the required standards, such as RosettaNet.

The above clearly shows that much more effort is needed to create a
seamless, secure and low-cost IT infrastructure, yet principally IT need not
hamper SCM improvements.

2.4.4 Relevance for Operations Research applied to supply chains
Most interesting problems in OR require a substantial amount of data,

either due to structural complexity or due to uncertainty for which the
probability distribution of random variables and processes must be deter-
mined or validated. One might say that only during 1990s has the required
data been available at a reasonable cost in time and effort. The implemen-
tation of ERP systems, implying centralized databases and data warehouses,
made access to detailed transaction data possible.

The Internet has been important in particular for the implementation of
SCM. Supply Chain Management implies in many cases that information
must be exchanged between different organizations and companies. Nowadays
this can be done at low cost and with high security. Exchange of data through
the Internet also occurs when an OR application is offered as a service.
Typically the application is hosted at a server. Customers using the service
have to send their input data to this server and receive output data after
processing. Application Service Providers (ASP) often have their roots in OR.
The OR research discussed in this handbook is likely to be incorporated in
such services in the near future.

3 Outline of the volume

This volume consists of three parts. Part I deals with Supply Chain Design.
In Chapter 2, Muriel and Simchi-Levi discuss the optimal location of
warehouses and factories as well as some tactical problems related to pricing
and integrated production, inventory and transportation policies. These
models yield the infrastructure from which Chapter 13 departs to develop
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operational transportation policies. In Chapter 3, Graves and Willems discuss
various strategic and tactical issues that must be addressed when deciding on
investments in inventory capital to hedge against uncertainty. Also the issue of
supplier selection in the context of the trade-off between supplier flexibility
and variable material costs is discussed in detail. Chapter 4 by Bertrand
provides an overview of the literature on flexibility in the context of Supply
Chain Design. The literature review reveals that most of the flexibility
concepts from the literature do not provide insight into the issue of allocation
of assets across the supply chain, so that flexibility is created at the right links.
Bertrand proposes a modelling framework that addresses this issue. This
modelling framework shows a close resemblance with the modelling concepts
from the design of contracts, which are reviewed in Chapters 6 and 7. Part I
closes with Chapter 5, where Swaminathan and Lee examine the relationship
between product and process design and Supply Chain Design. One key
notion is postponement, which we briefly addressed above.

Part II deals with Supply Chain Coordination. In this context coordination
refers to the design of contracts between suppliers and buyers, as well as the
information that is exchanged between them. The different incentives of
supplier and buyer are formalized in a game–theoretic context, showing that
without proper incentive schemes the supply chain becomes inefficient in
comparison to a supply chain with centralized control. Relatively simple
models reveal fundamental insights on Supply Chain Coordination and
already have had a great impact in the business practice of today. In Chapter
6, Cachon focuses on contracts that allow for various kinds of transfer
payments and identifies conditions under which such transfer payments yield a
properly coordinated supply chain. In Chapter 7, Chen studies the value of
information exchange and sharing. By comparing alternatives for sharing
information between the links in the supply chain, we obtain insights about
which information is most valuable and under what circumstances. The results
from Chapters 6 and 7 provide inputs in terms of costs and prices, as well as
available information, for the coordination of the supply chain. Still, many
other parameters are required to execute the supply chain. In Chapter 8,
Swaminathan and Tayur provide a framework for understanding the role of
tactical planning parameters, such as forecast accuracy, mean and variance of
lead times and capacity utilization. They also emphasize the issue of the
structural complexity of a supply chain. Real-world problems have such an
enormous structural complexity that there is hardly any hope for solving them
cleanly with a closed-form formula. Thus, Swaminathan and Tayur propose
alternative routes to cope with this complexity.

The complexity of SCM becomes even more apparent in Part III, which is
dedicated to Supply Chain Operations. In Chapter 9, Fleischmann and Meyr
provide an overall Supply Chain Planning (SCP) framework. This framework
shows the hierarchical nature of real-world SCM and further reveals the
structural complexity already discussed by Swaminathan and Lee. The SCP
framework provides the means to assess the state-of-the-art of Advanced
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Planning and Scheduling systems. In Chapter 10, Axsater discusses the progress
made during the nineties with respect to the analysis of multi-echelon serial and
divergent inventory systems. The fact that the structure of the optimal policy
for divergent systems remains unknown, even for the most benign random
demand processes, motivates the development and analysis of various control
policies. As discussed above, Dell has introduced a new business model in the
consumer market that was normally only used in business-to-business
environments, i.e., Assemble-To-Order. This revitalized the interest in the
models that describe the control of inventories in such an environment. Song
and Zipkin report in Chapter 11 on the substantial progress made in this area.
Following up on Chapter 9, De Kok and Fransoo discuss Supply Chain
Operations Planning (SCOP) applied to arbitrary multi-echelon inventory
systems, i.e., many-to-many relationships between items (links) to be
controlled. They propose a framework that enables the assessment of the
feasibility of supply chain control concepts proposed in the literature and
provide some quantitative results that reveal the counter-intuitive behaviours
of such systems. Finally, Chapter 13 discusses the role of the logistics service
providers for effective Supply Chain Management. Powell presents a general
framework (vocabulary) for modelling a wide range of problems that arise
when dealing with transportation optimization under uncertainty in demand,
pricing, etc. The models emerging from this framework are tackled with a
generic method, called adaptive dynamic programming. The underlying idea is
the concept of incomplete states and approximate value functions that allow for
the development of approximation methods. Some test problems show
promising results. Powell also addresses issues of data quality that are relevant
for all problems discussed in this handbook.
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Supply Chain Design and Planning – Applications
of Optimization Techniques for Strategic
and Tactical Models
Ana Muriel
University of Massachusetts, Amherst, MA 01003, USA

David Simchi-Levi
Massachusetts Institute of Technology, Cambridge, MA 02139, USA

1 Introduction

In recent years, there has been renewed interest in the area of logistics
among both industry and academia. A number of major forces have con-
tributed to this trend. First, industry has realized the magnitude of savings
that can be achieved by better planning and management of complex logistics
systems. Second, many companies have started breaking traditional orga-
nizational barriers leading to the cooperation among different functional
departments, and thus expanding the scope and size of these systems. At
the same time, information and communication systems have been widely
implemented and provide access to data from all components of the supply
chain. Finally, deregulation of the transportation industry has led to the
development of a variety of transportation modes and reduced transportation
costs, while significantly increasing the complexity of logistics systems.

These developments call for the implementation of optimization based
Decision Support Systems that take into account the interaction between the
various levels of the logistics network, and utilize the wealth of available
information.

Unfortunately, like many other complex business systems, logistics and
supply chain management problems are not so rigid and well defined that they
can be entirely delegated to computers. Instead, in almost every case, the
flexibility, intuition, and wisdom that are unique characteristics of humans are
essential to effectively manage the systems. However, there are many aspects
of these systems which can only be effectively analyzed and understood with
the aid of a computer. It is exactly this type of assistance which Decision
Support Systems are designed to provide. As the name implies, these systems
do not make decisions. Instead, they assist and support the human decision-
maker in his or her decision making process.

A.G. de Kok and S.C. Graves, Eds., Handbooks in OR & MS, Vol. 11
� 2003 Elsevier B.V. All rights reserved.
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Within the various disciplines that make up supply chain management,
optimization based Decision Support Systems are used to address a wide
range of problems, from strategic problems like logistics network design, to
tactical problems like the coordination of inventory and transportation
decisions, all the way through day-to-day operational problems like
production scheduling, delivery mode selection, and vehicle routing. The
inherent size and complexity of many of these problems make optimization
based Decision Support Systems essential for effective decision making.
Indeed, optimization based Decision Support Systems have been used
extensively in the last few years to radically improve logistics and supply chain
efficiencies.

This chapter describes optimization models that effectively address
the coordination of various decisions concerning the planning and design of
the supply chain, and are promising foundations for the development of
Decision Support Systems in this field. The chapter is divided into three parts,
each of which focuses on a different problem area:

Production/Distribution Systems: Part I introduces models which are
designed to help determine the appropriate production, inventory,
and transportation policies for a set of manufacturing plants, warehouses
and retailers. Given plant, warehouse and retailer locations, production,
inventory and transportation costs, as well as demand forecasts for each
retail outlet, the objective is to determine policies which minimize system-
wide costs. As we demonstrate, realistic production and transportation cost
functions that exhibit economies of scale make solving these problems
challenging.

Of course, forecast demand is not enough to determine an effective
inventory policy; uncertainty in demand also needs to be incorporated
in the analysis. In practice, this is typically done by decomposing
the problem into two parts: The first is identifying an inventory policy
that balances holding and fixed costs assuming forecast demand over a
given planning horizon, see Stenger (1994). The second is determining
safety stock levels and incorporating these in the inventory level that
should be maintained at the beginning of each period. Thus, the models
analyzed in this part of the chapter help optimize inventory decisions
associated with the first part of the decomposition approach used in
practice.
Pricing to improve Supply Chain Performance: Dynamic pricing techniques
such as yield management have been successfully applied to a variety of
industries, e.g., airlines or rental car agencies, with a focus on those that
have perishable inventory. In Part II of this chapter, we extend dynamic
pricing techniques to a more general supply chain setting with non-
perishable inventory. Specifically, we consider pricing, production, and
inventory decisions simultaneously in a finite and an infinite horizon single
product environment. The objective is to maximize profit under conditions
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of periodically varying inventory holding and production costs, and price-
sensitive, stochastic demand.

Unfortunately, concepts such as convexity or k-convexity, that have
been proven effective for classical inventory models, are not applicable for
supply chain models with general, price-dependent, stochastic demand
processes. Thus, to analyze models that incorporate pricing decisions, we
introduce the notion of symmetric k-convex functions. This notion allows
us to characterize the structure of the optimal policy for finite and infinite
horizon, single product, periodic review models with general price-
dependent stochastic demand functions.

Interestingly, we demonstrate that dynamic pricing strategies have the
potential to radically improve supply chain performance. Indeed, the
computational results reported in Part II suggest that companies that
experience variability in demand curves or have limited production capacity
may significantly benefit from dynamic pricing.
Logistics Network Design: Network configuration may involve issues
relating to plant, warehouse and retailer location. These are strategic
decisions since they have a long-lasting effect on the firm. In Part III of this
chapter, we concentrate on the following key strategic decisions:

1. determining the appropriate number of warehouses,
2. determining the location of each warehouse,
3. determining the size of each warehouse, and
4. determining which products customers will receive from each

warehouse.

We therefore assume that plant and retailer locations will not be changed.
Theobjective is todesignor reconfigure the logisticsnetwork soas tominimize
annual system-wide costs including production and purchasing costs,
inventory holding costs, facility costs (storage, handling, and fixed costs),
and transportation costs, subject to a variety of service level requirements.

PART I: PRODUCTION/DISTRIBUTION SYSTEMS

2 Introduction

In the last decade many companies have recognized that important
cost savings and improved service levels can be achieved by effectively
integrating production plans, inventory control and transportation policies
throughout their supply chains. The focus in this and the following two
sections is on planning models that integrate decisions across the supply chain
for companies that rely on third party carriers.

The models described in these sections are motivated in part by the great
development and growth of many competing transportation modes, mainly as
a consequence of deregulation of the transportation industry. This has led to a
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significant decrease in transportation costs charged by third party distributors
and, therefore, to an ever-growing number of companies that rely on third
party carriers for the transportation of their goods.

One important mode of transportation used in the retail, grocery and
electronic industries is the LTL (Less-than-TruckLoad) mode, which is
attractive when shipment sizes are considerably less than truck capacity.
Typically, LTL carriers offer volume, or quantity, discounts to their clients to
encourage demand for larger, more profitable shipments (Fig. 1).

Volume discounts can be of two types: (1) incremental discounts, which can
be modeled as a piece-wise linear concave function of the quantity shipped,
and (2) all-unit discounts, which, as we demonstrate later, result in the
piece-wise linear continuous function depicted below. These cost functions are
supported by the industry standard transportation rating engine, called
CZAR (Southern Motor Carrier’s Complete Zip Auditing and Rating engine),
which most LTL carriers use.

Similarly, production costs can often be approximated by piece-wise linear
and concave functions in the quantity produced, e.g., set-up plus linear
manufacturing costs. These economies of scale motivate the shipper to
coordinate the production, routing and timing of shipments over the
transportation network to minimize system-wide costs. In what follows, we
refer to this general problem as the Shipper Problem.

This planning model, while quite general, is based on several assumptions
which are consistent with the view of modern logistics networks. Indeed, the
model deals with situations in which all facilities are part of the same logistics
network, and information is available to a central decision-maker whose
objective is to optimize the entire system. Thus, distribution problems in the
retail and grocery industries are special cases of our model where the logistics
network does not include manufacturing facilities.

The model also applies to situations in which suppliers and retailers are
engaged in strategic partnering. For instance, in a Vendor Managed Inventory
(VMI) partnership, point-of-sales data is transmitted to the supplier, which is

Fig. 1. Common LTL quantity discount cost structures.
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responsible for the coordination of production and distribution including
managing retail inventory and shipment schedules. Hence, in this case, the
model includes manufacturing facilities, warehouses and retail outlets.

Related models analyzing the distribution problem from the carriers point
of view are discussed in Farvolden, Powell, and Lustig (1993) and Farvolden
and Powell (1994). The first paper develops a fast algorithm for solving large-
scale linear programming multi-commodity network flow problems with
capacity constraints. The second suggests a heuristic strategy for the problem
of determining the number of vehicles the carrier should use in different
links of the service network. For a survey of the practical challenges faced by
LTL carriers in the design and management of their networks and various
solution approaches, the reader is referred to Crainic and Laporte (1997),
Crainic and Roy (1992), Braklow, Graham, Hassler, Peck, and Powell (1992),
Powell and Sheffi (1989), Powell (1986), Crainic and Rosseau (1986) and
Chapter 13 of this handbook.

For completion, we briefly review other commonly used transportation
and/or distribution models. Models integrating inventory control policies and
vehicle-routing strategies have been analyzed extensively in the literature.
See Bramel and Simchi-Levi (1997), Anily and Bramel (1999) and Toth and
Vigo (2001) for recent reviews on vehicle routing and inventory/routing
problems. These models are quite different from the models analyzed here due
to the structure of the transportation cost and the fact that most of them
assume that the shipper operates its own fleet of vehicles. This is also the case
for the model recently studied by Lee, Çentikaya, and Jaruphongsa (2000),
which focuses on the coordination of inventory replenishments and dispatch
schedules at a warehouse that serves a single retailer. The warehouse
orders incur a fixed cost and the outbound transportation cost function
consists of a fixed cost per delivery plus a cost per vehicle dispatched. More
general piece-wise linear transportation costs, which include both the ones
studied below and those just mentioned, have been considered in Croxton,
Gendron and Magnanti (2000a) to model the selection of different
transportation modes and shipment routes in merge-in-transit operations. In
this case, a set of warehouses coordinates the flow of goods from a number
of suppliers to multiple retailers with the objective of reducing costs through
consolidation.

Finally, a new trend in distribution management is the acquisition of TL
(TruckLoad) transportation services through auction; see Caplice (1996).
Specifically, various transportation exchange sites link together shippers, third
party logistics intermediaries and carriers, and allow for economic efficiencies
through an auction or bidding process. Depending on the exchange, either the
carriers bid and the shipper assigns carriers to individual shipments, or the
shippers bid and the carrier selects the shipments to serve. In the former case,
the carrier must select the set of loads on which to bid, determine the
appropriate bidding cost, and be prepared to adjust in real time its current
operations to accommodate the new loads. Given the bidding costs, the
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shipper must determine the cost minimizing assignment of carriers to loads.
In the latter case, the carrier must determine which loads and prices to
accept and how to adjust its operations to service these loads while max-
imizing profitability. Examples of shippers that allow carriers to bid on trans-
portation loads include companies such as Sears Roebuck, Ford Motor
Company, Wal-Mart and K-Mart, see de Vries and Vohra (2000). The liter-
ature on combined value auctions is rapidly growing, see e.g., DeMartini,
Kwasnica, Ledyard, and Porter (1999), Rothkopf, Pekeč, and Harstad
(1998), Ledyard (2000), Ledyard, Olson, Porter, Swanson, and Torma
(2000), Sandholm (1999, 2000), Fujishima, Leyton-Brown, and Shoham
(1999), Leyton-Brown, Shoham, and Tennenholtz (2000), Kelly and Steinberg
(2000).

The following sections describe our modeling approach and results for the
Shipper Problem under each of the two common transportation cost functions
described above.

3 Piece-wise linear concave costs

In this section, we focus on the Shipper Problem under piece-wise linear and
concave production and transportation costs, and use properties resulting
from the concavity of the cost function to devise an efficient algorithm.

The objective of the shipper is to find a production plan, an inventory
policy and a routing strategy so as to minimize total cost and satisfy all the
demands. Backlogging of demands may be allowed, incurring a known
penalty cost which is a function of the length of the shortage period and the
level of shortage. In this case, four different costs must be balanced to obtain
an overall optimal policy: production costs, LTL shipping charges, holding
costs incurred when carrying inventory at some facility and penalty costs for
delayed deliveries.

Chan, Muriel, and Simchi-Levi (1999) formulate this tactical problem as a
concave cost multi-commodity network flow problem. Unfortunately, most of
the literature on network flows is devoted to the analysis of minimum-cost
network flow problems for which the cost is a linear function of the amount
shipped on an arc, see Ahuja, Magnanti, and Orlin (1993). In practice,
however, situations in which there is a set-up charge, or a discount due to
economies of scale give rise to concave cost functions. In this case, an
exhaustive search of all extreme points would provide an optimal flow, since a
concave function achieves its minimum at an extreme point of the convex
feasible region. However, such an approach is impractical for all but the
simplest of problems. This, of course, is not surprising since the fixed-charge
network design model, in which the cost of using an edge is simply a fixed
charge independent of the quantity shipped, is a special case of the concave-
cost network flow problem and is NP-Complete, see Johnson, Lenstra,
and Rinnooy Kan (1978). Consequently, the exact algorithms that have been
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developed are either valid only for networks with special structures or run in
exponential time in the general case.

For instance, Zangwill (1968) is one of the first authors to analyze the
minimum-concave-cost problem. He presents an algorithm with complexity
O(and), for acyclic networks with a single source (or a single destination), a
arcs, n nodes, and dþ 1 destinations (or sources in the single destination case).
This algorithm can also be applied to the multi-commodity case, again with
either a single source or a single destination, since the problem can be reduced
to a single-commodity network flow problem. For the general single-
commodity minimum-concave-cost problem, Erickson, Monma, and Veinott
(1987) develop a dynamic-programming procedure, called the send-and-split
method. The algorithm runs in polynomial time for planar networks in which
all demand nodes lie in a bounded number of faces. When the underlying
network enjoys the strong-series-parallel property, Ward (1999) develops a
polynomial time algorithm to solve the multi-commodity network flow
problem with aggregate concave cost. This appears to be the first algorithm to
solve the problem in polynomial time.

While all algorithms mentioned above are exact and share a dynamic
programming approach, Falk and Soland (1969) and Soland (1971) present
branch and bound heuristics based on approximations of the concave
functions by linear ones. Gallo and Sodini (1979) find local optimality
conditions for the concave-cost multi-commodity network flow problem on
uncapacitated networks, and propose a vertex following algorithm to
determine the local minima. Yaged (1971) proposes a different method
to find local optima; in this case, the point satisfying the Kuhn-Tucker
conditions is found by a successive-approximation, fixed-point algorithm.
The quality of the local optimum can be improved by using stronger
optimality conditions and a greedy-type algorithm; see Minoux (1989)
and Guisewite and Pardalos (1990) for a survey of results and solution
techniques.

Balakrishnan and Graves (1989) consider a multi-commodity network flow
problem, very similar to the one analyzed in this section, in which the arc costs
are piece-wise linear concave functions. They develop a composite algorithm
that combines good lower bounds and effective heuristic solutions based on
solving the Lagrangian relaxation of a specific formulation of the problem.
Similarly, Amiry and Pirkul (1997) use a Lagrangian decomposition of the
same problem to obtain slightly tighter bounds. However, as for fixed-charge
network problems [see Gendron and Crainic (1994)], Muriel and Munshi
(2002) show that the lower bounds generated by these Lagrangian relaxation
and decomposition methods are no better than that provided by the linear
programming relaxation of the problem, in both capacitated and
uncapacitated networks.

Finally, we must point out that the multi-commodity network flow problem
with piece-wise linear concave costs generalizes the fixed-charge network
design problems that arise in various applications in telecommunications,
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transportation, logistics and production planning, see, e.g., Magnanti
and Wong (1984), Balakrishnan, Magnanti, and Mirchandani (1997),
Balakrishnan, Magnanti, Shulman, and Wong (1991), Gavish (1991) and
Minoux (1989). These models have been extensively studied, especially in the
telecommunications literature in the context of the network loading problem.
In this case, capacitated facilities are to be installed on edges of a tele-
communication network to support prescribed point-to-point demand flow,
see for instance Stoer and Dahl (1994) or Bienstock, Chopra, and Günlük
(1998). For a review, we refer the reader to Gendron, Crainic, and Frangioni
(1999). A common approach used to solve these network design problems is
Lagrangian relaxation, together with dual ascent, subgradient optimization
and/or bundle methods to optimize the Lagrangian dual. Crainic, Frangioni,
and Gendron (1999) report on the performance of different relaxations and
dual optimization methods.

In what follows, we first incorporate the time dimension into the model by
constructing the so-called expanded network. This expanded network is used
to formulate the Shipper Problem as a set-partitioning problem. The
formulation is found to have surprising properties, which are used to develop
an efficient algorithm and to show that the linear programming relaxation of
the set-partitioning formulation is tight in certain special cases (Section 3.4).
Computational results, demonstrating the performance of the algorithm on a
set of test problems, are reported in Section 3.5.

3.1 The LTL shipper model

Consider a generic transportation network, G ¼ (N,A), with a set of
nodes N representing the suppliers, warehouses and customers. Customer
demands for the next T periods are assumed to be deterministic and each
of them is considered as a separate commodity, characterized by its
origin, destination, size and the time period when it is demanded. Our
problem is to plan production and route shipments over time so as to satisfy
these demands while minimizing the total production, shipping, inventory and
penalty costs.

A standard technique to efficiently incorporate the time dimension into the
model, see for instance, Farvolden et al. (1993), is to construct the following
expanded network. Let �1, �2, . . . , �T be an enumeration of the relevant
time periods of the model. In the original network, G, each node i is replaced
by a set of nodes i1, i2, . . . , iT . We connect node iu with node jv if and only if
�v � �u is exactly the time it takes to travel from i to j. Thus, arc iu! jv
represents freight being carried from i to j starting at time �u and ending at time
�v. We call such arcs shipping links. In order to account for penalties associated
with delayed shipments, a new node is created for each commodity and serves
as its ultimate sink. For a given commodity, a link between a node representing
its associated retailer at a specific time period, and its corresponding sink
node, represents the penalty cost of delivering a specific shipment in that time
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period, and is called penalty link. Finally, we add links ðil, ilþ1Þ for
l ¼ 1, 2, . . . ,T � 1, referred to as inventory links. Let GT ¼ ðV ,EÞ be the
expanded network. Figure 2 illustrates the expanded network for a simple
scenario where the shipping and inventory costs have to be balanced over a
time horizon of just three periods and shortages are not allowed. For
simplicity, we assume that travel times are zero.

Observe that, using the expanded network, the shipper problem can be
formulated as a concave-cost multi-commodity network flow problem.
Production decisions can be easily incorporated into this model. For this
purpose, in the expanded network, each production facility at a specific time is
represented by two nodes connected by a single link whose cost represents
the concave (e.g., set-up plus linear) manufacturing costs. This link is not
different from the shipping links in our original model and, consequently, we
can restrict the discussion, without loss of generality, to the pure distribution
problem.

3.2 A set-partitioning approach

To describe our modeling approach, we introduce the following notation.
Let K ¼ f1, 2, . . . ,Kg be the index set of all commodities, or different demands
with fixed origin and destination, and let wk, k ¼ 1, 2, . . . ,K , be their
corresponding size. For instance, commodity k ¼ 1 may correspond to a
demand of w1 ¼ 100 units that needs to be shipped from a certain supplier to
a certain retailer and must arrive by a particular period of time or incur
delay penalties. Let the set of all possible paths for commodity k be Pk and let
cpk be the sum of inventory and penalty costs incurred when commodity k is
shipped along path p 2 Pk. Observe that the shipping cost associated with a
path will depend on the total quantity of all commodities being sent along
each of its shipping links and, consequently, it can’t be added to the path cost
a priori. Thus, each shipping edge, whose cost must be globally computed,

Fig. 2. Example of expanded network.
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needs to be considered separately. Let the set of all shipping edges be SE and
for each edge e 2 SE, let ze be the total sum of weight of the commodities
traveling on that edge.

We assume that the cost of a shipping edge e, e 2 SE, of the expanded
network GT ðV ,EÞ, is FeðzeÞ, a piece-wise linear and concave cost function which
is non-decreasing in the total quantity, ze, of the commodities sharing edge e.
As presented in Balakrishnan and Graves (1989), this special cost structure
allows for a formulation of the problem as a mixed integer linear program.
For this purpose, the piece-wise linear concave functions are modeled
as follows. Let R be the number of different slopes in the cost function,
which we assume, without loss of generality, is the same for all edges
to avoid cumbersome notation. Let Mr�1

e , Mr
e, r ¼ 1, . . . ,R, denote

the lower and upper limits, respectively, on the interval of quantities
corresponding to the rth slope of the cost function associated with edge e. Note
that M0

e ¼ 0 and MR
e can be set to the total quantity of all commodities that

may use arc e. We associate with each of these intervals, say r, a variable cost
per unit, denoted by �re, equal to the slope of the corresponding line segment,
and a fixed cost, f re , defined as the y-intercept of the linear prolongation of that
segment. See Fig. 3 for a graphical representation. Observe that the cost
incurred by any quantity on a certain range is the sum of its associated fixed
cost plus the cost of sending all units at its corresponding linear cost. That is,
we can express the arc flow cost function, FeðzeÞ, as

FeðzeÞ ¼ f re þ �
r
eze,

if ze 2 ðM
r�1
e ,Mr

e�: Clearly,

Fig. 3. Piece-wise linear and concave cost structure.
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Property 1. The concavity and monotonicity of the function Fe implies that,

1. �1e > �2e > � � � > �Re � 0,
2. 0 � f 1e < f 2e < � � � < f Re ,
3. FeðzeÞ ¼ minr¼1,...,Rf f

r
e þ �

r
ezeg: The minimum is achieved at a unique

index s, unless ze ¼Ms
e, in which case the two consecutive indexes s and

sþ 1 lead to the same minimum cost.

We are now ready to introduce an integer linear programming formulation
of the Shipper Problem for this special cost structure. Recall that ze denotes
the total flow on edge e and let zek be the quantity of commodity k that
is shipped along that edge. For all e 2 SE and r ¼ 1, . . . ,R define the
interval variables,

xre ¼
1, if ze 2 ðM

r�1
e ,Mr

e�,
0, otherwise,

�

and, in addition, for every k, k 2 K, let the quantity variables be

zrek ¼
zek, if ze 2 ðM

r�1
e ,Mr

e�,
0, otherwise:

�

In order to relate these edge flows to path flows we define, for each e 2 SE
and p 2

SK
k¼1 Pk,

�ep ¼
1, if shipping link e is in path p,
0, otherwise:

�

Finally, let variables

ypk ¼
1, if commodity k follows path p in the optimal solution
0, otherwise,

�

for each k 2 K and p 2 Pk. These variables are referred to as path
flow variables. Observe that defining these variables as binary variables
implies that for every commodity k only one of the variables ypk takes
a positive value. This reflects a common business practice in which
each commodity, that is, items originated at the same source and destined
to the same sink in the expanded network, is shipped along a single path.
These integrality constraints are, however, not restrictive, as pointed out
in Property 2 below, since the problem is uncapacitated and the cost functions
concave.

In the Set-Partitioning formulation of the LTL Shipper Problem, the
objective is to select a minimum cost set of feasible paths. Thus, we
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formulate the LTL shipper problem for piece-wise linear concave edge
costs as the following mixed integer linear program, which we denote by
Problem P.

Problem P : Min
XK
k¼1

X
p2Pk

ypkcpk þ
X
e2SE

XR
r¼1

f re x
r
e þ �

r
e

XK
k¼1

zrek

 !" #

s.t.

X
p2Pk

ypk ¼ 1, 8k ¼ 1, 2, . . . ,K , ð3:1Þ

X
p2Pk

�epypkwk ¼
XR
r¼1

zrek, 8e 2 SE, k ¼ 1, . . . ,K , ð3:2Þ

zrek � wkx
r
e 8e, r, k, ð3:3Þ

XK
k¼1

zrek �Mr
ex

r
e, 8e 2 SE, r ¼ 1, . . . ,R, ð3:4Þ

XK
k¼1

zrek �Mr�1
e xre, 8e 2 SE, r ¼ 1, . . . ,R, ð3:5Þ

XR
r¼1

xre � 1 8e 2 SE, ð3:6Þ

ypk 2 f0, 1g, 8k ¼ 1, 2, . . . ,K , and p 2 Pk, ð3:7Þ

xre 2 f0, 1g, 8e 2 SE, and r ¼ 1, 2, . . . ,R,

zrek � 0, 8e 2 SE, 8k ¼ 1, 2, . . . ,K ,

and r ¼ 1, 2, . . . ,R: ð3:8Þ

In this formulation, constraints (3.1) ensure that exactly one path is selected
for each commodity and constraints (3.2) set the total flow on an edge e to
be equal to the total flow of all the paths that use that edge. Constraints
(3.3)–(3.6) are used to model the piece-wise linear concave function.
Constraints (3.3) specify that if some commodity k is shipped on edge e
using cost index r, the associated interval variable, xre, must be 1. Constraints
(3.4) and (3.5) make sure that if cost index r is used on edge e, then the
total flow on that edge must fall in its associated interval, ½Mr�1

e ,Mr
e�.
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Finally, constraints (3.6) indicate that at most one cost range can be selected
for each edge.

Let Z* be the optimal solution to Problem P. Let ZRx
and ZRy

be the
optimal solutions to relaxations of Problem P where the integrality constraints
of interval (x) and path flow (y) variables, respectively, are dropped.
A consequence of Property 1 is the following result.

Property 2. We have,

Z* ¼ ZRx
¼ ZRy

:

To find a robust and efficient heuristic algorithm for Problem P, we study
the performance of a relaxation of Problem P that drops integrality and
redundant constraints. Although constraints (3.3) are not required for a
correct mixed-integer programming formulation of the problem, we keep
them because they improve significantly the performance of the linear
programming relaxation of Problem P. In fact, Croxton, Gendron and
Magnanti (2000b) show that, without them, the linear programming
relaxation of this model approximates the piece-wise linear cost functions
by their lower convex envelope. Furthermore, keeping these constraints
makes constraints (3.4)–(3.6) redundant in the correct mixed-integer
programming formulation, as a direct consequence of Property 1 part 3,
and in the linear programming relaxation of problem P as well, as Lemma
3 below shows. This will be useful to considerably reduce the size of the
formulation of the problem, while preserving the tightness of its linear pro-
gramming relaxation.

Let Problem PR
LP be the linear program obtained from Problem P by

relaxing the integrality constraints and constraints (3.4)–(3.6). That is,

Problem PR
LP : Min

XK
k¼1

X
p2Pk

ypkcpk þ
X
e2SE

XR
r¼1

f re x
r
e þ �

r
e

XK
k¼1

zrek

 !" #

s.t. (3.1)–(3.3)

ypk � 0, 8k ¼ 1, 2, . . . ,K, and p 2 Pk,

xre � 0, 8e 2 SE, and r ¼ 1, 2, . . . ,R,

zrek � 0, 8e 2 SE, 8k ¼ 1, 2, . . . ,K ,

and r ¼ 1, 2, . . . ,R:

Chan et al. (1999) prove the following.

Ch. 2. Supply Chain Design and Planning 29



Lemma 3. The optimal solution value to Problem PR
LP is equal to the optimal

solution value to the linear programming relaxation of Problem P.

3.3 Structural properties

To analyze the relaxed problem, we start by fixing the fractional path flows
and study the behavior of the resulting linear program. Let y ¼ (ypk) be the
vector of path flows in a feasible solution to the relaxed linear program,
Problem PR

LP.
Observe that, given the vector of path flows y, the amount of each

commodity sent on each edge is known and, thus, Problem PR
LP can be

decomposed into multiple subproblems, one for every edge. Each subproblem
determines the cost that the linear program associates with the corresponding
edge flow. We refer to the subproblem associated with edge e as the Fixed-
Flow Subproblem on edge e, or Problem FFe

y .
Let the proportion of commodity k shipped along edge e be

�ek ¼
X
p2Pk

�epypk:

Using Eq. (3.2), the equality
PR

r¼1 zrek ¼ wk�ek must clearly hold; that is, the
sum of all the flows of commodity k on the different cost intervals on edge e
must be equal to the total quantity, wk�ek, of commodity k that is shipped on
that edge.

For each edge e, the total shipping cost on e, as well as the value of the
corresponding variables zrek and xre, that Problem PR

LP associates with the
vector of path flows y, can be obtained by solving the Fixed-Flow Subproblem
on edge e:

Problem FFe
y : Min

XR
r¼1

f re x
r
e þ �

r
e

XK
k¼1

zrek

" #

s.t.

zrek � wkx
r
e 8k ¼ 1, . . . ,K , and r ¼ 1, . . . ,R, ð3:9Þ

XR
r¼1

zrek ¼ wk�ek, 8k ¼ 1, . . . ,K, ð3:10Þ

zrek � 0, 8k ¼ 1, . . . ,K , and r ¼ 1, . . . ,R,

xre � 0, 8r ¼ 1, . . . ,R:
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Let C*
e ðyÞ:C*

e ð�e1, . . . , �eK Þ be the optimal solution to the Fixed-Flow
Subproblem on edge e for a given vector of path flows y, or, equivalently, for
given corresponding proportions �e1, . . ., �eK, of the commodities shipped on
that edge.

The following Theorem determines the solution to the subproblem.

Theorem 4. For any given edge e2SE, let the proportion �ek of commodity k to
be shipped on edge e be known and fixed, for k ¼ 1, 2, . . .,K, and let the
commodities be indexed in non-decreasing order of their corresponding
proportions, that is,

�e1 � �e2 � . . . � �eK :

Then, the optimal solution to the Fixed-Flow Subproblem on edge e is

C*
e �e1, . . . , �eKð Þ ¼

XK
k¼1

Fe

XK
i¼k

wi

 !
�ek � �ek�1½ �, ð3:11Þ

where �e0:¼ 0.

Intuitively, the above Theorem just says that in an optimal solution to the
Fixed-Flow Subproblem associated with any edge e, fractions of commodities
are consolidated to be shipped at the cheapest possible cost per unit. At
first, a fraction �e1 of all commodities 1, 2, . . .,K is available. Thus, these
commodities get consolidated to achieve a cost per unit of Feð�

K
k¼1 wkÞ=

�K
k¼1 wk, i.e., the cost per unit associated with sending the full K commodities

on that edge, and the available fraction �e1 is sent incurring a cost of
�e1Feð�

K
k¼1 wkÞ. At that point, none of commodity 1 is left and a fraction

(�e2 – �e1) is the maximum available simultaneously from all commodities
2, 3, . . .,K. Again these commodities get consolidated and that fraction,
(�e2 – �e1), from each commodity is sent at a cost ð�e2 � �e1ÞFeð�

K
k¼2 wkÞ.

This process continues until the desired proportion of each commodity has
been sent.

A generalization of this result to capacitated networks has recently been
derived, see Muriel and Munshi (2002).

3.4 Solution procedure

Theorem 4 provides a simple expression of the cost that the relaxed
problem, Problem PR

LP, assigns to any given fractional path flows and thus it
allows for the efficient computation of the impact of modifying the flow in a
particular path. This is the key to the algorithm developed in this section.
Indeed, the algorithm transforms an optimal fractional solution to the linear
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program PR
LP into an integer solution by modifying path flows, choosing

for each commodity the path that leads to the lowest increase in the objective
of the linear program.

3.4.1 The linear programming based heuristic
Step 1: Solve the linear program, Problem PR

LP. Initialize k¼ 1.
Step 2: For each arc compute a marginal cost which is the increase

in cost incurred in the Fixed-Flow Subproblem by augmenting the
fractional flow of commodity k to 1. Note that this is easy to compute
using Theorem 4.

Step 3: Determine a path for commodity k by finding the minimum cost
path on the expanded network with edge costs equal to the marginal costs.

Step 4: Update the flows and the costs on each link (again employing
Theorem 3.4) to account for commodity k being sent along that path.

Step 5: Let k¼ kþ 1 and repeat steps (2)–(5) until k¼Kþ 1.

Evidently, the effectiveness of this heuristic depends on the tightness of
the linear programming relaxation of Problem P. For this reason, we study the
difference between integer and fractional solutions to Problem P. Chan et al.
(1999) show that in some special cases an integer solution can be constructed
from the optimal fractional solution of Problem PR

LP without increasing its
cost. In particular, using Theorem 4, they prove the following result.

Theorem 5. In the following cases:

1. Single period, multiple suppliers, multiple retailers, two warehouses,
2. Two periods, single supplier, multiple retailers, single warehouse,
3. Two periods, multiple supplier, multiple retailers, single warehouse

using a cross-docking strategy,
4. Multiple periods, single supplier, single retailer, single warehouse that

uses a cross-docking strategy.

The solution to the linear programming relaxation of problem P is the optimal
solution to the shipper problem. That is,

Z* ¼ ZLP:

Furthermore, in the first three cases, all extreme point solutions to the linear
program are integer.

The cross-docking strategy referred to in the last two cases, is a strategy in
which the stores are supplied by central warehouses which do not keep any
stock themselves. That is, in this strategy, the warehouses act as coordinators
of the supply process, and as transshipment points for incoming orders from
outside vendors.

The Theorem thus demonstrates the exceptional performance of the linear
programming relaxation, and consequently of the heuristic, in some special
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cases. A natural question at this point is whether these results can be
generalized. The answer is no in general. To show this, Chan et al. (1999)
construct examples with a single supplier, a single warehouse and multiple
retailers and time periods, for which

Z*

ZLP
!1,

as the number of retailers and time periods increases.

Lemma 6. The linear programming relaxation of Problem P can be arbitrarily
weak, even for a single-supplier, single-warehouse, multi-retailer case in which
demand for the retailers is constant over time.

It is important to point out that the instances in which the heuristic solution
is found to be arbitrarily bad are characterized by the unrealistic structure of
the shipping cost. In these instances, the shipping cost between two facilities is
a pure fixed charge (regardless of quantity shipped) in some periods, linear
(with no fixed charges) in others, and yet prohibitively expensive so that
nothing can be shipped in the remaining periods. The following examples
illustrate this structure.

Example of weak linear programming solution: Consider a three-period single-
warehouse model in which a single supplier delivers goods to a warehouse
which, in turn, replenishes inventory of three retailers over time. The
warehouse uses a cross-docking strategy and, thus, it does not keep any
inventory. Let transportation cost be a fixed charge of 100 for any shipment
from the supplier to the warehouse at any period. Transportation from the
warehouse to retailer i, i ¼ 1, 2, 3 is very large for shipments made in period
i (in other words, retailer i cannot be reached in period i) and negligible
for periods j 6¼ i. Let inventory cost be negligible for all retailers at all
periods, and let demand for each retailer be 0 units in periods 1 and 2 and 100
units in period 3.

Observe that, in order to reach the three retailers, shipments need to be
made in at least two different periods. Thus, the optimal integer solution
is 200. However, in the solution to the linear program 50 units are sent to each
of the ‘reachable’ retailers in each period, and a transportation cost of
50 is charged at each period (as stated in Theorem 4, since only a fraction of
1/2 of the commodities is sent on any edge, exactly that fraction of the fixed
cost is charged). Thus, the optimal fractional solution is 150 and the ratio of
integer to fractional solutions is 3/2.

In this instance, even if fractional and integer solutions are different, the
linear programming based heuristic generates the optimal integer solution.
However, we can easily extend the above scenario to instances for which the
difference between the solution generated by the heuristic and the optimal
integer solution is arbitrarily large.
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Example of weak heuristic solution: For that purpose, we add n new periods to
the above setting. In period 4, the first of the new periods, the cost for shipping
from supplier to warehouse is linear at a rate of 1/3 and the cost for shipping
from the warehouse to each of the 3 retailers is 0. On all the other n�1 periods
the cost of shipping is very high and thus no shipments will be made after
period 4. Inventory costs at all retailers and all periods are negligible. Demand
for each of the three retailers at each of the new n periods is 100, while demand
during the first 3 periods is 0. It is easy to see that the optimal integer and
fractional solutions are identical to those in the 3-period case, with costs of
200 and 150, respectively. However, the heuristic algorithm will always choose
to ship each commodity in period 4, since the increase in cost in the
corresponding path would be 1/3� 100 while it is at least 50 in any of the first
3 periods. Thus, the total cost of the heuristic solution is 1/3� 100� n and the
gap with the optimal integer solution arbitrarily large.

The following section reports the practical performance of the algorithm on
a set of randomly generated instances.

3.5 Computational results

The computational tests carried out are divided into three categories:

1. Single-period layered networks.
2. General networks.
3. Multi-period single-warehouse distribution problems:

� Pure distribution instances.
� Production/distribution instances.

The first two categories are of special interest because they allow us
to compare our results with those reported by Balakrishnan and Graves
(1989), henceforth B&G (1989). The third set of problems models practical
situations in which each of the retailers is assigned to a single warehouse
and production and transportation costs have to be balanced with inventory
costs over time.

In the three categories the tests were run on a Sun SPARC20 and CPLEX
was used to solve the linear program, Problem PR

LP, using an equivalent
formulation where path flow variables are replaced by flow-balance
constraints. During our computational work, we observed that the dual
simplex method is more efficient than the primal simplex method in solving
these highly degenerate problems, an observation also made by Melkote
(1996). This is usually the case for programs with variable upper bound
constraints, such as our constraints zrek � wkx

r
e. We should also point out

that most of the CPU time reported in our tests is used in solving the
linear program. Thus, to enhance the computational performance of our
algorithm and increase the size of the problems that it is capable of
handling, future research focused on efficiently solving the linear program is
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needed. For instance, the original set-partitioning formulation, Problem
PR
LP, could be solved faster using column generation techniques. In these

tests, however, we focused on evaluating the quality of the integer solutions
provided by the heuristic and the tightness of the linear programming
relaxation.

We now discuss each class of problems and the effectiveness of our
algorithm.

3.5.1 Single-period layered networks
B&G (1989) present exceptional computational results for single-

period layered networks. In these instances, commodities flow from the
manufacturing facilities to distribution centers, where they are consolidated
with other shipments. These shipments are then sent to a number of
warehouses, where they are split and shipped to their final destinations. Thus,
every commodity must go through two layers of intermediate points:
consolidation points, also referred to as distribution centers, and breakbulk
points, or warehouses.

To test the performance of our algorithm and to compare it with that of
B&G (1989), we generated instances of the layered networks following the
details given in their paper. In this computational work, five different problem
classes, referred to as LTL1–LTL5, are considered.

Table 1 shows the sizes of the different classes of problems. For each of
these classes, the first column (B&G) of Table 2 presents the average ratio
between the upper bounds generated by the heuristic proposed by B&G (1989)
and a lower bound on the optimal solution, over 5 randomly generated
instances. The numbers are taken from their paper. We do not include,
though, their average CPU times because the machines they use are
completely different than ours and, in addition, they do not report total
computational time for the entire algorithm. The second and third columns
report the average deviation from optimality and computational performance
of the Linear Programming Based Heuristic (LPBH) over 10 random

Table 1
Test problems generated as in Balakrishnan and Graves (1989)

Number of
nodes

Problem class

LTL1 LTL2 LTL3 LTL4 LTL5

SOURCE 4 5 6 8 10
CONSOLIDN 5 10 12 15 20
BREAKBULK 5 10 12 15 20
DESTN 4 5 6 8 10
Arcs 42–47 131–141 190–207 309–312 358–372
Commodities 10 20 30 50 60
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instances, for each of the problem classes. In all of them, our algorithm finds
the optimal integer solution; furthermore, the solution to the linear program in
the first step of our algorithm is integer, providing the optimal solution to the
problem.

Of course, since in all the previous instances the linear program provided
the optimal integer solution, the performance of our procedure has not really
been tested. In the following subsections we present computational results for
problem classes in which the solution to the linear program is not always
integer.

3.5.2 General networks
In this subsection, we report on the performance of our algorithm on

general networks, in which every node can be an origin and/or a destination,
generated exactly as they are generated by B&G (1989). These results together
with those of B&G (1989) are reported in Table 3. In this category,
B&G (1989) consider five different problem classes, referred to as
GEN1, . . . , GEN5, and generate five random instances for each of them.

Table 2
Computational results for layered networks

Problem
class

B&G LPBH

LB/UB (%) LP/Heurisitic (%) Avg. CPU time (sec)

LTL1 99.8 100 1.04
LTL2 100 100 7.94
LTL3 99.6 100 20.74
LTL4 99.1 100 55.72
LTL5 99.5 100 100.48

Balakrishnan and Graves results (B&G) versus those of our Linear Programming

Based Heurisitic (LPBH).

Table 3
Computational results for general networks

Problem class Size B&G LPBH

No. of
nodes

No. of
arcs

No. of
comm.

LB/UB
(%)

LP/Heuristic
(%)

Avg. CPU
time (sec)

GEN1 10 47–54 10 99.9 100 2.18
GEN2 15 109–136 20 98.7 99.53 24.04
GEN3 20 196–235 30 98.4 99.88 139.83
GEN4 30 364–428 50 96.2 98.59 1313.06
GEN5 40 340–370 60 98.5 99.98 159.57

Balakrishnan and Graves results (B&G) versus those of our Linear Programming Based Heuristic

(LPBH).
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We, in turn, solve 10 different randomly generated instances for each of the
problem classes. Again, we do not include their average CPU times due to the
reasons mentioned above.

3.5.3 Multi-period single-warehouse distribution problems
Here we consider a single-warehouse model where a set of suppliers

replenishes inventory of a number of retailers over time. We test two different
types of instances: pure distribution instances in which the routing and timing
of shipments are to be determined, and production/distribution instances
in which the production schedule is also integrated with the transportation
and inventory decisions.

Pure distribution instances. We assume that shortages are not allowed and
analyze three different strategies:

1. Classical inventory/Distribution strategy: Material flows always from
the suppliers through a single warehouse where it can be held as
inventory.

2. Cross-docking strategy: All material flows through the ware-
house where shipments are reallocated and immediately sent to the
retailers.

3. A distribution strategy that allows for direct shipments: Items may be
sent either through the warehouse or directly to the retailer. The
warehouse may keep inventory.

For each strategy, we analyze different situations where the number of
suppliers is either 1, 2, or 5, the number of retailers is 10, 12, or 20 and
the number of periods is 8 or 12. For each combination of the number of
suppliers, retailers and periods presented in Table 6, 10 instances are
generated. The retailers and suppliers are randomly located on a 1000� 1000
grid, while the warehouse is randomly assigned to the 400� 400 subgrid
at the center. Demand is generated for each retailer–supplier pair at
each time period, except for the cases with five suppliers in which each
of these pairs has an associated demand with probability 1/3. These
demands are generated from a uniform distribution on the integers in the
interval [0, 100).

All suppliers and retailers are linked to the warehouse and the
distance associated is the corresponding Euclidean distance between the
nodes of the grid. In the case of a Distribution Strategy that Allows for
Direct Shipments, shipping edges from each of the suppliers to each of the
retailers are added. The holding costs per unit of inventory are different at
the warehouses and retailer facilities and are presented in Table 5. All
holding costs at the suppliers are set to zero. Two shipping-cost functions,
representing cost per item per unit distance, are considered: The first is
assigned to shipments from the suppliers to the warehouse. The second is
incurred by the material flowing from the warehouse to the retailers. The
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cost function (dollars per mile per unit) associated with direct shipments is
equal to that of shipments from the warehouse to a retailer. Both functions
have an initial set-up cost for using the link and three different linear
rates depending on the quantity shipped, see Table 4. However, the ranges
to which those linear costs correspond are different for the different
Problem classes. This is done so that, in an optimal solution, shipments are
consolidated and thus the concave cost function plays an important role in
the analysis. These ranges and the corresponding problem classes are
presented in Table 5.

Observe, see Table 6, that in most of the instances tested, the linear
program is tight and it provides the optimal integer solution. Only in three
out of the 150 instances generated, the solution to the linear program is
not integer and, in such cases, our algorithm finds a solution which is within
0.8% from the optimal fractional solution.

Production/distribution instances. This section demonstrates the effectiveness
of the algorithm when applied to production/distribution systems, i.e., systems

Table 4
Linear and set-up costs used for all the test problems

Type of arc �1e �2e �3e Set-up

Supplier–warehouse 0.15 0.105 0.084 25
Warehouse–retailer 0.25 0.20 0.16 10

Table 5
Inventory costs and different ranges for the different test problems

Problem
class

Inventory cost Supplier–warehouse cost Warehouse–retailer cost

Warehouse Retailer Range 1 Range 2 Range 1 Range 2

I1 5 10 800 1500 200 400
I2 300 600
I3 300 600
I4 10 20 1000 2000 150 300
I5 200 400
I6 200 400
C1 10 20 800 1500 200 400
C2 300 600
C3 300 600
C4 10 20 1000 2000 150 300
C5 200 400
C6 200 400
D1 10 20 500 1000 150 300
D2 200 400
D3 200 400

38 A. Muriel and D. Simchi-Levi



in which one needs to coordinate production planning, inventory control and
transportation strategies over time. For that purpose, we consider the same set
of problems, I1–I3, as in theClassical Inventory/Distribution Strategy described
in the previous section and add production decisions at each of the supplier
sites. This is incorporated into the model as explained in Section 3.1.

We consider a fixed set-up cost for producing at any period plus a certain
cost per unit. The set-up cost is varied in the set {50, 100, 500, 1000} and the
linear production cost is set to 1. Inventory holding rate at the supplier site
(after production) is set to half of that at the warehouse. For the 60 different
instances generated, the linear programming relaxation gave an integer
solution every time.

4 All-unit discount transportation costs

In this section, we study coordination of production, inventory and
transportation activities under the all-unit discount transportation cost
structure. Specifically, this cost function, described in Fig. 4, implies that if Q
units are shipped, the transportation cost function is

GðQÞ ¼

0, if Q ¼ 0,
c, if 0 < Q <M1,
�1Q, if M1 � Q <M2,
�2Q, if M2 � Q <M3,
�,
�,

8>>>>>><
>>>>>>:

Table 6
Computational results for a single warehouse

Strategy Problem
class

Number of
suppliers

Number of
stores

Number of
periods

LP/Heuristic
(%)

CPU
time (sec)

Classical I1 1 10 12 100 65.21
inventory/ I2 2 100 187.37
distribution I3 5 100 163.23
strategy I4 1 20 8 99.946 83.5

I5 2 100 210.51
I6 5 99.953 200.68

Cross-docking C1 1 10 12 100 60.0
strategy C2 2 100 174.13

C3 5 100 159.06
C4 1 20 8 100 79.73
C5 2 100 202.83
C6 5 100 186.0

Direct D1 1 12 8 100 51.23
shipments D2 2 100 165.83
allowed D3 5 99.921 117.27
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where �1>�2> � � � � 0 and �1M1 ¼ c. Thus, c is a minimum charge for
shipping a small volume, i.e., c is the total cost when the number of units
shipped is no more than M1. Interestingly, in practice, when the shipper is
planning to ship Q units, Mi � Q<Miþ 1, the cost is calculated as

FðQÞ ¼ minfGðQÞ,GðMiþ1Þg ¼ minf�iQ, �iþ1Miþ1g:

That is, if the order quantity is greater than a certain value, the shippers pay as
if they were shipping Miþ1 units. This is called in the industry shipping Q but
declaring Miþ 1.

This commonly used practice implies that the true transportation cost
function, F( � ), has the structure described by the solid line in Fig. 5. As the
dashed lines indicate, the associated solid lines originate at point (0, 0).

We refer to such cost functions as modified all-unit discount cost functions.
Notice that such a cost function satisfies the following properties:

(p1) it is a non-decreasing function of the amount shipped,
(p2) the cost per unit is non-increasing in the amount shipped.

As indicated in the next section, these two properties are sufficient to derive
the results presented below.

To justify considering this cost function, we should point out again that
most LTL carriers use an industry standard transportation rating engine
called CZAR (Southern Motor Carrier’s Complete Zip Auditing and Rating
engine). This engine allows the shipper to find the transportation cost of every
shipment, which is a function of the source, destination, product class and
discount. The carrier and the shipper contractually agree on the product class

Fig. 4. All-unit discount cost structure.
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(typically class 100) and on the level of discount which implies that the shipper
will pay only a given fraction, say 90%, of the cost generated by the rating
engine. Now, given this input, the transportation cost as a function of the
amount shipped enjoys the structure of the cost function described in our
model.

The lack of concavity in this case significantly increases the complexity
of the problem. For this reason, our approach is to pursue a better
understanding of the problem by considering two simple scenarios: (1) the
Single-item Lot Sizing Problem, in which a single retailer places orders from
a warehouse to satisfy its demand over time, and (2) the Single-warehouse
Multi-retailer Problem, in which the warehouse orders from an outside
supplier and replenishes inventory of a number of retailers.

4.1 The single-item economic lot sizing problem

The Single-item Economic Lot Sizing Problem can be stated as follows:
A facility, possibly a warehouse or a retail outlet, faces known demands
over a finite planning horizon. At each period, the order cost function (or
transportation cost function in our application) and the holding cost func-
tion are given and they can be different from period to period. Backlogging
is not allowed. The objective is to decide when and how many units to order so
as to minimize total ordering and holding costs over the finite horizon without
any shortages.

The Single-item Economic Lot Sizing Problem, initially analyzed by
Wagner and Whitin (1958), has recently been the subject of intensive
research. Most of the work has focused on ordering (or transportation) costs,

Fig. 5. Modified all-unit discount cost structure.
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which are assumed to be concave in the amount ordered. For instance,
Aggarwal and Park (1993), Federgruen and Tzur (1991) and Wagelmans,
Van Hoesel, and Kolen (1992) have shown that it is possible to take advan-
tage of the special cost structure of the model and use it to develop fast,
exact, algorithms. A few authors have considered more general cost
structures. Federgruen and Lee (1990) consider both ‘all-unit’ (different
from the one considered here) and incremental discount cost structures.
Specifically, in the case of ‘all-unit’ discount cost structures the authors
characterize structural properties of optimal solutions that lead to the
development of a polynomial time algorithm. However, it is easy to show
that these properties do not hold in our case. Shaw and Wagelmans (1998)
and Van Hoesel and Wagelmans (2001) develop pseudopolynomial and
approximation algorithms for more general capacitated versions of the
Economic Lot Sizing problem. Specifically, Shaw and Wagelmans (1998)
develop an algorithm that solves the problem with general piece-wise
linear cost functions to optimality in time proportional to the average
demand and the square of the number of time periods, but is independent
of the capacity limit. Thus, this algorithm can be used to solve the
Economic Lot Sizing problem with modified all-unit discount cost function.
Van Hoesel and Wagelmans (2001) develop a fully polynomial approxi-
mation scheme for the capacitated Economic Lot Sizing problem which
only requires monotonicity of the ordering cost function. In this case,
the complexity of the algorithm is proportional to the number of time
periods, the logarithm of total demand and the logarithm of the sum of
the capacity limits for each period. This dependency on the capacity limit
make the algorithm inappropriate to solve the uncapacitated problem
considered here.

In approaching the Single-Item Economic Lot Sizing Problem with
modified all-unit discount costs, the first challenge is to determine its
complexity. Chan, Muriel, Shen, and Simchi-Levi (2002) show that the
2-partition problem can be reduced to a single-item lot sizing problem with
non-stationary modified all-unit discount ordering cost functions that have a
bounded number of breakpoints. A similar reduction procedure can be
performed in the case of holding and ordering cost functions that do not
change over time, but the number of breakpoints in the cost function grows
with the number of items in the 2-partition problem. In either case, since the
2-partition problem is NP-hard, see Karp (1972) and Garey and Johnson
(1979), we have the following result.

Theorem 7. The Single-item Economic Lot Sizing Problem with modified
all-unit discount ordering cost functions is NP-hard.

The theorem thus suggests that research on this problem should be focused
on identifying easily implementable policies with an attractive worst-case
performance. One such class of policies is the class of Zero-Inventory-Ordering
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(ZIO) policies, in which a retailer orders only when its inventory is down
to zero. It is well known that the best ZIO policy can be found in O(T2)
time using a shortest path algorithm [see Bramel and Simchi-Levi (1997),
pp. 166–167]. The question, of course, is how far can the cost of the optimal
ZIO policy be from the cost of the optimal policy? This question is answered
in the next subsection.

4.1.1 Worst-case analysis of ZIO policies
Consider a single facility facing time varying demand for the next T

periods. Demand in period t, t ¼ 1, 2, . . . ,T, is known and denoted by dt. A
holding cost, at a rate ht� 0, is charged on all items carried over from period t
to period t þ 1, t ¼ 1, 2, . . . ,T�1. Let Ft(Q) be the ordering cost associated
with an order of size Q placed at the beginning of period t. We assume that the
ordering cost function Ft( � ) belongs to the class of modified all-unit discount
cost functions.

The objective is to determine when to order and how many units to order so
as to minimize ordering and holding costs over the planning horizon, without
any shortages. In what follows we refer to this problem as the lot sizing
problem, with Z* being the cost of the optimal strategy. That is, Z* is the
minimum system-wide cost, associated with the best inventory ordering
strategy for the lot sizing problem. In addition, we let ZZIO be the cost of the
best ZIO policy and, given a particular inventory ordering policy S, we denote
its associated cost by Z(S).

We start by identifying structural properties of the solutions to the lot
sizing problem.

Given any feasible policy S, let R be the number of orders placed over the
horizon and let tj be the jth period in which an order is placed, j¼ 1, 2, . . . ,R.
In what follows, we assume without loss of generality that orders are used to
satisfy demand in a first-in-first-out basis. Thus, the order placed at period tj
covers a portion of demand at a certain period sj, full demand dsjþ1þ
dsjþ2 þ � � � þ dsjþrj�1 of the consecutive periods sj þ 1, sj þ 2, . . ., sj þ rj� 1,
and a portion of the amount demanded at the following period, sj þ rj, for
j ¼ 1, 2, . . .,T and some rj 2 {0, 1, . . . ,T�sj}. Obviously, sj is the first period
whose demand is not fully covered, i.e., satisfied, by orders placed in periods
previous to tj.

Given policy S, let Qj be the quantity ordered at period tj, for
j ¼ 1, 2, . . . ,R, and let TCj denote the cost per unit associated with that order.

In the remainder of this subsection, we consider the ordering cost at each
period to be distributed evenly among the quantity ordered. That is, each unit
of demand satisfied from the order of Qj units in period tj is assumed to have
an ordering cost of TCj:½ðFtj ðQjÞÞ=Qj�. Finally, let Hj be the cost of holding
one item in inventory from period tj to tjþ 1.

That is, Hj ¼ htj þ htjþ1 þ � � � þ htjþ1 � 1.
Some of the parameters just introduced are associated with a particular

policy S, and their values vary from policy to policy. For simplicity, we drop
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the correspondence to the specific policy, except when we refer to the optimal
policy. In this case, parameters associated with the optimal policy, S*, are
indicated by adding an * to the notation.

Lemma 8. Given any feasible policy S, there exists a feasible policy with lower
or equal cost satisfying the following properties,

1. For all j, j¼ 1, 2, . . . ,R�1, sj<tjþ 1; that is, the first period the jth order
is consumed is earlier than the time the ( jþ 1)th order is placed.

2. If sjþ rj� tjþ 1 then TCj þ Hj>TCjþ 1; that is, if the order at tj covers
demands occurring after the next order has been placed, at period tjþ 1,
then the cost per unit associated with ordering and holding those units in
inventory in the earlier period must be higher.

Proof. Suppose that the current policy S does not satisfy the first property;
that is, there exists an ordering period j such that sj� tjþ 1. Since both the
orders at periods tj and tjþ 1 cover demand occurring on or after period
tjþ 1, the two orders can be combined and placed in either tj or tjþ 1, whichever
leads to the overall lower cost. The total cost associated with ordering
the combined quantity and holding the units in inventory until period tjþ 1 is
no more than

ðQj þQjþ1ÞMin fTCj þHj,TCjþ1g � QjðTCj þHjÞ þQjþ1TCjþ1,

which is the cost associated with ordering those quantities and holding the
units in inventory until period tjþ 1 in the current policy S. Since all other
costs remain the same when combining the orders, the above argument shows
that we can always obtain a policy with lower or equal cost satisfying the
property.

Similarly, we can show that if sjþ rj� tjþ 1 and TCj þ Hj � TCjþ 1 the
quantity ordered at period tjþ 1 could be added to the order at period tj
without increasing cost, which proves the second property. j

To prove the worst-case result, we break up the quantity Qj ordered at
period tj, j ¼ 1, 2, . . . ,R, when following a policy S that satisfies the properties
in Lemma 3, in two:

Qj ¼ �jQj þ ð1� �jÞQj,

where �jQj, 0<�j� 1, denotes the portion of the jth shipment that is used to
satisfy demands from some time sj< tjþ 1 until the ( jþ 1)th order is placed.
Similarly, (1��j)Qj is the quantity destined to satisfy demands on or after
period tjþ 1.
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Following this notation, the total cost associated with an optimal policy S*
can be written as

Z* ¼ ZðS*Þ ¼ TC*
1�*1Q*

1 þ
XR
j¼2

ððTC*
j�1 þH*

j�1Þð1� �*j�1ÞQ*
j�1

þ TC*
j �*j Q*

j Þ þH*, ð4:1Þ

whereH* denotes the total inventory cost incurred by policy S*minus the cost
of carrying, for each j ¼ 1, 2, . . . ,R�1, the portion of demand ordered in
period t*j but used no earlier than t*jþ1, from period t*j to period t*jþ1. That is,
H* ¼ total holding cost �

PR�1
j¼1 H*

j ð1� �*j ÞQ*
j .

Let S* be an optimal solution which satisfies the conditions in
Lemma 8. We construct a ZIO policy, S, by modifying the optimal policy
S* as follows.

4.1.2 Transformation procedure
Step 0: Let S¼S*.
Step 1: Find the smallest index k, such that �k�1<1; that is, tk is the

earliest period in which an order is placed before inventory has been fully
depleted.

Step 2: Either,

� Combine 1: move (1��k�1)Qk�1 from the order at period tk�1 to
that at period tk, or,

� Combine 2: move �kQk from the order at period tk to that at period
tk�1 and (1��k)Qk from the order at period tk to that at period
tkþ 1,

whichever results in a lower cost.
Step 3: If combining orders in Step 2 causes the second property in Lemma 8 to

be violated, combine orders without increasing total cost, as shown
in the proof of the Lemma, until the current policy satisfies the condition.

Step 4: Let S be the new policy. If all periods in policy S satisfy the ZIO
property, then S ¼ S. Otherwise, repeat Steps 1 to 3.

See Figs. 6–8 for illustration of the Combine procedures. Observe that
ZðSÞ � ZZIO, since ZZIO denotes the best solution value among all ZIO
policies. Thus, to bound the worst-case performance of ZZIO it suffices to
study the ratio ½ZðSÞ=ZðS*Þ�.

Note that, at each iteration of the transformation procedure, if the ZIO
property is not satisfied at a certain period t in the current policy S, then it was
not satisfied in S* either. Hence, for each period tk considered at combining
step k (Step 2 with index k) there exists an index j� k, such that in the optimal
solution, S*, the order at period tk ¼ t*j is placed before all earlier inventory
has been used.
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The following three lemmas demonstrate that, at each iteration of Step 2,
the increase in cost accrued can be bounded.

Lemma 9. The increase in cost at combining step k is not more than

1. TCk(1��k�1)Qk�1 if Combine 1 is executed.
2. (TCk�1þHk�1�TCk)�kQk if Combine 2 is executed.

Fig. 6. Initial policy.

Fig. 7. Policy obtained when Combine 1 is performed.

Fig. 8. Policy obtained when Combine 2 is performed.
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This result is a consequence of properties (p1) and (p2) of the cost
function. Thus, at each iteration of Step 2 in the Transformation Procedure,
the increase in cost from the original policy S* to the current policy S is no
more than

MinfTCkð1� �k�1ÞQk�1, ðTCk�1 þHk�1 � TCkÞ�kQkg:

This increase in cost can be bounded using the following result.

Lemma 10.

minðA�,B�Þ �
1

3
ðAð�þ �Þ þ B�Þ, for all B,A, �,� � 0:

Proof.

minðA�,B�Þ �
�� �þmaxð�,�Þ

3maxð�, �Þ
B�þ

2maxð�,�Þ � �þ �

3maxð�, �Þ
A�:

Note that

f�� �þmaxð�, �Þg� � maxð�, �Þ�,

and

f2maxð�, �Þ � �þ �g� � ð�þ �Þmaxð�, �Þ:

Hence it follows that

minðA�,B�Þ �
1

3
ðB�þ Að�þ �ÞÞ: j

Lemma 11. At each iteration of combining step k, the increase in cost is no more
than one third of the corresponding jth term, i.e., j such that tk ¼ t*j , in the
expression of the optimal cost, Equation (4.1). That is,

MinfTCkð1� �k�1ÞQk�1, ðTCk�1 þHk�1 � TCkÞ�kQkg

�
1

3
ðTC*

j�1 þH*
j�1Þð1� �*j�1ÞQ*

j�1 þ TC*
j �*j Q*

j

h i
:
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Proof. The increase in cost in the combine step associated with the kth order
is no more than,

minfTCkð1� �k�1ÞQk�1, ðTCk�1 þHk�1 � TCkÞ�kQkg:

Let A¼Qk�1(1��k�1), B¼Qk�k, �¼TCk and �¼TCk�1þHk�1�TCk and
apply Lemma 10 to get,

minfTCkð1� �k�1ÞQk�1, ðTCk�1 þHk�1 � TCkÞ�kQkg

�
1

3
½ðTCk�1 þHk�1Þð1� �k�1ÞQk�1 þ TCk�kQk�

�
1

3
ðTC*

j�1 þH*
j�1Þð1� �*j�1ÞQ*

j�1 þ TC*
j �*j Q*

j

h i
:

The last inequality is easy to show by comparing the current solution S with
the optimal solution, S*, and realizing that:

1. The two solutions are identical from period tk ¼ t*j onwards, since the
orders placed on those periods have not been modified in previous
iterations. Thus, TCk�kQk ¼ TC*

j �*j Q*
j . In addition, observe that the

demand on or after period tk not covered by those orders must be
satisfied with units from the previous order in both solutions; that is,
ð1� �k�1ÞQk�1 ¼ ð1� �*j�1ÞQ*

j�1.
2. tk�1 ¼ t*j�1 and the quantity ordered at that period may have been

increased in the previous iteration leading to TCk�1 þHk�1 �

TC*j�1 þH*j�1. j

This proves that ZðSÞ � ð4=3ÞZ*, since the index j is strictly increasing in
the number of iterations performed and the sum of those terms for all j is no
larger than the optimal value, Z*. Thus,

Theorem 12. For every instance of the lot sizing problem, i.e., the Single-item
Economic Lot Sizing Problem with modified all-unit discount cost function,
we have

ZZIO �
4

3
Z*,

and this bound is tight.

It remains to show that the bound is tight. This is proved by constructing
instances for which the worst-case ratio converges to 4/3.

Lemma 13. There exist instances of the lot sizing problem for which the ratio
ZZIO/Z* is arbitrarily close to 4/3.
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Proof. Consider an Economic Lot Sizing problem where demands of d1¼ �
for period 1 and d2¼ 2 for period 2 must be satisfied. There is no charge for
carrying inventory from one period to the next. The ordering cost is described
by a different modified all-unit discount cost function for each period. In
period 1, there is a fixed charge of 2 for any shipment of size no greater than
1 and a rate of 2 per unit for all other shipments. The cost function in period
2 is linear with a rate of 1 per unit.

In the optimal solution to this instance of the lot sizing problem, 1 unit is
ordered at period 1 and 1þ � units at period 2, with a total cost of Z*¼ 3þ �.
However, the best ZIO policy consists of ordering � units at period 1 and 2
units at period 2, with a total cost of ZZIO

¼ 4. Hence,

ZZIO

Z*
¼

4

3þ �
!

4

3
as �! 0: j

We note that the only properties of the modified all-unit discount cost
function used in Chan et al. (2002) to prove Theorem 12 are that it is non-
decreasing in the quantity shipped and that the cost per unit is non-increasing
in that quantity, i.e., properties (p1) and (p2). Hence, the theorem holds true
for any transportation function satisfying those properties. In a similar way,
holding costs can be generalized to be any function of the quantity held that
satisfies those two properties.

Observe also that the example developed in Lemma 13, which shows that
the worst-case bound is tight, makes use of different ordering cost functions
for the two periods. This suggests that it may be possible to improve
the worst-case bound when the ordering cost function does not vary over time.
Indeed, in that case, Chan et al. (2002) again transform an optimal policy
which satisfies the properties developed in Lemma 8 into a ZIO policy and
show that the increase in cost due to the transformation is no more than 1/4.6
times the cost of the optimal policy.

Theorem 14. For every instance of the lot sizing problem in which the ordering
cost function is the same for all periods in the planning horizon, we have

ZZIO �
5:6

4:6
Z*:

A natural question at this point is whether the worst-case bound
ðZZIO=Z*Þ � ð5:6=4:6Þ � 1:217 is tight. Although this question is still open,
Chan et al. (2002) describe instances of the problem for which the ratio of the
solution generated by the heuristic to the optimal solution converges to
1=½2ð

ffiffiffi
2
p
� 1Þ� � 1:207.
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Lemma 15. There exist instances of the lot sizing problem with a stationary
ordering cost function for which the ratio ZZIO/Z* is arbitrarily close to
1=½2ð

ffiffiffi
2
p
� 1Þ�.

4.1.3 Computational results
To complete our study, we need to analyze the empirical performance of the

best ZIO policy. The objective is to answer two major questions: (i) How far is
the cost of the best ZIO policy from that of an optimal one for various test
problems? (ii) What are the advantages of using the ZIO policy compared to
known pseudo-polynomial time algorithms that can generate optimal solutions
to the problem? How does the performance of the best ZIO policy compare
with that of polynomial approximation algorithms based on these exact
pseudo-polynomial algorithms?

To answer these questions, we evaluate the performance of the best ZIO
policy, from total cost and speed points of view, relative to that of the best, to
our knowledge, exact algorithm. The exact algorithm is based on a dynamic
programming approach developed by Shaw and Wagelmans (1998), whose
running time is only linearly dependent on the magnitude of the data. More
specifically, the procedure has complexity OðT2qdÞ, where T is the number of
periods, q is the average number of linear pieces required to represent the cost
function and d is the average demand. This algorithm can be applied to the
Economic Lot Sizing problem with any type of piece-wise linear ordering cost
functions.

We consider four different classes of instances representing a variety of
problem sizes, as described in Table 7. For each of these classes, we generated 10
random instances of the Economic Lot Sizing problem with modified all-unit
discount transportation costs. Demand at each period was generated from a
normal distribution with themean and standard deviation given in Table 7. The
transportation cost functions considered in each case are described in Table 8.
They do not change over time. Holding costs are generated according to a
uniform distribution in the interval [0.2, 0.7].

Table 9 exhibits, for each of the problem classes, the average and maximum
ratios of the cost of the best ZIO policy to that of the optimal cost, and
the average computation time in seconds for both the heuristic and

Table 7
Sizes of the different problem classes

Problem
classes

Number of
periods

Number of
transportation cost
function breakpoints

Average
demand

Standard
deviation

Class 1 10 4 40 20
Class 2 12 4 300 100
Class 3 12 8 1500 500
Class 4 12 8 6000 800
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exact algorithms (using a Sun Workstation Ultra 1). We should point out that
in order to solve Class 4 problems to optimality, we had to incor-
porate a dynamic memory allocation subroutine in Shaw and Wagelmans’
algorithm.

These computational results indicate that the restriction to ZIO policies is
especially effective when average demand size is high: As demand size grows,
the relative error decreases while the time to find the best ZIO policy remains
negligible, less than 0.01 sec in all cases. The running time of Shaw and
Wagelmans’ algorithm, on the other hand, increases drastically as a function
of the demand size.

We thus conclude that restricting the search to ZIO policies allows us to
deal effectively with cases of large demands and numerous breakpoints in the
transportation cost function. These are exactly the cases for which the exact
algorithm becomes computationally expensive. Indeed, this is an important
issue because many hierarchical planning models for multi-item, multi-stage
logistics systems are solved via Lagrangian Relaxation. Using this technique,

Table 8
Transportation cost functions considered for the different problem classes

Cost interval 1 2 3 4 5 6 7 8

Class 1 breakpoint 0 40 80 120
fixed cost 40 0 80 0
slope 0 1 0 0.6667

Class 2 breakpoint 0 300 600 900
fixed cost 600 0 1200 0
slope 0 2 0 1.3333

Class 3 breakpoint 0 1500 3000 4500 6000 7500 9000 10,500
fixed cost 2250 0 4500 0 6000 0 7200 0
slope 0 1.5 0 1 0 0.8 0 0.6857

Class 4 breakpoint 0 1000 5000 10,000 15,000 20,000 25,000 30,000
fixed cost 2500 0 12,500 0 18,750 0 23,437.5 0
slope 0 2.5 0 1.25 0 0.9375 0 0.78125

Table 9
Computational results showing the performance of ZIO policies

Problem
classes

Average
ratio ZZIO/Z*

Maximum
ratio

Average exact
algorithm’s
CPU time

Average
heuristic’s
CPU time

Class 1 1.0104 1.0344 0.12 <0.01
Class 2 1.0044 1.0179 1.13 <0.01
Class 3 1.0029 1.0080 10.14 <0.01
Class 4 1.0001 1.0004 42.71 <0.01
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the problem is typically decomposed into many lot-sizing problems, each of
which needs to be solved for numerous combinations of the Lagrangian
multipliers. See Federgruen and Tzur (1991) for a discussion of the
relationship between the classical Economic Lot Sizing problem and multi-
item, multi-stage production problems.

An alternative approach to efficiently solve the Economic Lot Sizing
problem when demands are large is to scale the demands by a certain factor,
use the exact algorithm by Shaw and Wagelman’s on the scaled demands and
transform the solution to accommodate the original demands. We refer to this
procedure as the scaling algorithm. In what follows we compare the
performance of such a heuristic procedure with the performance of the best
ZIO policy. To implement the scaling algorithm, we divide the period
demands by a selected scaling factor and round up to ensure feasibility in the
original problem. In addition, once the solution to the Economic Lot Sizing
problem with scaled demands has been found, a solution to the problem with
the original demands is found by multiplying the order quantities by the
scaling factor and using the following routine to remove the excess quantity
ordered as a consequence of rounding up.

Let R be the number of ordering periods in which an order is placed in the
scaled solution and let tk denote the kth such period and Qtk the quantity
ordered. In addition, let Dtk,T denote the total demand, and Qtk,T be the total
quantity ordered, from period tk through the end of the horizon. Starting with
k ¼ R and moving backwards in time in the set of ordering periods do: if
Qtk,T > Dtk,T then set Qtk ¼ Qtk � ðQtk,T �Dtk,T Þ.

We tested 10 instances randomly generated according to a normal
distribution with a mean demand of 60,000 units and standard deviation 8000
units. Table 10 shows the average performance results for both the ZIO policy
and the solution generated by the scaling algorithm for different scaling
factors.

Clearly, the ability of the scaling algorithm to provide solutions close to the
optimal solution depends on the magnitude of the scaling factor and the
solution deteriorates rapidly as the factor grows. Even for large scaling
factors, the computational time to find the best ZIO policy is significantly
lower than that to run the scaling algorithm.

Table 10
Computational results comparing the performance of ZIO
policies with that of the scaling algorithm

Policy ZIO Scaling algorithm

Scaling factor 100 1000 10,000
Average relative error 0.02% 0% 0.01% 0.89%
CPU time 0.003 3.4 0.35 0.037
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4.2 The single-warehouse multi-retailer problem

In this section, we study a class of multi-period distribution problems with
transportation cost structures that model both the incremental and all-unit
discount cost functions. Specifically, we consider a classical inventory–
distribution model in which a single warehouse receives inventory from a
single supplier and replenishes the inventory of n retailers. In these situations,
shipments from the supplier to the warehouse are often delivered by
TruckLoad (TL) carriers whose costs can be approximated by piece-wise
linear concave functions. Henceforth, we assume that the transportation cost
function from the supplier to the warehouse is of the incremental discount
type. Of course, this function may also include piece-wise linear concave
production costs. By contrast, since shipment sizes from the warehouse to a
retailer are relatively small, these shipments are typically delivered by LTL
carriers whose costs follow the modified all-unit discount cost structure. The
objective is to find an optimal shipment plan that exploits the quantity
discount effect and, at the same time, controls the inventory holding cost at
the retailers end.

We assume that shortages and backlogging are not allowed either at the
warehouse or at the retailers. Furthermore, we assume that the warehouse
uses a common logistic strategy, referred to as cross-docking, in which the
warehouse acts merely as a coordinator of the supply process, and as a
transshipment point for incoming orders from the supplier, but does not hold
any stocks. Extensions to systems with central stock are discussed at the end
of this subsection.

Observe that the Single-Warehouse Multi-Retailer Problem described here
can also be used to model the joint replenishment problem, see Joneja (1990). In
this problem, a single facility replenishes a set of items over a finite horizon.
Whenever the facility places an order for a subset of the items, two types of
costs are incurred: A joint set-up cost and an item-dependent set-up cost. The
objective in the joint replenishment problem is to decide when and how many
units to order for each item so as to minimize inventory holding and ordering
costs over the planning horizon. Evidently, the concave fixed-charge ordering
cost functions in this problem are a special case of the modified all-unit
discount cost functions. Since the joint replenishment problem is NP-hard, see
Arkin, Joneja, and Roundy (1989), the Single-Warehouse Multi-Retailer
Problem is also NP-hard, even if all transportation cost functions are concave.

An interesting question is whether it is NP-hard for a single, or fixed
number of retailers. This question was answered in the previous section where
we show that a special case of our problem, in which a single retailer is
replenished by a single warehouse with zero transportation cost for shipments
to the warehouse and modified all-unit discount transportation costs for
shipments to the retailer, is NP-hard. Thus, the Single-Warehouse Multi-
Retailer Problem described above is NP-hard even for a fixed number of
retailers.
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Let n be the number of retailers served by the warehouse and T be the
length of the planning horizon under consideration. For each t¼ 1, 2, . . . ,T,
we let Kt

0ð�Þ be the piece-wise linear concave transportation cost function
associated with shipping items from the supplier to the warehouse at time t.
Similarly, for each i¼ 1, 2, . . . , n and t¼ 1, 2, . . . ,T, we denote by Kt

i ð�Þ the
modified all-unit discount transportation cost function associated with
shipping items from the warehouse to retailer i at time t. Finally, for each
i¼ 1, 2, . . . , n and t¼ 1, 2, . . . ,T, let hit denote the cost of holding an item at
retailer i at the end of period t, and di

t the demand of retailer i at time t.
Again, our objective is to find the size and timing of shipments so as to

minimize total transportation and inventory costs while satisfying all demands
without shortages. In what follows, we will refer to this problem as the Single-
Warehouse Multi-Retailer Problem. Let Z* be the optimal solution to the
Single-Warehouse Multi-Retailer Problem and for any heuristic H, let ZH be
the cost of the solution generated by heuristic H.

We first show that unless P¼NP, it is not possible to develop an algorithm
that runs in polynomial time and generates, for any instance of the problem, a
solution which is within a factor of O(log n) from optimality.

Theorem 16. Suppose there exists a �>0 and a polynomial time heuristic, H,
for the Single-Warehouse Multi-Retailer Problem such that for all instances

ZH

Z*
� � log n,

then P ¼ NP.

Proof. The proof is based on showing that the set covering problem can be
reduced to the Single-Warehouse Multi-Retailer Problem. It is well known,
see Feige (1998) or Arora and Sudan (1997), that there is no polynomial time
algorithm for the set-covering problem with worst-case bound better than
� log n, for �>0, unless P ¼ NP.

Consider an instance of the set covering problem: minð�m
t¼1 xt : Ax � 1Þ,

where A¼ (ai,t) is a n�m 0–1 matrix. It can be reduced to the Single-
Warehouse Multi-Retailer problem with n retailers and mþ 1 periods as
follows. Let

Kt
i ðxÞ ¼

(
M�ðxÞ if ai,t ¼ 0

0 if ai,t ¼ 1
for all i and t ¼ 1, 2, . . . ,m;

Kmþ1
i ðxÞ ¼M�ðxÞ for all i;

Kt
0ðxÞ ¼ �ðxÞ for t ¼ 1, 2, . . . ,m,mþ 1;
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di
t ¼

(
0 if t ¼ 1, 2, . . . ,m,

1 if t ¼ mþ 1,
for all i;

hit ¼ 0 for all i, t,

where M is some large number no less than m, and �(x)¼ 1 when x>0, and 0
otherwise.

The high set-up cost at time m þ 1 forces retailers to order in earlier
periods. In addition, an order for retailer i is placed at time t only if ai,t¼ 1,
since there is a large fixed cost associated with shipments in periods in
which ai,t¼ 0. Thus, finding the best inventory ordering policy in this situation
is equivalent to finding the minimum number of ordering periods, which
is determined by clustering retailers that will be served together at a
certain time. j

This shows that the Single-Warehouse Multi-Retailer Problem contains
the set covering problem as a special case and, consequently, that there is no
polynomial time algorithm with a fixed worst-case bound. Thus, Chan,
Muriel, Shen, Simchi-Levi, and Teo (2002) focus on simple policies that can be
found in pseudo-polynomial time and provide a solution that is within a
certain fixed percentage from optimality. In particular, they consider ZIO
policies in which orders are placed only at times when on-hand inventory has
been fully depleted. Let ZZIO be the cost associated with the optimal ZIO
policy. Using arguments similar to those presented in Section 4.1, Chan et al.
(2002) show the following results.

Theorem 17. For every instance of the Single-Warehouse Multi-Retailer
Problem, we have

ZZIO �
4

3
Z*,

and this bound is tight.

In practice, the ordering cost function does not vary from period to
period, i.e., for all t, Kt

0ð�Þ ¼ K0ð�Þ and Kt
i ð�Þ ¼ Kið�Þ, i ¼ 1, 2, . . . , n. In this

case, Chan et al. (2002) show that the worst-case ratio of the cost of the
solution generated by the algorithm to the optimal cost is no more than
ð5:6=4:6Þ � 1:22. That is,

Theorem 18. For every instance of the Single-Warehouse Multi-Retailer
Problem in which the transportation cost functions are stationary, we have

ZZIO �
5:6

4:6
Z*:
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The optimal ZIO policy can be found in polynomial time for any fixed
number of retailers using the algorithm presented below. Not surprisingly,
however, the computational complexity of this method grows exponentially as
the number of retailers increases. To overcome this problem, we subsequently
propose a linear programming based heuristic that runs in polynomial time.
This algorithm is shown to be very efficient in our computational study.

4.2.1 Optimal ZIO policy
When the number of retailers is fixed, we can find the best ZIO policy in

time which is polynomial in T and exponential in the number of retailers n, by
formulating an associated shortest path problem.

Let T¼ {1, 2, . . . ,Tþ 1} be the set of different time periods, where Tþ 1 is
used for notational convenience. Let N¼ {1, 2, . . . , n} be the set of retailers.
Construct an acyclic graph G¼ (V,A), where

V ¼ fu ¼ hu1, . . . , unijui 2 T , i ¼ 1, . . . , ng ¼ T � T � � � � � T|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

,

A ¼ fhu1, . . . , uni ! hv1, . . . , vnijvi � ui for all i;

there is at least one component i such that ui< vi; for every i with ui< vi we
have ui ¼ min{j¼ 1,2, . . . ,n}uj: u (i.e., all the components that changed had the
same value, u)}.

Given an arc hu1, . . . , uni! hv1, . . . , vni, or u! v, let k be the number of
components that are different in u and v, and I¼ {i1, i2, . . . , ik} be the set of
indices of those components; that is, for l¼ 1, 2, . . . , k, il is such that ui1 < vi1
Observe that k� 1 and by construction ui1 ¼ ui2 ¼ � � � ¼ uik ¼ u. The arc
u! v represents ordering at period u to satisfy demands of each retailer il,
l¼ 1, 2, . . . , k, from period u through vil � 1. Thus, the cost associated with
this arc is the cost of ordering those units at period u and holding them in
inventory until their consumption. Specifically, the cost of this arc is

Ku
0 ðd

i1
u,vi1
þ di2

u,vi2
þ � � � þ dik

u,vik
Þ þ Ci1

u,vi1
þ Ci2

u,vi2
þ � � � þ Cik

u,vik
,

where,

� di
u,v is the total demand faced by retailer i from period u to v�1;

� Ku
0 ðd

i1
u,vi1
þ di2

u,vi2
þ � � � þ dik

u,vik
Þ is the cost of shipping di1

u,vi1
þ di2

u,vi2
þ � � �

þdik
u,vik

units from the supplier to the warehouse at time u; and,

� Ci
u,v is total shipping and holding costs for retailer i if we order at

period u to cover the demands in periods u, uþ 1, . . . , v� 1, i.e.,

Ci
u,v ¼ Ku

i ðd
i
uvÞ þ

Pv�2
t¼u hitd

i
tþ1v.
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It is easy to see that the shortest path from h1, 1, . . . , 1i to
hTþ 1,Tþ 1, . . . ,Tþ 1i in G¼ (V,A) corresponds to finding the best ZIO
policy.

To illustrate our method, consider the following example with a single
warehouse and two retailers. In this case, G has nodes hi, ji for
i, j¼ 1, 2, . . .,Tþ 1 and three different types of arcs:

Type a : ði, jÞ ! ði, kÞ 8i > j and k > j,

Type b : ði, jÞ ! ðk, jÞ 8i < j and k > i,

Type c : ði, iÞ ! ðk, jÞ 8k > i and l > i,

The cost of a type a arc is K j
0 ðd

2
j,kÞ þ C2

j,k, while the cost of a type b arc is
Ki

0ðd
1
i,kÞ þ C1

i,k. Finally, the cost of a type c arc equal to Ki
0ðd

1
i,k þ d2

i,lÞþ

C1
i,k þ C2

i,l:
Observe that a path in this network, G, can be interpreted as a feasible

solution to the One-Warehouse Multi-Retailer Problem. Indeed, type a
(resp. b) arcs correspond to the situation when only retailer 2 (resp. 1) places
an order at a specific time period, whereas type c arcs correspond to situations
in which both retailers place an order. Figure 9 provides an example of the
network when T¼ 4. The path depicted in this figure corresponds to the

Fig. 9. An example of the shortest path algorithm.
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following ordering strategy. Retailer 1 orders in periods 1, 3 and 4 while
retailer number 2 orders in periods 1, 2 and 4.

The shortest path algorithm runs in time OðjVjlogjVj þ jAjÞ,
where jVj ¼ OððT þ 1ÞnÞ, jAj ¼ OððTÞ2nÞ, where n is the number of retailers.
The first term,OðjVjlogjVjÞ, bounds the complexity of constructing the
network and the second, OðjAjÞ, is the time to find the shortest path on a
topologically sorted network. Unfortunately, this exact algorithm grows
to be computationally expensive as the number of retailers increases. Thus,
the next step is to develop a heuristic that finds a good ZIO policy in
polynomial time.

4.2.2 Linear programming based algorithm
We introduce a linear programming based heuristic that generates close-to-

optimal ZIO policies and, thus, effective solutions to the Single-Warehouse
Multi-Retailer Problem.

We start by formulating the problem of finding an optimal ZIO policy as
an integer program. The algorithm is based on solving the linear programming
relaxation of the resulting model and transforming the fractional solution
obtained into an integer solution in a similar spirit to that of the algorithm
presented in Section 3 for the Shipper Problem with piece-wise linear
concave costs.

The piece-wise linear concave costs associated with shipments from the
supplier to the warehouse are modeled as in Section 3.1, see Fig. 3. In this
case, we have only T concave shipping arcs, representing shipments from
supplier to warehouse at each period of time. Thus, the more general index e
in the model in Section 3.1 will be substituted by t. let Q0

t denote the
warehouse order at time t. We can express associated transportation cost,
Kt

0ðQ
0
t Þ, as K

t
0ðQ

0
t Þ ¼ f rt þ �

r
tQ

0
t , where r is such that Q0

t 2 ðM
r�1
t ,Mr

t �.
We define the following variables (analogous to the interval and

quantity variables introduced in Section 3.1). For each t¼ 1, 2, . . . ,T and
r¼ 1, 2, . . . ,R, let

Xr
t ¼

1, if Q0
t 2 ðM

r�1
t ,Mt

r�

0, otherwise:

�

For each retailer i¼ 1, 2, . . . , n, and periods 1� t�k�T, let Zi
tk ¼quantity

ordered by retailer i at time t to satisfy demand at period k� t and

Zir
tk ¼

Zi
tk, if Q0

t 2 ðM
r�1
t ,Mt

r�

0, otherwise,

�

for each r¼ 1, 2, . . . ,R. In what follows we refer to the X variables as interval
variables and to the Z variables as quantity variables.
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In order to model ordering and inventory costs at the retailer level, we
consider a dummy period Tþ 1 and define for each retailer i¼ 1, 2, . . ., n and
periods 1� t<k�Tþ 1, citk ¼total cost of ordering at period t to satisfy
demand for periods t through k�1 and holding the units in inventory until
their consumption. That is,

citk ¼ Ki
t

Xk�1
j¼t

di
j

 !
þ
Xk�2
j¼t

hij

Xk�1
l¼jþ1

di
l

 !
:

Observe that a ZIO policy for retailer i can be interpreted as a path from 1
to Tþ 1 on a network with nodes {1, 2, . . .,Tþ 1} and arcs (t, k), for
1� t<k�Tþ 1, with associated cost citk. In what follows we refer to this
network as the ith retailer’s network or Gi.

Thus, to calculate ordering and inventory costs at retailer i we formulate a
shortest path model on Gi using variables

Yi
tk ¼

1, if an order is placed by retailer i at time t
to satisfy demands for period t through k� 1,

0, otherwise,

8<
:

and flow conservation constraints. We refer to Y¼ ðYi
tkÞ as the vector of path

flows.
The best ZIO policy can be found by solving the following integer program.

Problem SW : Min
XT
t¼1

XR
r¼1

f rt X
r
t þ �

r
t

Xn
i¼1

XT
k¼t

Zri
tk

" #
þ
Xn
i¼1

XT
t¼1

XTþ1
k¼tþ1

citkY
i
tk

s.t.

Zri
tk � di

kX
r
t , 8r ¼ 1, 2, . . . ,R, i ¼ 1, 2, . . . , n and 1 � t � k � T

ð4:2Þ

XR
r¼1

Zri
tk ¼ di

k

XTþ1
l¼kþ1

Yi
tl, 81 � t � k � T , i ¼ 1, 2, . . . , n ð4:3Þ

X
j:j>l

Yi
lj �

X
j:j<l

Yi
jl ¼

(
1 if l ¼ 1
�1 if l ¼ T þ 1
0 if 1 < l � T

8i ¼ 1, 2, . . . , n, ð4:4Þ
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Zri
tk � 0 8r ¼ 1, 2, . . . ,R, i ¼ 1, 2, . . . , n and 1 � t � k � T

Xr
t 2 f0, 1g 8r ¼ 1, 2, . . . ,R and t ¼ 1, 2, . . . ,T

Yi
tk 2 f0, 1g 8i ¼ 1, 2, . . . , n and 1 � t � k � T þ 1:

The first set of constraints, (4.2), specifies that if some quantity is ordered at
time t by any retailer and shipped on interval r of the transportation cost
function then the associated interval variable, Xr

t , must be 1. These, together
with the integrality of the X variables, are the only constraints needed to
model the piece-wise linear concave costs, since Lemma 3 in Section 3 can
easily be extended to this formulation. Obviously, constraints (4.2) could be
aggregated for all k. However, this would considerably weaken the linear
programming relaxation of problem SW. Eq. (4.3) guarantees that if a
positive amount is shipped to retailer i at time t to satisfy demand at the
retailer at period k then the retailer must order at period t to cover demands
for period t through some l�1� k. Observe that these constraints (4.4)
correspond to finding, for each retailer i, a path from 0 to Tþ 1 on the
retailer’s network, Gi.

Unfortunately, solving this integer program is computationally intractable
for all but small size problems. To overcome this difficulty, we observe the
great similarity between this formulation and that of the Shipper Problem
under piece-wise linear concave costs in Section 3 and make use of the
structural properties derived there, namely Theorem 4. This allows us to
develop a polynomial time heuristic that finds an effective ZIO policy based on
the solution to the linear programming relaxation of Problem SW. Theorem 4
will be extensively used by the algorithm in order to compute the increase in
costs in the solution to the linear program when the vector Y is modified in the
search for an integer solution.

Of course, the effectiveness of such a heuristic depends on the strength of
the linear programming relaxation of Problem SW. Let ZLP be the optimal
solution value of the linear programming relaxation of Problem SW.
Recently, Shen, Simchi-Levi, and Teo (2000) applied randomized rounding
techniques and a novel way to approximate the piece-wise linear concave cost
functions to prove the following result.

Theorem 19. For every instance of the Single-Warehouse Multi-Retailer
Problem we have,

ZLP � 8ðlog 2þ logT þ log nÞZ*=3:

Observe that Theorem 16 implies that for any polynomial time heuristic H
for the Single-Warehouse Multi-Retailer Problem and any �>0, there exists
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an instance of the problem such that ZH > ½� log n�Z*, unless P:NP. This,
together with Theorem 19, implies that for that instance,

ZH

� log n
> Z* �

3ZLP

8ðlog 2þ logT þ log nÞ
:

Thus, the lower bound developed in Theorem 19 is the best possible bound on
the optimal solution of the Single-Warehouse Multi-Retailer Problem unless
P:NP:

We are now ready to present the algorithm for the Single-Warehouse
Multi-Retailer Problem.

Linear-programming based algorithm:
Step 1: Solve the linear programming relaxation of problem SW. Let

Y*¼ðYi*
tkÞ be the optimal solution. Initialize i¼ 1.

Step 2: For each arc t! k, 1 � t < k � T þ 1, in network Gi compute a
marginal cost, cit,k, as follows. The marginal cost is the total increase in
cost in the solution to the linear program incurred when augmenting the
flow on that arc from the fractional Yi*

tk to 1. That is,

cit,k ¼Wi
tk þ ð1� Xi*

t,kÞc
i
t,k,

where Wi
tk is the increase in transportation cost to the Warehouse

resulting from modifying flow in the linear program from Yi*
tk to 1. This

cost increase can be easily calculated using Theorem 4.
Step 3: Determine the ordering epochs of retailer i by finding the minimum

cost path from 1 to Tþ 1 on network Gi with edge costs equal to the
marginal costs.

Step 4: Update the amount and costs of warehouse orders at each period to
account for retailer i’s ordering strategy. Costs are updated using
Theorem 4.

Step 5: Let i¼ iþ 1 and repeat steps (2)–(5) until i¼ nþ 1.

4.2.3 Computational results
We test the performance of the linear programming based algorithm

in terms of both computational time and relative deviation from the optimal
ZIO policy. For this purpose we apply the algorithm to two types of problems.
The first is the Single-Warehouse Multi-Retailer Problem with retailer
ordering cost represented by the modified all-unit discount cost function. The
second is the Single-Warehouse Multi-Retailer Problem with concave
ordering cost functions for the retailers. Of course, in both type of problems,
warehouse ordering cost is a piece-wise linear concave function. Observe that
there exists an optimal ZIO policy in the concave case (Type 2) and thus an
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optimal integer solution to Problem SW is optimal for the associated Single-
Warehouse Multi-Retailer Problem.

Type 1 Instances. We consider four problem classes corresponding to 5, 25, 50
and 100 retailers. The planning horizon is 12 periods and demands for
each retailer are generated from a normal distribution with mean 100 and
standard deviation 20. Holding costs are randomly generated in the interval
[0.1, 0.6]. Supplier–Warehouse transportation costs are described by piece-
wise linear concave functions with either 3 or 5 breakpoints between 0 and the
maximum amount that could possibly be ordered from the supplier to satisfy
retailer demands. These breakpoints and some initial fixed costs and slopes
are given in Table 11. We consider the breakpoints fixed and randomly vary
fixed costs and slopes over time by multiplying the initial values by a
parameter generated from a uniform distribution on the interval (0.5, 3).
Similarly, the warehouse–retailer transportation cost function for a particular
retailer is a modified all-unit discount function with either 5, 6 or 7
breakpoints and again fixed costs and slopes are randomly varied (in the same
manner) over time. Observe that it is enough to specify the breakpoints and
the fixed cost of the first interval to construct the entire all-unit discount cost
function. The breakpoints are given in Table 12 and the initial fixed cost on
the first interval is randomly generated according to a uniform distribution on
the interval (50, 500).

Table 13 shows, for each problem class, the average computation time of
the linear programming based algorithm over 200 instances generated. For
this moderate-size instances tested, the optimal ZIO policy can be calculated
by solving the integer program, Problem SW, and used to evaluate the
performance of the heuristic solution. The associated average computation
times are given in the fourth column of Table 13. The cost of the optimal ZIO
policy obtained is compared to the heuristic solution in the last two columns:
The first column reports the average ratio for cases in which the solution to
the linear programming relaxation of Problem SW was not integer. The
second reports the average over all problems tested.

Table 11
Concave transportation cost functions considered in Type 1 Instances

Cost interval 1 2 3 4 5 6

breakpoint 0 1000 3000 12,000
5–25 retailers fixed cost 500 1000 1750 2350

slope 1 0.5 0.25 0.2
breakpoint 0 6000 10,000 20,000 35,000 50,000

50 retailers fixed cost 550 9550 10,590 13,190 17,090 20,990
slope 1.5 1.24 0.98 0.72 0.46 0.2
breakpoint 0 12,000 20,000 40,000 70,000 100,000

100 retailers fixed cost 700 2780 5380 10,580 18,380 26,180
slope 1.5 1.24 0.98 0.72 0.46 0.2
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Type 2 Instances: Here we study the performance of the linear
programming based algorithm for instances in which all the transportation
costs are piece-wise linear and concave.

We again consider different problem classes, with normally and
independently, identically distributed retailer demands with mean 100 and
standard deviation 20, and generated 10 instances for each class. Holding
costs are set to 0.2 per unit per period. The piece-wise linear concave
transportation costs considered have three price breaks (i.e., four segments
with different slope) in the range from 0 to the maximum possible demand
that could be satisfied using that link. Associated fixed cost and variable costs
are randomly generated over time, as in the Type 1 instances, by multiplying
the initial values given in Table 14 by a parameter uniformly distributed
in (0.5, 5).

Table 15 describes the six problem classes tested and reports the average
computation time and the average ratio of heuristic to optimal solutions over
the five instances tested for each class. We observe that, in all the instances
tested, the solution to the linear programming relaxation coincides with the
optimal integer solution.

4.2.4 Extension to system with central stock
The bounds on the performance of ZIO policies developed can be easily

extended to a more general distribution problem with central stocks, in which
the warehouse is allowed to carry inventory. To show this, we observe that,
since the transportation charges from supplier to warehouse are concave, it is
optimal for the warehouse to follow a ZIO policy. Thus an order, Q0

x > 0,

Table 12
Breakpoints associated with the all-unit discount cost functions in Type 1 Instances

Cost interval 1 2 3 4 5 6 7

7 breakpoints 200 300 450 600 750 900 1050
6 breakpoints 200 300 450 750 900 1050
5 breakpoints 200 400 650 850 1000

Table 13
Computational results for all-unit discount warehouse–retailer costs (Type 1)

Problem
class

Number of
retailers

CPU time
(sec)

CPU time
with IP (sec)

Frequency of
fractional
solution

ZH=ZZIO

fractional
cases

ZH=ZZIO

all cases

Class 1 5 � 0 3 4/200 1.010 1.0002
Class 2 25 � 0 27 5/200 1.013 1.0004
Class 3 50 2 124 3/200 1.037 1.0006
Class 4 100 23 507 2/200 1.025 1.0003
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placed by the warehouse in period x, will cover all of the retailers’
orders from a certain period a(x)� x to a period b(x)� a(x) and can be
expressed as

Q0
x ¼

Xn
i¼1

XbðxÞ
t¼aðxÞ

Qi
t:

In this way, each order placed by the retailers in periods a(x) through b(x) is
associated with the warehouse order at time x. Using this observation, the
proofs of Theorem 12 and Theorem 14 follow in much a similar way as for the
original case.

To put this extension in perspective, it is appropriate to point out that
the model with central stock is directly related to the seminal work of
Roundy (1985). In his work, Roundy analyzed the Single-Warehouse
Multi-Retailer model with concave ordering cost functions, infinite time
horizon and constant demand rates. For this problem, Roundy shows that
Power-of-Two policies, which belong to the class of ZIO policies, are highly
effective. Our results indicate that in the case of a finite horizon, time varying
demand and modified all-unit discount costs, ZIO policies are very effective as
well. Indeed, by restricting the solution set to ZIO policies we can obtain a

Table 14
Initial concave transportation cost functions considered in Type 2 Instances

Cost interval 1 2 3 4

breakpoint 0 1000 3000 12,000
Supplier–warehouse fixed cost 500 1000 1750 2350

slope 1 0.5 0.25 0.2
breakpoint 0 200 400 800

Warehouse–retailer fixed cost 100 200 400 480
slope 1.5 1 0.5 0.4

Table 15
Computational results for concave transportation costs on all links (Type 2)

Problem
class

Number of
periods

Number of
retailers

CPU time
(sec)

ZH=ZZIO

¼ ZH=Z*

Class 1 6 5 � 0 1
Class 2 12 5 1 1
Class 3 6 10 � 0 1
Class 4 12 10 4 1
Class 5 6 25 2 1
Class 6 12 25 5 1
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solution whose cost is no higher than 4/3 times the optimal cost and this bound
is tight. If the transportation cost functions do not change from period to
period, then there exists a ZIO policy whose cost is no higher than 5.6/4.6 times
the optimal cost. Unfortunately, finding the optimal ZIO policy in our case is an
NP-hard problem. This is in contrast to the model analyzed by Roundy where
finding the best Power-of-Two policy can be done very efficiently.

PART II: PRICING TO IMPROVE SUPPLY CHAIN
PERFORMANCE

5 Introduction

In recent years, scores of retail and manufacturing companies have started
exploring innovative pricing strategies in an effort to improve their operations
and ultimately the bottom line. Firms are employing methods such as
dynamically adjusting price over time based on inventory levels or production
schedules as well as segmenting customers based on their sensitivity to price
and lead time.

For instance, no company underscores the impact of the Internet on
product pricing strategies more than Dell Computers. The exact same product
is sold at different prices on Dell’s Web site, depending on whether the
purchase is made by a private consumer, a small, medium or large business,
the federal government, an education or health care provider. A more careful
review of Dell’s strategy, see Agrawal and Kambil (2000), suggests that even
the price of the same product for the same industry is not fixed; it may change
significantly over time.

Dell is not alone in its use of a sophisticated pricing strategy. Consider:

� Boise Cascade Office Products sells many products on-line. Boise
Cascade states that prices for the 12,000 items ordered most frequently
on-line might change as often as daily [Kay, 1998].

� Ford Motor Co. uses pricing strategies to match supply and demand
and target particular customer segments. Ford executives credit the
effort with $3 billion in growth between 1995 and 1999 [Leibs, 2000].

These developments call for models that integrate production decisions,
inventory control and pricing strategies. Such models and strategies have the
potential to radically improve supply chain efficiencies in much the same way
as revenue management has changed the airline industry, see Belobaba (1987)
or McGill and Van Ryzin (1999). Indeed, in the airline industry, revenue
management provided growth and increased revenue by 5%, see Belobaba,
1987. In fact, if it were not for the combined contributions of revenue
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management and airline schedule planning systems, American Airlines [Cook,
2000] would have been profitable only one year in the decade beginning in
1990. In the retail industry, to name another example, dynamically pricing
commodities can provide significant improvements in profitability, as shown
by Gallego and van Ryzin (1994).

The coordination of pricing, production and distribution decisions is
consistent with recent efforts in industry to cut across traditional organizational
barriers. Indeed, in most companies, pricing and promotional decisions are
typically made by marketing and sales units within the company, usually with
very little regard to the impact of these decisions on supply chain performance.
However, as observed earlier, more and more companies are exploring
innovative pricing strategies in an effort to boost their profit and improve
supply chain efficiencies. Thus, models similar to those described in the
following sections are clearly important in supporting this new trend.

6 Coordinating pricing and inventory decisions

Many papers address the coordination of replenishment strategies and
pricing policies, starting with the work of Whitin (1955) who analyzed the
celebrated newsvendor problem with price-dependent demand. For a review,
the reader is referred to Eliashberg and Steinberg (1991), Petruzzi and
Dada (1999), Federgruen and Heching (1999) or Chan, Simchi-Levi, and
Swann (2001).

To date, the literature has confined itself mainly to either: (i) models
with variable ordering costs but no fixed costs; (ii) models in which inventory
cannot be carried over from one period to the next; or (iii) models in
which replenishment decisions are made only at the beginning of the
planning horizon, see Federgruen and Heching (1999). Recently, however,
Chen and Simchi-Levi (2002a,b) analyzed a fairly general inventory/pricing
model. Specifically, Chen and Simchi-Levi (2002a) consider a finite horizon,
periodic review, single product model with stochastic demand. Demands
in different periods are independent of each other and their distributions
depend on the product price. Pricing and ordering decisions are made at the
beginning of each period, and all shortages are backlogged. The ordering cost
includes both a fixed cost and a variable cost proportional to the amount
ordered. Inventory holding and shortage costs are convex functions of the
inventory level carried over from one period to the next. The objective is to
find an inventory policy and pricing strategy maximizing expected profit over
the finite horizon.

The model is similar to the model analyzed by Federgruen and Heching
(1999), except that the latter assumes that the ordering cost is proportional to
the amount ordered and thus does not include a fixed cost component. In
addition, the demand function is assumed to be a linear function of the price,
see Lemma 1 in Federgruen and Heching (1999).
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The paper by Thomas (1974) also considers a model similar to the one
by Chen and Simchi-Levi (2002a), namely, a periodic review, finite horizon
model with a fixed ordering cost and stochastic, price-dependent demand.
The paper postulates a simple policy, referred to by Thomas as (s,S, p),
which can be described as follows. The inventory strategy is an (s,S)
policy: If the inventory level at the beginning of period t is below the reorder
point, st, an order is placed to raise the inventory level to the order-up-to
level, St. Otherwise, no order is placed. The price, p, depends on the
initial inventory level at the beginning of the period. Thomas provides a
counter example which shows that with a ‘few prices’ (i.e., when price is
restricted to a discrete set) this policy may fail to be optimal. Thomas goes
on to say:

If all prices in an interval are under consideration, it is conjectured that an
(s,S, p) policy is optimal under fairly general conditions.

In Section 6.1, we review the main assumptions of the model analyzed
by Chen and Simchi-Levi (2002a). In Section 6.1.1 we characterize the optimal
inventory and pricing policies for additive demand functions. We show
that in this case the policy proposed by Thomas is indeed optimal. In
Section 6.1.2 we analyze general demand functions which may be non-additive.
We demonstrate that in this case the profit-to-go function is not necessarily
k-concave and an (s,S, p) policy is not necessarily optimal. We introduce the
concept of symmetric k-convex functions and apply it to provide a
characterization of the optimal policy. In Section 6.2 we extend the
results obtained by Chen and Simchi-Levi (2002a) for the finite horizon
model to the infinite horizon case under both discounted and average cost
criteria. Finally, in Section 6.3 we apply the results to the model with
zero fixed-cost and illustrate that the techniques developed in Chen and
Simchi-Levi (2002a,b) allow to extend the results of Federgruen and Heching
to more general demand processes.

6.1 The finite horizon model

Consider a firm that has to make inventory and pricing decisions over a
finite time horizon with T periods. Demands in different periods are
independent of each other. For each period t, t¼ 1, 2, . . . ,T, let dt be the
demand in period t, pt the selling price in period t, and pt, pt are lower and
upper bounds on pt, respectively.

Chen and Simchi-Levi (2002a) concentrate on demand functions of the
following form:

Assumption 20. For t¼ 1, 2, . . . ,T, the demand function satisfies

dt ¼ Dtðpt, "tÞ :¼ �tDtðptÞ þ �t, ð6:1Þ
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where "t ¼ ð�t, �tÞ, and �t, �t are two random variables with Ef�tg ¼ 1 and
Ef�tg ¼ 0. The random perturbations, "t, are independent across time.

Observe that, by scaling and shifting, the assumptions Ef�tg ¼ 1 and
Ef�tg ¼ 0 can be made without loss of generality. A special case of this
demand function, the additive demand function, is analyzed in Section 6.1.1.
In this case, the demand function is of the form dt ¼ DtðpÞ þ �t. This implies
that only �t is a random variable while �t ¼ 1: In Section 6.1.2 we analyze the
general demand functions (6.1). Observe that a special case of the model
analyzed in Section 6.1.2 is a model with the multiplicative demand function.
In this case, the demand function is of the form dt ¼ �tDtðpÞ, where �t is a
random variable. Finally observe that special cases of the function DtðpÞ
include DtðpÞ ¼ bt � atp ðat > 0, bt > 0Þ in the additive case and DtðpÞ ¼ atp

�bt

ðat > 0, bt > 1Þ in the multiplicative case; both are common in the economics
literature [see Petruzzi & Dada, 1999].

Chen and Simchi-Levi (2002a) assume the following.

Assumption 21. For all t, t¼ 1, 2, . . . ,T, the inverse function of Dt, denoted by
D�1t , is continuous and strictly decreasing. Furthermore, the expected revenue

RtðdÞ :¼ dD�1t ðdÞ

is a concave function of expected demand d.

The assumption thus implies that expected demand is a monotone
decreasing function of price, an assumption satisfied by many products, except
perhaps for some luxury products, see Federgruen and Heching (1999). Both
the monotonicity and concavity assumptions are satisfied by many demand
functions that are common in the marketing or economics literature.

Let xt be the inventory level at the beginning of period t, just before placing
an order. Similarly, yt is the inventory level at the beginning of period t after
placing an order. The ordering cost function includes both a fixed cost and a
variable cost and is calculated for every t, t¼ 1, 2, . . . ,T, as

kt�ðyt � xtÞ þ ctðyt � xtÞ,

where

�ðuÞ :¼
1, if u > 0,
0, otherwise:

�

As is common in standard inventory management models, we assume that the
fixed cost, kt, is a non-increasing function of time.

Unsatisfied demand is backlogged. Let x be the inventory level carried over
from period t to period tþ 1. Since we allow backlogging, xmay be positive or
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negative. A cost ht(x) is incurred at the end of period t which represents
inventory holding cost when x>0 and penalty cost if x<0. The following
assumption is common to most inventory models.

Assumption 22. For each t, t¼ 1, 2, . . . ,T, ht(x), is a convex function of the
inventory level x at the end of period t.

The objective is to decide on ordering and pricing policies so as to maximize
total expected profit over the entire planning horizon. That is, the objective is
to choose yt and pt so as to maximize

E
XT
t¼1

� kt�ðyt � xtÞ � ctðyt � xtÞ � htðxtþ1Þ þ ptDtðpt, "tÞ

( )
, ð6:2Þ

where xtþ1 ¼ yt �Dtðpt, "tÞ.
Denote by vt(x) the profit-to-go function at the beginning of time period t

with inventory level x. A natural dynamic program for the above
maximization problem is as follows. For t¼T,T�1, . . ., 1,

vtðxÞ ¼ ctxþ max
y�x,pt�p�pt

�kt�ð y� xÞ þ ftð y, pÞ, ð6:3Þ

where

ftðy, pÞ ¼ �ctyþ EfpDtðp, "tÞ � htðy�Dtðp, "tÞÞ þ vtþ1ðy�Dtðp, "tÞÞg,

ð6:4Þ

and vTþ1 ¼ 0. Let

ptðyÞ 2 argmaxpt�p�pt ftðy, pÞ: ð6:5Þ

Then

vtðxÞ ¼ ctxþmax
y�x
� kt�ðy� xÞ þ ftðy, ptðyÞÞ:

We now relate our problem to the celebrated stochastic inventory control
problem discussed by Scarf (1960). In that problem, demand is assumed to be
exogenously determined, while in our problem demand depends on price.
Other assumptions regarding the framework of the model are similar to those
made by Scarf (1960).

For the classical stochastic inventory problem, Scarf (1960) showed that an
(s,S) policy is optimal. In this policy, the optimal decision in period t is
characterized by two parameters, the reorder point, st, and the order-up-to
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level, St. An order of size St�xt is made at the beginning of period t if the
initial inventory level at the beginning of the period, xt, is smaller than st.
Otherwise, no order is placed.

To prove that an (s,S) policy is optimal, Scarf (1960) uses the concept of
k-convexity.

Definition 23. A real-valued function f is called k-convex for k� 0, if for any
z� 0, b>0 and any y we have

kþ f ðzþ yÞ � f ðyÞ þ
z

b
ðf ðyÞ � f ðy� bÞÞ: ð6:6Þ

A function f is called k-concave if �f is k-convex.

For the purpose of the analysis of problem (6.3), Chen and Simchi-Levi
(2002a) find it useful to introduce another, yet equivalent, definition of
k-convexity.1

Definition 24. A real-valued function f is called k-convex for k � 0, if for any
x0 � x1 and l 2 ½0, 1�,

f ðð1� �Þx0 þ �x1Þ � ð1� �Þf ðx0Þ þ �f ðx1Þ þ �k: ð6:7Þ

Proposition 25. Definitions 23 and 24 are equivalent.
Definition 24 emphasizes the difference between k-convexity and traditional

convexity (which is also 0-convexity). It is clear from this definition that one
significant difference between k-convexity and traditional convexity is that
(6.7) is not symmetric with respect to x0 and x1.

It turns out that this asymmetry is the main barrier when trying to
identify the optimal policy to problem (6.3) for non-additive demand
functions. Indeed, in Section 6.1.2 we indicate that the profit-to-go
function is not necessarily k-concave and an (s,S, p) policy is not necessarily
optimal for general demand processes. This motivates the development of
a new concept, the symmetric k-concave function, which allows Chen and
Simchi-Levi (2002a) to characterize the optimal policy in the general
demand case.

However, under the additive demand model analyzed in Section 6.1.1, this
concept is not needed. Specifically, Chen and Simchi-Levi (2002a) prove that
for additive demand processes, the profit-to-go function is k-concave and
hence the optimal policy for problem (6.3) is an (s,S, p) policy, precisely the
policy conjectured by Thomas (1974).

1 Professor Paul Zipkin pointed out to us that this equivalent characterization of k-convexity has

appeared in Porteus (1971).
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6.1.1 Additive demand function
In this section, we focus on additive demand functions, i.e., demand

functions of the form

dt ¼ DtðptÞ þ �t,

where �t is a random variable.
To characterize the optimal policy in this case, Chen and Simchi-Levi

(2002a) prove the following property.

Lemma 26. Suppose there is a finite value pt(y) that maximizes (6.5) for any
value of y. Then, y�Dt( pt(y)) is a non-decreasing function of y.

The lemma thus implies that the higher the inventory level at the beginning
of time period t, yt, the higher the expected inventory level at the end of
period t, yt�Dt( p(yt)). Using this property, together with the new definition of
k-convex functions, see Definition 24, Chen and Simchi-Levi (2002a) prove,

Theorem 27. For any t, t¼T,T�1, . . . , 1, we have

a. ft(y, pt(y)) and vt(x) are k-concave.
b. There exist st and St with st � St such that it is optimal to order St�xt

and set the selling price pt¼ pt(St) when xt < st, and not to order
anything and set pt¼ pt(xt) when xt� st.

The theorem thus implies that the (s,S, p) policy introduced by Thomas
(1974) is indeed optimal for additive demand processes. An interesting
question is whether pt(y) is a non-increasing function of y. Unfortunately, this
property, which holds for the model with no fixed cost, see Section 6.3, does
not hold for our model.

Proposition 28. The optimal price, pt(y) is not necessarily a non-increasing
function of y.

6.1.2 General demand functions
In this section, we focus on general demand functions (6.1). Our objective

in this section is two-fold. First, we demonstrate that under the general
demand functions, vt(x) may not be k-concave and an (s,S, p) policy may fail
to be optimal for problem (6.3). Second, we characterize the structure of the
optimal policy for the general demand functions (6.1).

Specifically, the Lemma 29, proved in Chen and Simchi-Levi (2002a),
illustrates that the profit-to-go function is not k-concave in general.

Lemma 29. There exists an instance of problem (6.3) with a multiplicative
demand function and time independent parameters such that the functions
fT�1ðy, pT�1ðyÞÞ and vT�1ðxÞ are not k-concave.

Ch. 2. Supply Chain Design and Planning 71



Of course, it is entirely possible that even if the functions ft(y, pt(y)) and
vt(x) are not k-concave for some period t, the optimal policy is still an (s,S, p)
policy. The Lemma 30, proved in Chen and Simchi-Levi (2002a), shows that
this is not true in general.

Lemma 30. There exists an instance of problem (6.3) with multiplicative demand
functions where an (s,S, p) policy is not optimal.

To overcome these difficulties, Chen and Simchi-Levi (2002a) propose a
weaker definition of k-convexity, referred to as symmetric k-convexity:

Definition 31. A real-valued function f is called sym-k-convex for k� 0, if for
any x0, x1 and l 2 ½0, 1�,

f ðð1� �Þx0 þ �x1Þ � ð1� �Þf ðx0Þ þ �f ðx1Þ þmaxf�, 1� �gk: ð6:8Þ

A function f is called sym-k-concave if �f is sym-k-convex.

Observe that k-convexity, and hence convexity, is a special case of sym-k-
convexity. Interestingly, our analysis of sym-k-convex functions reveals that
these functions have properties that are parallel to those of k-convex
functions, see Bertsekas (1995). Specifically, based on properties of these
functions, Chen and Simchi-Levi (2002a) prove the following results.

Theorem 32. For any t, t¼T,T�1, . . . , 1, we have

a. ft(y, pt(y)) and vt(x) are sym-k-concave.
b. There exists st and St with st � St and a set At 	 ½st, ðst þ StÞ=2�, such

that it is optimal to order St�xt and set pt¼ pt(St) when xt< st or when
xt 2 At and not to order anything and set pt ¼ ptðxtÞ otherwise.

Theorem 32 thus implies that an (s,S,A, p) policy is the optimal policy for
problem (6.3) under general demand processes. In such a policy, the optimal
inventory strategy is characterized by two parameters st and St and a set
At 	 ½st, ðst þ StÞ=2�, possibly empty. When the inventory level, xt, at the
beginning of period t is less than st or if xt 2 At an order of size St�xt is made.
Otherwise, no order is placed. Thus, it is possible that an order will be placed
when the inventory level xt 2 ½st, ðst þ StÞ=2�, depending on the problem
instance. On the other hand, if xt � ðst þ StÞ=2 no order is placed. Price
depends on the initial inventory level at the beginning of the period.

6.2 The infinite horizon case

The finite horizon models analyzed in the previous section are clearly
appropriate for products with short life cycles, e.g., personal computers (PC),
printers or fashion items. However, these models are less appropriate for
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products with long life cycles, e.g., non-fashion items. In this case, it is
important to characterize the optimal policy in the infinite horizon case.

We thus consider a model similar to the one analyzed in the previous
sections except that in the infinite horizon case all parameters are assumed to
be time independent. Of course, it is tempting to try and extend the results of
Theorem 32, which establishes the optimality of an (s,S,A, p) policy for the
finite horizon general demand model, to the infinite horizon case. Surprisingly,
Theorem 33, proved in Chen and Simchi-Levi (2002b), shows that this
intuition can be misleading.

Theorem 33. A stationary (s,S, p) policy is optimal for both the additive demand
model and the general demand model under average and discounted cost criteria.

Thus, the theorem suggests that in the infinite horizon case, the optimal
policy is an (s,S, p) policy, independent of whether demand is additive or not.
Interestingly, our proof of the optimal policy for the general demand model is
based on two key results: The first is that the long-run average (or discounted)
profit function is symmetric k-concave, suggesting that a stationary (s,S,A, p)
policy is optimal. Surprisingly, our second result shows that in the infinite
horizon case the set A is an empty set.

6.3 Special case: zero fixed-cost

The results described in the previous sections also apply to the special case
in which the ordering cost function includes only variable but no fixed cost,
i.e., kt¼ 0 for all t, t¼ 1, . . . ,T. Indeed, by Theorem 32, the functions vt
and ft(y, pt(y)), t¼ 1, 2, . . . ,T, are symmetric 0-concave, and hence, from
Definition 31, they are concave. Furthermore, and unlike the model with fixed
cost, in this case, Chen and Simchi-Levi show that pt(y) is a non-increasing
function of y. Thus,

Corollary 34. Consider problem (6.3) with zero fixed-cost and general demand
functions (6.1). In this case, a base-stock list price policy is optimal.

The base-stock list price policy is a policy described by Federgruen and
Heching (1999). Here, in each period the optimal policy is characterized by an
order-up-to level, referred to as the base-stock level, and a price which
depends on the initial inventory level at the beginning of the period. If the
initial inventory level is below the base-stock level, an order is placed to raise
the inventory level to the base-stock level. Otherwise, no order is placed, and a
discount price is offered. This discount price is a non-increasing function of
the initial inventory level.

Thus, Corollary 34 extends the results of Federgruen and Heching (1999) to
more general demand processes. Indeed, Federgruen and Heching analyzed the
zero fixed-cost model both in the finite horizon and infinite horizon cases. A key
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assumption in their paper implied by their Lemma 26 is that the demand
function, dt, is a linear function of the price. Corollary 34 suggests that this
policy holds under much more general assumptions on the demand process.

7 Pricing models with production capacity limits

Very few pricing models have explicitly considered production
capacity limits. One exception is the work by Chan et al. (2001) who analyzed
partial update strategies, namely Delayed Production and Delayed Pricing
strategies. In the first, decisions about the pricing policy are determined at the
beginning of the planning horizon while production and inventory decisions
are made period by period. Thus, in this case, the planner uses periodic
production and inventory decisions as tools to better match supply and
demand. In a Delayed Pricing strategy, on the other hand, decisions about
production levels are made at the beginning of the planning horizon while
pricing and inventory decisions are made period by period.

The following examples, see Chan et al. (2001), illustrate situations under
which the two planning strategies are appropriate.

1. A retailer whose primary distribution channel is through catalogs,
determines prices in advance in order to advertise and print catalogs.
Production decisions are determined period by period, based on
demand distribution in present and future periods as well as inventory
from previous periods.

2. A supplier faces non-stationary demand and initially determines
period prices to better match expected demand and supply in each
period. The supplier contracts with a manufacturer over a time
horizon, offering the manufacturer these fixed prices in advance for
planning purposes, but allowing orders to be placed in each period
due to the manufacturer’s high inventory holding cost and
unpredictable demand. The supplier adjusts production in each time
period based on previous inventory and expected orders.

3. A manufacturer needs to determine a procurement strategy at
the beginning of the year for the next 12 months. For this purpose, the
manufacturer decides a priori on her monthly production levels and
commits the supplier to deliver components just-in-time. The
manufacturer sells products over the phone and web and determines
price in each period so as to set the demand level to approximately
match production and to clear previous inventory.

These examples demonstrate the two planning models described
earlier. In the first two examples, the firm determines prices for a planning
horizon a priori and makes production decisions based on the state of the
system and future demand. The firm varies production levels based on
inventory left over from previous periods as well as current and future demand.
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The third example illustrates the second planning model. The manufac-
turer plans production at the beginning of the horizon but makes the
price decision on a period by period basis. In this case, price can be used as
a market clearing mechanism to deal with inventory from previous periods.

In the examples described above, it may be profitable to set aside
inventory to satisfy future demand, even if the decision means losing sales
in the current period. Although choosing to lose sales may seem counter
to making profit, the inventory set aside is likely to generate a larger
income in the future. This would typically occur if the price in the future
is higher or if the future production costs were high. This is the intuition behind
the concept of ‘Save-Up-To Level’ which we will introduce below.

Consider now a Delayed Production strategy in which pricing decisions
have already been made at the beginning of the horizon. The challenge
is to identify properties of the optimal production and inventory policy
such that the firm maximizes expected profit. Specifically, consider a
production-inventory model in which demand in period t depends on price
according to a general stochastic demand function Dtðpt, "tðptÞÞ where "tðptÞ
is a random variable with a known distribution. Let P be the price
vector chosen at the beginning of the horizon, that is, P ¼ fp1, p2, . . . , pT g
where T is the length of the planning horizon.

The production facility has a limited capacity, qt, t¼ 1, 2, . . . ,T, prod-
uction cost includes only a variable component but no fixed cost, and
inventory holding cost is charged on inventory carried from one period to
the next. All parameters are time dependent. Finally, shortages are lost
and demand does not have to be satisfied even if inventory exists; that is,
the decision-maker may decide to forgo immediate revenue for potentially
higher revenue in the future.

Chan et al. (2001) prove the following result.

Lemma 35. Given a vector of prices P, there exists an optimal policy for the
Delayed Production strategy with an optimal order-up-to level, y*t , and an
optimal save-up-to level, S*t .

Thus, at the beginning of time period t, the amount produced, Xt,
should raise the available inventory to the optimal order-up-to level, Y*

t , or as
close as possible to it if the production capacity constraint is reached
(i.e., Xt¼ qt). The save-up-to level, S*t , is the amount that should be saved in
period t to satisfy demand in future periods even if sales are lost in the current
period. Observe that the Lemma implies that both the order-up-to and the
save-up-to policies are independent of the inventory level at the beginning of
the period, It�1.

Of course, the Lemma also applies to the special case in which the
decision-maker adopts a fixed price policy, i.e., a policy in which the product
is sold for the same price in all time periods. In this case, the Lemma allows
the decision-maker to determine the best production-inventory policy
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maximizing expected profit for a given fixed price policy. Thus, a search on all
possible prices determines the optimal fixed price.

Consider now the Delayed Pricing policy in which production quantities,
Xt, are determined at the beginning of the horizon. The objective is to
determine a pricing policy and an inventory strategy so as to maximize
expected profit. The inventory policy will specify, period by period, the
amount of available product to be sold as well as the minimum amount of
inventory to be transfered to the next period.

Unfortunately, this case is more complex than the previous one and indeed
the following observations can be made:

� The save-up-to level in a specific period depends on the initial
inventory level in that period.

� Price does not necessarily increase as a function of decreasing
inventory. That is, unlike the model with backlogging, it is possible
that as initial inventory increases, price also increases.

A related work is the paper by Van Mieghem and Dada (1999), in which the
authors explicitly consider price postponement versus production postpone-
ment strategies. They focus on a single-period, two-stage process with an
initial decision, e.g., production decision, followed by a realization of demand,
followed by another decision, e.g., pricing decision. Thus, price (production)
postponement as outlined by Van Mieghem and Dada is different from
Delayed Pricing (Production) in Chan et al. (2001). Specifically, in the model
analyzed by Van Mieghem and Dada, the postponed decisions are made after
demand is realized.

8 Computational results and insights

The key challenge when considering dynamic pricing strategies is to
identify conditions under which this strategy provides significant profit benefit
over (the best) fixed price strategy. For this purpose, Federgruen and
Heching (1999) and Chan et al. (2001) performed extensive computational
studies. In both papers, the focus is on periodic review models with variable
ordering costs but no fixed costs. These computational studies provide the
following insights.

� Available Capacity: Assuming everything else being equal, the smaller
the production capacity relative to average demand, the larger the
benefit from dynamic pricing [Chan et al., 2001].

� Demand Variability: The benefit of dynamic pricing increases as the
degree of demand uncertainty, measured by the coefficient of
variation, increases [Federgruen and Heching, 1999].

� Seasonality in Demand Pattern: The benefit of dynamic pricing
increases as the level of demand seasonality increases [Federgruen and
Heching, 1999, Chan et al., 2001].
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� Length of the planning horizon: The longer the planning horizon the
smaller the benefit from dynamic pricing [Federgruen and Heching,
1999].

All in all, research [Federgruen and Heching, 1999, Chan et al., 2001]
indicates that, depending on the data and the model assumptions, dynamic
pricing may increase profit by 2–6%. This increase in profit due to dynamic
pricing is very significant for industries with low profit margins, e.g., retail and
computer industries.

To determine the effectiveness of the planning models developed in
Section 7, Chan et al. (2001) conducted an extensive computation study. The
objective of the study was two-fold:

1. Identify situations where partially delayed planning, i.e., either
Delayed Production or Delayed Pricing, provides significant increase
in expected profit relative to a fixed price strategy, and

2. Determine conditions under which one strategy outperforms the other.

Below we provide a summary of the insights obtained from the
computational study.

� Delayed Pricing and Delayed Production provide significant increase
in expected profit in most of the cases analyzed.

� The performance of partial update strategies, either Delayed Pricing or
Delayed Production, tends to increase as seasonality increases and as
capacity becomes more constrained.

� Delayed Pricing usually outperforms Delayed Production. Exceptions
occur when production cost is high or under certain types of seasonality.

The last insight, concerning the performance of Delayed Pricing versus
Delayed Production, is in agreement with the one obtained by Van Mieghem
and Dada (1999) for a somewhat related two stage problem. As observed
earlier, they consider a single period model where the postponed decisions are
made after demand is realized. They found that in many instances Pricing
Postponement outperformed Production Postponement; one exception was in
a case with high production cost.

PART III: SUPPLY CHAIN DESIGN MODELS

9 Introduction

One of the most important aspects of logistics is deciding where to locate
new facilities, such as retailers, warehouses or factories. These strategic
decisions are a crucial determinant of whether or not materials will flow
efficiently through the distribution system.
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In this section we consider two important warehouse location problems: the
Single-Source Capacitated Facility Location Problem and a distribution
system design problem. In each case, the problem is to locate a set of
warehouses in a distribution network. We assume that the cost of locating a
warehouse at a particular site includes a fixed cost (e.g., building costs, rental
costs, etc.) and a variable cost for transportation. This variable cost
includes the cost of transporting the product to the retailers as well as possibly
the cost of moving product from the plants to the warehouse. In general, the
objective is to locate a set of facilities so that total cost is minimized subject
to a variety of constraints which might include:

� each warehouse has a capacity which limits the area it can supply,
� each retailer receives shipments from one and only one warehouse,
� each retailer must be within a fixed distance of the warehouse that
supplies it, so that a reasonable delivery lead time is ensured.

Location analysis has played a central role in the development of the
operations research field. In this area lie some of the discipline’s most elegant
results and theories. We note here the paper of Cornuéjols, Fisher, and
Nemhauser (1977) and the two excellent books devoted to the subject by
Mirchandani and Francis (1990) and Daskin (1995).

This section closely follows the material in Bramel and Simchi-Levi (1997)
and is organized as follows. We first present an efficient algorithm for the
Single-Source Capacitated Facility Location Problem. In this problem a set
of retailers needs to be served by a number of warehouses with limited
capacity. In Section 11, we present a more general model where all levels of the
distribution system, i.e., plants and retailers, are taken into account when
deciding warehouse locations.

All of the algorithms developed in this section are based on Lagrangian
relaxation techniques which have been applied successfully to a wide range of
location problems.

10 The single-source capacitated facility location problem

Consider a set of retailers geographically dispersed in a given region. The
problem is to choose where in the region to locate a set of warehouses. We
assume there are m sites that have been preselected as possible locations for
these warehouses. Once the warehouses have been located, each of n retailers
will get its shipments from a single warehouse. We assume:

� If a warehouse is located at site j:
s a fixed cost fj is incurred, and
s there is a capacity qj on the amount of demand it can serve.

Let the set of retailers be N where N¼ {1, 2, . . . , n}, and let the set of
potential sites for warehouses be M where M¼ {1, 2, . . . ,m}. Let wi be the
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demand or flow between retailer i and its warehouse for each i2N. We assume
that the cost of transporting the wi units of product from warehouse j to
retailer i is cij, for each i2N and j2M.

The problem is to decide where to locate the warehouses and then how
the retailers should be assigned to the open warehouses in such a way that
total cost is minimized. It is easy to verify that the capacity constraint implies
that a retailer will not always be assigned to its nearest warehouse.

This problem is called the single-source Capacitated Facility Location
Problem (CFLP), or sometimes the Capacitated Concentrator Location
Problem (CCLP).

To formulate the problem as an integer linear program, define the following
decision variables:

Yj ¼
1, if a warehouse is located at site j,
0, otherwise,

�

for j2M, and

Xij ¼
1, if retailer i is served by a warehouse at site j,
0, otherwise,

�

for i2M, and j2M.
The Single-Source Capacitated Facility Location Problem can be formu-

lated as follows:

Problem P : Min
Xn
i¼1

Xm
j¼1

cijXij þ
Xm
j¼1

fjYj

s:t:
Xm
j¼1

Xij ¼ 1 8i 2 N ð10:1Þ

Xn
i¼1

wiXij � qjYj 8j 2M ð10:2Þ

XijYj 2 0, 1f g 8i 2 N, j 2M ð10:3Þ

Constraints (10.1) (along with the integrality conditions (10.3)) ensure that
each retailer is assigned to exactly one warehouse. Constraints (10.2) ensure
that the warehouse’s capacity is not exceeded, and also that if a warehouse is
not located at site j, no retailer can be assigned to that site.

Let Z* be the optimal solution value of the Single-Source Capacitated
Facility Location Problem. Note we have restricted the assignment variables
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(X) to be integer. A related problem, where this assumption is relaxed, is
simply called the (multiple-source) Capacitated Facility Location Problem. In
that version, a retailer’s demand can be split between any number of
warehouses. In the Single-Source Capacitated Facility Location Problem, it is
required that each retailer have only one warehouse supplying it. In many
logistics applications, this is a realistic assumption since without this
restriction optimal solutions might have a retailer receive many deliveries of
the same product (each for, conceivably, a very small amount of the product).
Clearly, from a managerial, marketing and accounting point of view,
restricting deliveries to come from only one warehouse is a more appropriate
delivery strategy.

Several algorithms have been proposed to solve the CFLP in the literature;
all are based on the Lagrangian relaxation technique. This includes Neebe and
Rao (1983), Barcelo and Casanovas (1984), Klincewicz and Luss (1986), and
Pirkul (1987). The one we derive here is similar to the algorithm of Pirkul
which seems to be the most effective.

We apply the Lagrangian relaxation technique by including constraints
(10.1) in the objective function. For any vector l 2 Rn, consider the following
problem, Pl:

Min
Xn
i¼1

Xm
j¼1

cijXij þ
Xm
j¼1

fjYj þ
Xn
i¼1

�i
Xm
j¼1

Xij � 1

 !

subject to (10.2)–(10.3).
Let Zl be its optimal solution and note that

Z� � Z*, 8� 2 Rn:

To solve Pl we separate the problem by site. For a given j2M, define the
following problem Rj

l, with optimal objective function value Z j
l:

Min
Xn
i¼1

ðcij þ �iÞXij þ fjYj

s:t:
Xn
i¼1

wiXij � qjYj

Xij 2 f0, 1g 8i 2 N

Yj 2 f0, 1g:
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10.1 Solving P
j
l

Problem Pj
l, can be solved efficiently. In the optimal solution to Pj

l, Yj is
either 0 or 1. If Yj¼ 0, then Xij¼ 0 for all i2N. If Yj¼ 1, then the problem is
no more difficult than a constraint 0–1 Knapsack Problem, for which
efficient algorithm exist; see, e.g., Nauss (1976). If the optimal knapsack
solution is less than �fj, then the corresponding optimal solution to Pj

l is
found by setting Yj ¼ 1 and Xij according to the knapsack solution, indicating
whether or not retailer i is assigned to site j. If the optimal knapsack solution
is more than �fj, then the optimal solution to Pj

l is found by setting Yj ¼ 0
and Xij ¼ 0 for all i2N.

The solution to Rl is then given by

Z�:
Xm
j¼1

Z j
� �

Xn
i¼1

�i:

For any vector l 2 Rn, this is a lower bound on the optimal solution Z*. To
find the best such lower bound we use a subgradient procedure described in
Bramel and Simchi-Levi (1997).

10.2 Upper bounds

For a given set of multipliers, if the values {X} satisfy (10.1), then we
have an optimal solution to Problem P, and we stop. Otherwise, we perform a
simple subroutine to find a feasible solution to P. The procedure is based
on the observation that the knapsack solutions found when solving Pl
give us some information concerning the benefit of setting up a warehouse
at a site (relative to the current vector l). If, for example, the knapsack
solution corresponding to a given site is 0, i.e., the optimal knapsack is
empty, then this is most likely not a ‘good’ site to select at this time.
In contrast, if the knapsack solution has a very negative cost, then this is a
‘good’ site. Given the values Z j

l for each j 2M, let p be a permutation of
1, 2, . . .,m such that

Z
pð1Þ
� � Z

pð2Þ
� � � � � � Z

pðmÞ
� :

The procedure we perform allocates retailers to sites in a myopic
fashion. Let W be the minimum possible number of warehouses used in the
optimal solution to Problem P. This number can be found by solving the bin-
packing problem defined on the values wi with bin capacities qj. Starting with
the ‘best’ site, in this case site p(1), assign the retailers in its optimal knapsack
to this site. Then, following the indexing of the knapsack solutions, take the
next ‘best’ site (say site j:p(2)) and solve a new knapsack problem: one
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defined with costs cij:cij þ li for each retailer i still unassigned. Assign all
retailers in this knapsack solution to site j. If this optimal knapsack is empty,
then a warehouse is not located at that site, and we go on to the next site.
Continue in this manner until W warehouses are located.

The solution may still not be a feasible solution to Problem P since some
retailers may not be assigned to a site. In this case, unassigned retailers are
assigned to sites that are already chosen where they fit with minimum
additional cost. If needed, additional warehouses may be opened following the
ordering of p. A local improvement heuristic can be implemented to improve
on this solution, using simple interchanges between retailers.

10.3 Computational results

We now report on various computational experiments using this algorithm.
The retailer locations were chosen uniformly over the unit square. For
simplicity, we made each retailer location a potential site for a warehouse,
thus m¼ n. The fixed cost of a site was chosen uniformly between 0 and 10.
The cost of assigning a retailer to a site was the Euclidean distance between
the two locations. The values of wi were chosen uniformly over the unit
interval. We applied the algorithm mentioned above to many problems and
recorded the relative error of the best solution (upper bound) to the best lower
bound (maximum Zl) found, and the computation time required. The
algorithm is terminated when the relative error is below 1% or when a
prespecified number of iterations is reached. In Table 16 the numbers below
‘Error’ are the relative errors averaged over five randomly generated problem
instances. The numbers below ‘CPU Time’ are the CPU times averaged over
the five problem instances. All computational times are on an IBM Risc 6000
Model 950.

11 A distribution system design problem

So far the location model we have considered has been concerned with
minimizing the costs of transporting products between warehouses and

Table 16
Computational results for the single-source capacitated
facility location problem

n m Error (%) CPU time (sec)

10 10 1.1 10.2
20 20 1.9 21.3
50 50 3.4 192.8
100 100 4.8 426.7
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retailers. We now present a more realistic model that considers the cost
of transporting the product from manufacturing facilities to the warehouses
as well.

Consider the following warehouse location problem. A set of plants
and retailers are geographically dispersed in a region. Each retailer experiences
demands for a variety of products which are manufactured at the plants up
to their capacity limits. A set of warehouses with limited capacities must
be located in the distribution network from a list of potential sites.

The cost of locating a warehouse includes the transportation cost per
unit from warehouses to retailers and also the transportation cost from
plants to warehouses. In addition, as in the Single-Source Capacitated Facility
Location Problem, there is a site-dependent fixed cost for locating each
warehouse.

The data for the problem are the following:

� L¼ number of plants; we will also let L¼ {1, 2, . . . ,L}
� J¼number of potential warehouse sites; also let J¼ {1, 2, . . . , J}
� I¼ number of retailers; also let I¼ {1, 2, . . . , I}
� K¼ number of products; also let K¼ {1, 2, . . . ,K}
� W¼ number of warehouses to locate
� cljk¼ cost of shipping one unit of product k from planti to warehouse
site j

� djik¼ cost of shipping one unit of product k from warehouse site
j to retailer i

� fj¼ fixed cost of locating a warehouse at site j
� vlk¼ supply of product k at planti
� wik¼ demand for product k at retailer i

� sk¼ volume of one unit of product k
� qj¼ capacity (in volume) of a warehouse at site j

We make the additional assumption that a retailer gets delivery for a
product from one warehouse only. This does not preclude solutions where a
retailer gets shipments from different warehouses, but these shipments must
be for different products. On the other hand, we assume that the warehouse
can receive shipments from any plant and for any amount of product (within
its capacity limit).

The problem is to determine where to locate the warehouses, how to ship
product from the plants to the warehouses, and also how to ship the product
from the warehouses to the retailers. This problem is similar to the one
analyzed by Pirkul and Jayaraman (1996).

We again use a mathematical programming approach. Define the following
decision variables:

Yj ¼
1, if a warehouse is located at site j
0, otherwise,

�
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and

Uljk ¼ amount of product k shipped from plant, l to warehouse j,

for each l 2 L, j 2 J and k 2 K . Also define:

Xjik ¼
1, if retailer i receives product k from warehouse j
0, othrewise,

�

for each j 2 J, i 2 I and k 2 K .
Then, the Distribution System Design Problem can be formulated as the

following integer program:

min
XL
l¼1

XJ
j¼1

XK
k¼1

cljkUljk þ
XI
i¼1

XJ
j¼1

XK
k¼1

djikwikXjik þ
XJ
j¼1

fjYj

s:t:
XJ
j¼1

Xjik ¼ 1 8i 2 I , k 2 K ð11:1Þ

XI
i¼1

XK
k¼1

skwikXjik � qjYj 8j 2 J ð11:2Þ

XI
i¼1

wikXjik ¼
XL
l¼1

Uljk 8j 2 J, k 2 K ð11:3Þ

XJ
j¼1

Uljk � vlk 8l 2 L, k 2 K ð11:4Þ

XJ
j¼1

Yj ¼W ð11:5Þ

Yj,Xjik 2 0, 1f g 8i 2 I , j 2 J, k 2 K ð11:6Þ

Uljk � 0 8l 2 L, j 2 J, k 2 K : ð11:7Þ

The objective function measures the transportation costs between plants
and warehouses, between warehouses and retailers and also the fixed cost of
locating the warehouses. Constraints (11.1) ensure that each retailer/product
pair is assigned to one warehouse. Constraints (11.2) guarantee that the
capacity of the warehouses is not exceeded. Constraints (11.3) ensure that
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there is a conservation of the flow of products at each warehouse, that is, the
amount of each product arriving at a warehouse from the plants is equal to the
amount being shipped from the warehouse to the retailers. Constraints (11.4)
are the supply constraints. Constraint (11.5) ensures that we locate exactly W
warehouses.

Observe that in the model described here, transportation cost is a
linear function of the amount shipped. Indeed, at this strategic level, and
unlike the tactical level described earlier, annual transportation cost is based
on average shipment size. That is, at the strategic level, the model
only approximates the transportation cost functions and thus transportation
costs are linear.

The model can handle several extensions like a warehouse handling fee or
a limit on the distance of any link used. Another interesting extension is
when there are a fixed number of possible warehouse types to choose from.
Each type has a specific cost along with a specific capacity. The model can
be easily extended to handle this situation.

As in the previous problem, we will use Lagrangian relaxation. We relax
constraints (11.1) (with multipliers lik) and constraints (11.3) (with multipliers
�jk). The resulting problem is:

min
XL
l¼1

XJ
j¼1

XK
k¼1

cljkUljk þ
XJ
j¼1

XI
i¼1

XK
k¼1

djikwikXjik þ
XJ
j¼1

fjYj

þ
XJ
j¼1

XK
k¼1

�jk
XI
i¼1

wikXjik �
XL
l¼1

Uljk

" #
þ
XI
i¼1

XK
k¼1

�ik 1�
XJ
j¼1

Xjik

" #
,

subject to ð11:2Þ, ð11:4Þ–ð11:7Þ:

Let Zl,� be the optimal solution to this problem. This problem can be
decomposed into two separate problems, P1 and P2. They are the following:

Problem P1 : Z1:Min
XL
l¼1

XJ
j¼1

XK
k¼1

½cljk � �jk�Uljk

s:t:
XJ
j¼1

Uljk � vlk, 8l 2 L, k 2 K ð11:8Þ

Uljk � 0, 8l 2 L, j 2 J, k 2 K :

Problem P2 : Z2:Min
XJ
j¼1

XI
i¼1

XK
k¼1

½djikwik � �ik þ �jkwik�Xjik þ
XJ
j¼1

fjYj

Ch. 2. Supply Chain Design and Planning 85



s:t:
XI
i¼1

XK
k¼1

skwikXjik � qjYj, 8j 2 J ð11:9Þ

XJ
j¼1

Yj ¼W , Yj,Xjik 2 0, 1f g, 8i 2 I , j 2 J, k 2 K : ð11:10Þ

11.1 Solving P1

Problem P1 can be solved separately for each plant/product pair. In fact,
the objective functions of each of these subproblems can be improved (without
loss in computation time) by adding the constraints:

skUljk � qj, 8l 2 L, j 2 J, k 2 K: ð11:11Þ

For each plant/product combination, say plant l and product k, sort the
J values cj:cljk � �jk. Starting with the smallest value of cj, say cj0 , if
cj0 � 0, then the solution is to ship none of this product from this plant.
If cj0 < 0, then ship as much of this product as possible along arc ðl, j0Þ subject
to satisfying constraints (11.8) and (11.11). Then if the supply vlk has
not been completely shipped, do the same for the next cheapest reduced cost
ðcÞ, as long as it is negative. Continue in this manner until the entire
product has been shipped or the reduced costs are no longer negative. Then
proceed to the next plant/product combination repeating this procedure.
Continue until all the plant/product combinations have been scanned in this
fashion.

11.2 Solving P2

Solving Problem P2 is similar to solving the subproblem in the
Single-Source Capacitated Location Problem. For now we can ignore
constraint (11.10). Then, we separate the problem by warehouse. In the
problem corresponding to warehouse j, either Yj¼ 0 or Yj¼ 1. If Yj¼ 0, then
Xjik¼ 0 for all i2N and k2K. If Yj¼ 1, then we get a Knapsack Problem
with NK items, one for each retailer/product pair. Let Z j

2 be the objective
function value when Yj is set to 1 and the resulting knapsack problem is
solved. After having solved each of these, let p be a permutation of the
numbers 1, 2, . . . , J such that

Z
pð1Þ
2 � Z

pð2Þ
2 � � � � � Z

pðJÞ
2 :
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The optimal solution to P2 is to choose the W smallest values:

Z2:
XW
j¼1

Z
pð jÞ
2 :

For fixed vectors l and �, the Lagrangian lower bound is

Z�,� ¼ Z1 þ Z2 þ
XI
i¼1

XK
k¼1

�ik:

To maximize this bound, i.e., maxl,�{Zl,�}, we again use the subgradient
optimization procedure.

11.3 Upper bounds

At each iteration of the subgradient procedure, we attempt to construct
a feasible solution to the problem. Consider Problem P2. Its solution may
have a retailer/product combination assigned to several warehouses. We
determine the set of retailer/product combinations that are assigned to one
and only one warehouse and fix these. Other retailer/product combinations
are assigned to warehouses using the following mechanism. For each
remaining retailer/product combination, we determine the cost of assigning
it to a particular warehouse. After determining that this assignment is
feasible (from a warehouse capacity point of view), the assignment cost is
calculated as the cost of shipping all of the demand for this retailer/product
combination through the warehouse plus the cost of shipping the demand
from the plants to the warehouse (in the cheapest possible manner while
satisfying plant capacity constraints, possibly along one or more arcs from the
plants to the warehouse). For each retailer/product combination we determine
the penalty associated with assigning the shipment to its second best
warehouse instead of its best warehouse. We then assign the retailer/product
combination with the highest such penalty and update all arc flows and
remaining capacities. We continue in this manner until all retailer/product
combinations have been assigned to warehouses.

11.4 Computational results

In Table 17, we report running times, in seconds, on an IBM PC
166 MHz machine for a variety of problem sizes. The results are given as a
function of various parameters. In all cases, the number of potential locations
for warehouses is 32, the number of suppliers is 9, the numbers of products
is also 9, and we require that the distance between a customer and a
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warehouse serving it will be no more than 100 miles. The optimization was
terminated when the relative difference between the cost of the solution
generated and the lower bound was within a specified gap. Thus, the column
‘Running Time 5%’ provides the running times when the gap is 5%
while ‘Running Time 1%’ provides the running times when the gap is 1%.
Finally, these six test problems represent real-world data that we have
received from a producer and distributor of soft drinks in the Northeastern
part of the U.S.

12 Conclusions

The last few years have been marked by considerable progress in the
development and implementation of information and communication
systems. These systems allow companies to track customer demand,
inventory, and the availability of production facilities. Of course, as pointed
out in Shapiro (1998), ready access to transactional data does not
automatically lead to better decision making. Optimization models and new
solution techniques that use the wealth of information to better design and
manage the supply chain are key to improving supply chain performance.

This chapter describes a variety of optimization models and solution
methods for the integration of various tactical and strategic decisions within
the supply chain. The problems addressed range from the coordination of
production, inventory and transportation, through the determination of
pricing and production strategies, to supply chain design models. Most of the
models are deterministic models while some incorporate uncertainty in
customer demand. In all cases we utilize the inherent structure of the optimal
strategies to develop computationally efficient algorithms and solve realistic
instances. Moreover, for some of the problems, we can theoretically prove
optimality or develop attractive worst-case bounds on the performance of
various algorithms. The results demonstrate the power of optimization
techniques and the great potential of these methods when implemented in
Decision Support Systems.

Table 17
Running times

Number of
customers

Number of
warehouses

Running time
5% (sec)

Running time
1% (sec)

144 6 64 106
144 5 95 209
144 4 99 227
73 6 31 60
73 5 19 54
73 4 20 37
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Of course, many challenges still remain! For instance, in the Production/
Distribution models analyzed in Part I, these challenges include incorporating
production, warehousing and transportation capacities in some of the models,
extending the tactical models to assembly systems, analyzing different modes
of transportation, and most importantly, extending the analysis to practical
situations in which the decision-maker is faced with uncertain demand or
supply. Similarly, the pricing models and results should be extended to models
with multiple classes of customers differentiated by their sensitivity to price
and lead-time, models with discretionary sales, as well as multi-stage supply
chains. Finally, the supply chain design problems analyzed in Part III should
be generalized to incorporate demand uncertainty.

In this chapter, we have focused on a single decision-maker that has full
control and access to information over the entire logistics network. In many
practical situations, however, an important issue in supply chain design and
planning is the management of information flows. How information is shared
among different locations and organizations, and how decision power is
distributed among multiple agents has a significant impact on supply chain
performance. This effect has been observed in industry and rigorously
analyzed in the academic literature under various settings, see Tayur,
Ganeshan, and Magazine (2000), Lee, So, and Tang (2000) or Chen, Drezner,
Ryan, and Simchi-Levi (2000). The flow of information and the coordination
of distributed decision making within the supply chain are the subject of much
current research, but are beyond the scope of this chapter.
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1 Introduction

The focus of this chapter is on safety stock placement in the design of a
supply chain, as well as on the optimal configuration of the supply chain to
minimize total supply chain cost. As our intent is not to cover all of supply
chain design, we first need to position this chapter relative to the other work in
this handbook on supply chain design. We also need to position our treatment
of the safety stock placement problem relative to other chapters that address
multi-echelon inventory systems.

There is a great range of decisions associated with the design of a supply
chain. One might group the design decisions into three broad categories.

First, there are the traditional decisions of network design as applied to the
design of a supply chain. The choice of nodes corresponds to questions about
the number, location and sizing of facilities. The choice of arcs corresponds
to setting the general logistics strategy in terms of who serves whom and by
what transportation or production mode. Muriel and Simchi-Levi cover these
models in Chapter 2 of this book.

Second, we mention the decisions that are made in product design that
determine the topology, as well as the key economics, of the supply chain.
Ideally, one would like to concurrently design the product and its supply chain
so as to meet the market objectives for the product with the best performance
of the supply chain. Lee and Swaminathan look at the impact of product
design decisions on the supply chain, with a particular focus on understanding
the tactic of postponement as a way to achieve product proliferation with a
well performing supply chain.
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Third, we note the design decisions that allow the supply chain to be
responsive to uncertainty and variability. In Chapter 4, Bertrand addresses the
general question of how to accomplish flexibility in a supply chain, for
instance by means of having flexible facilities and/or capacity buffers, as well
as through contracting mechanisms. In the current chapter, we examine a
completely different tactic, the deployment of inventory as safety stock for
addressing demand uncertainty. In particular we look at the strategic
placement of safety stocks across a supply chain.

In this chapter, we also introduce a new design consideration for how to
configure the supply chain. The configuration decision entails choosing how to
source each step or stage in the supply chain, where there might be several
options that vary in terms of lead-time and cost. For instance, the
configuration decision includes decisions about choice of suppliers for raw
materials, choice of transportation modes, and choice of processing options,
which might vary in terms of technology and capacity.

As the majority of the chapter is on safety stock placement in a supply
chain, there is a close connection between this chapter and the body of
literature on multi-echelon inventory systems. In this handbook, there are
three chapters that focus, to some degree, on multi-echelon inventory models,
namely Axsäter (Chapter 10), Song and Zipkin (Chapter 11) and de Kok and
Fransoo (Chapter 12). We see three distinctions between the focus of this
chapter and the general literature on multi-echelon inventory systems, as
treated in these other chapters.

First, the primary emphasis on the approaches studied in this chapter is in
terms of providing decision support for supply chain design, rather than
supply chain operation. By this, we mean that the intent is to determine the
best overall strategy for deploying safety stock across the supply chain so as to
buffer it against demand uncertainty. In particular, we are concerned with
questions about where are the best places in the supply chain to position a
safety stock, and how much is needed to protect the chain. In contrast with
much of the multi-echelon inventory literature, the intent is not to find the
inventory control policy for operating the supply chain.

Second, much of the multi-echelon literature focuses on specific network
topologies such as serial, assembly or distribution systems. We know, however,
that de Kok and Fransoo in Chapter 12 do explicitly describe a multi-echelon
algorithm that applies to general network structures. The purpose of this
chapter is to consider multi-echelon models that have been specifically
designed for optimizing the placement of safety stocks in real-world supply
chains. As such, we find that the network topologies of most supply chains are
neither an assembly nor distribution system, and thus require different
approaches. Admittedly, in order to make progress on these more complex
systems, these approaches for safety stock placement require simplifications
and at times, strong assumptions. As a consequence, these safety stock models
lack some of the rigor found in the literature for multi-echelon systems. But,
on the plus side, they have had substantial success in being applied in practice.
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Third, we assume that the inventory policies throughout the supply chain
just rely on local information and make local decisions in terms of their
inventory management and replenishment. In contrast, the models in these
other three chapters allow for a central decision maker to coordinate and
control the actions at all stages in the supply chain.

The structure of the chapter is to consider first two approaches to safety
stock placement, which we term the stochastic-service model and the
guaranteed-service model. These two approaches provide an interesting
contrast to how one models and analyzes a supply chain for the purposes of
setting safety stocks. We then address the issue of how to optimally configure
the supply chain. We introduce the notion of options for each stage in the
supply chain, where the options differ in terms of lead-time and cost. We show
how this work builds on the safety-stock placement models and we formulate
an optimization model that finds the best choice of options and safety stock
placement to minimize the total supply chain cost. We conclude the chapter
with some reflections on this material and its applicability and value to
practice, as well as reflections on opportunities for research.

2 Approaches to safety stock placement

In this chapter, we consider two approaches to optimizing safety stock
levels in multi-echelon supply chains. Our intent is to compare and contrast
these approaches in terms of their underlying assumptions, computational
and modeling implications, and the nature of the results produced. Both
approaches adopt a network representation of the supply chain, where nodes
in the network correspond to stages in the supply chain and arcs denote the
precedence relationship between stages. A stage represents a processing or
transformation activity in the supply chain. Depending on the scope and
granularity of the analysis being performed, the stage could represent
anything from a single step in a manufacturing or distribution process to a
collection of such steps to an entire assembly and test operation. Regardless of
the level of detail chosen by the modeler, a stage corresponds to the material
flow of a single item or a single family of items, and each stage is a candidate
location for the placement of a safety stock of inventory. When it is necessary
to distinguish the safety stocks for different items at the same location, then we
need to replicate the stages. For example, if two products flow through a
distribution center, we might model each product in the supply chain map by
a stage that corresponds to that SKU at that distribution center.

The approaches also assume decentralized control throughout the supply
chain. There is no central decision maker that coordinates and controls the
actions at all of the stages in the supply chain. Instead, for the purposes of
determining safety stocks, we assume that each stage in the supply chain
manages its inventory with a simple control policy that takes inputs from
adjacent upstream and downstream stages. Thus, in order to be implemented
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in practice, the final recommendations of the model with regard to safety
stocks must be translated into the control policies that are in use throughout
the supply chain. As a final note on this issue, saying the supply chain is
subject to decentralized control is not equivalent to saying the supply chain is
locally optimized. In an optimization context, the models attempt to find the
safety stock levels, under the assumption of decentralized control, that
minimize the total safety stock cost for the supply chain. For the approaches
presented here, this requires global access to information to run the opti-
mization and calculate the system’s performance measures. In particular,
demand information is passed from finished goods stages through the chain
to rawmaterials and cost and lead-time data is passed in the opposite direction.

The two approaches differ in how they model the replenishment mechanism
between stages in the supply chain. We refer to the two approaches as the
stochastic-service model and guaranteed-service model. The stochastic-service
model assumes the delivery or service time between stages can vary based on
the material availability at the supplier stage. The guaranteed-service model
assumes that each stage can quote a delivery or service time that it can
always satisfy.

In the stochastic-service model, each stage in the supply chain maintains a
safety stock sufficient to meet its service level target. In this setting, a stage
that has one or more upstream-adjacent supply stages has to characterize its
replenishment time taking into account the likelihood that these suppliers will
meet a replenishment request from stock. Because the upstream suppliers
will not always meet demand requests immediately from stock, each stage will
occasionally experience a delay in obtaining its supplies from its upstream
suppliers. Due to this stochastic delay, the replenishment time for the stage is
also stochastic, even when the processing time at the stage is deterministic.
The inventory level required at each stage to meet its service level target
depends on its replenishment time. And the challenge in this work is in how to
characterize these replenishment times given that a stage might have multiple
upstream suppliers, and given that each of the upstream stages might also
be dependent upon unreliable suppliers.

In the guaranteed-service model, each stage provides guaranteed service
to its customer stages. In this setting, a supply stage sets a service time to
its downstream customer and then must hold sufficient inventory so that
it can always satisfy the service-time commitment. A key assumption in this
model is to assume that demand is bounded for the purposes of making the
service-time guarantee. As a consequence, the service-time guarantee can be
accomplished with a finite stock of inventory. The guaranteed nature of these
service times assures that the replenishment time for downstream stages is
predictable and deterministic. This then allows the downstream stage to plan
its inventory so that it can also make a service-time guarantee to its customers.
In this work, the challenge is determining the best choice of service
times within the supply chain that minimize the total supply-chain inventory
and meet the service requirements for the supply-chain’s customer.
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The stochastic-service and guaranteed-service approaches both require
strong assumptions in order to produce tractable models. The stochastic-
service model assumes that the system behaves the same under all demand
conditions. That is, each stage reacts in a predictable way whether there is
ample inventory or there is a stock-out, and inventory is the only
countermeasure available to deal with demand and supply uncertainty in
the supply chain. If one were to make an analogy to a checkout clerk in a
grocery store, the stochastic-service model assumes that the clerk behaves the
same way if the line is one person or fifty people.

The guaranteed-service model makes an equally strong assumption.
In order to provide guaranteed service, the guaranteed-service model
assumes that the safety stock policy is only being designed to meet
some portion of the demand, as specified by the demand bound. When
demand exceeds the bound, the model does not attempt to address how the
system will react. In effect, the guaranteed-service model assumes that
inventory is held to handle some nominal level of uncertainty and that other
responses or tactics are available to address demand or supply uncertainty
beyond this nominal level. Continuing the grocery-checkout analogy, if the
system were designed to process a maximum of 20 customers in a one-hour
interval, then when 25 customers show up in an hour, the model does not say
how exactly the additional customers would be served. In effect, the model just
assumes outside measures are adopted to serve these customers in the specified
time frame. (We note here that the control framework proposed in Chapter 12
assumes that other countermeasures are applied when planned lead times
are threatened.)

The next two sections discuss in more detail the papers that have appeared
in both streams of work.

2.1 Stochastic-service model approach

Lee and Billington (1993) develop a multi-echelon inventory model to
reflect the decentralized supply chain structure they witnessed in Hewlett-
Packard’s DeskJet printer supply chain. Their goal was to produce a model
that manufacturing and materials managers could use to evaluate different
strategic decisions involved with the creation of a new-product supply chain.
They model a supply chain as a collection of SKU-locations where each
stage in the supply chain accepts as an exogenous input a service level target
or a base stock policy. In the case where service level targets were inputs, the
authors develop a single-stage base-stock calculation that, while approximate,
is tractable. The single-stage base-stock level is a function of the replenishment
lead-time at the stage, which includes the production lead-time, plus the
effects from production downtime and random delays due to component
shortages. Lee and Billington show how to propagate the single-stage model
to multiple stages by developing expressions for the random delays
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induced on downstream stages from shortages from the base-stock policy of
upstream stages.

Ettl, Feigin, Lin and Yao (2000) also consider a supply chain context that is
quite similar in spirit to the work of Lee and Billington (1993). The single-
stage base-stock model in Ettl et al. (2000) makes a distinction between the
nominal lead-time a stage quotes and the actual lead-time the stage
experiences. The actual lead-time will exceed the nominal lead-time when
there is a stock-out at a supplier. The authors develop an approximate
characterization of the random variable for the actual lead-time. This
approximation is based on assuming that at most one supplier is out of stock
at any time instant, and then determining the stock-out probability for each
supplier, given their service targets and this assumption. The authors use an
M/M/1 model of the supplier’s replenishment process to develop a bound on
the expected delay induced by a stock-out. Weighting these delays by the
stock-out probabilities for each supplier, and combining with the nominal
lead-time provides the characterization of the actual lead–time for a single
stage. Given this lead-time, a base-stock level is determined to assure a given
service target for the stage. As in the case of Lee and Billington (1993), the
single-stage model extends immediately to a multiple-stage supply chain.
Indeed, given service level targets for every stage in the supply chain, it is
possible to decompose the performance analysis of a multiple-stage system
into the analysis of a series of single-stage base-stock systems.

In addition to performance analysis, Ettl et al. (2000) go on to place their
supply chain model into an optimization context. The authors’ objective
function is to minimize the total inventory investment in the supply
chain, defined as work-in-process inventory plus safety stock inventory. The
decision variables are the safety factor (or service level) at each stage. The
authors then develop expressions for the partial derivative of the objective
function with respect to the safety factors. This formulation allows the authors
to solve the resulting nonlinear programming problem using conjugate
gradient methods.

Glasserman and Tayur (1995) consider a context very similar to that of Lee
and Billington (1993) and Ettl et al. (2000) but go on to introduce capacity
limits into their multi-echelon model. The introduction of production capacity
requires each stage to operate a modified base-stock policy where at each
period the stage will order the minimum of its capacity and the amount to
bring its inventory position back to the base-stock level. The problem
formulation of Glasserman and Tayur (1995) follows the framework of Clark
and Scarf (1960) with the addition of capacity. The authors first develop
recursions for stage inventories, production levels, and pipeline inventories.
The authors develop estimates of the derivatives of the inventory requirements
with respect to the base-stock levels, based on an infinitesimal perturbation
analysis. They use these estimates to generate the gradient of the cost function,
with which they can conduct a gradient-based search to find the optimal base-
stock policy.
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2.2 Guaranteed-service model approach

The guaranteed service-time approach traces its lineage back to the 1955
manuscript, which was later reprinted in 1988 (Kimball, 1988). In that paper,
Kimball describes the mechanics of a single stage that operates a base-stock
policy in the face of random but bounded demand. In particular, beyond the
deterministic production time assumed at the stage, there is an incoming
service time that represents the delivery time quoted from the stage’s supplier
and an outgoing service time representing the delivery time the stage quotes to
its customer. Kimball further assumes that demand over any interval of time is
bounded. Given this characterization, the base-stock level at the stage is set
equal to the maximum demand over the net replenishment time, which is
defined as the incoming service time plus the production time minus the
outgoing service time.

Simpson (1958) develops a model to determine the optimal safety stocks in
a serial supply chain. Simpson uses Kimball’s work as the building block,
coupling adjacent stages together through the use of service time. In
particular, the incoming (or inbound) service time of a downstream stage is
equal to the outgoing (or outbound) service time of the upstream stage,
namely its supplier. The optimal stocking locations in the supply chain can
then be found by determining the optimal service times in the supply chain.
Simpson proves that for a serial supply chain the optimal service times satisfy
an extreme point property where the outgoing service time at a stage will equal
either zero or its incoming service time plus its production time. In terms of
inventory, the optimal policy is an ‘all or nothing’ policy, in which a stage
either has no safety stock or carries a decoupling safety stock, namely enough
stock to decouple the downstream stages from the upstream stages. Simpson
suggests an enumeration procedure to find the optimal service times.

Simpson also provides a rich interpretation for the bounded demand
process. Rather than saying that bounded demand reflects the maximum
demand the stage will see, the bound can instead reflect the maximum amount
of demand the company wants to satisfy from safety stock. Under this
interpretation, when demand exceeds the bound, the stage will have to resort
to extraordinary measures, like expediting and overtime, to meet the demand
requirement by means other than using safety stock.

Graves (1988) observes that the serial-line problem, as formulated by
Simpson (1958), can be solved as a dynamic program. Inderfurth (1991),
Inderfurth and Minner (1998), Graves and Willems (1996, 2000) extend
Simpson’s work to supply chains modeled as assembly networks, distribution
networks, and spanning trees. In each case, the optimization problem is still
to determine the service times that minimize the total cost for safety stock in
the supply chain. The challenge is to determine an efficient approach to
traverse the state space of the dynamic program. The definition of service time
must also be expanded to include the cases where a stage can see more
than one upstream or downstream stage. In the case of multiple upstream
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stages feeding a downstream stage, the papers assume that the downstream
stage has to wait until the item with the longest service time arrives. In the
case of an upstream stage supplying multiple downstream stages, the papers
assume the upstream stage quotes the same service time to all of its adjacent
downstream stages.

3 Model formulation

The single-stage base-stock policy is the common building block for all of
the papers in this chapter. The differences in the approaches deal with how
adjacent stages interact with one another and the assumptions about the
operating behavior of the individual stages. This section develops both the
underlying base-stock equations and the resulting multi-echelon problem
formulations for both the guaranteed and stochastic-service models.

The goal of this section is to distill the two models into their simplest
elements so that the reader can clearly see the similarities and differences
between the two approaches. The goal is not to replicate the contents of the
papers surveyed in the literature review nor is it to provide a careful
development of the features of each model. Rather, the intent is to give a self-
contained development that highlights the essence of each approach. We refer
the reader to the specific papers for the critical details and refinements that
are necessary for the successful implementation of each model.

To get started, we note the key similarities of the two approaches. In each
model, each stage in the supply chain operates according to a base-stock
policy. In each period, the stage observes demand and places a replenishment
order on its suppliers equal to the observed demand. There are no capacity
constraints. There is a common underlying review period for all stages in
the supply chain. Demand is stationary and independent across nonoverlap-
ping intervals, with mean demand per period of � and a standard deviation
of �. Associated with each stage is a deterministic processing time (or lead-
time) that includes all of the time required to transform the item at the stage.
Once all of the stage’s required inputs are available, the processing
time includes any waiting time, manufacturing time and transportation time
at the stage.

3.1 Stochastic-service model

In the stochastic-service model, each stage sets its base stock to meet a
service level target, i.e., an upper bound on the probability that a stage is out
of stock in any period and thus cannot meet customer demand directly from
stock on hand. The service level target for external customers is an exogenous
input to the model, usually dictated by market conditions. The service
level target for internal customers is an input when the model is used for
performance evaluation; alternatively, the service level target for internal
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customers is a decision variable when the model is placed within an
optimization. We say that a stage provides stochastic service because a
demand order will receive immediate service when stock is on hand, but will be
subject to a random delay when the stage is out of stock.

The replenishment time at a stage equals the processing time at the stage
plus any delay from upstream stages. If we denote the replenishment time at
stage j as a random variable �j, the processing time as a constant Lj, and the
delay for supplier i as a random variable �i, then the replenishment time at
stage j equals:

�j ¼ Lj þ max
i:ði, jÞ2A

�if g ð3:1Þ

where A is the set of directed arcs in the network representation of the supply
chain.

In the worst case, this delay might equal the entire replenishment time from
its slowest supplier, e.g.,

�j ¼ Lj þ max
i:ði, jÞ2A

�if g ð3:2Þ

The development of an exact characterization of �j is extremely challenging.
To illustrate, with N suppliers, there are 2N–1 combinations of suppliers that
might be out of stock in any period. For each stage that is out of stock,
determining its delay requires considering where its first unallocated unit is in
its replenishment process. Finally, there are the multi-echelon ramifications
when a supplier’s supplier is out of stock. As a consequence, one must make
some simplifications to make the analysis of this model more tractable.
We describe an approach here, which is loosely based on the development in
Ettl et al. (2000).

For purposes of illustration, we assume that at most one supplier will stock
out per period and the delay will equal the supplier’s processing time. (This
assembly assumption is also discussed in Chapter 12.) This allows us to
express the expected replenishment time at stage j as:

E �j
� �
¼ Lj þ

X
i:ði, jÞ2A

pijLi ð3:3Þ

where pij is the probability that in a period stage i is causing a stock-out at
stage j. Ettl et al. (2000) use this form of equation for the expected
replenishment time, but use a bound on the expected delay, rather than the
supplier’s processing time as we have done in (3.3). They derive the bound on
the expected delay by means of applying an M/M/1 model to the supplier’s
replenishment process.

We assume the demand over the replenishment time is normally distributed
with mean �jE½�j� and with standard deviation �j

ffiffiffiffiffiffiffiffiffiffi
E½�j�

p
: We assume that the
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base stock is given by Bj ¼ �jE½�j� þ kj�j
ffiffiffiffiffiffiffiffiffiffi
E½�j�

p
, where kj is the safety factor

necessary to achieve the service level target for the stage.
To determine the expected replenishment time, given by (3.3), we need to find

an expression for pij. Ettl et al. (2000) propose the following calculation for pij:

pij ¼
1��ðkiÞ

�ðkiÞ
1þ

X
h:ðh, jÞ2A

1��ðkhÞ

�ðkhÞ

 !�1
ð3:4Þ

where ki denotes the safety factor at stage i and �ðkiÞ represents the
cumulative distribution function for a standard normal random variable. In
(3.4), the term in parentheses acts to normalize the probability that a stock-out
does or does not occur, and the first part of the expression calculates the
fraction of occurrences that are attributable to stage i.

Given the assumptions of normally distributed demand over the
replenishment lead-time, we follow the development in Ettl et al. (2000) to
get the following expression for the expected on-hand inventory for stage j:

E½Ij� ¼ kj�j
ffiffiffiffiffiffiffiffiffiffi
E½�j�

p
þ �j

ffiffiffiffiffiffiffiffiffiffi
E½�j�

p Z 1
z¼kj

z� kj
� �

�ðzÞdz ð3:5Þ

where �j is defined by (3.3) and (3.4), and � () is the probability density
function for a standard normal. The first term is the expected inventory level
at stage j, equal to the base stock level net the expected demand. Since the on-
hand inventory level cannot be negative, we need to augment the first term
with the second term, which corresponds to the expected number of shortages
or backorders.

We can now develop an expression for the total safety stock cost across the
supply chain. We let CS

j denote the per unit holding cost of safety stock at
stage j. CS

j is typically determined by multiplying the cumulative cost of
the product at stage j by a holding cost rate. Given this cost characterization,
we let Cssm denote the total safety stock cost of the stochastic-service
model. Then,

Cssm ¼
XN
j¼1

CS
j �j

ffiffiffiffiffiffiffiffiffiffiffi
E �j
� �q

kj þ

Z 1
z¼kj

z� kj
� �

� zð Þdz

 !
ð3:6Þ

We can use (3.6) for performance evaluation in a supply chain, namely
to find the inventory requirements and costs for a given set of service level
targets or safety factors. We can also place (3.6) in an optimization context,
where the objective is to minimize safety stock cost and the decision variables
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are the service level targets, or equivalently the safety factors, at each stage in
the supply chain.

3.2 Guaranteed-service model

In the guaranteed-service model, each stage sets its base stock so as to
guarantee that it can meet its service-time commitment to its customers. That
is, each stage will quote a guaranteed service or delivery time to its
downstream customers, who know that this commitment will be met with
certainty. The service time for external customers is an exogenous input, just
as with the service level target for the stochastic-service model. The service
time for internal customers can be either an input or a decision variable,
depending upon whether the model is being used for performance evaluation
or for optimization.

As we have noted earlier, the guarantee applies to a bounded demand
process. We specify for each stage j a function Dj(t) that represents the
maximum demand over t consecutive periods for which we will guarantee the
service commitment. For each stage j, the model finds the base stock that
satisfies the stage’s service time commitment, provided that the demand time
series is always within the demand bound given by Dj(t). In a typical
application, similar to the stochastic-service model, one might assume that
actual demand at stage j is normally distributed with mean demand per period
of �j and a standard deviation of �j. Then a common way to set the demand
bound is as follows:

Dj tð Þ ¼ t�j þ kj�j
ffiffi
t
p

,

where kj is a given safety factor.When demand exceeds the demand bound, then
the safety stock in the system will not be adequate to assure the service times.
We assume that in this case of extraordinary demand, some correspondingly
extraordinary measures are taken to augment the safety stock so that
the demand can be served. Alternatively, one might view demand in excess
of this bound as being lost or somehow being served from another source.

For the guaranteed-service model, the replenishment time at a stage does
not drive base stock requirements, but, rather, it is the net replenishment time
that is of importance. In order to understand net replenishment time, we first
define the concept of service time. Service time is the amount of time that
elapses between when a downstream stage places an order on an upstream
stage and when the order is delivered by the upstream stage to the downstream
stage and is available to begin processing at that stage. Each stage in the
supply chain quotes a service time to its downstream (customer) stages
and it is quoted service times from its upstream (supplier) stages. We
describe the service time that stage j quotes its customers as the outbound
service time, denoted by soutj . The inbound service time at stage j is denoted
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by sinj . Since stage j cannot start its processing activities until it receives all
of the required inputs, we can state the inbound service time at stage j in
terms of the outbound service times for its suppliers:

sinj ¼ max
i:ði, jÞ2A

souti

� �
: ð3:7Þ

Now, for the guaranteed-service model the replenishment time at stage j is:

�j ¼ sinj þ Lj: ð3:8Þ

Since both the service time and processing time (by assumption) are
deterministic constants, we have that the replenishment time for this model
is also deterministic. The net replenishment time for stage j is the reple-
nishment time minus the stage’s outbound service time, i.e., sinj þ Lj � soutj . In
this model, we set the base stock for each stage to cover the maximum demand
over its net replenishment time, as will be shown next.

We assume each stage j starts at time 0 with initial inventory Ij(0)¼Bj.
Given the assumptions of guaranteed service and the definition of the service
times, the inventory at time t, Ij(t), equals

IjðtÞ ¼ Bj �
Xt�soutj

v¼0

djðvÞ þ
Xt�Lj�s

in
j

w¼0

djðwÞ, ð3:9Þ

where dj(t) denotes the demand in period t. In period t, stage j completes into
its inventory the replenishment order that was placed in period t� Lj � sinj .
Correspondingly, in period t, stage j must serve the replenishment orders
placed by its customers in period t� soutj . We can simplify (3.9) as,

IjðtÞ ¼ Bj �
Xt�soutj

v¼t�Lj�s
in
jþ1

djðvÞ: ð3:10Þ

In order to satisfy the service-time guarantee, we need to set the base stock Bj

so that the inventory on hand Ij(t) is always non-negative. That is, we will
want to set

Bj �
Xt�soutj

v¼t�Lj�s
in
jþ1

djðvÞ: ð3:11Þ

In words, we need for the base stock to equal (or exceed) the maximum
possible demand over the net replenishment time. But given the assumption of
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a bounded demand process, then we can set Bj ¼ Djðs
in
j þ Lj � soutj Þ and be

assured that Eq. (3.11) holds.

For illustration, assume we set the demand bound as given earlier. Then we

choose Bj ¼ ðs
in
j þ Lj � soutj Þ�j þ kj�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ Lj � soutj

q
. We can immediately

find that the expected inventory on-hand at stage j equals:

E Ij
� �
¼ kj�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ Lj � soutj

q
: ð3:12Þ

We can use (3.12) to determine the inventory requirements for a given setting
of the service times in a supply chain. We can also incorporate (3.12) into an
optimization to find the best choice of service times. The objective function for
the optimization could be the total holding cost for safety stocks, which we
denote by Cgsm and state as:

Cgsm
¼
XN
j¼1

CS
j kj�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ Lj � soutj

q
: ð3:13Þ

In the optimization model, one minimizes the objective (3.13) with the
decision variables being the service times at the stages in the supply
chain and subject to constraints (3.7) to relate the inbound to the out-
bound service times, and non-negativity constraints on the net replenishment
times.

4 Heavy industry and consumer packaged goods example

In this section we apply the two approaches for safety stock placement
to two examples. Our intent is two-fold. First, we wish to show the
applicability of these approaches to different industries. The examples
presented in Lee and Billington (1993); Ettl et al. (2000); Graves and Willems
(2000) are all drawn from the high-technology industry. Here we will present
examples from two other industries, heavy industry and consumer packaged
goods, to demonstrate the characteristics of their supply chains and the
differences in the structure of their optimal solutions. Our second purpose is
to illustrate how the results of the two approaches can differ, and then to
discuss the implications for implementing these models.

4.1 Bulldozer assembly and manufacturing

In this section we present the assembly and manufacturing process for a
bulldozer. Figure 1 presents the bulldozer’s supply chain map.
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At a high level, a bulldozer is put together in three operations. In the
common subassembly step, the transmission, drivetrain, and brake system are
attached to the case and frame. The main assembly process then installs the
chassis and the engine to the common subassembly. In final assembly the track
and suspension are installed. A real-world map of this supply chain exceeds
1000 stages with many of the stages shown in Fig. 1 spawning their own large
supply chains. Whereas we have combined many stages in order to present
the supply chain, the structure of the supply chain accurately represents
the manufacturing process and flow for bulldozers. In addition, we have

Fig. 1. Bulldozer Supply Chain Map.
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made two major simplifications to the supply chain. First, we ignore the
customization process in this analysis; in effect, we are modeling the supply
chain for a stock bulldozer that will be modified at the dealer. Second, we have
not modeled all of the different variations the bulldozer can come in. Besides
adding complexity to the example, after adding the different variations, the
network is no longer a spanning tree, and thus requires a solution technique
presented in Humair and Willems (2003). Table 1 provides the cost and
nominal lead-time information for the supply chain.

The cumulative cost of the product is already $28,990 when the common
subassembly stage is complete. The chassis/platform and engine subcom-
ponents each contribute $7095 and $9250, respectively, to the cost of the
product. The total cost for the bulldozer, upon completion of final assembly,
is $72,600. Because of the lean manufacturing initiative at the company, lead-
times are quite low given the complexity of the product. The average daily
demand is 5 and the daily standard deviation is 3. Assuming 260 days per year,
the cost of goods sold is $94,380,000. The company applies an annual holding
cost rate of 30% when calculating inventory costs.

For the guaranteed-service model, we set the demand bound to corre-
spond to the 95th percentile of demand, and thus, set the safety factor
as k¼ 1.645. Figure 1 graphically presents the optimal solution to the
guaranteed-service model; a triangle within a stage designates that the stage

Table 1
Parameters for Bulldozer Supply Chain

Stage name Nominal time Stage cost ($)

Boggie assembly 11 575
Brake group 8 3850
Case 15 2200
Case & frame 16 1500
Chassis/platform 7 4320
Common subassembly 5 8000
Dressed-out engine 10 4100
Drive group 9 1550
Engine 7 4500
Fans 12 650
Fender group 9 900
Final assembly 4 8000
Final drive & brake 6 3680
Frame assembly 19 605
Main assembly 8 12,000
Pin assembly 35 90
Plant carrier 9 155
Platform group 6 725
Roll over group 8 1150
Suspension group 7 3600
Track roller frame 10 3000
Transmission 15 7450
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holds a safety stock. Since the underlying network is a spanning tree with
22 nodes and 21 arcs, we can optimize the network with the algorithm from
Graves and Willems (2000). The resulting optimal service times and holding
costs for the safety stock are displayed in Table 2.

The optimal inventory policy does not demonstrate the clear decoupling
policy that one often sees in the guaranteed-service model. There is a large
safety stock at final assembly, which is necessary to provide immediate service
to the distribution department of the company. The safety stock at final
assembly is sized to cover the demand variability over the net replenishment
time for the stage of 28 days. The remaining stages, for the most part, carry
no safety stock; the exceptions are a few long lead-time stages where
safety stock is held so as to keep the net replenishment time for final assembly
to 28 days. In total, the annual holding cost for the safety stock in the supply
chain is $633,000.

To understand the solution better, we repeated the optimization but
with a constraint that forced the common subassembly to have a service
time of zero and thus to hold a safety stock. A priori one might suspect that
having a safety stock at the common subassembly stage would lead to a good

Table 2
Optimal Service Times and Safety Stock Costs under Guaranteed-
Service Model

Stage name Service time Stage safety
stock cost ($)

Boggie assembly 11 0
Brake group 8 0
Case 0 12,614
Case & frame 15 6373
Chassis/platform 16 0
Common subassembly 20 0
Dressed-out engine 20 0
Drive group 9 0
Engine 7 0
Fans 10 1361
Fender group 9 0
Final assembly 0 607,969
Final drive & brake 15 0
Frame assembly 0 3904
Main assembly 28 0
Pin assembly 21 499
Plant carrier 9 0
Platform group 6 0
Roll over group 8 0
Suspension group 28 0
Track roller frame 10 0
Transmission 15 0
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if not optimal solution, as this would seem to be a logical point to decouple
the chain. From the resulting optimization, we found that the chassis/platform
and dressed-out engine stages also quote service times of zero and are thus
decoupling points. However, the annual holding cost for safety stock increases
by nearly 10%, from $633,000 to $693,000. In contrast to our experience with
supply chains for high-tech products, we observe that the incredibly expensive
nature of the components and the relatively short lead-times make it
uneconomical to develop local decoupling points.

We begin the analysis of the stochastic-service model by determining
the range of allowable service targets per stage. To maintain consistency
with the presentation of the guaranteed-service model, we again assumed a
95% service level at the final assembly stage. For the other stages, the service
level is a parameter that is to be set or serve as a decision variable in an
optimization. We need for the resulting service levels to be consistent with the
assumptions that were made in the development of (3.3), our calculation of the
expected replenishment time. In particular, we assumed that for each stage, at
most one of its supplier stages stocks out in any period. In order to make this
assumption operational, we set an upper bound on the probability that two or
more of a stage’s suppliers stock out in a period, namely 0.10. Thus, we restrict
the choice of service levels so that the probability that a stage has two or more
suppliers out of stock is no more than 0.10.

In the bulldozer supply chain, stages have between one and three suppliers.
For stages with three suppliers, we impose a lower bound of 0.80 on the
service level for each supplier. For stages with two suppliers, we impose a
lower bound of 0.68 on the service level for each supplier. As justification for
these lower bounds, we observe that with an assumption that the stock-out
events of the suppliers are independent, then setting the service levels to these
lower bounds results in the stage having a probability of 0.90 that at most one
supplier is out of stock. There is no claim that this is the best way to
implement the stochastic-service model; rather, we argue that this seems a
reasonable way to proceed with the model based on the assumptions that
underlie its development, and given the purposes of this chapter. Finally, we
will also use 68% as the lower bound on the service level for the case of a sole
supplier.

In Table 3 we report the results for the stochastic-service model when the
service level for each stage is set to its lower bound. The table displays the
expected lead-time and annual holding cost for the safety stock for each stage
in the bulldozer supply chain. We cannot guarantee that this is the best
solution for the stochastic-service model for this example. However, we did
conduct an extensive grid search over the service levels and found the lower
bounds on the service levels always to be binding.

As expected, every stage carries a safety stock sufficient to cover the
expected lead-time. On a percentage basis, two types of stages have expected
lead-times that differ significantly from their nominal times. First, there
are those stages that have short nominal lead-times; final assembly is an
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example of this kind of stage. Second, there are stages with suppliers that
have long nominal lead-times; the suspension group is an example of this
kind of stage.

Whereas the safety stock in final assembly is now much less than in the case
of the guaranteed-service model, overall we find that there is about 12% more
inventory cost with the stochastic-service model. In the stochastic-service
model, safety stock is the single countermeasure to address the demand
variability in the supply chain. In the guaranteed-service model, safety stock is
used to protect against demand variability up to the demand bound. The
model assumes that other countermeasures, including expediting and
overtime, are utilized when demand exceeds the demand bound. While the
guaranteed-service model does not quantify the cost of these other
countermeasures, understanding the gap between the two models presented
gives some indication of the relative benefit of using only safety stock as a
countermeasure versus other operational tactics. Figure 2 displays the total
annual holding cost as a function of the service level for the external customer
for two different types of policies for each model.

The top two lines represent what one could reasonably consider being the
base case for each of the models. For the stochastic-service model, each stage
maintains a service level equal to final assembly’s service level. For the

Table 3
Nominal and Expected Lead-times for the Stochastic-Service Model

Stage name Nominal
lead-time

Service
level (%)

Expected
lead-time

Stage safety
stock cost ($)

Boggie assembly 11 68 11.00 1160
Brake group 8 80 8.00 9342
Case 15 68 15.00 5181
Case & frame 16 80 24.24 18,184
Chassis/platform 7 80 10.29 19,521
Common subassembly 5 80 10.29 79,764
Dressed-out engine 10 80 14.61 30,328
Drive group 9 80 9.00 3989
Engine 7 68 7.00 7240
Fans 12 68 12.00 1369
Fender group 9 80 9.00 2316
Final assembly 4 95 7.57 299,472
Final drive & brake 6 80 9.71 24,693
Frame assembly 19 68 19.00 1604
Main assembly 8 80 11.14 164,194
Pin assembly 35 68 35.00 324
Plant carrier 9 80 9.00 399
Platform group 6 80 6.00 1524
Roll over group 8 80 8.00 2791
Suspension group 7 80 18.15 15,589
Track roller frame 10 80 10.00 8139
Transmission 15 80 15.00 24,754
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guaranteed-service model, each stage quotes a zero service time. For each
model, the base case has each stage holding significant safety stock so as
to decouple it from the other stages in the supply chain. For extremely
high service levels, the two models are virtually identical, which is not a
surprise given the assumptions in the models. As service levels decrease, there
is a difference in cost between the models, due to the fact that the replenish-
ment times for the stochastic-service model increase due to delays from the
suppliers. In this example, an increase in the replenishment time at many
stages has a large impact on the stage’s inventory requirement, due to the
expensive nature of the product and the relatively short nominal lead-times.

The lower two lines represent the best inventory policy identified for the
stochastic-service model and the optimal inventory policy for the guaranteed-
service model. The difference between the two policies allows the manager to
quantify the cost of using countermeasures other than inventory. For
example, at the 95% service level the cost difference is $80,000 and at 85%
service the difference is $224,000; Table 4 provides the numerical values for
each of the four policies.

Table 4 also helps determine the appropriate demand bound. These
calculations allow us to trade off the cost of safety stock against the cost
of other tactics, like expediting and subcontracting, which can also be
employed to satisfy demand. If these other tactics are cheaper than holding
the higher levels of safety stock, then it makes financial sense to adopt a
safety stock policy that only meets 95%, or less, of the possible demand
realizations.

Fig. 2. Safety Stock Cost as a Function of Service Level in Bulldozer Supply Chain.
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4.2 Battery manufacturing and distribution

Figure 3 presents a supply chain map for a single battery product line. This
supply chain depicts the manufacturing and packaging process for one size of
battery that is sold in three regions in three types of packaging. In this setting,
the battery manufacturing stage represents the manufacturing of a single size
like AAA, AA, C, or D. The battery size is produced in a single bulk
manufacturing facility. Finished batteries are then sent to three pack locations
that produce specialty battery packages. For example, the package that
comprises an end-item SKU is distinguished by the number of batteries
included, the artwork on the package, and the inclusion or exclusion of items
like RFID tags, hangers, bar codes, and price labels. Each SKU is sent to
the company’s three distribution centers (DCs) in the United States for
distribution to regional markets. The nominal lead-time and direct cost added
for each stage are displayed in Table 5. Table 5 demonstrates the commodity
nature of the business. Materials have relatively short lead-times and the cost
per item is extremely low. Whereas the cumulative cost of a bulldozer is
$72,600, the total unit cost of a battery is less than one dollar. Indeed, the
material and process cost to package the battery is on the same order of
magnitude as the cost of the battery.

Table 4
Safety Stock Cost as a Function of Service Level in Bulldozer Supply Chain

Service
level

Stochastic-service
model (service
levels equal end-
item service levels)

Guaranteed-service
model (all stages
quote zero service
time)

Stochastic-service
model (calculated
policy)

Guaranteed-
service
model
(optimized)

0.80 596,618 425,062 593,788 323,743
0.81 611,063 443,382 599,044 337,697
0.82 625,931 462,306 604,532 352,110
0.83 641,281 481,902 610,279 367,035
0.84 657,215 502,252 616,330 382,534
0.85 673,780 523,452 622,711 398,680
0.86 691,037 545,616 629,459 415,562
0.87 709,091 568,885 636,623 433,284
0.88 728,073 593,428 644,268 451,977
0.89 748,150 619,459 652,469 471,803
0.90 769,527 647,249 661,322 492,969
0.91 792,481 677,150 670,952 515,742
0.92 817,409 709,633 681,531 540,483
0.93 844,880 745,350 693,297 567,686
0.94 875,651 785,240 706,570 598,068
0.95 911,043 830,735 721,877 632,719
0.96 953,156 884,186 740,048 673,429
0.97 1,006,022 949,896 762,629 723,477
0.98 1,078,523 1,037,248 792,955 790,007
0.99 1,185,142 1,174,924 836,583 894,866
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The company’s holding cost rate is 25%. The daily demand parameters
are given in Table 6. Assuming 260 days per year, the expected cost of
goods sold per year is $53,569,000. On a daily basis the demand is highly
variable with the coefficient of variation being more than two in several
instances. Clearly, the daily demand of a SKU at a DC is not well modeled as
being from a normal distribution. Nevertheless, we note that for each model
we are effectively assuming that the demand over a stage’s replenishment
time is normally distributed, which seems more plausible given the range
of nominal lead-times. Furthermore, for all of the upstream stages, the

Fig. 3. Graphical Representation of the Battery Supply Chain.
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demand is pooled over several regions and, except for packaging, over
all SKUs. Hence, the assumption of normality seems defensible for the
purposes at hand.

For the guaranteed-service model, we set the demand bound again to
correspond to the 95th percentile of the demand process. Figure 3 graphically
displays the optimal safety stock locations when the guaranteed-service model
is optimized; a triangle within a stage denotes safety stock being held at the
stage. The resulting optimal service times are displayed in Table 7. The inter-
esting result here is that the bulk manufacturing facility does not hold any
safety stock. Instead the three packing locations are the decoupling points in
the supply chain. The intuition is that the packing locations are able to pool
the demand variability for the three DCs and also pool the variability over the
lead-time from the bulk manufacturing plant. This is more cost effective than
holding inventory at the bulk plant but then having the regional DCs holding
a safety stock that covers not only their lead-time but the pack lead-times as
well. The optimal annual holding cost for safety stock is $853,000.

For the stochastic service method, we have a 95% service level target for
each SKU at each regional DC. As we did with the bulldozer example, we
assess a lower bound on the service level provided by each supplier to a stage,
where the lower bound depends on the number of suppliers. In the battery

Table 5
Parameters for Battery Supply Chain

Stage name Nominal time Stage cost ($)

Bulk battery manufacturing 5 0.07
Central DC A 6 0.02
Central DC B 6 0.01
Central DC C 4 0.01
East DC A 4 0.00
East DC B 4 0.01
East DC C 4 0.01
EMD 2 0.13
Label 28 0.06
Nail wire 24 0.02
Other raw materials 1 0.24
Pack SKU A 11 0.07
Pack SKU B 11 0.12
Pack SKU C 9 0.24
Packaging A 28 0.16
Packaging B 28 0.24
Packaging C 28 0.36
Separator 2 0.02
Spun zinc 2 0.05
West DC A 5 0.01
West DC B 8 0.03
West DC C 6 0.06
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supply chain, six suppliers supply the bulk battery manufacturing plant.
To maintain a probability of 0.90 that at most one stage will be out of stock in
a period, each of the six supplier stages must have a service level of at least
0.91. The bulk battery is combined with packaging at each pack location.
We set the lower bound on the service level for these two inputs for the
pack location to be 0.68. Since the three pack locations are themselves

Table 6
Demand Information for Battery Supply Chain

Stage name Mean demand Standard deviation
of demand

Central DC A 43,422 67,236
Central DC B 16,350 39,552
Central DC C 5536 11,213
East DC A 67,226 109,308
East DC B 15,765 34,079
East DC C 6416 14,125
West DC A 65,638 119,901
West DC B 10,597 23,277
West DC C 3519 6576

Table 7
Optimal Service Times using Guaranteed-Service Model

Stage name Service time Stage safety
stock cost ($)

Bulk battery manufacturing 7 0
Central DC A 0 56,889
Central DC B 0 38,245
Central DC C 0 11,066
East DC A 0 73,716
East DC B 0 26,907
East DC C 0 13,940
EMD 2 0
Label 2 23,361
Nail wire 2 7163
Other raw materials 1 0
Pack SKU A 0 251,253
Pack SKU B 0 94,741
Pack SKU C 0 37,573
Packaging A 7 52,953
Packaging B 7 25,852
Packaging C 7 13,022
Separator 2 0
Spun zinc 2 0
West DC A 0 91,507
West DC B 0 26,531
West DC C 0 8279
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finished goods locations, we assume that both the pack locations and the
nine DC-SKU pairs all set a service level equal to the customer service level
target, namely 0.95. Again, we find that the best solution for the stochastic-
service model seems to set the service level to the lower bound at each
stage. Table 8 displays the nominal and expected lead-times for the battery
supply chain.

On a percentage basis, the bulk manufacturing stage and the three pack-
aging stages have the greatest increase between nominal and expected lead-
time. The difference is attributed to the fact that these stages each have one
or more suppliers with significant nominal lead-times. The total safety stock
cost under the stochastic-service model is $927,000.

To gain more insight into the role that different countermeasures may
play in this supply chain, Figure 4 displays the cost for each policy under
different end-item service levels. Varying the service levels at all end-item
stages does not change the structure of the optimal policy under the
guaranteed-service model. For the stochastic-service model, the nine DCs and
the three pack locations had their service levels changed to equal the current
end-item service level while all the other stages maintained their existing levels
from Table 8. The safety stock costs are shown graphically in Figure 4 and
reported in Table 9. One can view the cost difference as being the additional

Table 8
Expected Lead-times and Safety Stock Costs for the Stochastic-Service Model

Stage name Nominal
lead-time

Service
level (%)

Expected
lead-time

Stage safety
stock cost ($)

Bulk battery manufacturing 5 68 8.66 54,467
Central DC A 6 95 6.55 60,191
Central DC B 6 95 6.55 40,465
Central DC C 4 95 4.32 11,649
East DC A 4 95 4.55 79,616
East DC B 4 95 4.55 29,060
East DC C 4 95 4.32 14,674
EMD 2 91 2.00 11,799
Label 28 91 28.00 20,375
Nail wire 24 91 24.00 6288
Other raw materials 1 91 1.00 15,402
Pack SKU A 11 95 19.00 261,404
Pack SKU B 11 95 19.00 98,568
Pack SKU C 9 95 17.00 39,220
Packaging A 28 68 28.00 25,117
Packaging B 28 68 28.00 12,263
Packaging C 28 68 28.00 6177
Separator 2 91 2.00 1815
Spun zinc 2 91 2.00 4538
West DC A 5 95 5.55 97,628
West DC B 8 95 8.55 27,775
West DC C 6 95 6.32 8606
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Fig. 4. Safety Stock Cost as a Function of Service Level in Battery Supply Chain.

Table 9
Safety Stock Cost as a Function of Service Level in Battery
Supply Chain

Service level Stochastic-service
model (calculated
policy)

Guaranteed-service
model (optimized)

0.80 627,155 436,454
0.81 639,637 455,266
0.82 652,624 474,696
0.83 666,184 494,818
0.84 680,421 515,713
0.85 695,400 537,481
0.86 711,203 560,239
0.87 727,950 584,132
0.88 745,791 609,333
0.89 764,911 636,061
0.90 785,539 664,596
0.91 807,974 695,298
0.92 832,635 728,652
0.93 860,105 765,326
0.94 891,159 806,285
0.95 927,098 853,000
0.96 969,960 907,883
0.97 1,023,570 975,355
0.98 1,096,198 1,065,047
0.99 1,201,556 1,206,414
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cost for the stochastic-service model to handle the full range of demand
realizations by means of safety stock.

5 Supply-chain configuration

Lee and Billington (1993), Ettl et al. (2000), Graves and Willems (2000)
all report on industrial applications in which their work was used to optimize
safety stocks in a supply chain. These applications provide compelling
evidence of the financial impact that optimizing inventory levels can have in
practice, as reductions of 25–50% in the safety-stock holding cost
are common. However, this work starts after most of the design decisions
for the supply chain have been set, namely the topology of the network
and the key cost and lead-time parameters. In effect, these models are being
applied to existing supply chains where the only design options available are
in terms of whether to locate safety stocks at a stage, and if so, how much to
maintain.

In Chapter 2 of this handbook, Muriel and Simchi-Levi present and
consider one category of supply-chain design problems, referred to as network
design problems. The intent of the network design problem is typically
to determine the optimal manufacturing and distribution network for a
company’s entire product line. The most common approach is to formulate a
large-scale mixed-integer linear program that captures the relevant fixed and
variable operating costs for each facility and each major product family. The
fixed costs are usually associated with the investment and/or overhead costs
for opening and operating a facility, or with placing a product family in a
facility. The variable costs include not only the manufacturing, procurement
and distributions costs, but also the tariffs and taxes that depend on the
network design. Network design focuses on the design of two or three major
echelons in the supply chain for multiple products. Due to the nature of the
problem being solved, network design is typically solved every two to five
years.

In this section, we consider another type of supply-chain design problem
that arises after the network design for the supply chain has been set. These
decisions determine the total supply chain cost, which we define to be the cost
of goods sold (COGS), plus the inventory holding costs for the pipeline
inventory and for the safety stock. For example, in the bulldozer supply
chain presented earlier, the total supply chain cost consists of the annual
COGS of $94,380,000, plus the annual holding cost for pipeline stock of
$2,007,000, plus the annual holding cost for safety stock of $633,000. For the
battery supply chain, there is a similar cost breakdown with annual COGS of
$55,364,000, and annual holding costs for pipeline and safety stock of
$942,000 and $853,000. In both examples COGS is an order of magnitude
larger than the total inventory cost, while the pipeline stock exceeds the
safety stock.
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For every supply chain a company launches, there is a set of decisions that
are made after the network design and that act to configure each stage in
the network. In particular, these decisions result in determining the key
operating parameters for each stage, including the lead-time and cost added at
the stage. These decisions determine the total supply chain cost. For instance,
the company must decide whether to source a part locally or globally. The
company must decide whether to dedicate machinery to a manufacturing
process or to conduct the manufacturing process on shared equipment. The
company must decide the transportation mode to move product into a
distribution channel. These decisions affect more than just safety stock cost.
They also affect the cost of goods sold, pipeline stock cost, quality costs, and
time-to-market costs.

To inform these decisions, we introduce a problem that we refer to as the
supply-chain configuration problem. For this problem, we address how to
configure the supply chain for a new product for which the product’s design
has already been decided and the topology for the supply-chain network has
been set. The central question is to determine what suppliers, parts, processes,
and transportation modes to select at each stage in the supply chain. For each
stage, we have a set of options that are differentiated, at a minimum, by their
lead-times and their direct costs added. Our supply-chain design framework
considers the total supply chain cost, equal to the cost of goods sold, plus the
inventory holding costs for both safety stock and pipeline stock. The
supply chain configuration problem chooses a sourcing option for each stage
of the supply chain so as to minimize the sum of these costs.

In the next section, we expand our discussion of options as the fundamental
construct in the supply chain configuration problem. We then present the
model formulation for the supply-chain configuration problem. The final
section presents an example of the approach applied to the bulldozer example
presented earlier.

5.1 Option definition

The supply-chain configuration problem is based on the same assumptions
made for the safety stock optimization problem, with one significant
difference. In the safety stock optimization problem, a stage represents a
processing or transformation activity. That is, it is a defined task that will
take a certain amount of time at a certain cost. In the supply-chain con-
figuration problem, we still model the supply chain as a network of stages but
now a stage represents functionality that must be provided. The essence of the
configuration problem is to decide how best to satisfy this functionality in the
context of the overall supply chain.

For each stage, we assume that we can specify one or more options that
can satisfy the stage’s required activity. For example, if a stage represents
the procurement of a metal housing, then one option might be a locally based
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high-cost provider and another option could be a low-cost international
supplier.

For each stage, we assume that we will select a single option. Thus, we do
not permit the possibility of having dual or multiple sources for a single
activity or stage; this might be a topic for further research.

We characterize an option at a stage by its direct cost added and its
processing time or lead-time. When a stage reorders, the processing or lead-
time is the time to process an item at the stage, provided all of the
inputs are available. An option’s direct cost represents the direct material and
direct labor costs associated with the option. If the option were the
procurement of a raw material from a vendor, then the direct costs would be
the purchase price including transportation and the labor cost to unpack
and inspect the product.

In practice, there might be other dimensions or attributes upon which
different options are evaluated. For instance, different suppliers might differ
in terms of the quality of the product they supply. Similarly, different
options for a manufacturing activity might differ in terms of the amount of
capacity that could be made available to the supply chain. We do not consider
these other attributes in this presentation. In effect, we assume that the
different options at a stage are the same on all attributes except for lead-time
and cost. Admittedly, this is a simplification of reality. We leave it to future
research to extend the work presented here to address this additional
complexity.

We will present the configuration problem for the case of guaranteed
service. One could also develop the supply-chain configuration model with
the assumption that stages provide stochastic service, but we do not do this
here. Rather, we will follow the development of the supply-chain
configuration problem for the guaranteed-service model, as given by Graves
and Willems (2002).

The model assumptions for the supply-chain configuration problem are the
same as for the guaranteed-service safety-stock problem presented earlier in
this chapter. We assume that each stage j promises a guaranteed service time
soutj by which the stage will satisfy its demand, either from internal or external
customers. Similarly, we define sinj to be the inbound service time for stage j,
which equals the maximum of the service times quoted to stage j by its
suppliers. We assume each stage operates according to a periodic review policy
with a common review period. We assume the demand process for any
finished good is stationary with mean demand per period of � and a standard
deviation of �. For the purpose of determining the safety stock, we assume
that we are given a bound on the demand process for each stage.

If we let n denote the nth option at stage j, then Ljn and Cjn represent the
processing time and cost added associated with the nth option at stage j. The
choice of option at a stage will have an impact on the cost of goods sold, on
the amount of safety stock and pipeline stock at the stage, and the holding
costs. For a given option n, the stage’s contribution to the COGS is Cjn�j
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per period. As before, we can calculate the stage’s safety stock to be

kj�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinj þ Ljn � soutj

q
. Since the choice of an option at a stage decides the lead-

time at the stage, the work-in-process or pipeline stock now depends on the
option chosen. In particular, the pipeline stock at a stage will equal �jLjn when
option n is selected. Finally, the option choice will also affect the holding cost
rate because it depends on the cumulative cost at the stage; the option choices
at the stage and at any upstream suppliers determine the stage’s cumulative
cost, and thus the holding cost rate.

5.2 Model formulation

We can formulate the supply chain configuration problem as a non-linear
mixed-integer optimization problem where the decision variables are the
binary variable for option selection and the services times.

P
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where Oi, number of options to choose from at stage i; Cin, direct cost
added of the nth option at stage i; Lin, lead-time of the nth option at stage i;
Di(), maximum demand function for stage i; �, scalar representing the holding
cost rate; �, scalar converting the model’s underlying time unit into the
company’s time interval of interest; �i, mean demand rate at stage i; ci,
cumulative cost at stage i; ti, selected option’s lead-time at stage i; xi, selected
option’s cost at stage i; yin, indicator variable which equals 1 if stage i’s nth
option is selected and 0 otherwise; Sj, maximum service time permitted for
demand node j.

The objective function has three terms, each corresponding to a component
of the total supply chain cost. The first term represents stage i’s safety
stock cost, which is a function of the stage’s net replenishment time and
demand characterization. The holding cost at stage i equals the cumulative
cost of the product at stage i times the holding cost rate. The second term
expresses the pipeline stock cost as the product of the holding cost rate, the
average cost of the product at the stage, and the expected amount of pipeline
stock. The third term, cost of goods sold (COGS), represents the total cost of
all the units that are delivered to customers during a company-defined interval
of time. The incremental contribution to COGS is calculated at each stage by
a product of the average demand at the stage, the option’s cost, and a scalar �,
which expresses COGS in the same units as pipeline stock cost and safety
stock cost. (For instance, one might set � and � so that all terms are expressed
as annual costs or as the total costs over the lifetime of the supply chain.)

The cost and time associated with the option chosen at each stage is
given in (5.1) and (5.2). Constraint (5.3) calculates the cumulative cost at each
stage. Constraints (5.4–5.7) assure that the service times are feasible. In
particular, the incoming service time at every stage is at least as large as the
largest service time quoted to the stage, the net replenishment time of
each stage is non-negative, the maximum service times to the customer must
be no greater than the user-defined maximums, and service times must be non-
negative and integer. The last two constraints, (5.8) and (5.9), enforce the sole
sourcing of options.

Graves and Willems (2002) describe how to solve P by dynamic
programming when the underlying network is a spanning tree.

While P clearly uses safety stock optimization as a building block, it also
exhibits behavior that is far more complex than just optimizing safety stock.
For safety stock optimization, inventory stocking decisions at one stage in the
supply chain affect adjacent downstream stages in the supply chain through
the downstream stage’s net replenishment time. In the supply chain
configuration problem, inventory decisions again affect downstream adjacent
stages, but the cost at the current stage has an impact on all stages that are
downstream of the current stage, not just those that are adjacent. On an
intuitive level, P is balancing the increase in COGS against the decrease in
inventory-related costs. One can reduce inventory related costs by choosing
more responsive options, but at the cost of an increase to the COGS. A key
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realization is that this tradeoff cannot be properly considered by solving P one
stage at a time, in isolation; rather, one needs to consider the impact of
configuration decisions on the entire supply chain in order to produce the
globally optimal solution. The benefit to P comes from globally balancing the
potential increase in COGS with the benefits one gets from being able to
reduce inventory costs.

5.3 Example

To gain more insight into the supply chain configuration problem, we will
revisit the bulldozer supply chain discussed earlier in the chapter. There are
two types of stages in the bulldozer supply chain: procurement and assembly
stages. Procurement stages are stages that do not have any incoming arcs; they
represent the purchase of materials outside the supply chain. All of the other
stages in the supply chain are assembly stages, at which one or more
components are combined in the process.

For the example, there are two options per stage. The stage lead-times and
costs from the original presentation correspond to the standard option at each
stage. If the stage is a procurement stage, this is the existing procurement
arrangement. If the stage is an internal assembly stage, this is the traditional
manufacturing method at the stage. All procurement stages also have a
consignment option where the supplier is responsible for providing immediate
delivery to the bulldozer line. Each assembly stage has an expedited
option that corresponds to the company investing in process improvement
opportunities to decrease the stage’s lead-time. These second options are not
based on actual data at the company, but they are indicative of the kinds of
option costs we have seen in similar supply chains.

We calculate the cost of the consignment option by the following formula:
for each one-week reduction in the supplier lead-time, the supplier will
increase the purchase price of the part by 0.75%. This is a similar structure to
the kind of arrangements that we have encountered before in practice; see
Graves and Willems (2002) and Willems (1999). Typically, the cost increase
for a week’s reduction ranges from 0.5% to 1% of the original purchase price.
The increase in price represents the cost to the supplier for bearing the
additional inventory holding cost.

For the expedited assembly option, we classify the required improvement
activity at a stage as easy, medium or hard. An easy improvement activity
might include the assignment of additional labor resources to the task or the
dedication of some minor equipment. For the purposes of this analysis, the
cost of an easy improvement is $97,500. By dividing this by the average annual
demand, we convert this into a per unit approximation of the cost increase,
namely $75 per unit. Most of the upstream assembly stages fall into the camp
of assembly operations that could be easily improved. Medium improvement
activities cost $150 per unit and hard improvements cost $300 per unit. As the
cost of the improvement increases, significant redesign and additional human
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labor are often required. Final assembly is the only stage that is classified as
hard to redesign.

The costs and associated lead-times for each option are presented in
Table 10.

Figure 5 depicts the service times that correspond to optimizing the supply
chain configuration problem.

Among the 22 stages, the optimal supply chain configuration selects the
higher cost, shorter lead-time option for only six of the stages. The pro-
curement stages with the higher cost, shorter lead-time option are the brake
group, fender group, and plant carrier. The assembly stages with the higher
cost, shorter lead-time option are the common subassembly, dressed-out
engine, and main assembly. All of the other stages continue to use their
original option.

The optimal inventory policy has also changed in reaction to the different
options selected. In the original safety stock optimization, the common
subassembly and dressed-out engine held no safety stock and both quoted a
service time of twenty days to the main assembly. The chassis/platform also
held no safety stock, but quoted its maximum possible service time of sixteen
days. With the reduction in the processing time at the common subassembly,
the brake group and the plant carrier, the common subassembly is now able to
quote a service time of eight days to the main assembly. To achieve this eight-
day service time requires that two of its suppliers, transmission and case &
frame, must now hold a safety stock. Furthermore, stages in the other two
sub-networks that supply main assembly are also holding safety stock so that
the inbound service time to main assembly remains at eight days. This is a
good example of how subtle changes in the configuration of some stages have
a dramatic impact on the resulting safety stock policy

Table 11 summarizes the results from optimizing the supply chain con-
figuration and compares the results to those for a solution that keeps the
original option at each stage and optimizes the resulting guaranteed-service
model.

We observe that when we optimize the safety stock, there are savings in
annual holding cost of $198,000 relative to a base case in which each stage
holds a safety stock and quotes a service time of zero. When we optimize the
configuration, we find an additional savings in total supply chain costs of
$371,000. We see, as expected, that when we optimize the supply-chain
configuration we actually increase the COGS but get an overall savings due to
lower inventory holding costs.

Based on Graves and Willems (2002) and the work presented here, we are
able to formulate some initial hypotheses about the behavior of optimal
supply chain configurations. First, the further upstream the supply chain, the
less likely is it that we choose a higher cost option. Higher-cost options
increase the cost at a stage, which not only increases the COGS but also the
holding cost for all of the pipeline and safety stock at downstream stages.
Furthermore, since the cumulative cost at an upstream stage is typically
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Table 10
Option values for Bulldozer Supply Chain Configuration

Stage name Option description Option
time

Option
cost ($)

Boggie assembly Standard procurement 11 575
Consignment 0 584

Brake group Standard procurement 8 3850
Consignment 0 3896

Case Standard procurement 15 2200
Consignment 0 2250

Case & frame Standard assembly 16 1500
Expedited assembly 4 1575

Chassis/platform Standard assembly 7 4320
Expedited assembly 2 4395

Common subassembly Standard assembly 5 8000
Expedited assembly 2 8075

Dressed-out engine Standard assembly 10 4100
Expedited assembly 3 4175

Drive group Standard procurement 9 1550
Consignment 0 1571

Engine Standard procurement 7 4500
Consignment 0 4557

Fans Standard procurement 12 650
Consignment 0 662

Fender group Standard procurement 9 900
Consignment 0 912

Final assembly Standard assembly 4 8000
Expedited assembly 1 8300

Final drive & brake Standard assembly 6 3680
Expedited assembly 2 3755

Frame assembly Standard procurement 19 605
Consignment 0 622

Main assembly Standard assembly 8 12,000
Expedited assembly 2 12,150

Pin assembly Standard procurement 35 90
Consignment 0 95

Plant carrier Standard procurement 9 155
Cosnsignment 0 157

Platform group Standard procurement 6 725
Consignment 0 732

Roll over group Standard procurement 8 1150
Consignment 0 1164

Suspension group Standard assembly 7 3600
Expedited assembly 2 3675

Track roller frame Standard procurement 10 3000
Consignment 0 3045

Transmission Standard procurement 15 7450
Consignment 0 7618

Ch. 3. Supply Chain Design 127



relatively small, it is not that costly to just hold a decoupling safety stock at
the upstream stage, thereby making its effective lead-time to the rest of the
supply chain zero. Therefore, when choosing a higher cost option at an
upstream stage, the inventory savings will have to be truly dramatic to justify
the higher cost to the supply chain.

Conversely, we note that a higher-cost, shorter lead-time option is more
likely to be attractive at a downstream stage. For instance, we find for stages
that represent the transportation of a finished good to an end customer, a

Fig. 5. Optimal Service Times for Bulldozer Supply Chain.
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faster but more expensive transportation mode is able to pay for itself in terms
of inventory savings.

Second, the greatest potential for supply chain configuration occurs when
the supply chain has a structure where the selection of options across the chain
makes different sub-networks of the supply chain similarly responsive, that is,
have the same service times. As an example, making one subassembly very
responsive will not likely be cost-effective unless the other components can
either be equally responsive, or it is cost-effective to decouple them with
inventory so that effectively the subassemblies in the echelon are all similarly
responsive. If one of the stages cannot be made more responsive, then the
high-cost subassembly could be produced with cheaper options at no penalty
to the supply chain’s performance.

6 Conclusion

In this chapter we have presented two general approaches to safety stock
placement, and have introduced the supply chain configuration problem. The
safety stock placement work, as evidenced by the applications cited in
the papers, has proven itself to be of value to practice. Both approaches
quantify the impact that demand uncertainty has in supply chains. By taking a
system-wide view of the problem, these models are able to mitigate the impact
of this uncertainty in a cost-effective manner.

We find that there is a significant opportunity to improve the total supply
chain cost by jointly optimizing sourcing and inventory decisions during the
configuration of the supply chain. The earlier that these supply chain
considerations can be incorporated into product and sourcing decisions, the
more leverage we have – we see this in this chapter in terms of value of getting
the configuration right vis-à-vis solely optimizing safety stocks.

Nevertheless, we wish to conclude this chapter with some thoughts about
research opportunities.

Product life cycles are increasingly short, with products within a product
family continually being introduced and terminated. Supply chains need to be
designed to accommodate this. In particular, demand is never stationary and

Table 11
Comparison of Optimal Safety Stock and Supply Chain Cofiguration

Cost category Results from
safety stock
optimization ($)

Optimal supply
chain
configuration ($)

Numerical
difference ($)

Percentage
difference (%)

Cost of goods sold 94,380,000 94,848,000 468,000 0.50%
Total safety stock cost 632,719 499,786 (132,933) �21.01%
Total pipeline stock cost 2,006,843 1,300,328 (706,514) �35.21%
Total supply chain cost 97,019,561 96,648,114 (371,447) �0.38%
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there is huge uncertainty and risk over a product life cycle. In particular, the
risk applies not just to the inventory holding cost in the chain, but also to the
inventory investment required to fill the chain since enough demand may not
materialize to empty out the chain. There is a need for good models and
approaches to determine how to evolve the supply chain to handle generations
of products.

Many products see seasonal or cyclic demand. Furthermore, there are often
different service targets, holding cost rates, and/or costs for stock outs in
different periods. Characterizing both optimal and reasonable approaches for
planning safety stocks across a supply chain and across a seasonal cycle is
worthy of research.

Supply chains are most certainly not limited to just demand uncertainty.
Other types of uncertainty, such as lead-time, capacity, and yield uncertainty,
can be equally important. While this chapter has not covered these kinds of
uncertainty, the models presented can adapt to these issues, albeit with
additional assumptions and often in an ad hoc fashion. Nevertheless, there
are opportunities for the development of more general and comprehensive
methods for handling the full range of supply chain uncertainties.

Properly designing contracts is another opportunity. This can be thought of
as a different form of the configuration decision. In this case, we are looking to
establish contracts throughout the supply chain so as to get the best overall
performance. In particular, one would expect to design contracts with, say,
suppliers so that there is some consistency in how the supply chain is able to
respond to upswings (or downswings) in demand. Furthermore, one would
hope to understand how to design and coordinate contracts across a number
of suppliers or channel partners so as to distribute the risks and rewards in the
most economic way.

We have found empirically an interesting analog between supply chains and
project management networks. As with a project management network, we
find when applying the guaranteed-service model, there is a critical path that
underlies the optimal safety stock policy. The difference is that instead of a
lead-time-weighted critical path, there is a critical path that is driven by
cumulative cost, maximum replenishment time and safety stock policy. For
example, appropriately buffering a long lead-time part makes its effective lead-
time to the system zero. Identifying and characterizing the components of the
critical path in the supply chain is a potentially fertile area to begin the
development of new solution approaches.

As a final opportunity, we would hope to see the continuing deployment
of models in this chapter to practice. This should provide an opportunity to
examine, test, and validate the underlying assumptions of these models.
To wit, the stochastic service and guaranteed-service models offer two
different perspectives on how the world works. Can we determine which
is right? Can we say anything about which is more common? Is either of
them right? Or is there a better perspective? We hope that some future
research will be able to conduct a careful empirical study of how well these
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models match reality, as well as how good is the decision support that they
provide.

Acknowledgement

This research has been supported in part by the MIT Leaders for
Manufacturing Program, a partnership between MIT and major U.S.
manufacturing firms; and by the Singapore-MIT Alliance, an engineering
education and research collaboration among the National University of
Singapore, Nanyang Technological University, and MIT. The second author
was also supported by the Boston University School of Management Junior
Faculty Research Program.

References
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Chapter 4

Supply Chain Design: Flexibility Considerations

J.W.M. Bertrand
Department of Technology Management, Technische Universiteit Eindhoven 5600 MB,

Eindhoven, The Netherlands

1 Introduction

After costs, quality and reliability, flexibility has emerged in the last two
decades as the fourth important performance indicator for operational systems.
Researchers unanimously agree that the importance of operational flexibility
stems from the dramatic change that has taken place since 1980s in the market
places in virtually all sectors of industry. As markets saturated, firms started to
compete on product differentiation and product innovation. As a result, both
the number of product variants simultaneously offered to the market, and the
new product introduction rate, substantially increased. Product innovation and
new product development became important research fields and concurrent
engineering was developed as a new approach in structuring and managing the
product innovation process, aimed at delivering better quality products at
lower costs in shorter time (Clark andWheelwright, 1993; Chapters 7, 8, and 9).
At the beginning of the 1990s ‘time-to-market’ was an established concept in the
industry, indicating the industry-wide awareness of innovation speed as a
competitive weapon (Stalk and Hout, 1990; Chapter 1). However, during the
same period, firms that decided to compete on product diversity and product
innovation were faced with the downside of this strategy, being a large increase
in demand uncertainty at the product variant level.

For each of the product variants to be offered, production capacity has to
be reserved in order to be able to deliver the product up to a certain level, and
work-in-process and inventory has to be built up. Thus upfront investments
have to be made for setting up a supply chain for a product family. These
investments have to be recovered from the revenues from sales.

The initial lack of flexibility to adapt the supply chain to emerging
demand for product variants frequently led to lost sales for some product
variants, and product markdowns and writing-off of excess inventory for other
product variants. Thus, supply flexibility became an important feature of
industrial production systems. In supply chains that experienced an imbalance
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between demand uncertainty and supply chain flexibility, manufacturers and
suppliers were put under high pressure to increase their flexibility.

Flexibility in manufacturing mainly stems from three sources. First, there is
the variety of the manufacturing technologies employed. Technological
variety allows for a large variety of different products to be made. Second,
there is the flexibility in the amount of capacity available for production.
Inflexible capacity limits the volume of products that can be delivered to the
market. Third, there is the inflexibility in the timing and frequency of
production. Timing and frequency are often restricted on economic grounds
(due to change-over and set-up costs). Inflexibility in the timing and frequency
of production of a product leads to high levels of work-in-process and
inventory, and to long lead times for introducing new product variants.

In the context of this chapter we deal with three dimensions of flexibility:
volume flexibility, mix flexibility and new product flexibility. As a rule,
flexibility has to be designed into a system: it requires investments and should
be justified on the basis of the potential benefits to be obtained from being
able to exercise the flexibility. We therefore deal with the flexibility subject
from the investment point of view: What is the value of volume flexibility, mix
flexibility and new product flexibility in a specific supply chain, and how much
should be invested in (flexible) capacity?

Supply chain flexibility is not a subject that has been researched extensively.
In fact most research on flexibility has dealt with the more general issue of
manufacturing flexibility at the plant level. Research relevant from the
supply chain perspective has developed along rather independent research
lines. This state of affairs is reflected in this chapter; it discusses the research
results obtained in a number of different research areas that are relevant for
understanding how to design a supply chain for flexibility, specifically volume
flexibility, mix flexibility and new product flexibility for a product family.
We start with definitions found in literature of the flexibility concept, and single
out the flexibility dimensions and flexibility aspects that are relevant from the
supply chain perspective. Then we summarize the research findings related to
these flexibility dimensions and aspects, and finally we develop a model of the
supply chain flexibility decision problem, using these research findings as main
inputs. Throughout the chapter suggestions for promising research are given.

1.1 Overview of the chapter

In the Section 2 through Section 5 we give a short overview of research on
flexibility based on a selection of published papers in the field. Section 2 deals
with conceptual research on manufacturing flexibility and serves to position
the contingent and multi-dimensional character of the flexibility concept.
Section 3 deals with results of model-based research on flexibility. A selection
of papers are discussed that deal with the problem of investing in flexible
production capacity to cope with uncertainty about future demand levels for
products, i.e., to create product volume flexibility and product mix flexibility.
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In Section 4 a selection of papers are discussed that deal with the effects of
machine, routing, and worker flexibility, and the use of these flexibilities,
on the time-flexibility of production, i.e., the responsiveness of production to
short-term demand. Section 5 discusses a selection of papers that report on
empirical research on manufacturing flexibility. These papers provide
information about the use of flexibility as a strategic option, and about
relationships between flexibility and observed performance.

The Sections 6 and 7 deal with supply chain flexibility. In Section 6 we
discuss a small selection of papers that provide essential results for the
discussion of the supply chain design problem. In Section 7 we combine
elements discussed in the Sections 2–6 to formulate the supply chain design
problem from the perspective of creating volume flexibility, mix flexibility and
new product flexibility. Section 8 gives the conclusions.

2 Conceptual research on manufacturing flexibility

Important contributions to our conceptual understanding of manufacturing
flexibility can be found in Slack (1983, 1987), Browne, Dubois, Rathmill, Sethi,
and Stecke (1984), Gerwin (1987, 1993), Carlsson (1989), De Meyer, Nakana,
Miller, and Ferdows (1989), Gupta and Buzacott (1989), Gupta and Goyal
(1989), Mandelbaum and Brill (1989), Sethi and Sethi (1990), Ramasesh and
Jayakumar (1991), Hyun and Ahn (1992), Chandra and Tombak (1992), Chen,
Calantone, and Chung (1992), Dixon (1992), Gaimon and Singhal (1992),
Nagurar (1992), Gupta and Somers (1992, 1996), Das andNagendra (1993), De
Groote (1994a), Upton (1994), De Toni and Tonchia (1998), Parker andWirth
(1999), Koste and Malhotra (1999), Beach, Muhlemann, Price, Paterson, and
Sharp (2000), D’Souza and Williams (2000) and Pereira and Paulré (2001).
Each of these papers builds on results obtained in earlier papers and provides a
contribution, either in terms of the theoretical analysis of the flexibility concept,
the identification of the various dimensions and properties of flexibility in a
production environment, or in identifying the relationships between the
flexibility dimensions. In this section we summarize themain findings in this line
of research using a selection of the above papers as main reference.

Conceptual research on manufacturing flexibility had started off in the
1980s. Slack (1987) interviewed managers in 10 manufacturing organizations,
ranging from mass assembly industry to batch/jobbing industry, on their
perception of manufacturing flexibility. He finds that most managers had only
limited view on their companies flexibility needs. Managers who supply
resources stress flexibility as a means for coping with unplanned disturbances.
Manufacturing managers see flexibility as an aid to greater productivity.
Managers on the demand side see enhanced availability of supply, either
by widening the range of what can be made or by shortening supply lead
time. The managers also indicate the flexibility dimensions they distinguish.
From this information Slack (1987) derives a hierarchical framework of
flexibility dimensions and flexibility aspects.
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A general and abstract definition of flexibility is given in Upton (1994), who
characterizes flexibility as ‘‘the ability to change or react with little penalty in
time, effort, cost or performance.’’ Change may take place in different areas
and may pertain to different aspects of a firm’s environment or its internal
processes. Moreover, change may come at different levels of magnitude and
with different levels of surprise. De Groote (1994a) states that ‘‘A particular
technology is said to be more flexible than another, if an increase in the
diversity of the environment yields a more desirable change in performance,
than the change that would be obtained with the other technology under the
same conditions.’’ Thus flexibility is contingent upon the environmental
diversity that one wants to cope with, and on how one prefers the one output
of the system over the other. The implication is that the flexibility of a specific
technology can only be evaluated in the context of a particular environment
and a particular output preference.

Upton (1994) states that the flexibility concept must be specified dependent
on the context in which the flexibility issue has been raised. He states that the
boundaries of the system must be clearly defined (machine, shop, firm, supply
chain), and he proposes that flexibility of the system be characterized on three
aspects:

� The dimensions of flexibility – What exactly is it that flexibility is required
over – what needs to change or be adapted?

� Time horizon – What is the general period over which changes must
occur? Minute-by-minute, days, weeks, or years?

� Elements – Which of the following are we trying to manage or improve:
range, uniformity across the range, or mobility? As examples of the
dimension of flexibility Upton (1994) mentions the thickness of the slab
in a rolling mill, the changes in input material that a chemical process
should tolerate, and the mix of products being manufactured.

Range, uniformity and mobility are different ways in which a system can be
flexible. The range increases with the size of the set of options or alternatives,
which may be accommodated or effected. Examples are: the range of sizes of
components that can be processed, and the range of volume of output for
which a plant is profitable.

Mobility refers to transition penalties for moving within the range. Low
values of transition penalties imply high mobility. Mobility may be measured
by time or costs of change. For instance the mobility required for a product
line can be measured by the set-up times and set-up costs required for
changing between product types, and the mobility of output volume of plant
can be measured by the cost and time it takes to change the output volume
from one level to the other within the range.

Uniformity refers to the extent to which general performance measures such
as product quality and production costs are indifferent to at what particular
point within the range the system operates. For instance, a production line that
can produce each of the products within the range at the same costs per unit,
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is viewed as being more flexible than a line that can produce the same pro-
duct range, at the same average costs per product, but some products are
produced at lower than average cost and others are produced at higher than
average costs.

Flexibility is needed to cope with uncertainty and change. Gerwin (1993)
distinguishes four types of market uncertainty:

– market acceptance of kinds of products,
– length of product life cycle,
– demand for specific product options,
– aggregate product demand,

and two types of process uncertainty:

– resource availability,
– material availability.

He relates each of these six types of uncertainty to six different dimension
of flexibility. These flexibility dimensions are: mix flexibility, product inno-
vation flexibility, product modification flexibility, volume flexibility, process
routing flexibility and material flexibility. As noticed by Slack (1987) and
Upton (1994) each of these dimensions of flexibility has three aspects: range,
uniformity and mobility.

Manufacturing flexibility requires investments and therefore it should
be carefully investigated as which are the uncertainties that a firm faces. At the
strategic level a firm has to decide how to cope with these uncertainties; one of
the possibilities being not to invest in flexibility at all. In this context Gerwin
(1993) states that ‘‘an unintentional bias exists in favor of recommending more
flexibility than is economically appropriate.’’ Gerwin (1993) distinguishes four
generic strategies for coping with uncertainty:

(1) Reduction of uncertainty, i.e., by investing in variance reduction
such as long term contracts with customers and suppliers, preven-
tive maintenance and total quality control, and design for manufac-
turing.

(2) Banking, i.e., the use of flexibility to accommodate types of uncertainty
that are known in a probabilistic sense such as variations in demand
(the so-called ‘known unknowns’). The use of safety stocks in pro-
duction–inventory systems is an example of banking.

(3) Adaptations, i.e., the defensive use of flexibility to accommodate
uncertainties that are not known in a probabilistic sense, (the so-called
‘unknown unknowns’) such as the break-out of strike.

(4) Redefinition, i.e., the pro-active use of flexibility to raise customer
expectations, to increase uncertainty for rivals and to gain competitive
advantages. The decrease of the new product introduction lead time is
an example of redefinition.
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Each of these strategies may lead to a required flexibility at the systems
level, which in turn results in a required manufacturing flexibility in
combination with methods for delivering flexibility (such as organization of
work, information systems, and operations control methods).

Gerwin (1993) positions manufacturing flexibility in a strategic decision-
making framework as an element of manufacturing strategy. Manufacturing
strategy decision-making is viewed as an evolving process that takes as input
the environmental uncertainties and the systems performance resulting from
the use of existing manufacturing flexibility, and that formulates manufactur-
ing flexibility requirements and measures to reduce or redefine the
environmental uncertainties. At the operational level, methods for delivering
flexibility are used to convert existing flexibility into systems’ performance.
According to Gerwin (1993) flexibility has also a pro-active function in
creating uncertainties that competitors cannot deal with. Thus the decision
about the relevant flexibility dimensions, the appropriate flexibility levels
(range, mobility, uniformity) per dimension, and the decision about methods
for delivering flexibility have to be made at the strategic level, since
investments may be required, and effects on performance can be long term.
Using the available flexibility to realize the required performance is the realm
of tactical and operational decision-making.

The relationships in detail between strategic choices and flexibility options
are still unclear and seem to depend on type of industry (mass production,
batch production, one-of-a-kind production), and on the innovativeness of
the markets operated in. However, efforts have been made to identify
the qualitative relationships between technological choices and the effects
for the flexibility at the various flexibility dimensions. Such taxonomies of the
flexibility concept have been developed by Browne et al. (1984), Gupta and
Goyal (1989), Sethi and Sethi (1990), and Beach et al. (2000).

Koste and Malhotra (1999) provide a theoretic framework for analyzing
the dimensions of manufacturing flexibility. In their paper they present a set of
definitions of flexibility dimensions and discuss the causal relationships
between these flexibility dimensions. Each of the dimensions is further
characterized by a range of values that can be attained without incurring high
transition penalties or large changes in performance outcomes. Thus each of
the flexibility dimensions can be characterized by the transition costs or speed
of changing from one state to another state within the range, also known as
mobility, and by the uniformity of the performance of production across
the range.

Koste and Malhotra (1999) conclude to the following relationships between
the various flexibility dimensions:

– The basis of the flexibility of a manufacturing system is formed by the
machine flexibility, the labor flexibility and the materials handling
flexibility. Machine, labor and materials handling flexibility all pertain
to the range of processing routings that can be used to make a product;
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a process routing being a sequence of operations on machines that lead to
a product.

– Operation flexibility and routing flexibility are conditional on the machine
flexibility, the labor flexibility and the materials handling flexibility, but
are also influenced by product design and process design. Thus, product
and process design can be important sources of manufacturing flexibility.
Also, given the routing flexibility and the operations flexibility desired,
machines, labor, and materials handling systems can be chosen in order
to achieve this routing and operation flexibility.

– Given the types and numbers of machines, labor and materials handling
systems available, and given the process routings for the products, a shop
has a certain volume flexibility and a certain mix flexibility. Automation
levels, labor contracts, work organization and management techniques
are important factors for achieving volume flexibility and mix flexibility.
These form what Gerwin (1993) calls the ‘system for delivering
flexibility.’

– Volume flexibility and mix flexibility are dimensions of output flexibility.
Two other dimensions of output flexibility are the product modification
flexibility and the new product flexibility. Both are dimensions of product
flexibility and refer to the range of different products that can be made. A
product modification refers to a product change which leaves the
functional characteristics unchanged, but leads to an improved design; a
new product will have changed functional characteristics. Both
flexibilities are conditional on the machine flexibility, the labor flexibility
and the materials handling flexibility, but also depend on the capabilities
and work organization of the product design and the process design
departments.

Apart from the range, also the speed of new product flexibility is
important. This refers to the time and costs needed to deliver a new
product, or a modified product, to the market. Speed and costs of a
product introduction are determined by the time and resources needed
for the product and process design phase, and also by the time and costs
required to fill the production system with work-in-process and inventory
of the new product, up to the level needed to support the planned supply
level in the market. Thus, a production system that can economically
work at lower levels of work-in-process and inventory can have a higher
ability at the product flexibility dimension.

– The last dimension of output flexibility mentioned by Koste and
Malhotra (1999) is the expansion flexibility. Expansion flexibility implies
adding more or new resources (machines, labor, materials handling
systems) to the production system in order to be able to expand the
overall output of the system. Here also, range, mobility and uniformity
are relevant aspects. Expansion flexibility is created at the strategic level
in a company and requires the planning and control of options for
acquiring capital goods, material supply, expanding human resources,
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expanding subcontracting, and requires the planning and control of the
financing resources needed for the expansion.

2.1 Discussion

Overlooking the published research over the last decades, it seems that
researchers agree on the set of relevant dimensions of flexibility and the
relevant aspects per dimension. We therefore do not foresee many new
contributions in this area on the short-term. Quantitative research is needed to
identify the exact relationships between the flexibility dimensions and between
flexibility and performance.

The relevant dimensions of flexibility at the plant level are: volume
flexibility, mix flexibility, new product or product modification flexibility and
expansion flexibility. Machine, labor, materials handling, operation and
routing flexibility are all internal or shop floor flexibility dimensions of a
plant. The internal flexibility dimensions do have an impact on the flexibility
dimensions at the plant level. However, the exact relationships between the
internal and external flexibility dimensions will depend on the detailed
flexibility characteristics of the manufacturing systems (machines, labor,
materials handling system), the detailed flexibility characteristics of the
activities that are needed to produce a product (operations, routings), and the
detailed characteristics of the operations planning and control system of a
plant. These detailed characteristics are plant specific, and therefore different
plants will be difficult to compare unless we can quantify the flexibility
dimensions, the flexibility aspects and their relationships.

Quantitative research on manufacturing flexibility aims at identifying the
exact relationships between the amount of flexibility on one or more flexibility
dimensions of a system, and the performance of that system. Since formal
methods are used to obtain results, the models studied are small scale, entail
only one or two flexibility dimensions, and study the impact of flexibility on
one or two performance dimensions.

Model-based research on flexibility generally deals with models of
production systems consisting of a set of different machines, and a number
of workers. Materials handling systems are sometimes mentioned but seldom
explicitly modeled. An exception to this is the vast literature on Flexible
Manufacturing Systems (FMSs), where the production capabilities of
integrated FMSs are often constrained by the characteristics of the connecting
materials handling system. In this chapter we will not pay special attention to
(integrated) FMSs.

In model-based research it is generally assumed that each machine can
perform a range of operations, and each worker can work at a certain range
of machines. Further, an operation is defined as a specific transformation of
a specific piece of material. The definition of operation flexibility in Koste
and Malhotra (1999) implies that a product has operation flexibility if there
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exist alternate sequencing plans for producing the product, i.e., alternate
sequences of operations, each operation to be executed on one of the
machines in the system. In model-based research [e.g., Jordan and Graves
(1995)] such a sequence of operations that leads to a product, is called a
process. In industrial engineering literature, a process plan of a product is
defined as a planned series of operations which advances a material from
one stage of completion to another [Tanner (1985), p. 322]. Since operations
are carried out on machines, and each type of machine has a limited range
of operations that it can perform, the set of machines in a production
system completely determines the range of operations that can be performed,
and therefore the range of products that can be made. However, there
is often a one-to-many relationship between products and operations.
A product is uniquely defined by its technical product specifications, but
various sequences of operations may exist in a production system that, for a
given raw material, lead to the same product.

Depending on the level of automation, workers are needed for carrying
out the operations. This can range from operations that are carried out
by workers using a machine, to operations that are carried out by machines
that operate on palletized parts that are positioned and transported by a
fully automated materials handling system, only requiring a worker for
loading and unloading the pallets. Worker flexibility serves as a hedge against
the disturbing effects of worker absenteeism and worker turnover, just as
routing flexibility can serve as a hedge against the disturbing effects of
machine failures. However, worker flexibility can also be used to response to
variations in demand for capacity across the different machine types in a
production system. In this chapter, we will focus on this latter aspect of
worker flexibility.

The different technologies (different machines, different materials handling
systems, different workers) available in a production system determine the
range of different products that can be made; the broader the range of
different technologies, the broader the range of products. A general machine
shop consisting of a wide range of different machine tools can clearly produce
a much wider range of different products than specialized parts manufacturing
shop of a gearbox plant. It follows that the broader the technology range,
the higher the product modification and product innovation flexibility that
can be supported by a production system.

A large technological range however comes at a price, since it increases the
costs per unit produced by the production system relative to the cost per unit
of a more specialized or more focused plant. When deciding about the range
of different technologies of a production system, a trade-off has therefore to be
made. Focusing the production system on a specific range of products,
requiring only a specific range of operations and routings, allows for the
selection of specialized machines, workers, tools, materials handling systems,
and working methods. This leads to increased learning effects, to increased
output for a given amount of capital investment, and therefore to a decrease
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in cost per unit produced. These are known as the benefits to be obtained from
focused factories [Skinner (1974)].

The decision about the technology range of a production system has to be
based on a trade-off between the benefits to be obtained from low costs
per unit produced, and the risks of not finding sufficient demand for the
products that can be made on the system, over the economic lifetime of the
system. Technology range therefore primarily caters for uncertainty regarding
process requirements that follow from future product modification and
future product innovations. To our knowledge no research has been reported
in operations management literature on the strategic question about the
range of technologies that should be available in a production system. This
clearly belongs to the realm of operation strategy and not to operations
management.

A supply chain consists of a network of transformation processes, each
process performed in a plant. Thus, in a supply chain context we are primarily
interested in the manufacturing flexibility dimensions at the plant level, for
each of the plants involved in the supply chain. When designing a supply chain
for flexibility, we have to consider the relevant flexibility dimensions of each
plant. Flexibility at the plant level is expressed as constraints on the volume,
mix and timing of the items that are produced by the plant. In the next section
we will discuss model-based research on the use of machine flexibility to cope
with uncertainties in the level of demand (volume and mix). New product and
product modification flexibility depends also on the throughput time of
production in the plants involved in the supply chain. In Section 4 we will
discuss the impact of machine, worker, and routing flexibility on production
throughput time, and therefore on new product flexibility.

3 The flexible machine investment problem; volume and mix flexibility

We discuss the research into the optimal use of machine flexibility in order
to cope with demand level uncertainty. We restrict our discussion to the
research that has been performed by Andreou (1990), Fine and Freund (1990),
Gupta (1993), Jordan and Graves (1995), Boyer and Keong Leong (1996),
and Van Mieghem (1998). All this research studies models with multiple
products and multiple machines where each product requires only one
operation (i.e., a process for the product consists of one operation only) and
where some of the products can be made on different machines. Thus, some of
the machines can perform more than one operation or process. In all this
literature, machines are referred to as ‘resources,’ a convention that we will
adopt in this section. The problem is studied as an investment problem, asking
the question to what extent to invest in resources that can perform more than
one operation, given the uncertainty about the level of demand for the
products to be produced.
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Andreou (1990) presents an investment model to calculate the dollar value
of flexible resource for a two-product production system with (correlated)
stochastic future demand levels per product. He considers a production system
consisting of a mix of dedicated and flexible resources and calculates the
option value of flexible capacity as a function of the uncertainty in demand
level, the costs of dedicated and flexible capacity and the revenues from sales.
The analysis shows that value of flexibility can be substantial, especially under
high uncertainty in demand. The analysis also shows that most of the benefits
to be obtained from product mix flexibility are captured by having only a
certain percentage of total capacity to be flexible, the optimal percentage being
dependent on the variability of the demand level and the correlation in
demand levels between the two products.

Fine and Freund (1990) present a model of the cost-flexibility trade-offs
involved in investing in product-flexible manufacturing resources. They
formulate the problem as a two-stage stochastic program. In the first stage
they make a capacity decision, before the resolution of uncertainty in demand
level. In the second stage, after demand levels for products are known, the firm
takes its production decisions, constrained by the first stage resource
decisions. They consider a situation with n different product families with each
product family having a dedicated resource, and one flexible resource that can
be used for any of the n product families. The problem consists of deciding
about the amount of dedicated resource, Kj, j¼ 1, . . . , n, and the amount of
flexible resource, KF,

– assuming per resources linear acquisition costs as a function of amount
of resource installed, Kj,

– assuming linear production costs as a function of amount of product
produced on dedicated or flexible resource,

– assuming that revenues are strictly concave as a function of the amount
of product sold,

– assuming linear, technology-independent variable production costs, and
– assuming probabilistic information about the demand level per product
family.

Demand level uncertainty is modeled as k possible states, i¼ 1, . . . , k, each
state corresponding to a vector of demand levels per product, and each state
occurring with probability pi>0 with

P
i pi¼ 1. Demand uncertainty is thus

modeled as a discrete set of separate demand level and product profitability
scenarios.

Fine and Freund (1990) present an optimization model with linear
constraints that can solve the above problem and that simultaneously provides
the optimal amount of products to be produced under each demand
scenario. They show that for the two-product problem, the allocation of
production to dedicated resource and to flexible resource is unique;
uniqueness cannot be guaranteed for more than two products. The model
also is used to show that flexible capacity should be acquired when the
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expected value of its best use for each realization of demand, summed over all
possible realizations of demands, exceeds its costs. Given the model used this
should not come as a surprise but it is an important managerial insight,
implying that the value of an option must be evaluated on the basis of all
future scenarios including their probabilities of realization, instead of on the
basis of its value under the most likely scenario only.

Fine and Freund (1990) also provide results for the optimal capacity levels.
For the two-product family situation, family A and family B, they prove that
an increase in capacity costs for dedicated resource A leads to a decrease of
KA, an increase in amount of flexible resource, KAB, and a decrease in KB.
Hence the flexible resource substitutes for dedicated resource B as well as for
dedicated resource A. Furthermore the magnitude of decrease in KA exceeds
the magnitude of increase in KAB, which in turn, exceeds the magnitude of
decrease in KB. These results illustrate the complex interactions between the
problem parameters, on the one hand, and the optimal levels of investments in
dedicated and flexible resource, on the other hand.

For two numerical cases, Fine and Freund (1990) also investigate the
sensitivity of the solutions of their model to correlation and variability in
demand. They consider a symmetric two-product case with for each product,
A and B, either high, medium or low demand. They model perfectly negative
correlated, perfectly positive correlated and non-correlated demand, and for
each of these three cases they investigate different levels of riskiness
(uncertainty) in demand. Their results illustrate that the need for flexible
capacity increases relative to level of riskiness in the presence of perfectly
negative correlated demand, and is zero, regardless of the level of riskiness, in
the presence of perfectly positive correlated demand. For uncorrelated
demand the analysis of the case shows that the need for flexible capacity is
zero for moderate levels of riskiness, then increases for increasing riskiness up
to a maximum value and then decreases again for a further increase in
riskiness. This rather counterintuitive result points out that the direction of
correlation in demand and the level of risk do not by themselves constitute
enough information to predict the need for flexible capacity. A final
remarkable result of the analysis of the two-product model is that for each of
the three cases, the optimal value of the objective function is increasing in the
level of riskiness.

Fine and Freund (1990) studied a model where resources are either
dedicated to one of the products, or can process all products (the flexible
resource). Gupta (1993) studies a model where all resource can be flexible.
Building on the results obtained in Gupta and Buzacott (1991), he considers
the situation where N products with uncertain demand levels are to be made
onM resources, where each of the resources has the same capacity, Q, and can
process at most 1 � K � N different products. He develops a two-stage
stochastic programming formulation of the problem to determine the optimal
levels of M, Q and K, as a function of uncertainty in demand, sales revenues
and resource costs.
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The model consists of two formulations: P1 and P2. The first model serves
to find values for Pij, the amount of product i produced on resource j, in order
to maximize the total profit, given a realization of demand, d1, . . . , dN, and
given values for M, Q and K. It is assumed that r is the revenue earned, net of
all costs, per unit of any product regardless of type.

P1 : max�ðd1, d2, . . . , dNÞ ¼
X
i

r
X
j

Pij

( )

subject to :

g1 : K �
X
i

�ðPijÞ � 0 8j ¼ 1, . . . ,M

g2 : di �
X
j

Pij � 0 8i ¼ 1, . . . ,N

g3 : Q�
X
i

Pij � 0 8j ¼ 1, . . . ,M

g4 :
X
i

X
i

Pij ¼ min MQ,
X
i

di

 !
g5 : Pij � 0 8i ¼ 1, . . . ,N, j ¼ 1, . . . ,M

The second model serves to find values of M, Q and K to maximize the
expected total profit resulting from optimally solving the problem P1 after the
realization of demand, given that demand is only known in probabilistic
terms, denoted as D1, . . . ,DN.

P2 : max½�ðM,Q,KÞ� ¼ E½�ðD1,D2, . . . ,DN � � CðM,Q,KÞ

where E( � ) is the total expected profit, and C( � ) is the investment costs.
In view of the large amount of literature dealing with economies of scale,
it is reasonable to assume that C( � ) is concave in the arguments
M and Q; however, the same cannot be said about the argument K.
We may expect that the investment costs increase with an increasing rate
as a function of K, the number of products that can be produced on a
resource.

Analysis of P1 shows that the problem is combinatorial hard. Gupta (1993)
develops a heuristic to solve problem P1 and uses simulation to calculate
the 95% confidence interval for average revenue as a function of M, Q
and K. Next, adaptive random search is used to find the best combinations
of M, Q and K, for a given investment function C(M,Q,K).

The procedure is applied to a number of 10-product problem instances with
the following investment cost function

CðM,Q,KÞ ¼Mað�0 þ �1Qþ �2 lnKÞ,
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which is concave in all arguments. For the example cases studied, it
appears that the relative benefit of flexibility depends on scale economies. In
particular if scale economies is high (low value of a) the benefit of flexibility is
limited. The data furthermore show that with certain cost structures,
duplication of resources with limited flexibility may provide just as good an
ability to cope with variations in demand volume and demand mix, as
investments in highly flexible resources.

In the research of Fine and Freund (1990) all resource flexibility is
concentrated in one resource only, whereas in the research of Gupta (1993) all
of the resources are equally flexible. Gupta (1993) notices that the problem of
deciding about the optimal level of resource flexibility is combinatorial hard
and therefore difficult to solve to optimality for large problems. Jordan and
Graves (1995) specifically investigate how to configure resource flexibility,
based on intuitively developed principles about optimal configurations.
To understand how to create good flexibility configurations they consider a 10-
product 10-resource example. Expected demand for each product is 100 and
capacity of each resource is 100. Demand follows a truncated normal
distribution with a standard deviation of 40 and minimum and maximum
possible demands of 20 and 180 units, respectively. Product demands are
independent. A simulation model is used to randomly sample demand for each
product, allocate demand to resources to maximize the demand filled (unfilled
demand is lost) subject to capacity constraints, and collect statistics on
sales, lost sales, and capacity utilization. They first investigate the no-flexibility
case, where each resource is exclusively dedicated to one product, and the total
flexibility case, where each resource can produce all products. For the no-
flexibility case, expected sale is 853 units and expected utilization is 85.3%.
Total flexibility results are 954 units and 95.4%, respectively. Starting from the
no-flexibility case, Jordan and Graves (1995) add flexibility incrementally to
the system. They add one ‘link’ (e.g., product 1 can also be produced on
resource 2) at a time and measure the impact on sales and utilization. They first
add product 1 to resource 2, then add product 2 to resource 3, then add product
3 to resource 4, and so on. The tenth link is to add product 10 to resource 1.
Their results show that, if well configured, limited flexibility can achieve almost
all of the benefits with respect to sales and capacity utilization that can be
obtained from full flexibility.

Jordan and Graves (1995) introduce the concept of ‘chaining’ to formulate
the principles of how to configure resource flexibility. A chain is a group of
resources and products that all are connected directly or indirectly by
assignments of products to resources. No product in a chain can be produced
by a resource outside that chain; no resource in a chain can produce a product
from outside that chain. Jordan and Graves (1995) show that for a given
number of ‘links,’ the performance of a system is maximized by creating one
chain of maximum length. Thus, for the example case, with 10 additional links
available creating one chain of length 10 gives a better performance than
creating 5 chains of length 2 each.
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Jordan and Graves (1995) formulate the following guidelines for creating
resource flexibility in a multi-product multi-resource system:

– try to equalize the number of resources (measured in total units of
capacity) to which each resource in the chain is directly connected,

– try to equalize the number of products (measured in total units of
expected demand) to which each resource in the chain is directly
connected,

– try to create a circuit that encompasses as many resources and products
as possible.

The key behind chaining is that all products in the chain effectively share all
the resource capacity in the chain. In the 10-product 10-resource case situation
studied, the expected sale was equal to capacity. To see how the value of
flexibility changes when resource capacities are varied, Jordan and Graves
(1995) varied the total capacity of the 10 resources between 500 and 1500 units
where capacity is equally split among the resources. Their results show that
the benefits of adding flexibility are substantial for a wide range of total
capacity. Even when capacity is 25% above or below expected demand,
expected sales increases by more than 5%.

Jordan and Graves (1995) also develop a measure for the inflexibility in a
given product-resource configuration. The measure, pðM*Þ, is defined as the
maximal probability over all groupings of products (M) that there will be
unfilled demand for a group of products, while simultaneously there is
excess capacity at resources making other products. The measure indicates
whether adding more flexibility to the configuration is likely to lead to higher
expected output.

Their results suggest that for high levels of demand uncertainty, and many
products and resources, limited resource flexibility with only two products
per resource may not provide the same ability to cope with demand uncertainty
as total flexibility. However, even with relatively high demand uncertainty and
many products and resources, limited flexibility with not more than four pro-
ducts per resource can provide almost all of the benefits of total flexibility.

The model studied by Jordan and Graves (1995) does not consider costs of
capacity nor costs of flexibility. Boyer and Keong Leong (1996) expand the
model used by Jordan and Graves (1995) to also include the costs of changing
over a resource from one product to another. Such a system has therefore
restricted mobility [Upton (1994)]. Change-over costs are modeled as a loss of
capacity; a percentage of available capacity is lost if the resource is used for two
products. They develop a binary integer programming formulation of the
problem that is embedded in a simulation model to maximize the expected
output under stochastic demand levels for the different products, and for a
given configuration of resources. For two case problems taken from the
automobile industry, themodel is used to investigate the effect of different levels
of resource flexibility and change-over costs on expected output. For the 10-
product 10-resources configuration studied by Jordan and Graves (1995) with
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the demand per product equal to 100 and capacity per resource equal to 100,
Boyer and Keong Leong (1996) show that the percentage improvement in
expected output for resource flexibility over no resource flexibility decreases for
increasing change-over costs, and show that, for change-over costs less than
50%, the decrease in improvement is roughly linear with increases in change-
over costs. Even when change-over costs are quite high, the benefits of limited
process flexibility are quite large; for change-over costs up to 100%,
configurations with resource flexibility have a higher expected output than
configurations without resource flexibility. This is because with resource
flexibility, it is still possible to decide which of the products is going to be made
on a flexible resource, which is not possible with inflexible resource.

The results of Boyer and Keong Leong (1996) confirm that it is rarely
beneficial to pursue total flexibility, since limited flexibility, if configured in
one product-resource chain, offers approximately 95% of the output benefits
of total flexibility.

Van Mieghem (1998) studies the optimal investment decisions in flexible
manufacturing resources as a function of product margins, investment costs
and multi-variate demand level uncertainty. His contribution to existing
knowledge is that he studies the case where the products have different margins.
He considers a two-product firm that has the option to invest in product-
dedicated resources and/or in a flexible resource. He models the problem as a
two-stage multi-dimensional newsvendor problem. First the firm must decide
on a non-negative vector of resource capacity levels, K 2 <3

þ, K ¼ ðk1, k2, k3Þ
before the product demand vector, D 2 <2

þ, D ¼ ðd1, d2Þ, is observed. After
demand is observed the firm decides on production quantities per resource
x ¼ ðy1, y2, z1, z2Þ 2 <

4
þ, where yi þ zi is the total amount produced of product i,

yi is the amount of product i produced on the dedicated resource, and zi is the
amount of product i produced on the flexible resource. The firm chooses its
production vector x so as to maximize operating profit

max
y,z2<2

þ

p1ð y1 þ z1Þ þ p2ð y2 þ z2Þ

subject to :

y1 � k1 ð3:1Þ

y2 � k2 ð3:2Þ

z1 þ z2 � k3 ð3:3Þ

y1 þ z1 � d1 ð3:4Þ

y2 þ z2 � d2 ð3:5Þ

where p 2 <2
þ is a prize vector.
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It is assumed that D is a continuous random vector that has a
joint probability density function, g, which is positive over its support.
The investment costs are linear in the capacity, CðKÞ ¼ c0K , where c 2 <3

þ is a
vector of marginal investment costs.

The investment decision is modeled as:

max
K2<3

þ

VðKÞ ¼ EpðK ,DÞ � CðKÞ

where EpðK ,DÞ is the expected value of the operation profits.
Mathematically analyzing the properties of this problem, Van Mieghem

(1998) shows how optimal investment depends on costs and prices. He
first solves for the optimal contingent production decisions x(K,D) and
the associated three vector lðK ,DÞ of optimal dual variables of the
capacity constraints (3.1) through (3.3) in the product mix problem.
Given a capacity vector K 2 <3

þ the demand space <2
þ is partitioned into

five domains �0, �1, �2, �3 and �4 where �0 denotes the firm’s capacity
region, and �1 through �4 denote disjunct regions that completely cover the
set of demand realizations that the firm cannot serve (for details we refer to
the paper).

Van Mieghem (1998) formulates the optimality equation in terms of the
dual variables:

An investment vector K* 2 <3
þ is optimal if and only if there exists

a V 2 <3
þ such that:

0

p2

p2

0
B@

1
CAPð�1ðK*ÞÞ þ

p2

p2

p2

0
B@

1
CAPð�2ðK*ÞÞ þ

p1

p2

p1

0
B@

1
CAPð�3ðK*ÞÞ

þ

p1

0

p1

0
B@

1
CAPð�4ðK*ÞÞ ¼ C � V , ð3:6Þ

V 0K* ¼ 0 ð3:7Þ

where Pð�jðK*ÞÞ denotes the total demand probability mass in the domain
�jðK*Þ.

The optimal investment is found by superimposing the multi-variate
demand distribution on the capacity model and adjusting the lines that
constrain the feasibility region such that the probabilities of the four domains
�1, . . . ,�4 offset the marginal investment cost C as in the optimality Eq. (3.6).
Van Mieghem (1998) derives the conditions under which it is optimal to
invest only in dedicated resources, under which conditions it is optimal to
invest in one dedicated resource and in the flexible resource, and under
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which conditions it is optimal to invest in all three resources, under uncorrel-
ated demand. Furthermore he shows that the optimal value V*ðKÞ is
a non-increasing convex function of the price vector, p. He also studies the
effects of the parameters of demand uncertainty in the optimal investment.
For both perfectly positively and perfectly negatively correlated demand he
derives the conditions regarding marginal prices and costs under which it is
optimal to only invest in dedicated resources, in one dedicated resource
and the flexible resource, and in all three resources. He shows that price
conditions exist under which it is optimal to invest in flexible resource, also
under positively correlated demand, which is not the case for this problem
when the products have equal prices. For details about these results we refer
to the paper.

3.1 Discussion

The literature discussed above shows the value of resource flexibility
for coping with demand level uncertainty for a group of products.
Resource flexibility can be a substitute for dedicated capacity. The optimal
split between dedicated and flexible capacity depends on the cost difference
between flexible and dedicated capacity, price differences between the
products, the riskiness of demand, and the correlation between product
demands. Change-over costs between products produced over the same
resource decrease the benefits obtained from resource flexibility but do not
eliminate them. For a given flexibility configuration the marginal value of
adding more flexibility to the system is a decreasing function. In other
words, the major part of the benefits to be obtained from resource
flexibility is already obtained with a limited amount of flexibility. The
flexibility configuration has been shown to be an important factor; for a
given number of product-resource links, the best performance is obtained
with creating the longest chain possible; the performance of a fully
chained system comes very close to the performance of a totally flexible
system.

The papers discussed provide important managerial insight and some of
them also demonstrate the use of the results in real life industrial applications.
An important direction for further research in this area can be found in
extending the optimal investment problem with the option to sell unused
capacity under various conditions to other parties. Another interesting
extension would be to study the case where the investor has to invest in a
configuration of resources on which he produces products that are supplied to
different customers under different contracts. This situation occurs when
different supply chains use a common supplier and supply contracts have to be
negotiated in parallel to the investment decision. This research would combine
knowledge from contract theory, game theory and investment theory. A third
promising research avenue would be to include the trade-off between
investments in change-over cost reduction and inventory carrying costs in
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the flexible resource investment decision problem. In the presence of change-
over costs on a flexible resource, production will take place in batches, and
as a result the total costs of operating the system must include change-over
costs and inventory carrying costs. To our knowledge such flexible resource
models have not been studied yet.

What is the relevance of this research for supply chain design? The
research deals with the investment decision in flexible resources in anticipation
of future demand for a group of products, where future demands
are uncertain. The relevant flexibility measures at the supply chain design
level are volume flexibility, mix flexibility and modification or new product
flexibility. Volume and mix flexibility for a product family can be created
by installing excess capacity, or by contracting excess capacity and excess
material supply in each of the plants involved in the supply chain. This would
be costly, and therefore would not be economically justified, unless the
demand uncertainties can be pooled at the resource level in each of the plants.
Pooling can be achieved by investing in flexible resources. Thus when setting
up a supply chain the resource configuration of each of the plants involved
in the chain should be carefully evaluated for the volume and mix flexibility
that it can provide to the supply chain. It is therefore not only important
to know what production output can be realized with a given resource
configuration, but also what is the optimal resource configuration to invest
in, given the resource costs, the product margins and uncertainty in demand.
For the investment decision for final assembly plant for a product family,
the models discussed can be directly applied. Most of the models were inspired
by industrial cases of this type. However, a supply chain not only consists
of a final assembly plant but also may encompass many first and second tier
suppliers. In each of these supplying plants capacity has to be installed or
reserved for the supply chain. Different options in terms of resource
configurations may be available for realizing specific potential for supply
in the chain. Designing a supply chain requires the coordinated design of
the resource configuration across the plants in the chain. Information
about the resource configuration options per plant and its consequences for
supply is input to this design.

The third flexibility dimension at the supply chain level is the product
modification or new product flexibility. This refers to the time needed for
making a modification or a new product available in the market (the new
product lead time). In the context of this chapter we restrict new product
lead time to the time needed for introducing new variants of a product family
(the new product lead time), assuming that the resource configuration used
in the supply chain can perform the process needed for the modified or
new products. An important factor in the new product lead time is the
production throughput time in the supply chain; if production throughput
times are short, the new product lead time can be short. Resource flexibility
has been shown to have a high impact on production throughput times. In the
next section we discuss literature on the relationships between resource
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flexibility, including range, mobility and uniformity aspects, and production
throughput times.

4 Resource flexibility, range, mobility, uniformity and throughput time

In this section we discuss the research on the effects of machine and worker
flexibility, on production order throughput time in relation to the costs and
capacity losses incurred by changing over a resource from processing one
product to another product.

In the literature in this field the general assumption is made that demand
per product can be modeled as a stationary stochastic variable with a known
mean. Demand manifests itself over time as a random variable, either as a
random interarrival time between arrivals of demand for a product, or as a
random amount of products demanded per time period. Also it is assumed
that the capacity of the production system is given, and that capacity is
larger than the capacity needed to serve the average demand. Thus, in the
long run, all demand can be served, and the flexibility of the production
system mainly serves to make the system responsive to the short-term
variations in demand. It should be noted that for some production systems,
demand responsiveness can also be created by keeping stocks. In such
production systems, both resource flexibility and stocks are means to achieve
short-term demand responsiveness.

The effects of resource flexibility on short-term demand responsiveness has
been amply studied in operations management literature. In this section we
discuss a selection of papers from this literature. Specifically we discuss
research performed by Wayson (1965), Nelson (1967, 1970), Fryer (1973,
1974, 1975), Treleven and Elvers (1985), Porteus (1985), Park and Bobrowski
(1989), Vander Veen and Jordan (1989), Malhotra and Ritzman (1990),
Malhotra, Fry, Kher, and Donohue (1993), Malhotra and Kher (1994), Kher
(2000) and Garavelli (2001).

Other research results can be found in: Weeks and Fryer (1976), Hogg,
Philips, and Maggard (1979), Gunther (1981), Treleven (1989), Corbey (1991),
Park (1991), Bernardo and Mohamed (1992), Bobrowski and Park (1993),
Felan, Fry, and Philipoom (1993), Nandkeolyar and Christy (1992), Wisner
and Pearson (1993), Morris and Terinze (1994), Benjaafar (1994), Hutchinson
and Pflughoeft (1994), Fry, Kehr, and Malhotra (1995), Benjaafar and
Ramakrishnan (1996), Daniels, Hooper, and Mazzola (1996), Ho and Moody
(1996), Jensen, Malhotra, and Philipoom (1996), Das and Nagendra (1997),
Shafer and Charnes (1997), Kher, Malhotra, Philipoom, and Fry (1999),
Jensen (2000), Smunt and Meredith (2000), Garg, Vrat, and Kanda (2001) and
Nam (2001).

Most research on this subject uses systematic computer simulation as a
research tool. A short description of the simulation model used will be given
for each study.
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One of the first to research the effects of resource flexibility on throughput
time is Wayson (1965) who performed a simulation study of a simple job shop.
The shop consists of nine work centers, each containing one machine. Orders
arrive according to a Poisson process. The number of operations per order, g,
follows a geometric distribution function on the domain g 2 Nþ=0 with
probabilities ð1=9Þð8=9Þg�1. Planned order routings are generated as follows:
Each work center has equal probability of being the first work center to be
visited. The work center for each next operation is selected with equal
probability on the condition that immediate succeeding operations visit
different work centers. This procedure models the situation where there is a
high diversity in order routings.

The model further assumes zero transportation times, no labor constraints,
and 100% resource availability. At each work center, operation processing
times are negative exponentially distributed with the same parameter. The
order arrival rate is such that the shop faces a 90% utilization rate. We
recognize this as a typical job shop model. Assuming first come first served
sequencing at the work centers, work order throughput time characteristics
can be calculated for this system using basic queuing theory.

Resource flexibility is modeled as a real variable, z, 0 � z � 8 where for
instance z¼ 2.4 means that each operation can be performed at two work
centers other than the planned work center, and that there is a probability of
0.4 that an operation can be performed at three work centers other than the
planned work center. Thus z¼ 0 means no resource flexibility; each operation
must be performed at the planned work center; z¼ 8 means total resource
flexibility.

The resource flexibility is used as follows: if upon completion of an
operation of an order at a work center there is a next operation that has to be
performed the next work center is selected among the set of work centers
where the next operation can be performed. Among the possible work centers,
the work center is selected that, at that time, has the least number of orders in
queue. At each work center, orders are processed on a first come first served
basis. It is assumed that execution of an operation at alternative work centers
takes the same processing time as executing it at the planned work center
(perfect uniformity).

Performance is measured with the average queue length (which is
proportional to average throughput time). The results of Wayson (1965)
demonstrate the strong impact that resource flexibility can have on average
order throughput time. If each operation can be performed at two work
centers (the planned and one other work center) the average queue length is
only 3.4, as compared to 9.8 without resource flexibility. Even if there is only a
40% probability that an operation can be performed at an alternative resource
(z¼ 0.4), the average queue length goes down from 9.8 to 5.4. His results also
show the strong decrease in marginal benefits to be obtained from an
incremental increase in resource flexibility; there is hardly any decrease in
average queue length if the flexibility is increased from 3 to 8 alternative work
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centers. As noticed before, if well-configured, most of the benefits of flexibility
can already be obtained with a little flexibility. Wayson (1965) also meas-
ured the fraction of times that an alternative resource is used for processing of
an operation (which indicates control effort). For a flexibility of 0.4, an
alternative work center is used for about 20% of the operations. Thus even
with limited flexibility, using this flexibility in an unconstrained way can lead
to substantial control costs.

The results of Wayson (1965) are obtained for a model that only
captures a few elements of real life production systems. For instance, it is
assumed that alternative resources are equally efficient as the planned
resource; the costs of exercising flexibility, such as forgetting and relearning
are neglected, and it is assumed that machine capacity is the only limiting
resource.

Nelson (1967) was one of the first to study the use of worker flexibility in
worker and machine constrained production systems. Using computer
simulation he investigates a 2 work center job shop with two identical
machines per work center. The shop has characteristics in terms of
arrival times, processing times and routings similar to the model used by
Wayson (1965). Nelson (1967) varies the design of the system by studying the
system with 1, 2, 3, and 4 workers, where each worker can work with
equal efficiency in each work center. He studies centralized control, where
each worker after completing his job returns to a central pool to be allocated
to his next job, and decentralized control where each worker remains to work
at his current work center until he runs out of work and then goes to the
other work center, if work is available there. Three queue disciplines are
used: First Come First Served, First in System First Served, and Shortest
Processing Time, in combination with five labor allocation rules, among
which ‘random’ and ‘most work in queue.’ The results of the simulation
study indicate that worker flexibility can strongly decrease the mean and
variance of the order throughput time, and that the magnitude of the effect
depends on the labor allocation procedure and queue discipline used.
Centralized labor allocation performs consistently better than decentralized
labor allocation.

Centralized worker allocation is especially important in case workers have
different efficiencies in different work centers. Workers then should preferably
work in the work center were they are most efficient, unless no work is
available there, and should return to this work center as soon as sufficient
work is available there. Labor transfer costs (change-over time, forgetting
effects) however, would in turn limit the frequency of worker transfer
[Nelson (1970)].

Fryer (1973, 1974, 1975) investigates the effect of various labor allocation
rules on order throughput time, for a three-department production system,
with each department consisting of four work centers with two identical
machines. The production system has 12 workers who all can work with equal
efficiency on all machines. Order arrival times, order routings and order
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processing times are all random variables with parameters such that
the average worker utilization rate is 90%. Fryer (1973) distinguishes
inter-departmental labor (re)allocation from intra-departmental labor
(re)allocation, and also studies the effect of a (re)allocation delay on the
effectiveness of labor flexibility. Workers are fully flexible over all work
centers. He finds that interdepartmental flexibility has a pronounced impact
on performance, as opposed to intra-departmental flexibility, and that the
average order throughput time could decrease with about 40%, as compared
with the reference situation where to each of the 12 work centers one worker is
allocated who is never reallocated. This result is obtained with a zero
reallocation delay. He also finds that the decrease in average order throughput
time strongly depends on the reallocation delay. A delay equal to the
average operation processing time still results in an average throughput time
decrease of 23%. However, if it takes an amount of time equal to two times
the average operation processing time to reallocate a worker after his current
work center has become idle, only a decrease in throughput time of 3%
remains. Thus, labor (re)allocations should be fast (or pre-planned) in order to
be effective.

Treleven and Elvers (1985) investigate the effect of 11 different labor
reallocation rules (where to allocate) on mean and variance of queue time,
mean and variance of lateness, percentage of late jobs and total number of
labor transfers, for a 9 work center job shop with two machines per work
center, 9 and 12 workers, random order arrivals, random routings and
random operation processing times, with parameters set such that labor
utilization is 90%. Workers are equally efficient in work centers were they can
work. Statistical analysis of a comprehensive simulation study of this model
reveals no significant differences in performance between the shop
performance under any of the eleven labor allocation rules, expect for the
performance criteria ‘total number of labor transfers.’ Thus the decision
about where to allocate a worker seems to have hardly any impact on the
order-related shop performance measures. Therefore, the allocation rule
should be chosen that minimize the number of reallocations, since
reallocations come at a cost. The best rule in this respect is to allocate a
worker to the work center with the longest queue.

Park and Bobrowski (1989) investigate the effect of order release
mechanisms on the effectiveness of labor flexibility in a simulation study of
a 5 work center, 2 machines per work center, 5 workers job shop. They
consider centralized and decentralized labor (re)allocation for four different
levels of worker flexibility. Their results indicate that the order release
mechanisms has no significant impact on the effectiveness of worker flexibility
on performance, and confirm the earlier findings regarding the strongly
decreasing marginal value of increasing flexibility.

Malhotra and Ritzman (1990) investigate the environmental factors of a
production system that determine the effectiveness of using resource flexibility
to improve the throughput time performance of the system. They use three
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different shop configurations, each containing a number of fabrication shops
and one or two assembly shops, to represent different levels of machine
flexibility and labor flexibility. They investigate the impact that yield
uncertainty, capacity tightness and lot sizes have on the effectiveness of using
machine flexibility to achieve a good shop performance in terms of customer
satisfaction, work in process and inventory, and labor costs, in an MRP
driven production system. Computer simulation is used as a research tool. The
results indicate that machine flexibility is especially helpful in environments
characterized by high uncertainties, tight capacities and large batch sizes. In
particular, as lot size and shop utilization increase, gains achieved by having
machine or worker flexibility are high for the customer service measure; with
small batch sizes and low shop utilizations improvements are moderate.
Finally, simultaneous introduction of both machine and worker flexibility
improves performance only marginally above that of either machine or
worker flexibility alone.

Malhotra et al. (1993) investigate the impact of learning and labor
attrition on the effect of worker flexibility on performance in machine
and worker constrained job shops. They study a 6 work center shop with
each work center containing 4 identical machines, and with 12 workers
that have different levels of flexibility. Orders arrive randomly and visit
each work center just once, whereas operation processing times are
exponentially distributed. Parameters are set such that a worker utilization of
85% is achieved. Orders are assigned a due date proportional to the total
work content of the order. A worker is reallocated as soon as there is no
more work in the queue at his current work center, and is allocated to the
work center that contains the job that has been in the system for the longest
time. Finally, orders are dispatched according to the earliest due date.
Malhotra et al. (1993) investigate the cost impact of acquiring worker
flexibility under two levels of the learning rate, 75 and 85%, and two levels
of time required to process the first order at a work center: two times the
standard operation processing time and four times the standard operation
processing time. This was combined with three levels of worker turnover and
attrition, 0, 8 and 16%, and six degrees of worker flexibility, representing the
number of work centers that a worker can work in. As performance criteria
were used: the mean order throughput time, the average mean tardiness, the
percentage of jobs tardy and the percentage of time workers spent in
learning new tasks. Their results indicate that turn-over and attrition has
a significant impact on the performance measures, where this impact was
primarily present in the high learning loss environment (low learning rate
and high initial processing time). They also found that for high learning
rate, and for low learning rate in combination with low initial processing
time, mean order throughput time decreased with increasing levels of
flexibility (although at a decreasing rate, as found earlier). However, for
low learning rate in combination with high initial processing time, the
mean flow time increased again for flexibility levels larger than three
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(each worker can work at three resources). This is explained by the large
fraction of time spent on learning in this learning environment. With full
flexibility, time spent on learning may go up from 5% for zero attrition to
30%, for 16% attrition.

In a next study, Malhotra and Kher (1994) used the same model, the
same experimental conditions and the same performance measures as in
Malhortra et al. (1993) to investigate the effects of worker allocation policies
in the presence of differences in efficiency when performing operations in
different work centers, and in the presence of finite transfer delays. Efficiency
ranges between 0.75 and 1.00 and transfer delays of 15% and 30% of the
average operation processing times are considered. They investigated
centralized and decentralized decisions about when to reallocate and five
rules about to which work center to (re)allocate. They found that, with
zero transfer delay, centralized decision-making performs best with hardly
any difference between the allocation rules (which confirms the results
found by Treleven and Elvers (1985)). However, in the presence of transfer
delays the best performance is obtained with decentralized control (which
limits the number of transfers) in combination with either allocation to the
most efficiency work center, or the work center with the longest queue.
Allocation to the most efficient work center resulted for all conditions
in an acceptable low mean order throughput time of about 182 in a range
178 to 225.

In a sequel to the research of Malhotra and Kher (1994), Kher (2000)
investigates the impact of flexibility on shop performance in machine
and worker constrained job shops with simultaneous learning and
forgetting effects. He uses the same shop model and performance criteria as
in Malhotra et al. (1993). Learning is modeled with a log-linear model;
forgetting is modeled by adjusting downwards the number of jobs processed,
in function of the time passed since the last time this type of job had been
performed. Furthermore it is assumed that for each work center, an upfront
amount of training is required before the worker can start his first job at
that resource. In the experimental design three flexibility policies, three
forgetting rates and five worker turnover and attrition rates are combined.
The results reveal that at a high forgetting rate (85%) acquiring and using
worker flexibility has a negative impact on average work order throughput
time and average tardiness. For lower forgetting rates (90 and 95%)
work order throughput times and tardiness did improve when employing
flexibility, even for high attrition rates. These results show that the benefits of
worker flexibility strongl depend on the magnitude of learning and forgetting
effects.

In all the research discussed above, the effects of set-up time and batch sizes
are not considered. Orders are taken as given from outside, and for each of the
operations of an order the processing time is given. Furthermore, the
utilization of the shop is considered as an input parameter. However, it is
known that batch sizes and shop utilization have a large impact on the
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throughput time. Therefore, when designing a supply chain for new product
flexibility, the batch sizes and the utilization are important design parameters,
that should be considered in parallel to machine flexibility and worker
flexibility.

There is an abundance of research on the impact of batch sizes and capacity
utilization on work order throughput time. In most of this research queuing
models are used. For an overview we refer to Suri et al., Chapter 5, and
Karmarkar, Chapter 6, in Graves, Rinnooy Kan, and Zipkin (1993) [see also
Lambrecht, Ivens, and Vandaele (1998)]. In this chapter we discuss three
papers that deal with the optimal setting of capacity, capacity use and batch
sizes in an economic setting in the systems design phase.

Porteus (1985) studies the problem of whether or not to invest in set-up
time reduction, taking into account reduced inventory related operating
costs, but neglecting other advantages such as increased flexibility and
increased effective capacity. He considers a single product situation with a
deterministic sales rate, m, set-up costs, k, unit production costs, c, fractional
per unit time opportunity costs of capital, b, non-financial per unit time
inventory holding costs, h and fractional per unit opportunity cost of capital,
i. He assumes that set-up costs can be influenced at a cost:

aðkÞ ¼ a� b ln ðkÞ 0 < k � k0,

where k0 is the initial set-up costs.
Porteus shows that for this costs model the total relevant costs is

a convex–concave function over the interval [0, k0] with a unique local
minimum

k* ¼ min k0,
2b2i2

mðicþ hÞ

� �

This result implies that high volume firms should invest more in set-up cost
reduction than low volume firms. Furthermore, for high volume products,
the optimal quantity is independent of the sales rate, and total cost is a
strictly concave function of the sales rate, implying the usual economies of
scale. Porteus (1985) also derives results for the simultaneous setting of
optimal sales rate and optimal set-up costs, for a linear relationship between
sales rate and price.

The result of Porteus (1985) could explain why over the last decades
reduction of set-up time and set-up costs has predominantly taken place in
mass production, specifically in mass assembly industry. In low volume capital
goods industry, set-up times and set-up costs have hardly changed. In low
volume supply chains, large batch sizes will remain the rule and short
throughput time must be achieved by either excess capacity or resource
flexibility [Malhotra and Ritzman (1990)].
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Vander Veen and Jordan (1989) analyze machine investment decisions,
considering machine flexibility, machine capacity, production forecasts and
costs related to investment, inventory, set-up, material and labor. The paper
focuses on the trade-offs between machine investment and utilization
decisions.

Assuming machine speed as a decision variable, and assuming demand per
product as a given, they develop a method to identify the optimal number
of machines, M, to produce any number, N, of different products, also
accounting for product allocation decisions, as well as production batch size
decisions. The method considers investment costs in machines, where
investment costs depend on machine speed and set-up costs. Inventory costs
and labor costs in turn depend on machine speed.

The method is demonstrated with data from a sheet metal press shop,
including a sensitivity analysis for the set-up time. It appears that, in this
example, set-up times significantly affect investment decisions and total costs.
The data provided by the method indicate how much a company should be
willing to invest in reducing the set-up times.

Building on the results obtained by Jordan and Graves (1995), Garavelli
(2001) studies the operating costs incurred by three different flexibility
configurations of a production system with N resources that have to produce
N product families. He considers the no-flexibility (NF) configuration,
where each resource is dedicated to one of the product families, the total-
flexibility (TF) configuration, where each resource can product each product
family, and the limited flexibility (LF) configuration, where each product
family can be produced on two resources in a full chain between products and
resources. In Jordan and Graves (1995) the LF conzfiguration is shown to
provide close to complete product demand mix flexibility, at lower costs
then the TF configuration. Garavelli (2001) studies the differences in order
throughput time between these three configurations. He studies the situation
where orders for product families arrive at a given rate with exponential
interarrival time. All product families have the same arrival rates. All orders
require exponentially distributed processing time, with the same mean,
independent of the resource that processes the orders. Changing over
from producing one product family to another on a resource requires a
deterministic set-up time. Allocation of orders to resources for the
configurations TF and LF works as follows. There exists a one-to-one
allocation of product families to resources, indicating per family the
standard resource. Upon arrival an order is allocated to the standard resource
of the product family it belongs to, unless the order queue of that resource
exceeds a given threshold, TV. In the latter case, the order is allocated to the
resource which can process that order and has the shortest queue of orders
waiting. Orders are processed at the resource in order of arrival.

This process is studied for 5 levels of order arrival rates, implying 60, 70,
80 and 90% resource use (excluding set-up times), set-up times equal
to ST¼ 0% (which is used as a benchmark) and 30% of average
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order processing time, two values of the threshold, TV¼ 3 and 10, and
two values for the number of product families and number of resources,
N¼ 5 and 10. Garavelli (2001) uses computer simulation to determine the
performance in terms of throughput and average throughput time for each
of the 80 cases. The research focuses on the effects of set-up times. For the
ST¼ 0, TV¼ 3, N¼ 5 cases, the LF and TF configurations show decreases
in average throughput time ranging from about 10% for the 60% net
resource use case, to about 60% for the 90% net resource use case, as
compared to the NF configuration. For the ST¼ 0, TV¼ 10, N¼ 5 cases,
these numbers range from about 1% to about 38%. As may be expected,
resource flexibility leads to shorter order throughput times and thus improves
mobility. This drastically changes for the ST¼ 0.3 cases. Then for TV¼ 3
the throughput time for the TF configuration gets extremely large for 80%
resource use and is infinite (not sufficient resource available to process all
orders) for 90% resource use. The LF configuration does not show this
poor performance, but performance differences between the LF and NF
configuration are smaller than with ST¼ 0; they range from 0 to 28%. Similar
performance effects are obtained for the cases with N¼ 10. These results
demonstrate that in the presence of set-up times, resource flexibility
should be used with caution, and provide another argument for consider-
ing investments in set-up time reduction when configuring a production
system.

4.1 Discussion

The research discussed in this section provides insights into the
relationships between resource flexibility, specifically range, mobility and
uniformity, and the order throughput times of a production system. These
insights are important when designing a supply chain. First, the order
throughput times of the plants that are involved in a supply chain, determine
to a large extent the product modification and the new product flexibility
of the supply chain. Second the order throughput times, together with
the order batch sizes, determine to a large extent the work-in-process and
inventory that will be present in the supply chain to support a specific level of
supply to the market. The costs of the capital tied up in work-in-process
and inventory in the supply chain must be included in the investment costs of
setting up of the supply chain and must be weighed against the costs of
investing in flexible resources.

For production systems that face high capacity utilization, high demand
variations and large batch sizes, the research on machine and worker
flexibility reveals that large throughput time reductions can be achieved with a
little resource flexibility, if well configured. The benefits of resource flexibility,
although at a lower level, remain in the presence of moderate learning and
forgetting effects. However in case of worker flexibility, allocation decisions
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should not be delayed, and the reallocation frequency should be under
control. Thus the operations planning and control system (the system for
delivering flexibility) should be designed to realize the benefits of the available
resource flexibility, while avoiding possible negative effects such as high
(re)learning, high reallocating rates, and high set-up costs. Research has
revealed that relatively simple operations planning and control systems exist
that can do the job.

Resource slack and resource flexibility also play a role in the design of the
supply chain system for providing volume flexibility and mix flexibility,
as discussed in the previous section. Supply chain design decisions are
taken long before the actual demand levels become known. The need
for short-term resource slack and short-term resource flexibility follows from
the actual demand levels in relation to available sources on the long run,
and from short-term measures that can be taken in response to these
demand levels, such as adjusting prices, promotional actions, and accepting of
only a part of the demand, leading to the actual sales levels that the system has
to deal with. Using short-term measures to optimally adapt the use of
available resources to sales and vice versa, is another important area for
future research.

5 Empirical research on flexibility

In this section we discuss a selection of papers that report on empirical
research on flexibility. These papers provide information about the use of
flexibility as a strategic option and about the relationships between the use of
flexibility of various types and firm performance.

Swamidass and Newell (1987) performed an empirical study in which
they collected data from 35 manufacturers in the U.S. machinery and machine
tool industry, in order to investigate the relationships between manufacturing
strategy, environmental uncertainty and performance. One of their
findings was that the greater the manufacturing flexibility, the better the
performance, regardless of the type of manufacturing process used.

Ettlie and Penner-Hahn (1994) conducted a survey study in U.S.
durable goods industry in order to investigate the relationships between
manufacturing strategy and the various types of manufacturing flexibility
found in the plants. They selected firms that had recently introduced
flexible manufacturing systems or flexible assembly systems. They
found that the more flexibility is emphasized in strategic focus, the more
likely a plant is to have a shorter average change-over time per part
family. They also found that firms focus on flexibility by concentrating onmore
part families per change-over time in the production planning. Realizing the
benefits of FMSs seems to require partly redesign of the products.

Suarez, Cusumano, and Fine (1996) studied 31 PCB plants belonging to
14 electronic firms in the United States, Japan and Europe. They postulated
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five factors: product technology, production management techniques,
relationships with suppliers and subcontractors, human resource manage-
ment, and product development process, to have relationships with three
dimensions of flexibility: mix flexibility, volume flexibility and new product
flexibility. They found that newer, more automated processes were associated
with less mix flexibility and with less new product flexibility, and with more
volume flexibility. Lean production management techniques did positively
correlate with mix and new production flexibility. Close relationships with
suppliers and subcontractors had a positive impact on all three flexibility
dimensions. Furthermore, plants with wage structures linked to plant
performance had better volume flexibility, and plants that followed design for
manufacturability principles (in particular, reuse of components) had greater
mix flexibility and new product flexibility.

Upton (1995, 1997) investigated the product change-over flexibility in
52 plants of 11 companies in the uncoated fine paper industry, based on detailed
structured interviews with managers and operators, followed up with a one-day
wrap-up conference per plant. He found that most of the variance in change-
over flexibility (or process mobility) across plants could be explained by the
work experience of the people in the plant, and the emphasis that their
managers lay on change-over flexibility. The size and the computer technology
of a plant were not important determinants of its mobility; it even looked like
computer integration could be detrimental to the flexibility of a plant.

Gupta and Somers (1996) developed three hypotheses regarding the relation-
ships between strategy, flexibility and performance, and tested themon the basis
of survey data collected from 269 firms from precisionmachinery, electrical and
electronics, industrial machinery, metal products and automobile and auto part
firms. Survey data were collected about the opinion of the respondents
regarding strategy, flexibility and their relationships in their firm. They found
that the aggressiveness dimension in business strategy is significantly related to
all flexibility dimensions. Aggressive organizations report that they tend to
sacrifice short-term profitability for going for market share, and therefore
develop various forms of flexibility to be able to respond to changing market
conditions. They also find that organizations pursuing a defensive strategy tend
to seek very little flexibility. They furthermore found that the application of
flexible manufacturing technology impacted negatively on both growth and
financial performance, and that product flexibility had a negative relationship
with growth performance. Finally, volume flexibility was found to have a
positive relationship with growth performance. This indicates that firms that
seek profitability with growth seem to invest in volume flexibility, whereas firms
that seek profitability with product differentiation in the market, seem to invest
in product and process flexibility.

Cagliano and Spina (2000) investigated the role of advanced manufacturing
technologies in achieving strategically flexible production. Strategic flexibility is
defined as the ability to shift competitive and manufacturing priorities rapidly
from one set of goals to another, within the same manufacturing system.
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Strategic flexible production is based on multi-focusedness, process integration
and process ownership. They developed six hypotheses regarding the
relationships between strategically flexible production strategies, and the
application of advanced manufacturing technology. The hypotheses were
tested in a survey of 392 firms in 20 countries in Europe, America and Japan.
They found that the adoption of strategically flexible production does not
correlate with the more intense use of computerized equipment or software
applications. However, the higher level of organizational integration required
for a complete orientation to strategically flexible production often went along
with greater computer based cross-functional integration. Furthermore they
found a positive relationship between the use of assembly robots and
manufacturing quality, and between the use of MRP-II software and
improvement in manufacturing lead time. However, no independent effect
was found of the use of automated manufacturing technology on performance
improvement; technology alone seems unable to improve manufacturing
performance.

The adoption of strategically flexible production was found to drive most of
the improvements in manufacturing lead time, which was further reinforced
by the use of cross-functional computer integration. It was also found that
computer integration is the main influence on significantly higher improve-
ments in product variety.

For a comprehensive review of empirical research on manufacturing
flexibility, we refer to Vorkurka and O’Leary-Kelly (2000). This paper
synthesizes the body of empirical research regarding content-related issues and
identifies possible avenues for future research. Furthermore, the paper
examines several important methodological issues regarding manufacturing
flexibility research, and indicates repeated methodological problems with
regard to measurement validity, measurement reliability and general design,
and suggest solutions.

5.1 Conclusions

Wrapping up the main finding in the reviewed literature in the Sections 3–5
we can state that:

– A small amount of resource flexibility, if well configured, can
achieve almost all of the benefits to be obtained from total
resource flexibility. This goes for volume, mix as well as new product
flexibility.

– Transfer delays, change-over times and costs, and learning and forgetting
may seriously decrease the benefits to be obtained from resource
flexibility or inhibit its application. This especially pertains to new
product flexibility. Thus investments in change-over time reduction
should be considered, simultaneously with investments in type and
amount of resources. Moreover when considering the use of worker
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flexibility, the effect of its use on worker efficiency and on labor costs,
should be modeled in the investment decision problem, simultaneous
with the decisions about investments in type and amount of machine
resources.

– Operations planning and control policies can play an important role in the
impact of resource and routing flexibility, change-over costs and time,
and worker efficiency on the performance. Control policies especially
affect product flexibility and efficiency given the strongly decreasing
marginal contribution of flexibility to performance. Control policies can
effectively be used to constrain the negative impact of change-over times
and costs and differences in labor efficiency on performance, while still
realizing a large part of the benefits to be obtained from resource and
routing flexibility.

– Strategic focus on flexibility seems to be an important condition
for creating the resource and routing flexibility required, and for
delivering the systems flexibility aimed at. Strategic focus seems to
impact both managerial attitude, leading to investments in resource and
routing flexibility (Section 3), and worker attitude. It also seems to
mobilize the knowledge acquisition and knowledge deployment
processes needed to convert potential resource and routing flexibility
into output flexibility via an effective ‘system for delivering flexibility,’
as discussed in Section 4.

6 Supply chain flexibility

With one exception, all research reviewed in the previous section pertains
to flexibility that can be delivered by a production system consisting of a set
of resources that has been set up to produce a group of products, where
each product requires one or more operations on the resources. No published
papers have been found that study the flexibility of a supply chain as
such. This would require the modeling of the supply relationships between
the plants (or production units) involved in the production of a product or
a product family, and the study of the relationship between, on the one hand,
the flexibility of each of the production units with respect to the volume,
mix and timing of their part of the production and, on the other hand, the
flexibility of the supply chain as a whole. Although no models are available, the
literature on flexibility does reveal the main causal relationship between
the various dimensions of manufacturing flexibility at the plant level and at
the supply chain flexibility with respect to volume, mix and new product
flexibility.

In Section 7 we will present a supply chain model that can be used to
analyze the decision options in designing a supply chain for volume, mix
and new product flexibility. We will use views and approaches similar to
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those used in the literature reviewed in the Sections 3 and 4. For volume andmix
flexibility, we will build on the types of models used in the literature to study
investment problems. For new product flexibility we will build on the literature
on production order throughput time in relation to resource flexibility.

Relationships between plants (or production units) involved in a supply
chain can be of different kinds. Some plants may be part of the same company,
other plants may belong to different companies. Some plants may deliver
standard items that are produced to stock and supply to different customers.
Other plants may supply make-to-order or engineer-to-order items and may or
may not supply to different customers. Relationships and supply contracts
between plants and the supply chains they are involved in will depend on
relative power, market position etc., and these relationships and contracts will
influence the possibilities to coordinate the supply chain. Therefore, in the next
section we will review a number of papers published in operations management
literature on supply contracts that provide information about supply chain
design and flexibility. A comprehensive overview of this literature can be found
in Cachon, ‘Supply Chain Coordination with Contracts’ (Chapter 6 of this
volume) and in Chen, ‘Information Sharing and Supply Chain Coordination’
(Chapter 7 of this volume).

To date, virtually all research on output flexibility has been concerned with
flexibility at the plant level. Only a few papers have been published that
explicitly deal with flexibility at the supply chain level [Tsay and Lovejoy
(1999), Cachon and Lariviere (2001)]. Nevertheless, the results of most
research that pertains to flexibility at the plant level are also relevant at the
supply chain level. However, the units of analysis when researching supply
chain flexibility are different from the units of analysis when researching
flexibility at the plant level. To be able to put the various research results in
perspective, we position our subject as follows:

� At the supply chain level, the units of analysis are:
– a product family consisting of a set of product variants,
– a production system consisting of the set of plants that performs the
processes needed in the supply chain (end-product manufacturing,
semi-finished product manufacturing, component manufacturing),

– a set of suppliers that deliver raw materials to the plants.
� At the plant level, the units of analysis are:

– the set of items produced by the plant, which may be end-products,
semi-finished products or components, and which may belong to more
than one product family,

– the resource configuration that of plant,
– the processes that are used to produce the items on the resource
configuration in the plant.

Recall that the relevant flexibility dimensions at the supply chain level are:
volume flexibility, mix flexibility and new product flexibility. The relevant
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flexibility dimensions at the plant level are machine flexibility, worker flexibility
and material handling flexibility.

Flexibility that is available at the plant level (machine, worker, materials
handling flexibility) can be made available at the supply chain level in the
form of volume flexibility, mix flexibility and new product flexibility for the
items produced in that plant for the supply chain. However, it should be
realized that each plant that is involved in a specific supply chain, is not
necessarily involved in only this supply chain. Plants may be involved in various
supply chains, and as such they must build up and employ flexibility that is
geared to the requirements of each of the supply chains they are involved in.
Thus, a plant must carefully select the supply chains that it is involved in, in
order to match their requirements with the manufacturing focus of the plant
regarding cost, quality, speed and flexibility. Similarly, when selecting a plant to
be involved in a supply chain, one must carefully consider the cost, quality,
speed and flexibility that can be delivered by the plant, in the light of the
requirements at the supply chain level.

Although supply chain flexibility is dependent on plant flexibility, it
should be carefully distinguished from plant flexibility. Since a supply chain
cannot be stronger than its weakest link, the plant in the supply chain with
the least flexibility determines the (volume, mix and new product) flexibility
of the supply chain as a whole. A supply chain is therefore quite vulnerable
to the performance of the individual plants in the chain; one plant consistently
failing to live up to its promised level of supply, may simultaneously cause
lost sales for the supply chain in the market place, and large stocks of
unfinished products, leaving the ‘supply chain owner’ with a double loss. Thus
a supply chain should be designed such that the flexibilities of its plants
are balanced. However, what does it mean that the flexibility of the plants in
a supply chain must be balanced? This is not clear at the outset, since the
concept flexibility has different dimensions and each plant in the supply
chain can have a different impact on realizing end-product flexibility in the
market.

In Section 7 we will present a conceptual framework that can be used for
the design of a supply chain for a product family during maturity phase of its
product life cycle. We will assume that the design decisions are made in
anticipation of the product family introduction in the market. We will assume
probabilistic knowledge about the levels of demand for the product variants in
the product family during the maturity phase, and we will assume that for
each of the plants in the supply chain, investments in resources can be made to
accommodate different levels of supply. We will consider three dimensions of
flexibility: volume flexibility and mix flexibility with respect to the demand
level for the product variants and (new) product flexibility for introducing new
product variants during the product family life cycle. We will not consider
short delivery flexibility, i.e., the responsiveness to short-term variations in
demand around the demand levels. An important source of short-term
delivery flexibility is inventory. The proper use of inventory of components,
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semi-finished products and end products for dealing with short-term demand
variations is treated in de Kok and Fransoo (Chapter 12 of this volume).

We complete this section with a short discussion of supply chain research in
relation to supply chain design and flexibility. A comprehensive overview of
supply chain research, spanning the period 1956–1998, can be found in
Ganeshan et al., Chapter 27 in Tayur, Ganeshan, and Magazine (1999).

6.1 Research on supply chain flexibility

Supply chain management has emerged in the 1990s as a new research field
in production and operations management. Although the term was new, the
subject that was studied was not. Chains of manufacturing activities had been
studied before, in particular in the 1950s. Clark and Scarf (1960) studied
multi-echelon inventory systems and developed base-stock control as a way to
control a chain that faces stationary stochastic demand and constant stock
replenishment lead times. The approach of Clark and Scarf (1960) can be
typified as normative rational decision theory. Forrester (1961) studied the
dynamic behavior of chains of production–inventory systems facing various
kinds of dynamics in demand, including non-stationary demand. Whereas
Clark and Scarf (1960) studied a chain under the assumption of centralized
control, where the central controller has complete knowledge of the inventory
positions in the chain, Forrester (1961) also studied chains under the
assumption that each element of the chain is locally controlled, with decisions
aiming for local objectives and based on locally available information about
the inventory positions in the system. Using basic knowledge from control
theory, Forrester (1961) was able to explain the upstream amplification of
small variations in end-product demand, from the decentralized control
structure of the system. This was named ‘the Forrester effect,’ after him. In the
1990s the Forrester effect has been renamed as the Bullwhip effect, see Lee,
Padmarabhan, and Whang (1997), who also provide an analysis of the root
causes of the Bullwhip effect. The approach of Forrester (1961) can be typified
as rational explanatory research. In fact, for almost 30 years, Forrester
remained one of few researchers in operations management who had studied
supply chains under the assumption that each element in the chain would
pursue its own local objectives.

In the 1980s increased competition due to market saturation forced
consumer goods manufacturers to increase the number of product variants
in a product family and to increase the product innovation rate, leading to
shorter product life cycles. At the start of the 1990s the economic globalization
led to an increase of outsourcing of manufacturing activities to third parties.
Product families containing hundreds of product variants with short life
cycles, many of them being region- or country-specific, were being made on
assembly lines, with first and second tier supply of product specific
components and subassemblies being outsourced to external companies. As
a result, the complexity of the supply chains increased tremendously, and
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researchers started to shift the emphasis to new aspects of the emerging supply
chain coordination problem. These were:

– the buyer–supplier relationships in the supply chain,
– information asymmetry in the supply chain.

Within the scope of this chapter, which is the design of flexibility in supply
chains, the research on buyer–supplier relationships is most important.
Research of buyer–supplier relationships concentrates on supply contracts.
Using concepts from game theory, different types of supply contracts have
been studied in order to determine how effective a specific contract is in
coordinating the supply chain. Perfect (channel) coordination is obtained
if, when both the supplier and the buyer behave rationally under the contract,
the total supply chain profit is equal to the total profit obtained under optimal
centralized control.

When a supplier wants to produce and deliver customer-specific parts
under a contract, he usually has (at least partly) to (re)design the pro-
duction processes and he may have to invest in new manufacturing equip-
ment, in new tools and in operator training and education. The terms of
the contract determine the risk that the supplier runs in view of the uncer-
tainty regarding the orders that will be placed in the future. Investment risks,
demand uncertainty and price must be in balance in order for the contract to
be sufficiently attractive for the supplier. In research, the buyer–supplier
situation has therefore been characterized as a two-period two-player
decision system, where either the buyer, or the supplier can take the
initiative. When initiative is with the buyer he communicates in the first period
information about future (uncertain) demand to the supplier and negotiates
a supply contract. The supplier has to decide whether or not to accept
the contract, given the price, the terms of delivery, and his costs. The contract
may include fixed or variable prices, contract down payments or quantity
discounts, purchase commitments or delivery commitments. Alternatively, the
supplier may offer a contract to the buyer. If a contract is agreed the supplier
prepares for the second period by installing production capacity, buying
materials and preparing for production (often forced compliance to the
contract is assumed).

In the second period the buyer is faced with real demand (or acquires better
information about future demand) and places orders under the agreed
contract. Next the supplier delivers as far as he is able to, and given the
amounts delivered, the buyer serves the real demand.

Supply chain literature mentions the following elements that should
be arranged in a supply contract – horizon length, pricing, periodicity of
ordering, quantity commitments, flexibility, delivery commitments, quality,
and information sharing. A comprehensive review of literature on contracts in
supply chain research is given in Agrawal et al., Chapter 10, in Tayur et al.
(1999), and in Cachon (Chapter 6 of this volume).
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In the context of designing flexible supply chains, we are especially
interested in quantity commitments, delivery commitments and flexibility
aspects of contracts. Research on quantity commitments and/or quantity
flexible contracts has been published by Bassok and Anupindi (1997), Eppen
and Iyer (1997), Parlar and Weng (1997), Graves, Kletter, and Hetzel (1998),
Tsay and Lovejoy (1999), Li and Kouvelis (1999), and Cachon and Lariviere
(2001). Most of this research investigates the channel optimality of the
contract under various conditions regarding delivery commitment, pricing and
demand information sharing. The results show that decentralized decision-
making in a supply chain can be detrimental to the overall performance of the
supply chain. The main reasons for the poor performance being the double
marginalization and the different parties making decisions under different
states of information.

Tsay (1999) shows that in a buyer–supplier situation where end-customer
demand is sensitive to price, these problems can be partially remedied by
a quantity-flexible contract in which the buyer commits to a minimum
purchase and the supplier guarantees a maximum coverage, both stated as
a percentage deviation from the buyer’s initial forecasts, and a fixed price
is agreed per unit delivered. This type of contract corresponds with
business practice in technology intensive industry [Farlow, Schmidt, and
Tsay (1995)]. Other researchers have investigated contracts which contain
differential prices for exercising revisions of an initial order placed in the first
period, or allow for product returns in the second period at a certain price.
These contracts seem to be more in line with the business practice in retail
chains, in particular in the relationship between manufacturing and retail in
consumer products with short life cycles [Parlar and Weng (1997), Iyer and
Bergen (1997)]. Other contract forms that may coordinate the supply chain
are buy-back contracts and revenue sharing contracts (see Cachon, Chapter 6
of this volume).

6.2 Forced versus voluntary compliance

The assumption of forced compliance to the contract that is made in most
contracting research is a very strong one from a model analysis point of view,
but can be quite unrealistic in many industrial situations. It takes away the
freedom of the supplier after the contract has been arranged. This may be
justified in situations where the buyer is very powerful, but in most situations
suppliers deliver to more than one customer and will tend to install capacity
such that they can pool the uncertainty in demand from their customers. In
fact, the decision to subcontract part of the production is based either on
technological capabilities of a supplier that the buyer does not possess, in
which case the buyer is captive, or on the expectation that the external supplier
will be able to work cheaper, and to be more responsive because of
his capability to realize economies of scale and to pool demand uncertainty.
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Thus voluntary compliance is a more realistic assumption regarding supplier
behavior under a supply contract.

Van Mieghem (1999) studies a two-stage dynamic stochastic program of
a manufacturer and a subcontractor that decide separately on their
capacity investment levels. After demand uncertainty is resolved both parties
have the option to subcontract under a given contract or supply when
deciding about their production (implying voluntary compliance). He presents
outsourcing conditions for three contract types: (1) price-only contracts,
where an exact transfer price is set for each unit supplied by the subcontractor;
(2) incomplete contracts, where both parties negotiate about the division
of surplus capacity based on ex-post bargaining power; (3) state-dependent
price-only contracts. Van Mieghem (1999) shows that only state-dependent
price-only contracts can eliminate all decentralization costs and coordinate the
supply chain with respect to capital investment decisions. He furthermore
finds that sometimes firms are better off by leaving some contract parameters
unspecified ex-ante and agreeing to negotiate ex-post. He shows that a price
focused strategy for managing subcontractors may backfire because a lower
transfer price may lead to lower investments by the subcontractor, and
decreased manufacturers profit. Finally it is shown that the option value of
subcontracting increases as markets are more uncertain or more negatively
correlated.

Cachon and Lariviere (2001) study the sharing of demand forecast
information in a two party supply chain under both forced compliance and
voluntary compliance, were the buyer offers the supplier a contract consisting
of firm commitments and options. They show that under full information
sharing and voluntary compliance, the buyer will neither offer firm
commitments nor options, but only use the price in the contract. They also
show that under voluntary compliance and under mild conditions regarding
capacity, cost and demand uncertainty, the price that maximizes the buyer’s
profit creates a supplier capacity that is smaller than the capacity under forced
compliance. Furthermore they show that under asymmetric information and
sharing demand forecasts, firm commitments can play a role as signaling
instrument, but at a price; although the need to purchase forecast credibility in
this way can lower the manufacturers profit, total supply chain profitability
increases because more capacity is built.

6.3 Discussion

Almost all research on supply contracts takes the coordinated channel, that
is the overall supply chain optimal supply decision, as reference point.
From an overall economic point of view this may make sense. However, if
total supply chain profit is optimized and most or even all of this profit is
gained by one of the parties (which happens in some of the models studied in
literature), then the question is whether this leads to a viable situation. Each
party in the chain needs to make sufficient profit in order to be able to invest,
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improve and expand. Thus, optimal supply chain coordination as implied by
the concept of the coordinated supply channel might to be too restricted to
cover all relevant aspects of a buyer–supplier relationship in, for instance,
technology intensive industries. There we can see manufacturers who have
an interest in improving the capabilities of their suppliers so that they will
become better suppliers in the future. Incorporating these aspects in the
models, would substantially complicate the analysis, since the buyer would
have to evaluate the effects on future costs of leaving more profit to the
supplier on the short-term.

Another aspect not considered in current research on contracts in
supply chains is the multiple supplier situation and the multi-echelon nature
of most manufacturing supply chains. Usually a manufacturer who is
organizing his supply chain arranges supply contracts with one or more
suppliers per item in the chain [see Kamien and Li (1990)]. Some of the items
may be end-products; others may be standard parts; some items may be
expensive, others may be cheap; some of the suppliers may be powerful,
others may lack power. Thus, within one supply chain different types of
dependencies may exist between manufacturer and his suppliers. Voluntary
compliance may be the dominating mode in buyer–supplier relationships, and
end-customer demand information may have different criticality to different
suppliers. Given the fact that a manufacturing firm setting up a supply chain
for a product family will generally have many suppliers and each of these
suppliers will generally have many customers, each also involved in other
supply chains, the concept of ‘coordinated channel’ will have little direct
meaning to any of the participants in the supply chain for a particular
product family. However, the coordinated channel is a very elegant theoretical
concept for analyzing the efficiency of contracts for single buyer–supplier
relationships.

In this chapter we focus on the design of the supply chain for a
product family. In line with existing literature, we model the supply chain
from the perspective of the manufacturer and assume the supply chain to
consist of a network of plants which supply components, semi-finished
products and end-products, and which require deliveries of raw materials,
components and semi-finished products for their manufacturing processes. We
only consider critical items such as the product-specific items and the
expensive standard items; items in the category ‘bolts and nuts’ are left out
because their supply needs not to be contracted yet in the design phase of the
product family.

We will model the supply chain under the assumptions of centralized
control, full information sharing and forced compliance. This seems
unrealistic but this chapter is about design, and the assumptions of centralized
control, full information sharing and forced compliance, provide a good
reference point for the design of the processes and supply relationships in the
supply chain. Moreover, the research of Van Mieghem (1999) shows that
supply contracts exist that coordinate the supply chain with respect to capital
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investment decisions, and in view of the many contracts types that can
coordinate the supply chain we may expect that also in supply chains
involving multiple buyer–supplier relationships, configurations of contracts
between parties in the chain will be found that can coordinate the channel.
In the remainder of this chapter we anticipate on this development and
consider the design of the supply chain as a centralized decision problem.

In the next section we will formulate the supply chain design problem,
building on the research results discussed in the previous section. But first we
start with a few remarks on design, and on the positioning of the supply
chain design problem in the new product design process.

7 Design for supply chain flexibility

Design can be viewed as an information processing activity resulting in the
creation of an object. Design can also viewed as a multi-criteria decision-
making process (see Kusiak, 1999, Chapter 9). Design methods and
design methodologies have been developed for the design of products and
processes, ranging from methods for structuring the design process, such as
concurrent engineering, to design tools such as quality function deployment,
the analytical hierarchical process and constraint-based design. In the product
design process we generally distinguish the following phases:

– customer requirements specification
– functional product specification
– technical product specification.

The difficulty of design is due to the complexity of the decision space, which
in essence consists of all possible functional product specifications and all
possible technical product specifications. The problem consists of, first,
knowing what is the set of all viable technical product specifications that
satisfy a given set of functional specifications, and second, choosing among
this set one that optimizes the functional requirements, given the constraints
on the resources and the time to be spent on the design process.

At the start of the design process, initial functional product specifications
are set, which are managed during the design process, taking into account the
expected market pay-off of offering a product with specific functionally within
a given time frame, and the expected amount of resource and time needed for
developing a product with this specific functionality [Huchzermeier and Loch
(2001)]. Given the complex and multi-criteria nature of the design process
both the conversion of customer requirements into functional product
specifications, and the conversion of functional product specifications into
technical product specifications are iterative overlapping processes which have
to be managed from all relevant perspectives such as product costs, product
quality, product manufacturability, product maintainability and product
recovery [Kusiak, 1999; Chapter 9].
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Supply chain design is an element of the product design process for a
product family. Fine (1998; Chapter 8) divides supply chain development into
the supply chain architecture decisions and the logistics/coordination system
decisions. Supply chain architecture decisions include decisions on whether to
make or buy a component, sourcing decisions and contracting decisions. In the
choice for a specific supplier or manufacturer in the product supply chain, a
number of different aspects will play a role, such as region of settlement,
currency risks, company continuity, the current company customer base,
product quality risks, codevelopment capabilities etc. All these aspects will have
to be taken into account in the multi-criteria decision-making that constitutes
the design process. Thus, the supply chain design problem for a new product
family is embedded in the overall new product design problem, and can
be addressed from all the different angles mentioned above. In his book
Fine (1998; Chapter 8) presents the FAT 3-DCE decision model that describes
the product, process and supply chain decision functions and illustrates the
interdependence between product design and process design via the choice of
technology, the interdependence between product and supply chain design via
the choice of product architecture, and the interdependence between
process design and supply chain design via the decision regarding the
focusedness of the manufacturing system.

In this chapter we study the supply chain design problem for a new product
family, assuming that the decisions regarding the main technical specification
of the materials, components, semi-finished products and end-products have
been made, and that the product design process is in the phase of selecting
the manufacturing technologies, selecting the suppliers, and installing the
production capacity

Our supply chain design problem therefore consists of answering two
major questions:

1. What should be the supply levels, including flexibility options, for each
of the items in the product structure?

2. What technology and what capacity should be installed to produce each
of the items in the product structure?

As in most design problems, these two questions cannot be answered
independently. For setting the supply level per item, information is needed
about the capabilities and costs of technologies that can perform the processes
to produce the items. Also, the choice of technology and capacity per process
requires information about the supply level required, which again depends on
end-product demand and the supply level of all other items in the chain. Thus,
the design of a supply chain is an iterative process and must be structured as
such (see Fig. 1).

Therefore, we first discuss the coordination of the supply levels of the
items; this we call supply chain modeling (Section 7.1). Then we discuss
the selection of technologies for producing an item (Section 7.2). This is
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concluded by a more detailed discussion of the design at the supply chain level
(Section 7.3).

7.1 Supply chain modeling

Supply chains can be studied from different perspectives, and for each
perspective, different aspects of the supply chain must be incorporated into the
supply chain model. For instance, when studying the dynamic behavior of
a supply chain (the bullwhip effect) aspects such as (de)centralized
decision making, replenishment lead times, information sharing and demand
uncertainty must be modeled. When studying optimal material allocation in a
supply chain, the material requirements structure, the replenishment lead
times, inventory carrying costs, ordering costs and demand uncertainty must be
modeled. In this chapter we model the problem of creating delivery flexibility
in the supply chain. We therefore largely abstract from the operational control
of the supply chain, and assume that the operational supply chain
control system will be able to fully employ the flexibility that has been created
in the supply chain design phase. Thus we focus on decisions about
manufacturing technology and production capacity in the supply chain for a
product family. The modeling approach used in this section has been inspired
by the models used for analyzing investments in flexibility in Fine and Freund
(1990), Jordan and Graves (1995) and VanMieghem (1998). We first model the
product family, then we model the demand process, and finally we model
the supply chain.

Fig. 1. The iterative supply chain design process.
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7.1.1 The product family
Our unit of analysis is the supply chain for a product family. A product

family is defined as a group of product variants, each variant being a
derivative of a platform product. Two characteristics of product families are
important from a supply chain design point of view.

(1) Demand for product variants within a product family can be
correlated. Specifically negative correlation may exist between relative
demand per variant in the product family.

(2) Semi-finished product, component and material commonality may exist
between product variants within a product family.

Correlated demand and commonality can have a large impact on product
family costs and on the operational control costs of a product family [Baker
(1985), Baker, Magazine, and Nuttle (1986), Lee (1996), see also Swaminathan
and Lee, Chapter 5 of this volume], but also on the flexibility that is available
in the supply chain. Therefore, when considering component commonality
during product design, also the impact of commonality on supply chain design
and supply chain flexibility should be taken into account.

7.1.2 Product demand model
We consider a product family consisting of i ¼ 1, . . . , jI j product variants,

where I denotes the set of product variants. We consider the problem as a
two-phase decision problem. At the start of phase one the product design
process has developed to the stage were:

– the product variants are known,
– the product structure (bill of materials) for each product variant is
known,

– for each product variant knowledge about future demand during
phase two is available in the form of a joint distribution function
FðD1,D2,D3, . . . ,DnJ Þ where Di denotes the level of demand for product
variant i during phase two. We further assume F to be continuous and
differentiable, that FðD1, . . . ,Di, . . . ,DnI Þ ¼ 0 for any Di � 0, and that
FðD1, . . . ,Di, . . . ,DnI Þ > 0 for 0 < Di < Dmax. (Negative) correlation
between demand for product variant is contained in the joint demand
distribution function.

We assume that the second phase starts after introduction of the product
family in the market, and covers the maturity phase of the product life cycle.
We assume that the maturity phase for each product variant is characterized
by a constant demand level, di. Actual demand per period during the maturity
phase can be modeled as:

d 0i ðtÞ ¼ di þ "iðtÞ t ¼ 1, . . . ,H, ð7:1Þ
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where H denotes the number of periods in the maturity phase. The period
length would typically be a week or a month, and be the basis for operational
control of the supply chain. The variable "iðtÞ represents the short-term demand
uncertainty for product variant i. The operational control of the supply
chain mainly pertains to setting safety stocks and to placing replenishment
orders in response to the realizations of the short-term demand d 0i ðtÞ.We assume
that an operational control system will be in place that is able to satisfy any
demand pattern during the maturity phase under the condition that d 0i ðtÞ � dm

i

where dm
i denotes the maximum demand level of product variant i that can be

satisfied during the maturity phase, given the processing capacity installed at
the start of maturity phase. Operational Planning and Control concepts for
supply chains are discussed (Chapter 12 of this volume) by deKokand Fransoo.

7.1.3 Supply chain model
The supply chain for the product family can be modeled as an ordered set

of processes. Each process converts materials, components and/or semi-
finished products into higher order items. Material supply relationships exist
between the processes, induced by the bill of material of the product family. Let
J denote the set of processes in the supply chain, and j 2 J denote an arbi-
trary process in the supply chain. In our supply chain model definition, a one-
to-one correspondence exists between items and processes. Each item (raw
material, component, semi-finished product or end-product) is produced by one
process, and each process produces one and only one item. In this definition a
process is an abstraction of the way in which an item in the supply chain is made
out of its component(s) (conform Jordan and Graves (1995)). The term
‘process’ refers to the conversion of items into higher level items in the bill of
material structure. A process can be realized in various ways, using a variety of
technologies, each with its own characteristics regarding investments needed,
operating costs, and operating flexibility.We will develop a supply chainmodel
that enables us to relate decisions about technologies to be used for
manufacturing of the various items in the supply chain, to decisions about the
delivery flexibility for end-products to be made available in the market place.
The abstract concept ‘process’ enables us to do so.

We assume that each process j can be realized by any of a set of technologies
where each technology � 2 Kj is characterized by its investment costs,
processing costs, and the flexibility aspects, range, mobility and uniformity.

Since the processes correspond to items in the supply chain, the number of
different items to be distinguished in the supply chain is equal to the number
of processes and the index j denotes both the item and the process that leads to
the item. We can model the end-item-process requirement structure in the
supply chain as an jI j � jJj matrix R, where ri,j denotes the amount of units of
item j that need to be produced by process j in order to get one unit of end
product variant i.

Now consider an arbitrary end-product variant i 2 I . The row vector ri
gives the amounts of units that need to be processed in all processes in the
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supply chain (including the buy processes) in order to be able to deliver one
unit of the product variant, i. Thus ri,j ¼ 0 implies that the item produced
with process j is not part of product variant i. By definition rk,k¼ 1. The
commonality between two product variants, i1, i2 is completely determined by
the correspondence between the row vectors ri1 , ri2 . Corresponding non-zero
elements of these row vectors indicate material and process commonality.

Now suppose that each of the processes j in the supply chain is constrained
by the maximum output rate, that is the maximum amount of units of that
item j that can be processed per time period. Let yj denote this maximum. Let
si denote the amount of units of end-product variant i that can be sold per
time unit. Then si, the amounts of end-product variants that can be sold per
time unit, is constrained by:X

i2I

rijsi � yj 8j 2 J ð7:2Þ

The supply chain design problem also entails the decision about what
technology, and how much, to install for each of the processes j (or what
supply contract to arrange if a buy processes is concerned). This problem has
to be considered at two levels. The first level is the supply chain level. At this
level the operational results that can be obtained during the maturity phase,
given the supply chain constraints {yj}, has to be evaluated. The main concern
here is the alignment of the constraints {yj} such that the expected operational
result from end-products sold are weighed against the investment costs
incurred by the constraints {yj}. The second level is the process level, where for
each process, j, the available technologies are evaluated in order to select the
optimal technology as a function of the maximum output rate yj of that
process. Like in any design process, overall design and detailed design (in this
case, design at the supply chain level and design at the plant level) are
interdependent and the final design is realized in an iterative way (see Fig. 1).
In the next subsection we elaborate on the nature of the design problem at
the plant level.

For ease of reasoning we assume that the maximum output rates, yj, can be
set only once, and are fixed during the entire maturity phase of the product
family. Resetting of the maximum output rates may be possible during the
maturity phase (e.g., in response to new demand information) but has to be
done in a coordinated way, taking into account the effectuation lead times of
implementing the new maximum output rate, as will be discussed in the rest of
this chapter.

7.2 Design at the process level

Manufacturing processes are realized in manufacturing systems. A
manufacturing system is defined as ‘a unified assemblage of hardware, which
includes trained workers, production facilities (including tools, jigs and
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fixtures), materials handling equipment, and other supplementary devices,
which is able to converse process factors of production, particularly the
raw materials, into finished products, aiming at maximum productivity’
[Dorf and Kusiak, (1994), Chapter 21]. The main decision problems in
process design are the selection of technologies, in relation to the set-up of
the workflow (sequence of operations), the selection and training of the
work force, and the set-up of the production planning and control system.
Technologies are selected on economic grounds by choosing the alternative,
which gives the best performance terms of quality, costs, lead time and
flexibility. At the process design level we can only determine the optimal
type of technology as a function of the output rate yj (amounts of units
processed per period) that should be made available at the supply chain
level. The theory on production economics provides a basic relationship
between the costs per unit produced as a function of the production rate
for different technologies. Specialized technology requires higher investments
than general purpose technology, but the production speed is higher.
So the output rate determines which technology is optimal. Figure 2
illustrates this effect on cost per unit produced, for the choice between three
different technology levels for manufacturing components in mechanical
machine shop. The three technologies differ in the investment costs needed
for being able to realize the required output rate, and in the variable cost per
unit produced.

Technologies that have smaller variable production costs require higher
investments. As a result technologies can be ordered according to the output
rate. If the required production rate is in region A, then general purpose
machines should be chosen. In the region B the numerically controlled machine
should be chosen. In region C, the special purpose machines. The figure
suggests that total cost is a concave function of production rate, if we only
consider the set of Pareto-optimal technologies with respect to investment costs
and variable production costs.

If similar products are produced on the same technology in order to
achieve economies of scale, an important aspect of this technology is its
flexibility in terms of range, mobility and uniformity. These flexibility aspects
have to be considered in the supply chain design phase because they
determine the new product and product modification flexibility of the
supply chain. A technology that has a high range, high mobility and high
uniformity can carry out a wide diversity of processes, without change-over
time, at a uniform costs across the processes. Mobility determines production
batch sizes, work-in-process and production throughput times in the supply
chain.

7.2.1 Range
It will be clear that general purpose technology can perform a wide range

of processes, whereas specialized technology can only perform one or a
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small range of processes. In general, the higher the specialization, the smaller
the range of processes that economically can be performed on a technology.
On the other hand products and processes can be codesigned in such a way
that they can share the same manufacturing technology, resulting in
economies of scale. Thus if two products and their production processes
can be designed such that the same technology can be used for both processes,
then a higher level of technological specialization may be economically
justified on the basis of the combined output rate for the two processes.
This is exactly what has happened in 1980s when flexible manufacturing
technology was introduced to produce different but technologically similar
low-volume parts on one FMS. Empirical research into the effects of the use of
FMSs revealed that the real economical benefits were only obtained some
time after installation, when products and processes were redesigned in
order to better fit with the capabilities of the FMS [Ettlie and Penner-
Hahn (1994)].

Also for assembly processes, technology provides such opportunities. In
the 1980s many car manufacturers started to codesign body parts and
end-assembly lines such that a variety of end-products could be assembled on
the same line, without any change-over time between the product variants.
Thus the assembly line not only can perform multiple processes (this was
already available before) but can do this without any relevant change-over
time or change-over costs. This brings us to the second aspect of resource
flexibility; change-over flexibility or mobility.

Fig. 2. Total production cost as a function of production rate for three different

technologies.
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7.2.2 Mobility
In the presence of change-over times or costs, a technology can still show

range flexibility but more capacity is needed, or additional investments in
work-in-process and inventories must be made, in order to achieve the same
output rate as with a technology that does not require change-over time or
costs [Gupta (1993), Boyer and Keong Leong (1996)].

As discussed in Section 4 investments in work-in-process or inventories
that are needed to realize a certain output rate, should be added to the
investments needed for the technology itself, in order to get the total
investments needed for being able to perform a process at output rate, yj. The
reason for this is the following. In the presence of change-over costs and
change-over time, production will take place in certain batch sizes. These batch
sizes result from an overall minimization of total variable costs, and lead, for a
given investment in technology and capacity, to process operating costs,
inventory carrying costs, work-in-process costs, and a maximum output rate.
Methods and techniques for the setting of optimal production batch sizes
have been developed over the last decades [see e.g., Karmarkar (1987), Suri
et al., Chapter 5 in Graves et al. (1993), Buzacott and Shanthikumar (1993
Chapters 5, 6, 7 and 8) and Lambrecht et al. (1998)].

Being able to perform a process j at output rate yj requires a combination
of investments in technology, in worker training, in production planning
and control, and in inventory and work-in-process. The work-in-process
and inventory level that support an output rate yj, must be built up before
the start of the maturity phase, and must be maintained during the maturity
phase as long as the output rate yj stands as a rate that must be achievable.
The costs involved in building up the work-in-process and inventory must
be considered as an investment related to the choice of a specific technology.
Moreover, work-in-process and inventory determine to a large extent the new
product flexibility, since it will be necessary to first build up the work-in-process
and inventory of the new product variant in the supply chain to the level
that supports the output rate yj, before the new product can be made available
in the market.

In the design phase, early involvement of suppliers and manufacturers in
the product and process design is of utmost importance. Early involvement is
needed in order to take maximum advantage of available knowledge at the
supplier or manufacturer about technologies. Much advantage can be gained
from designing the items such that their processes can be combined with the
processes of items that the supplier or comaker already produces, or will
produce for other supply chains. For a supplier or manufacturer that can
combine different but technologically similar processes for different
customers, manufacturing system designs are possible which combine low
costs and high flexibility, which is to the advantage of each of the supply
chains. The studies of Jordan and Graves (1995) and Boyer and Keong Leong
(1996) show that technologies with limited process flexibility may perform
virtually equal to a set of technologies that show full process flexibility (that is,
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each process can be performed on each technology). Suppliers should be
selected then can add the process to a ‘fully chained’ configuration of
production resources, with a flexibility level that is in balance with the demand
uncertainty faced by all of the items made on the resource configuration
[Jordan and Graves (1995)].

During the design of the product family, a design guideline should be to
design components, semi-finished products and end-products such that
their manufacturing processes can be easily performed on a joint technology.
Opportunities for this will be amply available when designing a
product family, especially at the higher levels of the production structure
where semi-finished products and end-products are made. For instance,
postponement of product specificity [see Lee (1996)] leads to high levels of
item commonality, and thus to a high level of process commonality in
a product structure, which in turn may lead to low total costs and
increased flexibility. Avoidance of technological specificity for producing
different but technologically similar products may further lead to decreased
production costs and increased flexibility. First, it decreases the number of
constraints on sales to the market. Second, due to the decrease in production
costs, it makes it possible to have higher process output rates, yj, available for
the same amount of capital investment. This follows directly from the
concavity of production costs as a function of output rate for processes
performed on a joint technology. Third, a high output rate of a manufacturing
system allows for lager investments in set-up time and set-up costs reduction
[see Porteus (1985), De Groote (1994b)], and will result in smaller batch
sizes and shorter production throughput times, which improves new product
flexibility.

De Groote (1994b) investigates the role of resource flexibility (range and
mobility) in a capacitated multi-product lot-sizing model. His analysis
provides valuable insights for decision-making about the range and mobility
of a manufacturing system. As an illustration of how range and mobility
aspects of resources can be taken into account in the process design phase we
will give a short summary of his model and his results.

De Groote (1994b) considers a product line that is characterized by n
different products i¼ 1, . . . , n, where di denotes the average demand. The
technology is characterized by a nominal set-up time, S, the direct set-up cost
per unit of set-up time, cs, and the fixed cost (per unit of time), f. Each product
has a finite production rate, ri, and a relative duration of set-up qi. Thus set-up
time and set-up costs per product are qiS or csqiS. Finally, the unit cost of
production (labor and material) is ci, and the opportunity cost of capital
per unit of time is r.

This problem consists of finding the batch sizes Qi that minimize the
average costs per unit time, while meeting the constraints on the capacity. De
Groote (1994b) defines: � ¼

Pn
i¼1 mi=ri as the fraction of time needed for

production. As a result, the maximal number of nominal set-ups per unit time is
ð1� �Þ=S.
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The above problem can be formulated as:

min
Qi

Xn
i¼1

csSdiqi

Qi
þ
rciQi

2
þ cidi

� �

subject to :
Xn
i¼1

diqi

Qi
�

1� �

S

The solution to this problem is given by Parsons (1966). De Groote (1994b)
studies the optimal costs per unit of time as given by Spence and Porteus
(1987). The optimal cost is:

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2csSrcidiqi

p
þ
Xn
j¼1

cidi þ f when
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rcidiqi

2csS

s
�

1� �

SPn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Srcimiqi
p� �2
4ð1� �Þ

þ csð1� �Þ þ
Xn
i¼1

cjdj þ f otherwise:

De Groote (1994b) performs a sensitivity analysis of the optimal costs
subject to changes in aggregate characteristics of this production system.
These aggregate characteristics are:

d ¼
Xn
i�1

di

v ¼
Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffi
cidiqi

p" #2

=
Xn
i¼1

cidi

" #

The index v can be interpreted as a measure of product variety (mixing
uniformity aspects and change-over aspects).

De Groote (1994b) shows that in this model the minimal cost is a concave
function of the variety measure v. Thus variety comes at a price. He
furthermore compares three technologies: a labor intensive job shop (JS), an
automatic transfer line (TL), and a flexible manufacturing system (FMS). The
job shop is characterized by low capital investment, relatively fast change-
overs and high unit costs of production. The transfer line exhibits higher
capital investment, much longer change-over times and much lower unit cost
of production. The FMS exhibits the largest capital investments, but has
instantaneous change-overs and low unit costs of production. Note that the
main difference between the transfer line and the FMS is the change-over time
and change-over costs, which causes the investment costs for the FMS to be
higher than for the transfer line.
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De Groote (1994b) shows for which combinations of d and v each of the
three technologies has the least minimal costs (assuming of course optimal
batch sizes Qi, i, . . . , n). He demonstrates that job shop technology is to be
preferred for low demand, the transfer line is to be preferred for high
demand and low variety, and that the FMS is to be preferred for high demand
and high variety.

Aggregate models of plant design, like the ones used by Porteus
(1985), Spence and Porteus (1987) and De Groote (1994b) can be used in
the supply chain design phase to estimate the effects on total resource
costs of different technologies, as a function of product (or process) variety
and output rate, anticipating that in a later phase optimal batch sizes will be
used in the operational control of the supply chain. Models like the ones
discussed in Section 4 can be used to estimate the production throughput
times per plant.

The process design phase results in the investment costs  k
j ðyjÞ the

operating costs �kj , and the throughput time per item j, j2 J, that result from
performing process j with technology k at output rate yj. The cost functions
are used at the supply chain level to determine the best technology and the
optimal output rates ŷyj, j2 J. This is the subject of the next subsection.

7.3 Design at the supply chain level1

In this subsection we wrap up the supply chain design problem and for ease
of reading we repeat a number of terms and formulations that have been
introduced in previous (sub)sections.

We consider a supply chain that delivers a product family to a market.
The supply chain design problem concerns the decisions relating to the
installation of resources throughout the network of production units. It is
our assumption that the installation of resources aims at enabling a
maximum supply rate for each variant within the product family during
some period of time during the maturity phase of the product family. We
abstract from the possibility that during this maturity phase several versions
of a variant supersede each other. This is no restriction if we may assume
that each of these variants require the same amount of resource per unit
during the maturity phase.

The maximum supply rate per variant to be enabled during the maturity
phase is derived from information about the demand rate per variant during
the maturity phase. Let us define the set I of product variants. Let
(D1,D2, . . . ,DjIj) denote the demand levels of variants 1 to jI j. We assume
(D1,D2, . . . ,DjIj)to be multi-variate normally distributed, thereby taking into
account possible substitution and complementarity effects. Each product

1 The author is indebted to A.G. de Kok for the formulation of the supply chain design problem given

in this subsection.
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variant consists of a number of items. We define J as the set of items. Let (rij)
denoted the ‘flat-BOM,’ i.e.,

rij number of items j required to produce one variant i, i 2 I , j 2 J

Let us assume that we decide to maintain a supply rate si for product
variant i. In order to enable this supply rate we must maintain a supply rate
rijsi for item j dedicated to variant i. Since we want to maintain the supply
rates si simultaneously during the maturity phase we must maintain a supply
rate yj for item j that satisfiesX

i2I

rijsi � yi j 2 J: ð7:3Þ

Assuming that we know the demand levels fdigi2I at the start of the maturity
phase, the product variant supply rates fsigi2I should satisfy

si � di, i 2 I ð7:4Þ

We assume that item j is produced on some technology. In the supply
chain design phase we must decide about the process technology that
produces item j. In most situations a limited number of candidate technologies
is available for producing item j. In the sequel we assume that the technology
choice has been made. For given technology choices we want to determine
the maximal supply rates f yjgj2J that maximize the profits during the
maturity phase. The optimal technology choices can be found by searching
the space of technology options for each item. Such a search should yield both
the optimal technology options and the optimal supply rates fyjgj2J . It is
important to notice here that the only decisions taken during the design phase
relate to technology options and maximal supply rates. The decisions about the
actual supply rates of the variants are taken only when the maturity phase is
about to start and more reliable information is available about the actual
demand for each variant during the maturity phase. Implicitly we have
assumed that we only consider items j for which we have to decide about their
supply rates due to the effectuation lead time of the installation of the resources
that produce these items.

Another important assumption made in the sequel is that items and
processes producing these items are equivalent, i.e., each item is 1-1 related
to a process. Clearly, a technology installed may be capable of accom-
modating multiple processes, thereby introducing mutual relationships
between items through costs, in particular related to economies-of-scale, i.e.,
concavity of cost functions. To clarify this further, define the following cost
functions

 ̂ kðyÞ fixed cost during the maturity phase of technology k when
maintaining a supply rate y
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 jðyÞ fixed cost during the maturity phase of process j when maintaining
a supply rate y

Letting Jk denote the items processed by technology k and assuming a
supply rate yj for all j 2 Jk, the total cost associated with technology k equals
 ̂ kð

P
j2Ik

yjÞ. In order to simplify the analysis we assume that

 ̂ k

X
j2Jk

yj

 !
¼
X
j2Jk

 jðyjÞ:

The main idea behind this assumption is that experienced engineers
responsible for the supply chain design decisions can incorporate the
appropriate economy-of-scale effects in the functions  jð yjÞ, even though
the true economies-of-scale relate to  ̂ kð yÞ. Thus we assume that the fixed
costs associated with a supply rate yj for item j equals  jð yjÞ. We assume that
 j is concave, thereby representing the economies-of-scale.

The variable production costs associated with item j are denoted by �j. The
variable costs depend on yi through Eq. (7.3). Given supply rates f yjgj2J and
fsigi2I the total costs during the maturity phase equal

~cc f yjgj2J , fsigi2I
� �

¼
X
j2J

 jð yjÞ þ �j
X
i2I

rijsi

 !
: ð7:5Þ

We assume that the selling price of variant i equals �i. Then we obtain the
following expression for the overall product family profit during the maturity
phase, �, given supply rates f yjgj2J and fsigi2I ,

� ¼
X
i2I

�isi �
X
j2J

 jð yiÞ þ �j
X
i2I

rijsi

 !

¼
X
i2I

�i �
X
j2J

�jrij

 !
sj �

X
j2J

 jð yjÞ: ð7:6Þ

Let us assume that the product variants are numbered in descending
order of �i �

P
j2J �jrij. Then it is clear that we want to satisfy as much as

possible demand from product variant 1, next demand from product variant 2,
etc. Thus it follows from equation (7.3)–(7.5) that given the item supply rates
f yjgj2J and the actual demand levels fdigi2I , the optimal product variant
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supply rates fs*i ðf yjgj2JÞgi2I should satisfy

s*i ðf yjgj2JÞ ¼ min di,min
j2J

yj �
Pi�1

m¼1 rjms*m
rij

 ! !
, i ¼ 1, . . . ,jI j: ð7:7Þ

Thus, the optimal variant supply rates can be expressed in terms of fdigi2I and
the supply chain design decision variables f yjgj2J . This enables us to formulate
the supply chain design problem as follows.

7.3.1 Supply chain design problem

max
fyjgj2J

EðD,...,DjI jÞ

X
i2I

�i �
X
j2J

�jrij

 !
s*i ðf yjgj2JÞ �

X
j2J

 jð yjÞ

" #

This supply chain investment decision problem can be formulated as a two
phase decision problem, like the one studied in Van Mieghem (1998).

If different processes are performed on a joint technology e.g., all product
variants are assembled at a joint assembly line, then constraints of the following
type must be used.

Let Js denote a subset of processes that are performed on a joint
technology with maximum output rate ys. Then for this subset we use a
constraint:X

j2Js

yj � ys,

and the joint investment cost functions would be  k
s ð ysÞ.

If the joint technology for a subset of processes, Js, is not an assembly
line, but a configuration of dedicated resources with maximal output rate
yj and a flexible resources with output rate yF, such as discussed in
Andreou (1990) and in Fine and Freund (1990), we should use constraints
of the following type:

X
j2J

rijsi � y0j

y0j ¼ yi þ yF j 2 Js

y0j ¼ yj j 62 JsX
j2Js

y0j ¼
X
j2Js

yj þ yF

Also a more complex resource configurations that can perform a subset of
the processes in J, such as the one considered in Jordan and Graves (1995),
can be included in the model. However, the complexity of the constraint set
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would rapidly increase. A more practical approach therefore is to make use of
the observation that a little flexibility, if well-positioned (e.g., fully chained)
can achieve almost all of the performance of a totally flexible resource
configuration. This would allow for the use of only one aggregate constraint
on the output of all the processes in Js, in the optimization.

Graves and Tomlin (2001) extend in the single plant model studied in
Jordan and Graves (1995) to a multi-stage supply chain, consisting of F stages
and I different products, with each product requiring processing at each stage.
Stage f, f ¼ 1, . . . ,F, has Kf different plants, where the term plant refers to any
capacitated processing resource. Product-plant links (i, k) at stage f are
represented by an arc set Af. At stage f plant k can process the items in this
stage of product i iff (i, k)2Af. P

f ðiÞ defines the set of plants of stage f that can
process the items of product i, i.e., k 2 Pf ðiÞ iff ði, kÞ 2 Af . Similarly they define
the set of plants of stage f that can process items of one or more of the
products in set M as Pf ðMÞ ¼ fk : ði, kÞ 2 Af , i 2Mg. They assume that all
products i such that ði, kÞ 2 Af require the same amount of plant f’s capacity
per unit processed, and define c

f
k to be the number of product units expressed

in end-product equivalents, that can be processed in plant k of phase f over the
planning horizon.

Graves and Tomlin (2001) assume a two-phase sequential decision process.
In the first phase it is decided which product items can be processed in each of
the plants in each stage. In the second phase demand is realized and
production is allocated to plants to meet demand.

To evaluate a flexibility configuration Graves and Tomlin (2001) define a
single-period production-planning problem that minimizes the amount of
demand that cannot be met by the supply chain. For a given demand
realization d ¼ fd1, . . . ,dI g and flexibility configuration A ¼ fA1, . . . ,AF g, the
production-planning problem is the following linear program

xðd,AÞ ¼Min
XI
i¼1

xi

( )

subject to

X
ði,kÞ2Af

s
f
i,k þ xi � di i ¼ 1, . . . , I , f ¼ 1, . . . ,F

X
ði,kÞ2Af

s
f
i,k � cj k ¼ 1, . . . ,Kf , f ¼ 1, . . . ,F

s
f
i,k,xi � 0:

where x(d,A) is the total demand shortfall, xi is the shortfall for product i, and
s
f
i,k is the amount items for product i processed in plant k at stage f.
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A given resource configuration A is evaluated by the expected shortfall
E½XðD,AÞ�, where the expectation is over the random demand vector
D ¼ fD1, . . . ,DI g which has a known distribution.

Graves and Tomlin (2001) introduce the concept of configuration
inefficiency, CI, as

CI ¼ 100�
E½XðD,AÞ� � EðX1ðD,A1Þ�

E½X1ðD,A1Þ�

� �

where E½X1ðD,A1Þ� denotes the expected stand-alone shortfall that would
result from the stage with the larger shortfall, if it were the only stage in the
chain.

According to Graves and Tomlin (2001) configuration inefficiency is
caused by two phenomena, floating bottlenecks and stage-spanning bottle-
necks. Floating bottlenecks are the direct result of demand uncertainty; stage-
spanning bottlenecks can manifest itself even if demand is certain: they result
from non-matching flexibility configuration for the different stages in the
supply chain. Graves and Tomlin (2001) develop a flexibility measure for
supply chains, g, based on the excess capacity available to any subset of
products, relative to an equal share allocation of capacity. Using this measure,
they develop analytic measures for the spanning inefficiency and for the
floating inefficiency to gain insights in the effects of different resource
characteristics per stage on configuration inefficiency. They use computer
simulation to test these insights. From their analytic and simulation
results, they conclude that supply chains with g-values greater than 1 perform
very well, in particular if in each stage the plant-products links are
chained. Chaining has an additional advantage; as long as each stage uses
a chaining policy, there is no need to coordinate the exact capacity
between stages to have a supply chain that performs well. Thus chaining per
design stage can be used as an alternative to coordinating the amount of
capacity installed per product (or product variant) between the stages in a
supply chain.

7.4 Discussion

The supply chain design problem consists of choosing maximal output rates
yj, such that the total expected profit over the maturity phase, minus the total
investment costs, is maximized. Under linear investment costs as a function of
yj the supply chain investment problem in principle can be solved with the
methods and techniques used in Fine and Freund (1990), or Van Mieghem
(1998). Further research is needed for the solving of the problem under
concave investment cost functions, since economic literature reveals that
investment costs tend to be concave in the output rate.
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Also empirical research is needed into the structure of the investment
costs in flexible resource configurations for different types of processes. In
particular, working out in more detail the cost structure as a function of
the production rate, the range of processes and the mobility. We may expect
that these cost structures will be different for different types of supply
chains, e.g., a supply chain for consumer electronics will use different
processes and have different costs structures than a supply chain for fast
moving consumer goods in food industry, or a supply chain for capital goods.
These differences in cost structure may explain differences in dynamics
between these industries.

Another important research subject is the inclusion in the investment
costs of the work-in-process and inventory that results from lack of
mobility (change-over times and change-over costs). This would require
the extension of models studied by Porteus (1985) and by De Groote (1994b)
with relationships between batch sizes, production rate, and capacity
utilizations, on the one hand, and production lead times and work-in-process
or workload, on the other hand [see Karmarkar (1987), Lambrecht et al.
(1998)].

Research is also needed into the impact of product development decisions
on the structure of the constraint set:X

i2I

rijsi � yj j 2 J

7.4.1 Managing the constraint set of a supply chain
For a product family containing jI j product variants, the maximum

number of constraints that can be active in the supply chain consists of the
sum of all possible combination of elements out of the set f1, 2, . . . ,jJjg. This
can be a very large number. Fortunately however, product families are
generally developed in a systematical way, applying design principles like
modular design, design for manufacturability, postponement of specificity,
etc. If applied with an open eye for the supply chain consequences, the use of
these principles can lead to rather transparent supply chain process
architectures. The supply chain process architecture is to a large extent
determined by the product architecture [see Fine (1998), Chapter 8].

In the ideal supply chain, all product variants of a family would require
the same raw materials, and all product variants would require the same set
of (generic) processes. However, different variants of a product family will
often differ with respect to the buy items. Then, to each separate product
variant, at least one specific constraint would apply.

Balancedness of constraints requires that all processes that are specific for
a product variant, must have the same maximum output rate. For that
reason it would make sense to bring control, both for the implementation
and use of the manufacturing technology used for these processes, in one
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hand. The supply chain then ideally consist of production systems that
takes care of all common processes, and a number of production systems
which take care of the variant-specific processes. This would result in a
constraint structure that only contains one constraint at the product family
level and a set of constraints at the product variant level. Such a simple
constraint structure facilitates easy economic evaluation of the supply chain
design. However, it may occur that processes exist that are common for
a subset of product variants, the subset not being the complete product
family. Supply chain transparency is improved if such subset-commonality
applies to disjoint groups of product variants, such that the structure is kept is
simple as possible.

The supply chain model studied in Graves and Tomlin (2001) is a special
case. Following their approach the supply chain design problem would be
solved in two phases. In the first phase it is decided for each stage in the supply
chain, how much resource flexibility must be created between the resources
(plants) in that stage, in order to eliminate configuration inefficiency. The
assumption then would be that the investment needed to create this level of
resource flexibility is justified by the demand shortfall that later on can be
avoided by using the resource flexibility. In the second phase for each stage in
the supply chain it is decided how much capacity in total must be installed. In
terms of end-product equivalents, total capacity in each stage must be the
same, leading to balanced constraints on output rate per stage. Thus the
capacity investment problem can be modeled as a single stage capacity
investment problem with aggregate demand and total sales price at the
product family, and total investment costs and total variable production costs
summed over all stages as parameters.

7.4.2 Supply chain design and new product lead time
In the discussion in Section 4 we have assumed that a supply chain is

designed for a product family where all variants are simultaneously available
in the market and remain available during the product lifecycle maturity
phase. This is not a very realistic assumption regarding real-life product
families. Most product families start with an initial set of variants, gradually
introduce new variants and take variants out of the market. If new product
variants require new processes that cannot be performed (efficiently) on the
existing technologies in the supply chain, the speed of new product
introduction may be seriously hampered. Therefore, a supply chain should
also be flexible enough to be able to cater for the different processes that will
result from the future product innovations that can be foreseen for the
product family. This requires that in the conceptual design phase of a product
family, the boundaries are set for all processes that during the entire lifecycle
of the product family must be performed. These processes do not pertain to
specific items, but to generic items with parameters that indicate the range
over which item features and the range of associated processes can vary. The
manufacturing technology chosen for this generic process must be able to
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perform the associated processes in an efficient way. Supply chain design for a
product family must therefore be based on a generic description of the
processes needed for the manufacturing of the product family. The supply
chain can then be set-up as a generic manufacturing channel, and new product
variants can be developed within the range of parameter values of the
processes available in the supply chain. This greatly enhances speed of new
product introduction, and fosters production continuity for the production
systems in the supply chain. If new product development takes place within
the boundaries of available technology (both in terms of capabilities and
maximum output rates), new product design lead time and new product risks
are reduced, and capacity use can be much more smooth, specifically the
phasing out of the old product variant and the phasing in of the new product
variant. Research in this area is starting up. For instance, Peters and
McGinnis (2000) provide results for the dynamic product (re)assignment
problem for a number of resources that each can be used for a family of
products with overlapping life cycles. They assume non-negative reassignment
costs and also assume that all resources are able to perform the processes for
all products equally efficient. Thus, their study assumes that the technology is
able to efficiently produce all product variants that are developed within the
product family.

In an empirical study of a number of firms, Suarez et al. (1996) found a
positive correlation between finding mix flexibility and finding new product
flexibility. This is in line with the analysis of flexibility in this chapter. Mix
flexibility and new product flexibility both require investments in technology
that can perform a well-defined range of processes. Volume flexibility, on the
other hand, can only be achieved by installing slack capacity, as a hedge
against demand uncertainty at the product family level.

8 Conclusion

In this chapter we have discussed the design of supply chains for flexibility.
In this context we have focused on volume flexibility, mix flexibility and
new product flexibility for a supply chain of a product family. We have
considered the problem as an investment problem, where in the product
design phase for a product family, decisions must be taken regarding
investments in resources that will be used to produce the items in the Bill
of Material of the product family. Since flexibility at the supply chain level
results from the flexibility of the manufacturing systems that are involved in the
supply chain, we have first reviewed the literature on the manufacturing
flexibility concept. Manufacturing flexibility has many dimensions, between
which hierarchical relationships can be identified. In particular, volume, mix
and new product flexibility has been shown to depend on machine, labor and
materials handling flexibility. Each flexibility dimension is further characterized
by its range (the different options available), the mobility within the range
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(the ease of changing from one option to another), and the uniformity within
the range (the extent to which each of the options within the range is equally
cost effective).

Starting with these concepts we have reviewed the literature on the
resource investment problem for the single-plant product-family resource
investment problem under demand level uncertainty. This research revealed the
intricate relationships between investments in dedicated and flexible resource,
its dependence on the level of demand uncertainty, on the correlation between
demands, and on the sales margin differences between products, and pro-
vided basic insights for the solving of the single-plant resource investment
problem under specific conditions such as linear investment costs. Important
insights from this research are that a little flexibility, if configured well,
delivers almost all the benefits from full flexibility, and that for flexibility to be
maximally effective, products and resources should be as highly interconnected
as possible.

Next we have reviewed the literature on the effects of resource flexibility
(machine and labor), and its aspects range, mobility and uniformity, on the
production throughput time under uncertain demand around a given known
level. The literature revealed that a small amount of resource flexibility can
lead to a large decrease in production throughput time. However, the
magnitude of this effect is limited by the presence of learning and forgetting
effects, efficiency differences between using different resources for the
same product, and delays in reallocating workers to alternative resources.
Moreover, costs may be incurred when transferring work or workers to other
resources. In the presence of these effects, the production planning and
control system must be designed such that the resource flexibility is used with
caution in order to realize a maximal effect with minimal costs.

Empirical research on manufacturing flexibility revealed that firms that
have high product mix flexibility also tend to have high new product
flexibility, which is consistent with the findings of model-based research, and
that the use of FMSs seems to support high volume flexibility, but not high
mix and new product flexibility. Moreover, apart from the positive effect of
cross-functional computer integration on new product flexibility, the use of
information technology seems not related to high flexibility. Finally, empirical
research reveals that strategic focuses on flexibility seems to impact both
managerial attitude, leading to investments in resource flexibility and worker
attitude, and seems to mobilize the knowledge acquisition and deployment
processes needed to convert potential resource flexibility into actual output
flexibility.

Supply chains may subcontract part of their processes to external parties,
and may need to buy parts and materials from external sources. The output of
the supply chain can be constrained by each of the plants and sourcing units
involved in the chain, including the external sourcing units. Therefore, we
have discussed supply contracts at the hand of a selection of papers from
literature. The literature revealed that for the two-player situation, also under
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decentralized decision-making and voluntary compliance, supply contracts
exist that can coordinate the supply chain, that is, achieve the supply chain
optimal performance. This observation encouraged us to restrict our
discussion of the supply chain design problem to centralized decision-making
under forced compliance, which is a simpler problem to solve.

Building on the results reported in literature we have formulated the
supply chain design problem as a iterative decision process, consisting of
choosing technologies for performing processes for producing the items in the
Bill of Materials, and coordinating the maximum supply rates for all the items
in the Bill of Material in view of the investment costs, the variable production
costs, the demand level uncertainty and the product sales prices. This latter
problem has been formulated as a two phase stochastic decision problem.
We have discussed properties of this design problem, such as balancedness
of constraints on process output rates, and the relationship between technology
choice and the volume and diversity of products made on a technology.
Throughout this chapter, we have indicated promising subjects for future
research.
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1 Introduction

In this age of increasing globalization and shortening of product life cycles,
companies are faced with the demand for escalating product variety to meet the
diverse needs of global customers. Indeed, mass customization has become a
business requirement for many high technology companies. However, the
provision of product variety comes with a price. With it forecasting becomes
more difficult, overhead for product support is higher, inventory control is
more difficult, manufacturing complexity increases, and after-sales support is
more complex. One solution that innovative companies have exploited is the
power of product and process design, by integrating design with their supply
chain operations to gain control of product variety proliferation.

Design has always been viewed as a key driver of manufacturing cost. Past
research has indicated that as much as 80% of the manufacturing cost of the
product is determined by the design of the product or the process in which the
product is to be manufactured. Design can also be leveraged to address
the problem of mass customization (Martin, Hausman and Ishii, 1998). By
properly designing the product structure and the manufacturing and supply
chain process, one can delay the point in which the final personality of the
product is to be configured, thereby increasing the flexibility to handle the
changing demand for the multiple products. This approach is termed
postponement.1 Alderson (1950) appears to be the first who coined this term,
and identified it as a means of reducing marketing costs. Alderson held that
‘the most general method which can be applied in promoting the efficiency

1 This approach has also been termed as delayed product differentiation or late customization.
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of a marketing system is the postponement of differentiation, . . . , postpone
changes in form and identity to the latest possible point in the marketing flow;
postpone change in inventory location to the latest possible point in time’. He
believed that this approach could reduce the amount of uncertainty related
to marketing operations. Bucklin (1965) provided arguments as to how
postponement as identified by Alderson could be a useful concept but would
be difficult to implement through the channel particularly in manufacturing
environments predominantly operating on a ‘make-to-stock’ basis. He argued
that some entity in the channel would have to bear the risks associated with
product variety, and postponement only helped in shifting this risk to some
other partner in the channel. However, as manufacturing firms started to
move away from the traditional make-to-stock environment, postponement
has become an attractive alternative.

Zinn and Bowersox (1988) describe different types of postponement that
could be implemented. These included labeling postponement, packaging
postponement, assembly postponement, manufacturing postponement, and time
postponement. Labeling postponement is a situation where a standard product
is stocked and labeled differently based on the realized demand. In packaging
postponement products are not packaged into individual packs until final
orders are received. Assembly and manufacturing postponement refer to
situations where additional assembly or manufacturing may be performed at
the assembly facility or at a warehouse before shipping the product to the
customer after demand is realized. Finally, time postponement refers to the
concept that products are not shipped to the retail warehouses but are held
at a central warehouse and are shipped to customers directly.

Clearly, different types of postponement strategies have different costs and
benefits associated with them. For example, with packaging postponement,
inventory costs are reduced due to stocking of the standard product, whereas
the packaging costs are higher since it is not done in one big batch
thereby losing economies of scale. Similarly, in manufacturing and assembly
postponement, component costs may increase, and in some cases, a more
complex process may have to be used. Moreover, there are multiple ways in
which postponement can be pursued, each with different cost and service
performance impacts.

Fundamentally, there are three types of factors that affect the benefits
and costs associated with postponement – market factors, process factors, and
product factors. Market factors are those related to customer demand and
service requirements. These parameters include demand fluctuations or
variance, correlation in demand across the different products, lead time and
service requirements for customization (which affect the penalty cost for stock-
outs or late deliveries). Process factors are those manufacturing and
distribution processes under the control of the firm. These include the sequence
of operations performed to customize the product, the network structure of the
supply chain (manufacturing and distribution sites), whether the product is
made to order or made to stock as well as how much and at which location
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inventories (components, subassemblies, and finished products) are stored in
the supply chain. Product factors are related to the design of the product or
product lines. These include the degree of standardization that is present in the
components and the costs associated with standardizing components,
modularity in the product design, as well as the degree to which end products
can be substituted for each other’s demand.

The ability of a firm to implement a successful postponement strategy
depends on how well the firm can tailor its process and product characteristics
to the market requirements. Primarily these relate to the changes in the
design of the product or process so that implementing postponement strategies
becomes easier and more cost effective. There are mainly two types of changes
– those related to process design changes, termed process postponement, and
those related to product design changes, termed product postponement. Process
postponement usually requires (1) process standardization, i.e., making some
part of the process standard so that the different product variants share
that process; and (2) process resequencing, i.e., changing the sequence of
customization steps in which the product attains distinct functionalities and
characteristics. Product postponement often requires standardizing some key
components, or introducing parts commonality in the product structure.

In this chapter, we discuss analytical models for evaluating postponement
alternatives. Earlier survey articles on similar areas include Garg and Lee
(1998) and Swaminathan and Tayur (1998b). The rest of this chapter is
organized as follows. In Section 2, we introduce the three key postponement
enablers: process standardization, process resequencing and component
standardization. These three enablers and associated performance evaluation
models are described in greater details in Sections 3–5. We also describe
industry applications utilizing these enablers. In Section 6, we discuss
other techniques for managing product variety such as modularity and
downward substitution and explore the additional benefits of postponement in
pricing and information processing. In Section 7, we provide our concluding
remarks.

2 Postponement enablers

Postponement can be enabled through changes in the manufacturing-
distribution process or the product architecture. In this section we introduce
three enablers of postponement – process standardization, process rese-
quencing and component standardization. Process standardization refers to
standardizing the initial steps in the process across the product line so that
products are not differentiated at these steps, and distinct personalities of
the products are added at a later stage. All the products in the product line
(or a subset of it) are processed through these standard steps. A comple-
mentary approach to process standardization is process resequencing. Here,
the sequence is changed so that more common components are added at the
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beginning of the process. The components or features that create product
differentiation are added later. The key benefit from both of the above
approaches is that the initial stages in the process are less differentiated,
leading to partially completed products at the end of these common stages.
This enables the firm to pool the risk across the different product demands
and to effect lower inventory requirements. Clearly the success of the above
approaches depends to a great extent on how modular in structure the process
is. Process modularity is the same as the product modularity concept applied
to a process. If a process can be divided into separate substeps so that these
substeps can be performed in either parallel or in different sequence then it
is classified as a modular process. For example, the testing process of a
product may require multiple tests and burn-ins. In some cases, the whole
test process may have to be carried out in a continuous fashion, while in
other cases, the process can be broken up into subtests. Process modularity is
closely related to the flexibility of the process in that processes that are more
flexible are likely to be modular processes as well. In addition to process
modularity, the feasibility of process resequencing depends on common or
standard components in the product line. Indeed, the third enabler to
postponement is component standardization.

We should note that all three enablers could be used individually or in any
combination to achieve postponement. In the next sections, we describe the
models that have been developed for each of these enablers. Some notation
that is used throughout the paper is given in Table 1.

3 Process standardization

In process standardization approaches, inventory may be carried at the
intermediate stage after the common steps in the process (known as the point

Table 1
Notations used in the paper

Symbol Description

Di Realized demand for product i
�i Mean demand for product i
�i Standard deviation of demand for product i
�ij Correlation of demand for product i and product j
Si Base stock inventory level for i
si Safety stock for i
E(x) Expected value of x
Var(x) Variance of x
z Safety factor
h Per unit holding cost
U A vanilla box configuration in terms of the components
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of differentiation) as well as at the final product level. The models developed
here differ in terms of consideration of single versus multiple points of
differentiation.

3.1 Single point of differentiation

Lee (1996) describes the most basic version of this model where there
are M products and inventories are carried in finished form. All the products
are customized from the inventory available at the end of the standard
steps of the process. It is assumed that negligible stock of inventory of the
generic product is stored, in that upon arrival from the generic production
process it is allocated for customization. The basic assumption is that the
standard part of the process takes t time periods to complete and the
remaining T – t periods correspond to time for the customization step (see
Fig. 1). This is analogous to the warehouse lead time of t periods and
T – t periods of transportation time from the warehouse to the retailers.
All the products are assumed to have independent and normal demands
with mean �i per period and standard deviation �i per period and that the
system follows a periodic review policy with a period length of one, and
complete backlogging for unmet demands. Eppen and Schrage (1981)
assumed that the inventory allocation at the intermediate stage to the end-
products follows the equal fractile allocation rule, i.e., after allocation, the
inventory position for each end product should be the sum of the mean
demand for that end product over T – t time periods and a common safety
stock factor multiplied by the standard deviation of demand for the end
product over the T – t time periods. It was assumed that the probability of
stock imbalance, i.e., that the stocks for the different products cannot be
reallocated to satisfy the equal fractile rule after allocation, is negligible.
They showed that when the costs are identical at each site it is optimal to
operate the end product inventory stockpiles in an order-up-to manner with a
base stock level of Si. Erkip, Hausman and Nahmias (1990) extended the
analysis to allow item demands to be correlated both across warehouses and
also correlated in time. Lee (1996) studied the case where demand across

Fig. 1. Postponement with a single point of differentiation.
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products ( j, k) may be correlated in each period (�jk). For such a system the
steady state end of period inventory level for product i (Ii) is given by:

EðIiÞ ¼ Ai � RiT
X
j

�j ð3:1Þ

VarðIiÞ ¼ R2
i t

X
j

�2j þ
X
j 6¼k

�jk

( )
þ ðT � tÞ�2i ð3:2Þ

where Ai is a function of Si and �i, but is independent of t and Ri ¼ �i=
P

j �j.
Based on these two moments, service measures such as fill rate can be derived.
The value of Si can be determined to satisfy the target service level. Lee (1996)
analyzes the above system with process standardization and addresses the
impact of postponement which is reflected in the parameter t. Clearly, E(Ii) is
independent of t, but Var(Ii) is decreasing in t for a given Si.
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2. Hence,
the variance of the steady state end-of-period inventory for product i is
decreasing in the degree of postponement. Thus, postponement will lead to
reduction of inventory of finished products. Further, the reduction in
inventory is greater when the end product demands are negatively correlated.
For identical and independent demand for products, the expression for Var(Ii)
simplifies to:

VarðIiÞ ¼ ½t=M þ ðT � tÞ��2 ð3:4Þ

Clearly one can see in this case (from the derivative with respect to t) that the
reduction in variance is greater when the number of products is larger.

Lee and Whang (1998) explore this model further by assuming that
demands are not IID (independent and identically distributed) over time. With
non-IID demand, the value of postponement is more than just being able to
make product commitments at a later point in time when realized demands
have been revealed. In addition, the progression of demands may also help to
improve the forecast of the future demands. Lee and Whang term these two
values as the value of uncertainty resolutions and the value of forecast
improvement. To illustrate these two different values, they used a random
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walk demand model with the characteristics that the variance of future
demand increases as we look further out into the future. Hence, if we let
demand for end product i after t periods from today be Di(t), then

DiðtÞ ¼ �i þ
Xt
k¼1

"ik ð3:5Þ

where "ik is normally distributed with mean 0 and standard deviation
�ik. When we have products with identical means and variances of demands,
and when �ik¼ � for all i’s and k’s, then the safety stock that needs to be
carried at the end product level for the original Lee (1996) model becomes:

s*i ðtÞ¼z��
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where z is the safety factor. In that case, the percentage savings obtained due
to postponement as compared to no postponement (the case where t¼ 0) is
given by

ViðtÞ¼1�
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s*i ð0Þ
¼1�
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One can observe that the safety stock required is decreasing in t and the
percentage savings due to postponement are increasing and convex in t.
The reduction in safety stock with postponement in this case is greater than that
when demand is stationary. The reason is that, with stationary demand,
postponement allows the allocation decision (to themultiple end-products from
the common intermediate product) be made after demand realizations of the
end products have been revealed during the time when the common process was
performed. When demand is a random walk process in which future demands
are more variable into the future time, then there is an added value of
postponement – by delaying the point when allocation to end-products has to
bemade, the demand variability of the end-product is reduced, since we are now
closer to that future demand period than when we begin the total production
process (forecast improvement). Thus, postponement with time-dependent
demands may be even more valuable.

In the above models there is an implicit assumption that the production-
distribution process is continuous and inventory can be stored only in finished
product form. In general, manufacturing environments involve a discrete set
of operations, and inventory can be stored immediately following any one of
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these stages. Furthermore, the costs associated with delaying differentiation
have not been considered in the above models. There is a stream of research
that extended the standard postponement model by allowing for multiple
manufacturing steps with intermediate buffer inventory, and by explicitly
modeling the costs of resequencing the process steps.

Lee and Tang (1997) consider a model where there are two products
that require N sequential tasks for completion (see Fig. 2). Inventory can be
stored in a buffer after each task with the buffer after the Nth task being
finished goods. The first k tasks are assumed to have been standardized, i.e.,
the inventory in the buffer after the kth operation can be used for
customization into either products. The tasks kþ 1 to N are distinct for the
two final products. Thus, the point of differentiation is right after the kth
step. Under normal demand assumption for the two products and a discrete
time setting, they consider the costs associated with standardizing stages.
Let Zi denote the average investment cost per period (amortized) if task i is
changed into a common operation for both products. It is possible that Zi <0,
e.g., when standardizing that task leads to overall reduction in costs. Let
Li(k), pi(k), and hi(k) denote the lead time for task i, unit processing cost for
task i and the per unit inventory holding cost for items in the buffer following
task i, respectively, when the first k tasks are standardized. Further, they
assume that the same safety factor z is used at all stages in the process, and a
base stock policy is followed. Then, the average buffer inventory at any stage
is given by

�

2
þ z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ 1Þ

p
ð3:8Þ

where � and � are the mean and standard deviation of demand faced at that
stage. The relevant cost per period for the case when the first k operations are
standardized is given by:
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Fig. 2. Postponement with a single point of differentiation and discrete manufacturing steps.

206 J.M. Swaminathan and H.L. Lee



This includes the average investments, processing costs, in-transit inventory
(WIP) and buffer inventory holding costs.

Consider the special case when the lead time and holding costs at
different stages are not affected by the point of differentiation, and when
piðkÞ ¼ pi þ �i, i.e., �i represents the additional processing cost for
standardizing an operation. Then conditions under which C(k) may be
convex or concave can be derived. For the case when C(k) is convex in k, the
optimal k* is decreasing in demand correlation among the two products, Zi,
�i, and mean demand, but is increasing in hi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Li þ 1
p

. As the demand
correlation decreases, the resulting savings in inventory cost increase. In order
to take advantage of the savings it is desirable to defer the common operation.
When the cost of standardizing an operation Zi or the incremental processing
cost associated with delayed differentiation �i increase then it is not as
desirable to delay differentiation. As mean demand increases (while holding
the variances constant), the resulting demand is less variable, therefore
delaying differentiation is less attractive. Increase in hi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Li þ 1
p

leads to higher
inventory savings due to delayed differentiation so the optimal delay point
is further out. Furthermore, C(k) is concave in k if (1) Zi, �i and hi are
identical; (2) Si and �i are proportional to hi and Li is constant; or (3) Zi, �i
are identical and hi is linear in i.

3.2 Multiple points of differentiation

So far, all the above models are restricted to only one point of dif-
ferentiation. Garg and Tang (1997) consider a system with two points of
differentiation, the first is the family differentiation point and the second the
product differentiation point (see Fig. 3). In their system, there are three stages
in the process. At the first stage all the products are in their generic form, the
family differentiation point occurs at the beginning of the second stage where
specific components are added to differentiate a generic product into different
families. The product differentiation point occurs at the beginning of the
third stage where specific components are used to customize semi-finished
products into different end products of that family. Note that the points of
differentiation emerge because of adding specific components. The lead times
for the different stages are assumed to be T1, T2, and T3, respectively. They
assume that the manufacturing lead times for customizing the products into
the different families T2 are the same and that the manufacturing lead times
for customizing different end products of different families T3 are the same.
Early postponement is defined as increasing T1 to T1þ 1 while reducing T2 to
T2�1, and late postponement is defined as increasing T2 to T2þ 1 and
reducing T3 to T3�1. For the above system, the authors consider two possible
scenarios. In the first scenario, inventory is stored only in the finished goods
form (called centralized system) and in the second scenario, inventory is
stored at each point of differentiation as well as at the finished goods level
(called decentralized system). The centralized system extends the model
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studied by Eppen and Schrage (1981) to three stages and correlated demand.
The demand for the final products are assumed to be independent normal
and identical across time periods. For each time period, the demand for the
final products are correlated. The assumption is that the system operates
under a base stock policy and periodic review. An equal fractile allocation is
assumed at the first and second stages. For the centralized system, under an
equal-fractile allocation policy and identical equivalent degree of correlation
of demand at the family level (defined as the ratio of variance for perfectly
correlated demand and the actual variance in demand for the family), they
show that both early and late postponement lead to reduction in total
inventory. Further, they show that as the product demand across a family
becomes more negatively correlated then late postponement becomes more
preferable as compared to early postponement. In the decentralized model,
they assume that inventory is stored at all locations and the service level at
each of the stages is high enough that the system can be decoupled into
independent single stage inventory systems. For such an environment, they
analyze the inventory savings across the whole network due to early and late
postponement. They show that if T1>T2>T3 then both early and later
postponement are beneficial. Further, when T2 is sufficiently smaller (larger)
than T1 and T3, then early (late) postponement is beneficial.

3.3 Vanilla boxes

The above papers assume that the production distribution process does not
have any capacity constraints. Swaminathan and Tayur (1998a) analyze a final
assembly process with production capacity where inventory is stored in the
intermediate form (called vanilla boxes). In addition to the intermediate form,
they allow the two extreme forms of vanilla boxes – as components and as
finished products. Therefore, this model captures both assemble-to-order
(where components are stocked and products assembled from the components
after demand is realized) as well as make-to-stock (where inventory is carried
in finished form only) as special cases. This approach allows for multiple

Fig. 3. Postponement with two points of differentiation.
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points of differentiation, in that there is no restriction on the type of vanilla
box that can be stored. For example, Fig. 4 shows a product line with three
products p1, p2, and p3 made of components a, b, c, and d. Vanilla box
V1¼ (a, b) can support products p1 and p3 while vanilla box V3¼ (b, c) can
support p1 and p2. In general, every product i (1, . . . ,M) may be assembled
either directly from its components, or from any vanilla box whose com-
ponent set is a subset of those required by i, thus avoiding redundant
components. A binary bill of material in terms of the components is assumed
without loss of generality.

Demands for the final products are random but follow one of L given
scenarios, each with a given likelihood. They assume that the vanilla box
inventory follows a base stock policy in that every period the inventory is
brought up to that level, then demand is realized, products are assembled
from vanilla boxes by adding other components within the production
capacity. Unsatisfied demand is lost with a penalty and remaining inventory
of vanilla boxes incurs holding cost. Clearly, the main benefit of having
vanilla boxes is that the amount of lead time for customization is much
lower than customizing from the component level. Also, the capacity for
customization may be limited which makes the problem more challenging.
Under the above setting, they develop a stochastic integer program to
determine the optimal types of vanilla boxes as well as their inventory
levels which minimize the expected holding and penalty costs in single and
multi-period settings. The first stage variables determine which components
should be present in different vanilla boxes and the base stock levels for
those vanilla boxes. The second stage variables determine how those vanilla
boxes should be allocated to the different products on realization of product
demand.

Let C denote the capacity available to assemble products from vanilla
boxes or from basic components, ti0 and tik the per unit assembly time for
product i from components or from vanilla box k (tik ¼ 1 if product i cannot
be made from vanilla box k), respectively, pi the per unit per period stock-out
cost for product i, hk the per unit per period holding cost for vanilla box k,

Fig. 4. Postponement with multiple points of differentiation using vanilla boxes.
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S ¼ ðS1, . . . ,SK Þ the vector of base stock levels of vanilla boxes k (1, . . . ,K ),
Dl a realization ðD1l , . . . ,DMlÞ of product demands in scenario l where
D1, . . . ,DM have a joint distribution F, and rikl the quantity of product imade
using vanilla box k in scenario l (k ¼ 0 implies that product i is assembled
directly from components). Then the two-stage stochastic program corre-
sponding to a vanilla box configuration U can be formulated as follows.
P1ðUÞ ¼ min

S
ElQðS,U,DlÞ, where

QðS,U,DlÞ ¼ min
r1

XM
i¼1

pi Dil �
XK
k¼0

rikl

 ! !
þ
XK
k¼1

hk Sk �
XM
i¼1

rikl

 ! !

ð3:10Þ

s:t:
XM
i¼1

XK
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tikrikl � C 8 l, ð3:11Þ

XM
i¼1

rikl � Sk 8k � 1, 8 l, ð3:12Þ

XK
k¼0

rikl � Dil 8i, 8 l, ð3:13Þ

rikl,Sj 2 Rþ: ð3:14Þ

Utilizing the above framework and through the development of an
efficient simulation based algorithm, the authors explore the benefits of
postponement through vanilla boxes under various settings. Among other
results, they show that postponement using vanilla boxes outperforms both
assemble-to-order and make-to-stock systems when the assembly capacity
available is neither too slack nor too tight (representative of most real
environments). Further, they find that the vanilla box approach is extremely
powerful under high variance and negative correlation among product
demands. Finally, they provide examples where stocking two types of vanilla
boxes may be sufficient for a product family with ten products and
the performance may be better than a make-to-stock approach (with all the
10 products).

Graman and Magazine (2002) consider a postponement model with
capacity constraints where inventory can be stored in an intermediate form.
On realization of demand all the finished goods are used first, and then the
semi-finished product is used to satisfy the demand subject to a capacity
constraint. This problem can be viewed as a special case of the vanilla box
problem with only one type of vanilla box. For this model, they derive
analytical expressions for service measure and also inventory calculations and
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through a numerical study show that very little postponement capacity can
actually provide all the benefits related to inventory reduction.

Benjafer and Gupta (2000) present models that utilize queuing approxi-
mations to analyze a system where both make-to-stock and make-to-order
environments are utilized while delaying differentiation of the product. There
are two stages in the production process; the first stage produces products to
stock while the second stage produces products to order. The two stages are
separated by a buffer that holds semi-finished inventory. The authors utilize
queuing approximations by decoupling the two stages and assume each of
them will behave similar to a M/M/1 queue. For the above approximation,
solutions for inventory and service are available which the authors utilize to
develop an optimization problem. The objective is to minimize the total costs
subject to service level constraints by changing the stocking level of the
intermediate product and the degree of differentiation. Further, the authors
present several computational insights and show the impact of congestion
effects on the postponement decision.

3.4 Process standardization applications

Lee, Billington and Carter (1993) describe the process standardization
efforts at Hewlett Packard DeskJet Printer business. The printer line had
three distribution centers in Europe, the US, and the Far East and needed
localization for the different countries in terms of power supply module with
correct voltage, power cord terminators, and a manual in the appropriate
language. The existing operation was one where the products were ‘localized’
at the US factory before being shipped to the respective distribution centers.
The manufacturing in the US was done through a pull system based on the
target safety levels set for the different distribution centers while taking
into account the one month lead time in transit to the overseas distribution
centers. As a result, high levels of safety stock are needed in the overseas
distribution centers. The re-engineering of the distribution process involved
resequencing the transportation and localization steps so that localization
would now be done at the distribution centers. This was accomplished by
making changes to the product design so that the power supply and the
manuals could be added later at the distribution centers. There were also
additional investments in the form of product redesign, package redesign,
and enhancement to distribution center capabilities, which were offset by the
inventory savings that resulted from postponement. Additional benefits
included lower capital investment for in-transit inventory, lower freight
costs (due to the use of bulk packaging of the generic printers as opposed to
packaging finished printers) and local presence of final assembly in the
overseas markets. Based on a detailed modeling and analysis, Hewlett-Packard
adopted process standardization in their inkjet business, and was rewarded
with huge costs savings and improvements in customer service.
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Swaminathan and Tayur (1998a) analyze the final assembly stage of
RS6000 server machines produced by IBM. Each model in the product line
had 50–75 end products mainly differentiated by 10 main features or
components. A component is defined to be a part that is directly used in final
assembly, so a component may be a subassembly in itself, e.g., a planar card.
Different end products across the product line showed a high degree of
component commonality. Since demand for end products were highly
stochastic and correlated, the existing mode of operation was to start final
assembly only after a firm customer order had been received. The typical steps
in final assembly involved getting components together (kitting), putting them
in the right place (assembly), testing, loading software (preloading), and
packing the final product. At the time of the research this process often
finished later than the customer requested arrival date leading to a sizeable
percentage of late orders. This order delay problem was becoming increasingly
acute, as customers who were once satisfied with the delivery within a month
were now demanding the products to be shipped within seven to ten days after
the orders were placed. The change in customer requirements was primarily
due to the competition in the industry and increase in service expectations.
The vanilla assembly process based on delayed differentiation stocked vanilla
boxes (semi-finished inventory). Clearly, there were additional costs in terms
of redesigning the line to enable vanilla boxes, including work force training
and having inventory of vanilla boxes in the process that tied up capital.
However, the benefits of such an approach were that the lead time experienced
by the customer was only limited to the customization time starting from the
vanilla box, hence most of the orders could be satisfied on time. After a
thorough analysis of the costs and benefits as well as the change process
involved, the vanilla assembly process was introduced in one of the two
assembly plants (which had a satellite plant that was redesigned to produce
vanilla boxes).

Brown, Lee and Petrakian (2000) describe the postponement approaches at
Xilinx which involved process standardization. As a leader in the field-
programmable logic business, Xilinx made use of the postponement practice
to achieve significant cost savings and service improvements. The
manufacturing of integrated circuits consisted of two major steps: a front-
end wafer fabrication at their outsourced manufacturer in Taiwan; and a
backend assembly and test at their outsourced assembly sites in the
Philippines and other Asian sites. The front-end process was standardized so
that multiple devices share the same process. This way, the product does not
have to be highly differentiated at the end of the front-end process. Fabricated
wafers are then stored as intermediate inventory, known as the die bank, and
they would go through the backend process that customize the products
into the exact end device, only after the customer orders have come in. This
way, the lead time to the customers is only the backend process time, which is
much shorter than the sum of front-end and backend process times (the lead
time when a totally build-to-order process is used); but the flexibility to
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customer orders is much greater than if the finished goods inventory is stored
under a build-to-stock process is used.

Zara (one of the famous brands of Inditex) utilizes process standardization
and vanilla boxes in the design phase of the product life (Harle, Pich and
Hayden, 2001 and Fraiman and Singh, 2002). Zara introduces new products
at a rapid rate; in fact 70% of the products change every two weeks in a
typical retail outlet. In order to create large variety and quick response to
customers, the firm employs several strategies including standardization of the
design modules. At the beginning of each selling season, the designers create a
library of models that serve as platforms for the models that will be eventually
launched. Twenty designers walk the streets and go to discos in order to get a
feel of the latest fashion trends. After carefully watching the latest in fashion
trends, Zara designers give adaptation (or customization) to the models from
the library (which are vanilla boxes) and create 5–8 new designs every day! In
total about 12,000 new products and designs are created every year.

4 Process resequencing

Process resequencing is another approach for enabling postponement and
making it more effective. The basic idea is that it may be possible to change
the sequence of operations in a process so that products get differentiated
later. However, there may be costs associated with changing the sequence of
operations, and hence it is important to have models that provide insights on
these costs and benefits.

4.1 Linear process sequencing

Lee and Tang (1998) consider a two-stage system where at each stage a
distinct feature is introduced into the product. They consider the knitting and
dyeing tasks for garments as representative of the two stages. Each feature
may have multiple options, for example, garment could be knitted under
different settings or dyed with different colors. They analyze the case where
each feature has two alternative options (see Fig. 5). Thus there are four
possible products available to a customer. Figure 5(a) represents the case
where the garments are dyed first and are knitted later, while Fig. 5(b)
represents the case where the garments are knitted first and dyed later.

In such a system, changing the sequence of operations (which determines
the feature that should be introduced first into the product) does not affect the
ends of the process (raw material and finished products) but only affects the
inventory that is stored at the end of the first stage. The objective is to
minimize the total variance for the two intermediate buffers since the variance
influences the inventory requirements for the system. The use of the total
variance as an objective function is of course a stylized assumption. The
authors argued that the cost of manufacturing, such as the use of overtime or
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expediting, is often directly linked to the variances of production requirements
(which, in this case, is the same as the variances of the intermediate buffers).
Indeed, as we see below, the use of a different objective function can lead to
different results. The total demand in any period (across all the four products)
is assumed to be a random variable with mean � and standard deviation �.
The demands for the end products are modeled as a multi-variate normal
distribution with parameters (N, �11, �12, �21, �22) where �11 represents the
fraction of customers buying the first option in both the features. They show
that it is optimal to have feature A sequenced before feature B, if

ð�� �2Þ½ pð1� pÞ � qð1� qÞ� < 0 ð4:1Þ

where p is the probability of a customer buying option 1 on feature A and q is
the probability of a customer buying option 1 on feature B. Clearly if the
variance associated with feature A, given by p(1�p), is smaller than the
variance associated with feature B, given by q(1�q), then one expects that
feature A should be sequenced first. However if �2>� then the reverse result is
true, which is counter-intuitive. They also show that when more options are
available on the two features and each of these options are equally likely, then
it is better to sequence the operation with fewer options first when �>�2 and
vice versa otherwise. Kapuscinski and Tayur (1999) show that if the objective
is to minimize the sum of standard deviations rather than the sum of variances
at the intermediate stage, then for the two feature – two option case, the
counter-intuitive result corresponding to the case �<�2 vanishes.

4.2 Assembly sequence design

It is clear from the above models that the sequence of tasks could play an
important role in enabling postponement and thereby reducing inventory
requirements. However, the physical assembly sequence is often defined
through a complex set of precedence relationships among the different tasks.
The general assembly design sequence problem has been primarily studied by
researchers in engineering (see Nevins and Whitney 1989). For example, Fig. 6
shows a product line with four products and six components. The assembly

Fig. 5. Operations reversal in the process.
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sequences FAS1 and FAS2 represent possible sequences for the product
line. FAS1 represents an assembly sequence where component a needs to be
introduced first followed by b which can be followed by c or d. Once
component c has been added, e or f can be added to the subassembly. FAS2
represents another assembly sequence where component a still needs to be
added first at which point either b or c can be added. Once c has been added, e
and f can be added in any sequence and once b has been added, component d
can be added to the subassembly. Note that in FAS1, component b needs to
precede component c in the assembly whereas in FAS2 that precedence has
been relaxed.

Gupta and Krishnan (1998) introduce the notion of a ‘generic subassembly
(GSA)’ which is similar to the vanilla box concept. GSA is a subassembly that
satisfies all the precedence relationships among its components and is a
feasible subassembly. In the above example (a, c, f ) is a GSA for FAS2 but is
not a GSA for FAS1 because in FAS1 component b has to be in place before
component c can be introduced. A MGSA is a maximal generic subassembly
according to criteria such as number of components in the assembly or
number of final products that can be supported by it. In the above example,
(a, b, c) which is a generic subassembly (GSA) covers three products P1, P2,
and P4 and has three components. It is a MGSA in terms of number of
components. On the other hand, (a, b) which covers P1, P2, P3, and P4 (all the
four products) is a MGSA in terms of number of products covered. For a
given feasible assembly sequence, Gupta and Krishnan (1998) present an

Fig. 6. Alternative feasible assembly sequences.
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algorithm that generates the MGSA for a product family with criterion of
maximizing the number of end products supported. Although a useful step in
the right direction, the above model does not provide a cost benefit analysis
related to assembly sequence design.

Swaminathan and Tayur (1999) utilize the vanilla box model described
earlier, along with an assembly sequence design model to generate useful
managerial insights. In the assembly sequence design problem (ASDP) they
develop a mathematical programming model that generates the best sequence
taking into account costs associated with the design of components to make
such an assembly sequence. Thus, they model the situation where components
could be designed in a flexible manner to satisfy alternative precedence
conditions during execution. In combination with the vanilla box model, they
consider two approaches to task resequencing: (1) where the best vanilla boxes
are determined first and the sequence design is generated to enable assembly of
the vanilla boxes and finished products with minimal design costs; and (2)
where the most efficient assembly sequence is determined for the set of finished
products and then the best vanilla boxes are found while taking into account
the assembly constraints. As opposed to earlier work, this approach integrates
the assembly sequence decisions with the postponement decisions, and
hence enables analysis of various ‘what if’ questions pertaining to process
resequencing.

Their notation is as follows; products are indexed by i ¼ 1 . . . M,
components by j ¼ 1 . . . n and vanilla boxes by k ¼ 1 . . . K . Let ukj denote
the content of the kth vanilla box in terms of components, U the vanilla
configuration (matrix of ukj) and Uk the configuration of the kth vanilla box.
Let aij denote the bill of materials for the products in terms of the
components, gpq the cost of assembling component p before component q, epq
the cost of allowing independence between components p and q, and Y the
assembly sequence defined through the Boolean variables ypq (set to 1 if
component p is assembled before component q and to 0 otherwise). The
difference in design costs between a fixed and an independent precedence
relationship is given by cpq ¼ gpq � epq � 0 and the objective is to minimize the
total cost incurred. For a particular vanilla box configuration U the problem
can be formulated as given below.

ASDPðUÞ : min
Y

Xn
p¼1

Xn
q¼1

cpqypq

s:t: 1� yqp � ukpð1� ukqÞ 8p, q, k, ð4:2Þ

1� yqp � aipð1� aiqÞ 8i, p, q, ð4:3Þ

ypq þ yqp � 1 8p, q, ð4:4Þ
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ypq þ yqr � ypr � 1 8p, q, r, ð4:5Þ

ypp ¼ 0 8p, ð4:6Þ

ypq 2 f0, 1g 8p, q: ð4:7Þ

In the above formulation, constraint (4.2) represents that if a component q
is not present in a vanilla box (ukq ¼ 0) then it cannot be a predecessor of any
component p in that vanilla box (ukp ¼ 1). Constraint (4.3) represents that if a
component q is not present in a product (aiq ¼ 0) then it cannot be a
predecessor of any component p in that product (aip ¼ 1). These constraints
assure that all vanilla boxes and products can be assembled using the assembly
sequence Y. Constraint (4.4) indicates that two components are either
unordered in the assembly sequence ( ypq ¼ yqp ¼ 0) or there exists a unique
ordering of these components in the assembly sequence ( ypq ¼ 1 or yqp ¼ 1,
but not both). Constraint (4.5) maintains the transitivity relationship between
components and constraint (4.6) indicates that all components of the same
type are at the same level in the assembly sequence.

The authors conducted an extensive computational study which, in
addition to validating earlier observations on the role of demand variance and
correlation, provides additional insights on issues such as: it is better to
sequence features with higher degree of variance later in the process; when the
total amount of options provided across all features is kept constant, it is
better to provide more options in a restricted number of features.

4.3 Process resequencing applications

Benetton (described in Dapiran 1992) is the earliest reported application of
process resequencing that the authors are aware of. Traditionally sweaters
were manufactured by first dyeing the yarn into different colors, and then
knitting the garments out of the colored yarns. The garments were stored in
the form of finished goods to be shipped to the retailers. Dapiran describes
how Benetton interchanged the knit and dye operations when they realized
that most of the demand variability was due to the uncertainty of the
customers’ preference of colors in a particular season. The interchange of the
knit and dye operations enabled the firm to stock inventory of ‘greige’
(uncolored) knit garments that could be dyed once the seasonal demand was
known, enabling postponement and reducing inventory. Benetton had to
invest in improving the dyeing technology so that the quality of the garments
would not deteriorate due to the process changes.

Swaminathan and Tayur (1999b) describe the assembly sequencing
problem for US Filter, a manufacturer of reverse osmosis pumps. The
sequence of operations at the final assembly was altered to enable faster
response to customers. Costs related to product-process redesign as well as
worker retraining at the final assembly had to be taken into account. The
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process sequencing approach has also been successfully applied by Garg
(1999) to a large electronic manufacturer whose products are tailored for the
telecommunication industry. The process involved board insertion and
assembly, a station ‘marrying’ different modules together, and the packaging
of accessories and other components to make the final product. Alternative
sequences of the process would result in different inventory and waiting
times for the manufacturing of the product. Garg employed a queueing
network model to evaluate these alternatives. More examples of application
of postponement can be found in Lee, Feitzinger and Bellington (1997) and
Lee (1998).

5 Component standardization

5.1 Commonality and inventory management

Component commonality has traditionally been studied in the context
of make-to-stock or assemble-to-order systems. Traditional research on
component commonality in the operations management stream has been
mainly focused on reduction in component inventory due to commonality.
Collier (1982) introduced the notion of commonality index – a measure of
degree of commonality in a product line. Gerchak and Henig (1986) showed
that when components are combined (standardized), the inventory require-
ments for product specific components always increase. Further, they also
showed that a myopic inventory policy is optimal for a dynamic multi-period
inventory problem with component commonality. Baker, Magazine and
Nuttle (1986) and later Gerchak, Magazine and Gamble (1988) explored the
benefits of having common components in terms of reduced inventory or
increased service. In particular they considered two products each with two
components and analyzed the impact of standardizing one of the components.
Since then, several authors including Eynan and Rosenblatt (1996) and
Thonemann and Brandeau (2000) among others have explored the benefits
associated with component commonality under different settings. Fisher,
Ramdas and Ulrich (1999) study commonality issues in the automotive
industry.

5.2 Commonality and postponement

Lee (1996) points out that in order to perform a complete analysis
regarding the benefits of postponement due to component standardization,
one needs a model that takes into account the following aspects: (1) inventory
savings for the part; (2) increase in material costs for the common parts; (3)
additional costs for the engineering change; and (4) inventory savings for the
finished goods. Most of the analysis on postponement has focused on (4) and
the analysis on commonality has focused on (1). Lee and Tang (1998) present
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a model where they consider the costs associated with standardizing a process
step. In order to standardize a process step, one needs to standardize the part
associated with that step and associate a cost for that. They incorporate the
above cost in their model while analyzing the degree of postponement that is
optimal.

The value of component standardization may be different at different stages
of the product life cycle. This is due to the dynamic changes of demand
uncertainty, shortage costs, inventory holding costs, and rework costs (to
convert one version of end product to another). For example, the uncertainty
of demand may be much higher in the product introduction and end-of-life
phase than the mature phase. The shortage cost may be the highest during the
product introduction phase, while the inventory holding cost may be the
highest during the end-of-life phase, when left-over inventory may have to be
written off as the product becomes obsolete. Consequently, models capturing
these dynamics are needed to assess the value of component standardization.
Lee and Sasser (1995) describe one simple model that shows that, given all the
dynamics of the demand and cost characteristics, the value of standardization
for postponement is high in the product introduction phase, low in the mature
phase, and high in the end-of-life phase.

Swaminathan (1999) considers the problem related to optimizing the level
of commonality while simultaneously considering the costs of commonality as
well as the benefits due to inventory savings obtained due to higher levels of
commonality. In particular, the author considers a two-product system with
one common subassembly and two product specific subassemblies. The
parameter to be optimized is the size of this common subassembly in terms of
the degree of commonality. The author assumes that the cost of the common
component increases in a convex fashion with respect to the degree of
commonality while the costs of the product specific components decrease in a
linear fashion. Inventory of both common and product specific components
are stored in anticipation of demand. Under the above assumptions and
standard inventory assumptions related to holding and penalty costs and
linear costs of commonality, the author shows that the two products have
either complete commonality or no commonality. Further the optimal level of
commonality is lower in product lines where the costs of introducing
commonality are higher. Based on a computational study, the author shows
that the optimal level of commonality is always higher in postponement as
compared to the optimal level of commonality when product inventories are
managed independently. Moreover, the cost of commonality affects the
impact of operational factors on optimal commonality and inventory under
postponement. That impact is limited when the cost of providing
commonality is either very high or very low.

Van Mieghem (2002) analyzes a model with two products similar to
Swaminathan (1999), where each product is assembled from two components.
However, Van Mieghem (2002) assumes that both common and product
specific components are stocked and derives conditions under which
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commonality should be adopted. This condition is stated in terms of a
maximal commonality threshold cost that depends on the demand forecast
only through its demand correlation as well as on financial data. For high
commonality cost, neither commonality nor postponement is optimal. A pure
commonality strategy where each product is assembled using a common
component, however, is never optimal unless complexity costs are introduced.
Finally, the author shows that while the value of the commonality strategy
decreases in the correlation between product demands, commonality is
optimal even when the product demands move in lockstep (perfectly
correlated) if there is a sufficient profit differential between the two products.

5.3 Component standardization applications

Lee (1996) provides the example of a large computer printer manufacturer
which produced both mono as well as color printers. The manufacturing
process for the two products are very similar except for the materials used.
There are two key stages in the production, printed circuit board assembly and
final assembly. At each of these stages a distinct component (print mechanism
interface or head driver board) is inserted to differentiate the two types of
products. The product differentiation began as soon as the head driver board
was inserted at the printed circuit board stage. The demand was highly
uncertain for both products and often correlated which led to high forecast
errors. The firm evaluated the option of standardizing the head driver board
or both the head driver board and print interface mechanism, which would
lead to postponement. However, the costs of designing the additional
functionality in the common components needed consideration.

Brown et al. (2000) describe the component standardization approach
utilized at Xilinx where the final end product was actually designed in such a
way such that customization could be done through software deployment
at the customer site. The result is an integrated circuit that is field-
programmable. In this case, we have an extreme case of commonality
standardization, since the final product has been standardized.

Thonemann and Brandeau (2000) describe a model that determines the
optimal degree of standardization of components in a multi-product envi-
ronment. This model was successfully utilized by a large automobile
manufacturer to determine the optimal degree of commonality of wire
harnesses that go into a product family. The model provided decision support
for the design of future generation of components. Hewlett-Packard Company
had also used this approach to redesign their network printer (Lee, 1997). The
network printer was made in Japan and used to have two distinct engines, one
for 110 voltage countries (e.g., North America), and one for 220 voltage
countries (e.g., Europe and Asia). The printers with different engines are thus
not inter-changeable to meet the changing demands in the different continents.
An alternative design called for using universal power supply and fuser, which
would result in a universal printer. This way, the printers made in Japan could
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be used for any market. At the end of life of the product, this could be
particularly beneficial, as excess inventory in one continent does not have to
be written off, but instead can be trans-shipped to another continent if there
are any demand/supply imbalances.

Most recently, Lucent Technologies in Spain has utilized the component
standardization strategy to achieve great success (Hoyt and Lopez-Tello,
2001). In 1998, the Tres Cantos plant, which builds telecommunications-
switching systems, was faced with a great sales potential in Saudi Arabia that
was worth millions of dollars. However, the lead time required was much
shorter than usual, due to the Saudi government’s desire to have all systems
implemented prior to Y2K. The specific configurations required, however,
could only be known after detailed site engineering work had been performed.
The complete manufacturing time for the build-to-order process was far
greater than what the Saudi customers wanted. In addition, the Tres Cantos
actually did not have enough capacity to meet this big order from Saudi. By
redesigning the product so that they could have common building blocks,
Lucent was able to: (1) prebuild the common building blocks before detailed
site engineering tasks were completed; and (2) utilize the US plant in
Oklahoma to help solve the capacity limitation problem. The result was that
the company was able to win the contract and delivered the products on time.

6 Related strategies and other benefits

Thus far we have considered models that explore mostly the inventory-
related benefits of postponement. However, postponement decisions may be
tightly linked to pricing decisions and information flow decisions. We will
explore models for those and other strategies related to product variety
management in this section.

6.1 Postponement, information, and pricing

Although the key benefit identified with postponement has been inventory
reduction, there are other issues related to postponement that are important.
The main benefit related to postponement stems from the fact that one can
delay the decision point for differentiation so that one can get more demand
information before making a final commitment. Benefits of postponement can
also be due to better forecasts generated in cases where the future forecasts are
improved, as one gets closer to the period when the demand occurs. As
described earlier, Lee and Whang (1998) differentiated the value of
postponement as ‘uncertainty resolution’ and ‘forecast improvement.’
Anand and Mendelson (1998) study the increased flexibility and pooling
benefits of delayed production in a multi-product supply chain with a noisy
information system on a binary demand distribution. Aviv and Federgruen
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(1999) provide a detailed characterization for the benefits related to post-
ponement under unknown demand distributions.

Another benefit of postponement beyond risk pooling relates to more
effective usage of existing capacity. Swaminathan and Tayur (1998a) show
that the benefit of postponement using vanilla boxes is extremely high when
the available capacity is medium (neither too high or too low). This is because,
under that condition, postponement also benefits capacity utilization, which in
turn affects the total costs. Gavirneni and Tayur (1999) explore this issue
further by considering a two-item system where the manufacturer has the
option to produce them in separate facilities or postpone the differentiation to
the distribution stage. The authors explore the benefits of postponement under
varying assumptions about the information at the manufacturer about the
ordering policies being utilized.

Although we have only focused on the flexibilities provided by
postponement strategies related to production of products, one could also
envision situations where a firm tries to obtain a similar flexibility through
pricing. Van Mieghem and Dada (1999) present a comparative analysis related
to price, production and capacity decisions. They show that competition,
uncertainty and timing of operational decisions can influence investment
decisions of the firm related to capacity and inventory. Using a simple model
for uncertainty in demand (captured by a random shock) they show that, in
contrast to production postponement, price postponement can make the
investment decisions related to capacity and inventory relatively insensitive to
uncertainty.

6.2 Postponement, modularity, and substitution

Postponement strategy is often affected to a great extent by the product
architecture decisions. One such decision relates to the degree of modularity
that is present in the product architecture. Recently, several firms have started
designing their products in ‘families’ where the individual products are
distinguished by the alternative combinations that are given to the modular
components. Examples include the personal computer, electronics and
automobile industry. Although this is an important concept from a product
design perspective, analytical models studying its relationship with postpone-
ment have been very limited.

Another concept related to postponement for managing product variety is
substitution. Substitution is a strategy where the manufacturer is able to
provide a customer with an alternative product when the product ordered is
not available in stock, and in the process incurs some kind of goodwill cost (or
a real cost related to providing a better product to the customer or providing a
gift voucher of some sort). This is a powerful strategy that has been used by
firms over the years in several industries. Researchers have studied several
versions of this problem (see Jordan and Graves 1995, Bassok, Anupindi
and Akella 1999, Rao, Swaminathan and Zhang 2002) following the initial
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characterization of the optimal policy by Ignall and Veinott (1969). Some
firms have also utilized the substitution strategy along with the postponement
strategy. Swaminathan and Kukukyavuz (2000) analyze one such environ-
ment from the biotech industry, and show the comparative benefits of
these strategies. An alternative situation related to substitution where a
customer automatically buys a substitute product, has also been studied (see
Mahajan and Van Ryzin, 1999 for details). Swaminathan (2001) presents a
managerial framework that relates product variety strategies such as
postponement, substitution and commonality to the product and process
modularity and identifies the most appropriate approach under different
conditions.

7 Conclusions

Global markets with diverse needs and dramatic shortening of product life
cycles put a great premium on effective product variety management. As a
result, designing products for postponement is of high priority. The inter-
disciplinary and complicated nature of the problem has generated a need for
models that can provide multiple perspectives on the costs and values of
postponement. In this chapter, we have provided a summary of such research
conducted from the operations management perspective. In particular, we
focused on the three enablers of postponement; namely, process standard-
cization, process resequencing, and component standardization. We presented
models which provided insights on their benefits as well as industrial
application of these strategies.

Clearly, there is a need for research and models along two additional
dimensions. First, we need models that can be incorporated into decision
support systems that allow managers to benefit from model based decision
support. To achieve this, more emphasis is needed on large-scale models that
capture the essential characteristics of the real environment and development
of algorithms to solve those models in a fast and efficient manner. Second,
most of the models developed this far relate to product postponement. As a
larger set of firms move towards service-oriented businesses, models that can
capture postponement benefits in those environments are going to be
extremely useful.

As more and more firms adopt the Internet technology to conduct their
business on-line as well as have more interactions with their customers over
the Internet, they are beginning to gather richer and detailed information
about customer preferences. This has provided firms with an opportunity to
tailor their products and services around customer preferences, i.e., mass
customization. Postponement provides a powerful way for firms to pursue
mass customization without incurring the usual huge operational costs
associated with proliferating product variety. Indeed, as Feitzinger and Lee
(1997) indicated, postponement is a strategy that allows firms to implement
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cost-effective mass customization. As a result, it is all the more important that
new models related to postponement and other strategies for effective product
variety management be studied and analyzed by future researchers.
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Chapter 6

Supply Chain Coordination with Contracts

Gérard P. Cachon
The Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104, USA

E-mail: cachon@wharton.upenn.edu

1 Introduction

Optimal supply chain performance requires the execution of a precise set of
actions. Unfortunately, those actions are not always in the best interest of the
members in the supply chain, i.e., the supply chain members are primarily
concerned with optimizing their own objectives, and that self-serving focus
often results in poor performance. However, optimal performance is
achievable if the firms coordinate by contracting on a set of transfer
payments such that each firm’s objective becomes aligned with the supply
chain’s objective.

This chapter reviews and extends the supply chain literature on the
management of incentive conflicts with contracts. Numerous supply chain
models are discussed, roughly presented in order of increasing complexity. In
each model the supply chain optimal actions are identified. In each case the
firms could implement those actions, i.e., each firm has access to the
information required to determine the optimal actions and the optimal actions
are feasible for each firm.1 However, firms lack the incentive to implement
those actions. To create that incentive the firms can adjust their terms of trade
via a contract that establishes a transfer payment scheme. A number of
different contract types are identified and their benefits and drawbacks are
illustrated.

1 Even in the asymmetric information models there is an assumption that the firms can share

information so that all firms are able to evaluate the optimal policies. Nevertheless, firms are not

required to share information. See Anand and Mendelson (1997) for a model in which firms are unable

to share information even though they have the incentive to do so.
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The first model has a single supplier selling to a single retailer that faces
the newsvendor problem. In that model the retailer orders a single product
from the supplier well in advance of a selling season with stochastic demand.
The supplier produces after receiving the retailer’s order and delivers her
production to the retailer at the start of the selling season.2 The retailer has no
additional replenishment opportunity. How much the retailer chooses to
order depends on the terms of trade, i.e., the contract, between the retailer
and the supplier.

The newsvendor model is not complex, but it is sufficiently rich to
study three important questions in supply chain coordination. First, which
contracts coordinate the supply chain? A contract is said to coordinate
the supply chain if the set of supply chain optimal actions is a Nash
equilibrium, i.e., no firm has a profitable unilateral deviation from the set of
supply chain optimal actions. Ideally, the optimal actions should also be
a unique Nash equilibrium; otherwise, the firms may ‘coordinate’ on a
suboptimal set of actions. In the newsvendor model the action to coordinate is
the retailer’s order quantity (and in some cases, as is discussed later, the
supplier’s production quantity also needs coordination). Second, which
contracts have sufficient flexibility (by adjusting parameters) to allow for
any division of the supply chain’s profit among the firms? If a coordinating
contract can allocate rents arbitrarily, then there always exists a contract
that Pareto dominates a noncoordinating contract, i.e., each firm’s profit
is no worse off and at least one firm is strictly better off with the coordinating
contract. Third, which contracts are worth adopting? Although coordination
and flexible rent allocation are desirable features, contracts with those
properties tend to be costly to administer. As a result, the contract
designer may actually prefer to offer a simple contract even if that
contract does not optimize the supply chain’s performance. A simple
contract is particularly desirable if the contract’s efficiency is high (the
ratio of supply chain profit with the contract to the supply chain’s
optimal profit) and if the contract designer captures the lion’s share of
supply chain profit.

Section 3 extends the newsvendor model by allowing the retailer to choose
his retail price in addition to his stocking quantity. Coordination is more
complex in this setting because the incentives provided to align one action
(e.g., the order quantity) might cause distortions with the other action (e.g.,
the price). Not surprising, it is shown that some of the contracts that
coordinate the basic newsvendor model no longer coordinate in this setting,
whereas others continue to do so.

Section 4 extends the newsvendor model by allowing the retailer to exert
costly effort to increase demand. Coordination is challenging because the

2 The author adopts the convention (first suggested to him by Martin Lariviere) that the firm offering

the contract is female and the accepting firm is male. When neither firm offers the contract, then the

upstream firm is female, and the downstream firm is male.
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retailer’s effort is noncontractible, i.e., the firms cannot write contracts
based on the effort chosen (for reasons discussed later). Furthermore, as with
the retail price, coordination is complicated by the fact that the incentives to
align the retailer’s order-quantity decision may distort the retailer’s effort
decision.

Section 5 studies two models, each with one supplier that sells to multiple
competing retailers. Coordination requires the alignment of multiple actions
implemented by multiple firms, in contrast with the price and effort models
(Sections 3 and 4) that have multiple actions implemented by a single firm
(the retailer). More specifically, coordination requires the tempering of
downstream competition.

Section 6 has a single retailer that faces stochastic demand but two
replenishment opportunities. Early production (the first replenishment) is
cheaper than later production (the second replenishment), but less informative
because the demand forecast is updated before the second replenishment.
Coordination requires that the retailer be given the proper incentives to
balance this trade-off.

Section 7 studies an infinite horizon stochastic demand model in which
the retailer receives replenishments from a supplier after a constant
lead time; a departure from the single-period lost-sales models of the
previous sections. As in the effort model, coordination requires that the
retailer chooses a ‘higher action’, which in this model is a larger base-
stock level. The cost of this higher action is more inventory on average, but
unlike in the effort model, the supplier can verify the retailer’s inventory
and therefore share the holding cost of carrying more inventory with the
retailer.

Section 8 adds richness to the single-location base-stock model by making
the supplier hold inventory, albeit at a lower holding cost than the retailer.
Whereas the focus in the previous sections is primarily on coordinating
the downstream actions, in this model the supplier’s action also requires
coordination, and that coordination is nontrivial. To be more specific, in the
single-location model the only critical issue is the amount of inventory in the
supply chain, but here the allocation of the supply chain’s inventory between
the supplier and the retailer is important as well.

Section 9 departs from the assumption that firms agree to contracts
with set transfer prices. In many supply chains the firms agree to a
contractual arrangement before the realization of some relevant information.
The firms could specify transfer payments for every possible contingency,
but those contracts are quite complex. Instead, firms could agree to set
transfer prices via an internal market after the relevant information is
revealed.

Section 10 endows one firm with important information that the other firm
does not possess, i.e., it is private information. For example, a manufacturer
may have a more accurate demand forecast for a product than the
manufacturer’s supplier. As in the previous models, supply chain coordination
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requires each firm to implement optimal actions. But since those
optimal actions depend on the private information, supply chain coordina-
tion also requires the accurate sharing of information. Sharing information
is challenging because there exists the incentive to provide false information
in an effort to influence the actions taken, e.g., a manufacturer may wish
to offer a rosy demand forecast to try to get the supplier to build more
capacity.

The final section summarizes the main insights that have developed from
this literature and provides some general guidance for future research.

Each section presents one or more simple models to facilitate the anal-
ysis and to highlight the potential incentive conflicts within a supply chain.
The same analysis recipe is usually followed: identify the type of contracts that
can coordinate the supply chain, determine for each contract type the set of
parameters that achieves coordination, and evaluate for each coordinating
contract type the possible range of profit allocations, i.e., what fraction of
the supply chain’s profit can be earned by each member in the supply
chain with a coordinating contract. Implementation issues are then
explored: e.g., is a contract-type compliant with legal restrictions; what are
the consequences for failing to comply with the contractual terms; and what is
a contract’s administrative burden (e.g., what types of data need to be
collected and how often must data be collected). Each section ends with a
discussion of extensions and related research.

While this chapter gives a broad treatment of the supply chain contracting
literature, it does not address all papers that could possibly be classified
within this literature. In particular, there are (at least) six types of closely
related papers that are not discussed directly. The first is the extensive
literature on quantity discounts because several excellent reviews are available,
see Dolan and Frey (1987) and Boyaci and Gallego (1997). The second set that
is not addressed includes papers on a single firm’s optimal procurement
decisions given particular contractual terms. Examples include Scheller-Wolf
and Tayur’s (1997) study of procurement under a minimum quantity-
commitment contract, Duenyas, Hopp and Bassok’s (1997) study of
procurement with JIT contracts, Bassok and Anupindi’s (1997a) study of
procurement with total minimum commitments, and Anupindi and Akella’s
(1993) and Moinzadeh and Nahmias’ (2000) studies of procurement with
standing order contracts. The third body of excluded work is research on
supply chain coordination without contracts. Examples include papers on the
benefit of Quick Response (Iyer & Bergen, 1997), Accurate Response (Fisher
& Raman, 1996), collaborative planning and forecasting (Aviv, 2001), Vendor
Managed Inventory (Aviv & Federgruen, 1998) and information sharing
within a supply chain (Gavirneni, Kapuscinski & Tayur, 1999). Fourth,
papers on decentralized supply chain operations which do not explicitly
consider coordination are excluded: e.g., Cachon and Lariviere (1997, 1999),
Corbett and Karmarkar (2001), Erhun, Keskinocak and Tayur (2000), Ha, Li
and Ng (2000) and Majumder and Groenevelt (2001). Fifth, the broad
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literature on franchising is not directly discussed, primarily because that
literature generally avoids operational detail (see Lafontaine & Slade, 2001 for
a recent review of that literature) Finally, papers on vertical restraints vis-a-vis
social welfare and antitrust issues are not considered, see Katz (1989).

For earlier overviews on supply chain coordination with contracts, see
Whang (1995) and the three chapters in Tayur, Ganeshan and Magazine
(1998) that focus on the topic: Cachon (1998), Lariviere (1998) and Tsay,
Nahmias and Agrawal (1998).

2 Coordinating the newsvendor

This section studies coordination in a supply chain with one supplier and
one retailer. There is one selling season with stochastic demand and a single
opportunity for the retailer to order inventory from the supplier before the
selling season begins. With the standard wholesale-price contract, it is shown
that the retailer does not order enough inventory to maximize the supply
chain’s total profit because the retailer ignores the impact of his action on the
supplier’s profit. Hence, coordination requires that the retailer be given an
incentive to increase his order.

Several different contract types are shown to coordinate this supply chain
and arbitrarily divide its profit: buyback contracts, revenue-sharing contracts,
quantity-flexibility contracts, sales-rebate contracts and quantity-discount
contracts.

The concept of a compliance regime is introduced. The compliance regime
determines the consequences for failing to adhere to a contract. For example,
it is assumed that the supplier cannot force the retailer to accept more
product than the retailer orders, i.e., the retailers could clearly use the courts
to prevent any attempt to do so. However, it is debatable whether the supplier
is required to deliver the retailer’s entire order. The compliance regime matters
because it influences the kinds of contracts that coordinate the supply chain:
there exist contracts that coordinate with one compliance regime, but not
another.

2.1 Model and analysis

In this model there are two firms, a supplier and a retailer. The retailer
faces the newsvendor’s problem: the retailer must choose an order quantity
before the start of a single selling season that has stochastic demand.
Let D>0 be demand during the selling season. Let F be the distribution
function of demand and f its density function: F is differentiable, strictly
increasing and F(0)¼ 0. Let FðxÞ ¼ 1� FðxÞ and �¼E[D]. The retail price
is p. The supplier’s production cost per unit is cs and the retailer’s marginal
cost per unit is cr, csþ cr<p. The retailer’s marginal cost is incurred upon
procuring a unit (rather than upon selling a unit). For each demand the
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retailer does not satisfy the retailer incurs a goodwill penalty cost gr and
the analogous cost for the supplier is gs. For notational convenience, let
c¼ csþ cr and g¼ gsþ gr. The retailer earns v<c per unit unsold at the end of
season, where v is net of any salvage expenses. Assume the supplier’s net
salvage value is no greater than v, so it is optimal for the supply chain to
salvage leftover inventory at the retailer. The qualitative insights from the
subsequent analysis do not depend on whether it is optimal for the retailer or
the supplier to salvage leftover inventory. [The supply chain contracting
literature generally avoids this issue by assuming the net salvage value of a
unit is the same at either firm. Tsay (2001) is an exception.] For more
extensive treatment of the newsvendor model, see Silver, Pyke and Peterson
(1998) or Nahmias (1993).

The following sequence of events occurs in this game: the supplier
offers the retailer a contract; the retailer accepts or rejects the contract;
assuming the retailer accepts the contract, the retailer submits an order
quantity, q, to the supplier; the supplier produces and delivers to the
retailer before the selling season; season demand occurs; and finally transfer
payments are made between the firms based upon the agreed contract. If
the retailer rejects the contract, the game ends and each firm earns a
default payoff.

The supplier is assigned to make the contract offer, rather than the
retailer, only for expositional convenience, i.e., it has no impact on the sub-
sequent analysis. The firm that offers the contract does not matter because we
seek to identify the set of contracts that coordinate the supply chain
and arbitrarily allocate its profit. If one firm were indeed assigned to
make the only offer, then it would offer the most favorable contract in
that set which the other firm will accept. Furthermore, it is unlikely in
practice that either firm makes a single offer which is regarded as the final
offer. Instead, firms are likely to make many offers and counter offers before
they settle on some agreement. The details of this negotiation process
are generally not considered in the supply chain literature, nor are they
explored here.

The contract that is actually adopted at the end of the negotiation
process depends on the firms’ relative bargaining power, which is a concept
that is easy to understand but difficult to quantify. Power, like beauty, can
be in ‘the eye of the beholder’, or it can be more concrete. A standard
approach to model power is to assume one of the firms has an exogenous
reservation profit level, i.e., the firm accepts only a contract that
yields that reservation level: the higher the reservation level, the higher the
firm’s power.3 Ertogral and Wu (2001) are even more explicit with their
bargaining process: bargaining occurs in rounds in which either firm may

3 Webster and Weng (2000) impose a stronger condition. They require that both firms are at least as

well off with the adoption, a contract as they would be with a default contract for all realization of

demand.
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make an offer, but if at the end of a round an offer is not accepted there is a
fixed probability the negotiations fail, i.e., the firms are left with their
reservation profit. However, the reservation level approach is not entirely
satisfying: it is quite likely a firm’s opportunity outside of the relationship
being studied is not independent of the firm’s opportunity within the
relationship. Nor should it be expected that the value of a firm’s outside
opportunity is known with certainty a priori (van Mieghem, 1999; Rochet &
Stole, 2002). Aside from the reservation level approach, some researchers
adjust power by changing which firm makes the contract offer or by changing
when actions are chosen. In general, a firm has more power when she makes
the first offer, assuming it is a ‘take-it or leave-it’ offer, or when she chooses
her actions first, assuming she is committed to her action. These choices
matter when one wants to predict with precision the particular outcome of a
negotiation process, which is not done here. Additional research is surely
needed on this issue.

To continue with the description of the model, each firm is risk neutral,
so each firm maximizes expected profit. There is full information, which
means that both firms have the same information at the start of the game, i.e.,
each firm knows all costs, parameters and rules. Game theorists have
been also concerned with higher levels of common knowledge: e.g., does firm
A know that firm B knows all information and does firm B know that
firm A knows that firm B knows all information, etc. The supply chain
contracting literature has not explored this issue. See Rubinstein (1989) for a
model with counterintuitive implications for less than complete common
knowledge.

It is quite reasonable to assume the supplier cannot force the retailer to
pay for units delivered in excess of the retailer’s order quantity. But can the
supplier deliver less than the amount the retailer orders? A failure to deliver
the retailer’s full order may occur for a number of reasons beyond the
supplier’s control: e.g., unforeseen production difficulties or supply shortages
for key components. The shortage may also be due to self-interest. In
recognition of that motivation, the retailer could assume the supplier operates
under voluntary compliance, which means the supplier delivers the amount
(not to exceed the retailer’s order) that maximizes her profit given the terms of
the contract. Alternatively, the retailer could believe the supplier never
chooses to deliver less than the retailer’s order because the consequences for
doing so are sufficiently great, e.g., court action or a loss of reputation. Call
that regime forced compliance.

The compliance regime in reality almost surely falls somewhere between
those two extremes. However, in any regime other than forced compliance the
supplier can be expected to fall somewhat short on her delivery if the terms of
the contract give the supplier an incentive to do so. In other words, any
contract that coordinates the supply chain with voluntary compliance surely
coordinates with forced compliance, but the reverse is not true (because
the contract may fail to coordinate the supplier’s action). Hence, voluntary
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compliance is the more conservative assumption (albeit maybe too
conservative).4

The approach taken in this section is to assume forced compliance but to
check if the supplier has an incentive to deviate from the proposed contractual
terms. This seemingly contradictory stance is adopted to simplify notation:
voluntary compliance requires notation to keep track of two actions, the
retailer’s order quantity and the supplier’s production quantity, whereas
forced compliance requires notation only for one action. See Cachon and
Lariviere (2001) for additional discussion on compliance regimes.5

Let S(q) be expected sales, min(q,D),c

SðqÞ ¼ qð1� FðqÞÞ þ

Z q

0

yf ð yÞdy

¼ q�

Z q

0

Fð yÞdy

(The above follows from integration by parts.) Let I(q) be the expected
leftover inventory, IðqÞ ¼ ðq�DÞþ ¼ q� SðqÞ. Let L(q) be the lost-sales
function, LðqÞ ¼ ðD� qÞþ ¼ �� SðqÞ. Let T be the expected transfer payment
from the retailer to the supplier. That function may depend on a number of
observations (e.g., order quantity, leftover inventory), as is seen later.

The retailer’s profit function is

prðqÞ ¼ pSðqÞ þ vIðqÞ � grLðqÞ � crq� T

¼ ð p� vþ grÞSðqÞ � ðcr � vÞq� gr�� T ,

the supplier’s profit function is

psðqÞ ¼ gsSðqÞ � csq� gs�þ T ,

4 This chapter assumes the wholesale price operates with forced compliance whereas the quantity to

deliver may operate with voluntary compliance. Hence, the parameters in a contract can operate under

different compliance regimes, which can be justified by the differences in ease by which the courts can

verify different terms. As suggested by Fangruo Chen, it is also possible to view all contracts as iron

clad contracts (i.e., everything operates with forced compliance), but the kinds of contractual terms

may be limited. For example, suppose the contract were written such that the retailer’s order quantity

is an upper bound on the supplier’s delivery quantity, i.e., forced compliance of an upper bound is

analogous to our voluntary compliance with a specific quantity. Additional research is needed to

determine if the distinctions in these interpretations matter.
5 See Krasa and Villamil (2000) for a model in which the contracting parties endogenously set the

compliance regime. Milner and Pinker (2001) do not explicitly define a compliance regime, but it does

impact their results. They show supply chain coordination is possible when one firm is able to identify

any deviation by the other firm and follow through with substantial penalties. When deviations cannot

be identified for sure, supply chain coordination is no longer possible. Baiman, Fischer and Rajan

(2000) focus on how the compliance regime impacts a supplier’s incentive to improve quality and a

buyer’s incentive to inspect.
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and the supply chain’s profit function is

�ðqÞ ¼ prðqÞ þ psðqÞ ¼ ð p� vþ gÞSðqÞ � ðc� vÞq� g�: ð2:1Þ

Given the above profit functions, it is possible to normalize some of the
variables. For example, let p̂p ¼ p� vþ gr be the adjusted price, let ĉ ¼ c� v
be the adjusted production cost, let T̂T ¼ T þ ðcr � vÞq be the adjusted transfer
payment, let �̂�rðqÞ ¼ prðqÞ þ gr� be the retailer’s adjusted profit function and
let �̂�sðqÞ ¼ psðqÞ þ gs� be the supplier’s adjusted profit function. Those
adjusted profit functions simplify to �̂�rðqÞ ¼ p̂pSðqÞ � T̂T and �̂�sðqÞ ¼
gsSðqÞ � ĉqþ T̂T . While those functions have cleaner notation, caution is
required when defining the transfer payment for a given contract because the
contract’s terms (e.g., the wholesale price, the buyback rate, etc.) must be
given in terms of the adjusted parameters. Unfortunately, the notational
clarity gained by these adjustments is often lost when the adjusted contract
terms are included. As a result, this chapter works with the unadjusted
profit functions.

Let qo be a supply chain optimal order quantity, i.e., qo¼ argmax�(q). To
avoid uninteresting situations, assume �(qo)>0. Since F is strictly increasing,
� is strictly concave and the optimal order quantity is unique. Further,
qo satisfies

S0ðqoÞ ¼ FðqoÞ ¼
c� v

p� vþ g
: ð2:2Þ

Let q*r be the retailer’s optimal order quantity, i.e., q*r ¼ argmaxprðqÞ. The
retailer’s order clearly depends on the chosen transfer payment scheme, T.

A number of contract types have been applied to this model. The simplest
is the wholesale-price contract: the supplier merely charges the retailer a
fixed wholesale price per unit ordered. Section 2.2 studies that contract. It is
shown that the wholesale-price contract generally does not coordinate
the supply chain. Hence, the analysis concentrates on two questions: what
is the efficiency of the wholesale-price contract (the ratio of supply
chain profit to optimal profit) and what is the supplier’s share of the supply
chain’s profit.

More complex contracts include a wholesale price plus some adjustment
that typically depends on realized demand (the quantity-discount contract is
an exception). As mentioned in Section 1, the analysis recipe for all of those
contracts is the same: determine the set of contract parameters that coordinate
the retailer’s action; then evaluate the possible range of profit allocations
between the firms; and then check whether the contract coordinates under
voluntary compliance, i.e., whether the supplier has an incentive to deliver
less than the retailer’s order quantity.
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2.2 The wholesale-price contract

With a wholesale-price contract the supplier charges the retailer w per unit
purchased: Tw(q,w)¼wq. See Lariviere and Porteus (2001) for a more
complete analysis of this contract in the context of the newsvendor problem.
Bresnahan and Reiss (1985) study the wholesale-price contract with
deterministic demand.

pr(q,w) is strictly concave in q, so the retailer’s unique optimal order
quantity satisfies

ð p� vþ grÞS
0ðq*r Þ � ðwþ cr � vÞ ¼ 0: ð2:3Þ

Since S0(q) is decreasing, q*r ¼ qo only when

w ¼
p� vþ gr

p� vþ g

� �
ðc� vÞ � ðcr � vÞ:

It is straightforward to confirm that w� cs, i.e., the wholesale-price contract
coordinates the channel only if the supplier earns a nonpositive profit.
So the supplier clearly prefers a higher wholesale price. As a result, the
wholesale-price contract is generally not considered a coordinating contract.
[As discussed in Cho and Gerchak (2001) and Bernstein, Chen and
Federgruen (2002), marginal cost pricing does not necessarily lead to zero
profit for the supplier when the marginal cost is not constant.] Spengler
(1950) was the first to identify the problem of ‘double marginalization’; in
this serial supply chain there is coordination failure because there are two
margins and neither firm considers the entire supply chain’s margin when
making a decision.

Even though the wholesale-price contract does not coordinate the sup-
ply chain, the wholesale-price contract is worth studying because it is
commonly observed in practice. That fact alone suggests it has redeeming
qualities. For instance, the wholesale-price contract is simple to administer.
As a result, a supplier may prefer the wholesale-price contract over a coor-
dinating contract if the additional administrative burden associated with the
coordinating contract exceeds the supplier’s potential profit increase.

From Eq. (2.3) the retailer’s optimal order quantity satisfies

Fðq*r Þ ¼ 1�
wþ cr � v

p� vþ gr
:

Since F is strictly increasing and continuous there is a one-for-one mapping
between w and q*r . Hence, let w(q) be the unique wholesale price that
induces the retailer to order q*r units,

wðqÞ ¼ ð p� vþ grÞFðqÞ � ðcr � vÞ:
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The supplier’s profit function can now be written as

psðq,wðqÞÞ ¼ gsSðqÞ þ ðwðqÞ � csÞq� gs�: ð2:4Þ

It is immediately apparent that the compliance regime does not matter with
this contract: for a fixed wholesale price no less than cs the supplier’s profit is
nondecreasing in q, so the supplier surely produces and delivers whatever
quantity the retailer orders.

The supplier’s marginal profit is

@psðq,wðqÞÞ
@q

¼ gsS
0ðqÞ þ wðqÞ � cs þ w0ðqÞq

¼ ð p� vþ grÞFðqÞ 1þ
gs

p� vþ gr
�
q f ðqÞ

FðqÞ

� �
� ðc� vÞ:

The supplier’s profit function is unimodal if the above is decreasing. FðqÞ
is decreasing, so ps(q,w(q)) is decreasing in q if q f ðqÞ=FðqÞ is increasing.
Demand distributions with that property are called increasing generalized
failure rate (IGFR) distributions.6 Fortunately, many of the commonly
applied demand distributions are IGFR: the normal, the exponential, the
Weibull, the gamma and the power distribution. Thus, with an IGFR demand
distribution there is a unique sales quantity, q*s , that maximizes the supplier’s
profit. (Actually, the supplier sets the wholesale price to wðq*s Þ knowing
quite well the retailer then orders q*s units.)

While psðq*s ,wðq*s ÞÞ is the best the supplier can hope for, the retailer
may actually insist on more than prðq*s ,wðq*s ÞÞ. For example, the retailer
may earn more by selling some other product in his store, i.e., his opportunity
cost is greater than prðq*s ,wðq*s ÞÞ. In that case the supplier needs to offer the
retailer more generous terms to get the retailer to carry the product. With a
wholesale-price contract the retailer’s profit is increasing in q,

@prðq,wðqÞÞ
@q

¼ �w0ðqÞq ¼ ð p� vþ grÞf ðqÞq > 0,

so the supplier can increase the retailer’s profit by reducing her wholesale
price (which should surprise no one). As long as the retailer insists on less
than the supply chain optimal profit, the retailer’s minimum profit require-
ment actually increases the total supply chain profit: the supply chain’s profit
is increasing in q for q 2 ½q*s , q

o� and so is the retailer’s profit. Hence, an

6 The failure rate of a demand distribution is f ðxÞ=FðxÞ. Any demand distribution with an increasing

failure rate (IFR) is clearly also IGFR. However, there are IGFR distributions that are not IFR. See

Lariviere and Porteus (2001) for additional discussion.
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increase in retail power can actually improve supply chain performance
(which is somewhat surprising, and controversial). However, that improve-
ment comes about at the supplier’s expense. See Messinger and Narasimhan
(1995), Ailawadi (2001) and Bloom and Perry (2001) for additional dis-
cussion and empirical evidence on how power has changed in several retail
markets.

The two performance measures applied to the wholesale-price contract
are the efficiency of the contract, �ðq*s Þ=�ðq

oÞ and the supplier’s profit
share, psðq*s ,wðq*s ÞÞ=�ðq*s Þ. From the supplier’s perspective the wholesale-
price contract is an attractive option if both of those measures are high:
the product of those ratios is the supplier’s share of the supply chain’s
optimal profit,

psðq*s ,wðq*s ÞÞ
�ðqoÞ

¼
psðq*s ,wðq*s ÞÞ

�ðq*s Þ

� �
�ðq*s Þ

�ðqoÞ

� �

To illustrate when that is likely, suppose gr¼ gs¼ 0 and demand follows
the power distribution: F(q)¼ gk for k>0 and q2 [0, 1]. In that case
the efficiency of the wholesale-price contract is ðkþ 1Þ�ð1þ1=kÞðkþ 2Þ, the
supplier’s profit share is ðkþ 1Þ=ðkþ 2Þ and the coefficient of variation is
ðkðkþ 2ÞÞ�1=2. (See Lariviere & Porteus, 2001 for details.) Note that
the coefficient of variation is decreasing in k but both measures are
increasing in k. In fact, as k!1 the coefficient of variation approaches
zero and both measures approach 1. Nevertheless, Table 1 demonstrates the
supplier’s share of supply chain profit increases more quickly than supply
chain efficiency.

One explanation for this pattern is that the retailer’s profit represents
compensation for bearing risk: with the wholesale-price contract there is no
variation in the supplier’s profit, but the retailer’s profit varies with the
realization of demand. As the coefficient of variation decreases the retailer
faces less demand risk and therefore his compensation is reduced. However,
the retailer is not compensated due to risk aversion. (See Tsay, 2002 for a
model with risk aversion.) If the retailer were risk averse, the supplier would
have to provide for yet more compensation. Instead, the retailer is being
compensated for the risk that demand and supply do not match. Lariviere and
Porteus (2001) demonstrate this argument holds for a broad set of demand
distributions.

Anupindi and Bassok (1999) study an interesting extension to this model.
Suppose the supplier sells to a retailer that faces an infinite succession of
identical selling seasons.7 There is a holding cost on leftover inventory at
the end of a season but inventory can be carried over to the next season. The

7 In fact, their model has two retailers. But in one version of their model the retailers face independent

demands, and so that model is qualitatively identical to the single retailer model.
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retailer submits orders between seasons and the supplier is able to replenish
immediately. Within each season the retailer faces a newsvendor problem that
makes the trade-off between lost sales and inventory holding costs. Hence, the
retailer’s optimal inventory policy is to order up to a fixed level that is the
solution to a newsvendor problem. But since inventory carries over from
season to season, the supplier’s average sales per season equals the retailer’s
average sales per season, i.e., the supplier’s profit function is ðwðqÞ � cÞSðqÞ.
The analysis of the supplier’s optimal wholesale price is more complex in this
setting because the supplier’s profit is now proportional to the retailer’s sales,
S(q), rather than to his order quantity, q. Nevertheless, since SðqÞ=S0ðqÞ > q,
the supplier’s optimal wholesale price is lower than in the single season model.
(The expression SðqÞ=S0ðqÞ > q simplifies to qFðqÞ >

R q
0 Fð yÞdy, which clearly

holds.) Thus, the efficiency of the wholesale-price contract is even better than
in the single season model.

Debo (1999) studies the repeated version of the single-shot newsvendor
model without inventory carrying from period to period. He demonstrates
that supply chain coordination is possible with just a wholesale-price con-
tract if the firm’s discount rate is not too high, i.e., the firms care about
future profit. Cooperation is achieved via the use of trigger strategies that
punish a defector.

The infinite horizon extensions to the model do not have an end-of-horizon
effect, i.e., inventory is not salvaged. Cachon (2002) studies a two-period
version of the model which has excess inventory and demand updating.
The retailer can submit an order well in advance of the selling season
and pay the supplier w1 for each unit in that order. The supplier then produces
and delivers the retailer’s first order before the selling season starts.
During the selling season the retailer can order from the supplier additional
units. If the supplier has inventory available, then the supplier delivers the
units and charges the retailer w2 per unit, w2�w1. The supply chain can
operate in one of three modes. The first matches the single-period model
studied by Lariviere and Porteus (2001): only the initial order before the
season starts is allowed. This mode of operations is called ‘push’, because
all inventory risk is pushed upon the retailer (i.e., the retailer bears the
cost of disposing leftover inventory). The other extreme is called ‘pull’: the
retailer orders only during the selling season, so now the supplier bears all
inventory risk. A combination of push and pull is created by the use of an

Table 1
Wholesale-price contract performance when demand follows a power distribution with
parameter k

Demand distribution parameter, k 0.2 0.4 0.8 1.6 3.2

Efficiency, �ðq*s Þ=�ðq
oÞ 73.7% 73.9% 74.6% 76.2% 79.1%

Supplier’s share, psðq*s ,wðq*s ÞÞ=�ðq*s Þ 54.5% 58.3% 64.3% 72.2% 80.8%
Coefficient of variation 1.51 1.02 0.67 0.42 0.25
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advanced purchase discount, w1<w2: the retailer submits an initial order to
take advantage of the advanced purchase discount and the supplier produces
more than the initial order in anticipation of the retailer’s orders during
the selling season. It is shown that supply chain efficiency is substantially
higher if the firms consider both push and pull contracts rather than just
push or just pull contracts. Furthermore, there exist conditions in which
advanced purchase discounts coordinate the supply chain and arbitrarily
allocate its profit. See Ferguson, DeCroix and Zipkin (2002), Taylor (2002b)
and Yüksel and Lee (2002) for additional work on the timing of the
retailer’s orders. See Section 6 for a model that studies demand updating with
coordinating contracts.

Dong and Rudi (2001) study the wholesale-price contract with two
newsvendors and transshipment of inventory between them. They find that
the supplier is generally able to capture most of the benefits of transshipments
and the retailers are worse off with transshipment. This is consistent
(but probably not identical) to Lariviere and Porteus’ (2001) finding that the
supplier is better off and the retailer worse off with less variable demand.
Related to transshipment, Chod and Rudi (2002) study a supplier selling a
single resource to a downstream firm that can use that resource to produce
multiple products.

Gilbert and Cvsa (2000) study the wholesale-price contract with demand
uncertainty and costly investment to reduce production costs. They demon-
strate that a trade-off exists between the beneficial flexibility of allowing
the wholesale price to adjust to market demand and the need to provide
incentives to reduce production costs. Additional detail on this paper is
provided in Section 4.

2.3 The buyback contract

With a buyback contract the supplier charges the retailer w per unit
purchased, but pays the retailer b per unit remaining at the end of the season:

Tbðq,w, bÞ ¼ wq� bIðqÞ ¼ bSðqÞ þ ðw� bÞq:

A retailer should not profit from leftover inventory, so assume b�w. See
Pasternack (1985) for a detailed analysis of buyback contracts in the context
of the newsvendor problem.

Buyback contracts are also called returns policies, but, unfortunately, both
names are somewhat misleading since they both imply the units remain-
ing at the end of the season are physically returned to the supplier. That
does occur if the supplier’s net salvage value is greater than the retailer’s net
salvage value. However, if the retailer’s salvage value is higher, the retailer
salvages the units and the supplier credits the retailer for those units, which is
sometime referred to as ‘markdown money’ (see Tsay, 2001). An important
implicit assumption is that the supplier is able to verify the number of
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remaining units and the cost of such monitoring does not negate the benefits
created by the contract.

With a buyback contract the retailer’s profit is

prðq,wb, bÞ ¼ ð p� vþ gr � bÞSðqÞ � ðwb � bþ cr � vÞq� gr�:

Now consider the set of buyback parameters {wb, b} such that for l� 0,

p� vþ gr � b ¼ �ð p� vþ gÞ ð2:5Þ

wb � bþ cr � v ¼ �ðc� vÞ ð2:6Þ

A comparison with Eq. (2.1) reveals the retailer’s profit function with that set
of contracts is

prðq,wb,bÞ ¼ �ð p� vþ gÞSðqÞ � �ðc� vÞq� gr�

¼ ��ðqÞ þ �ð�g� grÞ: ð2:7Þ

It follows immediately that q*r ¼ qo is optimal for the retailer. The supplier’s
profit function is

psðq,wb, bÞ ¼ �ðqÞ � prðq,wb, bÞ ¼ ð1� �Þ�ðqÞ � �ð�gs � ð1� �ÞgrÞ:

So the buyback contract coordinates with voluntary compliance as long as
l� 1. Some ambiguity arises with l¼ 1 (or l¼ 0) because then qo is
optimal for the supplier (or retailer), but so is every other quantity. Hence,
coordination is possible, but the optimal solution is no longer the unique
Nash equilibrium.

Interestingly, voluntary compliance actually increases the robustness of
the supply chain. Suppose the retailer is not rational and orders q>qo. Since
the supplier is allowed to deliver less than the retailer’s order quantity, the
supplier corrects the retailer’s mistake by delivering only qo units. How-
ever, because the retailer can refuse to accept more than he orders, the
supplier cannot correct the retailer’s mistake if he orders less than qo. See Chen
(1999a), Porteus (2000) and Watson (2002) for further discussion on the
robustness of a coordination scheme to irrational ordering.8

The retailer’s profit is increasing in l and the supplier’s profit is
decreasing in l so the l parameter acts to allocate the supply chain’s profit

8 While this is an intriguing idea, it is difficult to construct a theory based on irrational behavior.

Maybe a better interpretation is that shocks occur in the system that are only observable to one

member. For example, while qo is the steady-state optimal order quantity, the supplier may learn some

information that reveals in fact q0<qo is indeed optimal. Thus, the retailer’s apparently irrational

excessive order is really due to a lack of information. Some interesting research must be able to follow

from these ideas. Perhaps inspiration could come from Stidham (1992). He considers the regulation of

a queue when a manager sets her actions for a defined time period but actual expected demand during

that period may deviate from what the manager expects. He shows there may exist unstable equilibria,

i.e., a small shock to the system sends the system away from the equilibrium rather than back to it.
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between the two firms. The retailer earns the entire supply chain profit,
prðqo,wb, bÞ ¼ �ðqoÞ, when

� ¼
�ðqoÞ þ �gr
�ðqoÞ þ �g

� 1 ð2:8Þ

and the supplier earns the entire supply chain profit, psðqo,wb, bÞ ¼ �ðqoÞ,
when

0 � � ¼
�gr

�ðqoÞ þ �g
: ð2:9Þ

So every possible profit allocation is feasible with this set of coordinating
contracts, assuming l¼ 0 and l¼ 1 are considered feasible.

It is interesting to note that coordination of the supply chain requires
the simultaneous adjustment of both the wholesale price and the buyback
rate. This has implications for the bargaining process. For example, suppose
the firms agree to a particular wholesale price. Given any fixed wholesale
price, the coordinating buyback rate is not the buyback rate that maximizes
the supplier’s or the retailer’s profit. In other words, both players would
have an incentive to argue for a non-Pareto optimal (i.e., noncoordinating)
contract. It would be a shame if the players then agreed upon an non-Pareto
optimal contract because then, by definition, there would exist some
coordinating contract that could make both players better off. However, that
coordinating contract would have a different wholesale price. The key lesson
for managers is that they should never negotiate these parameters sequentially
(i.e., agree to one parameter and then consider the second parameter).
Instead, negotiations should always allow simultaneous changes to both the
wholesale price and the buyback rate.

From Eq. (2.7), the parameter l can loosely be interpreted as the retailer’s
share of the supply chain’s profit; it is precisely the retailer’s share
when gr¼ gs¼ 0. Note that the l parameter is not actually part of the
buyback contract. It is introduced for expositional clarity. Most of the supply
chain contracting literature does not explicitly define a comparable parameter.
Instead, it is more common to present one contract parameter in terms of
the other, e.g.,

wbðbÞ ¼ bþ cs � ðc� vÞ
bþ gs

p� vþ g

� �
:

Furthermore, coordinating parameters are often identified from first-order
conditions. The approach taken above is preferred because it is more
general. For example, the strategy space does not need to be continuous, there
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does not need to be a unique optimum and the supply chain cost function
does not have to be continuous, even though all of those conditions are
satisfied in this model (which is why the first-order condition approach
works).

In general, a contract coordinates the retailer’s and the supplier’s action
whenever each firm’s profit is an affine function of the supply chain’s profit.
In effect the firms end up with something that resembles a profit-sharing
arrangement. Jeuland and Shugan (1983) note that profit sharing can
coordinate a supply chain, but they do not offer a specific contract for
achieving profit sharing. Caldentey and Wein (1999) show that profit sharing
occurs when each firm receives a fixed fraction of every other firm’s utility.
With that approach each firm transacts with every other firm, which may lead
to an administrative burden if the number of firms is large.

There is a substantial literature on buyback contracts. Padmanabhan and
Png (1995) describe several motivations for return policies that are not
included in the newsvendor model. A supplier may wish to offer a return
policy to prevent the retailer from discounting leftover items, thereby
weakening the supplier’s brand image. For instance, suppliers of fashion
apparel have large marketing budgets to enhance the popularity of their
clothes. It is difficult to convince consumers that your clothes are popular
if they can be found in the discount rack at the end of the season.
Alternatively, a supplier may wish to accept returns to rebalance inventory
among retailers. There are a number of papers that consider stock rebalancing
in a centralized system (Lee, 1987; Tagaras & Cohen, 1992). Rudi, Kapur and
Pyke (2001) and Anupindi, Bassok and Zemel (2001) consider inventory
rebalancing in decentralized systems.

In Padmanabhan and Png (1997) a supplier uses a buyback contract to
manipulate the competition between retailers (see Section 5.2) Emmons
and Gilbert (1998) study buyback contracts with a retail price-setting
newsvendor (see Section 3). Taylor (2000a) incorporates a buyback contract
with a sales-rebate contract to coordinate the newsvendor with effort-
dependent demand (see Section 4). Donohue (2000) studies buyback contracts
in a model with multiple production opportunities and improving demand
forecasts (see Section 6). Anupindi and Bassok (1999) demonstrate buyback
contracts can coordinate a two-retailer supply chain in which consumers
search among the retailers to find inventory.9 Lee, Padmanabhan, Taylor and
Whang (2000) model price protection policies in a way that closely resembles
a buyback.10 However, in Taylor (2001) price protection is distinct from

9 In their model the supplier subsidizes the holding cost of leftover inventory, which is analogous to a

buyback.
10 In their first model a retailer makes a single purchase decision even though demand occurs over two

periods. Price protection is modeled as a credit for each unit remaining at the end of the first period,

which resembles a buyback. In their second model the retailer may purchase at the start of each period.

Again, price protection is modeled as a credit for each unit not sold at the end of the first period; as

with a buyback, the price protection reduces the retailer’s overage cost.
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buybacks. He demonstrates coordination with arbitrary allocation of profit
requires price protection in addition to buybacks when the retail price declines
with time.11

In the context of capital intensive industry, Wu, Kleindorfer and Zhang
(2002) study contracts that are similar to buyback contracts. There is one
supplier and one buyer. The buyer reserves Q units of capacity for a fee, s, and
pays another fee for each unit of capacity utilized, g. This is analogous to
a buyback contract with a wholesale price w¼ sþ g and a buyback rate
b¼ g: the buyer pays sþ g for each unit of capacity that is reserved and
receives g for each unit of capacity not utilized. The buyer’s demand depends
on the contract parameters and the uncertain spot price for additional
capacity: if the spot is less than g then the buyer satisfies his demand via the
spot market exclusively, but with higher spot prices the buyer uses an optimal
mixture of the reserved capacity and the spot market.

2.4 The revenue-sharing contract

With a revenue-sharing contract the supplier charges wr per unit purchased
plus the retailer gives the supplier a percentage of his revenue. Assume
all revenue is shared, i.e., salvage revenue is also shared between the firms.
(It is also possible to design coordinating revenue-sharing contracts in which
only regular revenue is shared.) Let � be the fraction of supply chain revenue
the retailer keeps, so (1�� ) is the fraction the supplier earns. Revenue-sharing
contracts have been applied recently in the video cassette rental industry
with much success. Cachon and Lariviere (2000) provide an analysis of these
contracts in a more general setting.

The transfer payment with revenue sharing is

Trðq,wr,�Þ ¼ ðwr þ ð1� �ÞvÞqþ ð1� �Þð p� vÞSðqÞ:

The retailer’s profit function is

prðq,wr,�Þ ¼ ð�ð p� vÞ þ grÞSðqÞ � ðwr þ cr � �vÞq� gr�:

Now consider the set of revenue-sharing contracts, {wr, � }, such that l� 0
and

�ð p� vÞ þ gr ¼ �ð p� vþ gÞ

wr þ cr � �v ¼ �ðc� vÞ:

11 In this model the retailer can either order additional units at the end of the first period or return units

to the supplier. Price protection is now a credit for each unit retained. Therefore, price protection is a

subsidy for retaining inventory whereas the buyback is a subsidy for disposing inventory.
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With those terms the retailer’s profit function is

prðq,wr,�Þ ¼ ��ðqÞ þ �ð�g� grÞ: ð2:10Þ

Hence, qo is the retailer’s optimal order quantity. The supplier’s profit is

psðq,wr,�Þ ¼ �ðqÞ � prðq,wr,�Þ ¼ ð1� �Þ�ðqÞ � �ð�g� grÞ,

so qo is the supplier’s optimal production quantity as long as l� 1. The
retailer’s profit is increasing in l and the supplier’s is decreasing in l. It is easy
to confirm that Eqs. (2.8) and (2.9) provide the parameter values for l such
that the retailer’s profit equals the supply chain’s profit with the former and
the supplier’s profit equals the supply chain’s profit with the latter. Hence,
those revenue-sharing contracts coordinate the supply chain and arbitrarily
allocate its profit.

The similarity between Eqs. (2.10) and (2.7) suggests a close connection
between revenue-sharing and buyback contracts. In fact, in this setting they
are equivalent. Consider a coordinating buyback contract, {wb, b}. With that
contract the retailer pays wb� b for each unit purchased and an additional b
per unit sold. (The common description for a buyback contract has the retailer
paying wb per unit purchased and receiving a credit of b per unit not sold,
which is the same as paying wb� b for each unit purchased no matter
the demand realization and an additional b per unit sold.) With revenue
sharing the retailer pays wr þ ð1� �Þv for each unit purchased and
ð1� �Þð p� vÞ for each unit sold. Therefore, revenue-sharing and a buyback
contract are equivalent when

wb � b ¼ wr þ ð1� �Þv

b ¼ ð1� �Þð p� vÞ

In other words, the revenue-sharing contract {wr, � } generates the same
profits for the two firms for any realization of demand as the following
buyback contract,

wb ¼ wr þ ð1� �Þp

b ¼ ð1� �Þð p� vÞ

While these contracts are equivalent in this setting, Sections 3 and 5.2
demonstrate that their paths diverge in more complex settings.

There are several other papers that investigate revenue-sharing contracts.
Mortimer (2000) provides a detailed econometric study of the impact of
revenue-sharing contracts in the video rental industry. She finds that the
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adoption of these contracts increased supply chain profits by 7%. Dana and
Spier (2001) study these contracts in the context of a perfectly competitive
retail market. Pasternack (1999) studies a single retailer newsvendor model in
which the retailer can purchase some units with revenue sharing and other
units with a wholesale-price contract. He does not consider supply chain
coordination in his model. Gerchak, Cho and Ray (2001) consider a
video retailer that decides how many tapes to purchase and how much time
to keep them. Revenue sharing coordinates their supply chain, but only
provides one division of profit. They redistribute profits with the addition of
a licensing fee. Wang, Jiang and Shen (2001) consider revenue sharing
with consignment (i.e., wr¼ 0).

2.5 The quantity-flexibility contract

With a quantity-flexibility contract the supplier charges wq per unit
purchased but then compensates the retailer for his losses on unsold units. To
be specific, the retailer receives a credit from the supplier at the end of the
season equal to ðwq þ cr � vÞminðI , �qÞ, where I is the amount of leftover
inventory, q is the number of units purchased and �2 [0, 1] is a contract
parameter. [See Yüksel and Lee (2002) for a model in which the return
threshold is an absolute quantity instead of a percentage of the retailer’s
order.] Hence, the quantity-flexibility contract fully protects the retailer on a
portion of the retailer’s order whereas the buyback contract gives partial
protection on the retailer’s entire order. (The retailer continues to salvage
leftover inventory, which is why the salvage value is not included in each unit’s
credit.) If the supplier did not compensate the retailer for the cr cost per unit
then the retailer would receive only partial compensation on a limited number
of units, which is called a backup agreement. Those contracts are studied by
Pasternack (1985) and Eppen and Iyer (1997) and Barnes-Schuster, Bassok
and Anupindi (1998).12

Tsay (1999) studies supply chain coordination with quantity-flexibility
contracts in a model that resembles this one. In Tsay (1999) the retailer
receives an imperfect demand signal before submitting his final order
(i.e., just before deciding how much to return), whereas in this model
the retailer receives a perfect signal, i.e., the retailer observes demand.
Nevertheless, since production is done before any demand information
is learned, the centralized solution in Tsay (1999) is also a newsvendor
problem. The demand signal does not matter to the analysis or to the outcome
if the retailer returns units only at the end of the season: by then the
demand signal is no longer relevant. However, if the retailer is able to
return units after observing the demand signal and before the selling

12 Eppen and Iyer (1997) do not consider channel coordination. Instead, they consider the retailer’s

order quantity decision. However, their model is more complex: e.g., it includes demand updates,

holding costs and customer returns.
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season starts, then the demand signal does matter. Because the inventory
that is produced is sunk, the supply chain optimal solution is to keep all
inventory at the retailer no matter what signal is received. Allowing
the retailer to return inventory (alternatively, allowing the retailer to
cancel a portion of the initial order) creates a ‘stranded inventory problem’:
inventory could be stranded at the supplier, unable to be used to satisfy
demand. In that situation, as shown in Tsay (1999), a quantity-flexibility
contract may actually prevent supply chain coordination. On another
issue, Tsay (1999) assumes forced compliance, which does have some signifi-
cance.13

With the quantity-flexibility contract the transfer payment is Tqðq,wq, �Þ

Tqðq,wq, �Þ ¼ wqq� ðwþ cr � vÞ

Z q

ð1��Þq

Fð yÞdy,

where the last term is the retailer’s compensation for unsold units, up to the
limit of �q units. The retailer’s profit function is

prðq,wq, �Þ ¼ ð p� vþ grÞSðqÞ � ðcr � vÞq� Tqðq,wq, �Þ � �gr

¼ ð p� vþ grÞSðqÞ � ðwq þ cr � vÞq

þ ðwq þ cr � vÞ

Z q

ð1��Þq

Fð yÞdy� �gr

To achieve supply chain coordination it is necessary (but not sufficient) that
the retailer’s first-order condition holds at qo:

ð p� vþ grÞS
0ðqoÞ � ðwq þ cr � vÞð1� FðqoÞ þ ð1� �ÞFðð1� �ÞqoÞÞ ¼ 0

ð2:11Þ

Let wq(�) be the wholesale price that satisfies Eq. (2.11):

wqð�Þ ¼
ð p� vþ grÞð1� FðqoÞÞ

1� FðqoÞ þ ð1� �ÞFðð1� �ÞqoÞ
� cr þ v:

13 There are some other minor differences that do not appear to be important qualitatively. He assumes

demand is normally distributed. In addition, the retailer’s final order must be in the range

[q(1þ �), q(1�w)], where q is the initial forecast and � and w are contract parameters. In this model the

retailer’s final order must be in the range [�q, q], where q is the initial order and � is a contract

parameter. He does not include a supplier goodwill cost, nor a retailer marginal cost, cr.
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wq(�) is indeed a coordinating wholesale price if the retailer’s profit function
is concave:

@2prðq,wqð�Þ, �Þ

@q2
¼�ð pþgr�wqð�Þ�crÞf ðqÞ�ðwqð�Þþcr�vÞð1þð1��Þ

2f ðð1��ÞqÞÞ

� 0

which holds when v� cr � wqð�Þ � pþ gr � cr. That range is satisfied with
�2 [0, 1] because

wqð0Þ ¼ ð p� vþ grÞFðq
oÞ þ v� cr,

wqð1Þ ¼ pþ gr � cr,

and wq(�) is increasing in �.
For supply chain coordination the supplier must also wish to deliver qo to

the retailer. The supplier’s profit function is

psðq,wqð�Þ, �Þ¼gsSðqÞþðwqð�Þ�csÞq�ðwqð�Þþcr�vÞ

Z q

ð1��Þq

Fð yÞdy��gs

and

@psðq,wqð�Þ, �Þ

@q
¼ gsð1� FðqÞÞ þ ðwqð�Þ � csÞ � ðwqð�Þ þ cr � vÞðFðqÞ

� ð1� �ÞFðð1� �ÞqÞÞ

¼ gsð1� FðqÞÞ � cþ vþ ðwqð�Þ þ cr � vÞð1� FðqÞ

þ ð1� �ÞFðð1� �ÞqÞÞ

The supplier’s first-order condition at qo is satisfied:

@psðqo,wqð�Þ, �Þ

@q
¼ gsð1� FðqoÞÞ � cþ vþ ð p� vþ grÞð1� FðqoÞÞ ¼ 0

However, the sign of the second-order condition at qo is ambiguous,

@2psðq,wqð�Þ, �Þ

@q2
¼ �wqð�Þð f ðqÞ � ð1� �Þ

2f ðð1� �ÞqÞÞ � gs f ðqÞ:

In fact, qo may be a local minimum (i.e., the above is positive). That occurs
when gs¼ 0 and ð1� �Þ2f ðð1� �ÞqoÞ is greater than f(qo), which is possible
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when � is small, f ðð1� �ÞqoÞ is large and f(qo) is small. The second condition
occurs when ð1� �Þqo � � and there is little variation in demand (i.e., so
most of the density function is concentrated near the mean). The third
condition occurs when f(qo) is in the tail of the distribution, i.e., when the
critical fractile is large. For example, qo is a local minimum for the following
parameters: D is normally distributed, �¼ 10, �¼ 1, p¼ 10, cs¼ 1, cr¼ 0,
gr¼ gs¼ v¼ 0 and �¼ 0.1. Hence, supply chain coordination under voluntary
compliance is not assured with a quantity-flexibility contract even if the
wholesale price is wq(�). Channel coordination is achieved with forced
compliance since then the supplier’s action is not relevant.

Assuming a (wq(�), �) quantity-flexibility contract coordinates the channel,
now consider how it allocates profit. When �¼ 0, the retailer earns at least the
supply chain optimal profit:

prðq,wqð0Þ, 0Þ ¼ ð p� vþ grÞSðqÞ �
p� vþ gr

p� vþ g

� �
ðc� vÞqo � �gr

¼ �ðqoÞ þ gs �� SðqoÞ þ FðqoÞqo
� �

� �ðqoÞ

When �¼ 1, the supplier earns at least the supply chain’s optimal profit:

psðq,wqð1Þ, 1Þ ¼ gsSðq
oÞ þ ð pþ gr�cÞq

o�ð pþgr�vÞ

Z q

0

Fð yÞ dy� �gs

¼ �ðqoÞ þ �gr

� �ðqoÞ

Given that the profit functions are continuous in �, it follows that all possible
allocations of �(qo) are possible.

There are a number of other papers that study the quantity-flexibility
contract, or a closely related contract. Tsay and Lovejoy (1999) study
quantity-flexibility contracts in a more complex setting than the one
considered here: they have multiple locations, multiple demand periods,
lead times and demand forecast updates. Bassok and Anupindi (1997b)
provide an in-depth analysis of these contracts for a single-stage system with
more general assumptions than in Tsay and Lovejoy (1999). (They refer to
their contract as a rolling horizon-flexibility contract.) In multiple-period
models it is observed that these contracts dampen supply chain order
variability, which is a potentially beneficial feature that the single-period
model does not capture.

Cachon and Lariviere (2001) and Lariviere (2002) study the interaction
between quantity-flexibility contracts and forecast sharing. In Cachon and
Lariviere (2001) a downstream firm has a better demand forecast than the
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upstream supplier, but needs to convince the upstream supplier that her
forecast is genuine. The minimum commitment in a quantity-flexibility
contract is a very effective solution for this problem (see Section 10). In
Lariviere (2002) the upstream firm wishes to encourage the downstream firm
to exert the proper amount of effort to improve his demand forecast.

Plambeck and Taylor (2002) study quantity-flexibility contracts with more
than one downstream firm and ex-post renegotiation. With multiple retailers it
is possible that one retailer needs more than its initial order, q, and the other
retailer needs less than its minimum commitment, �q. This creates an
opportunity to renegotiate the contracts, which influences the initial contracts
signed and actions taken.

2.6 The sales-rebate contract

With a sales-rebate contract the supplier charges ws per unit purchased
but then gives the retailer an r rebate per unit sold above a threshold t.
This contract form is studied by Taylor (2002a) and Krishnan, Kapuscinski
and Butz (2001), where the latter refers to it as a ‘markdown allowance’. Both
models are more complex than the one considered here. In particular, both
papers allow the retail to exert effort to increase demand: in Taylor (2002a)
effort is chosen simultaneously with the order quantity, whereas Krishnan
et al. (2001) focus on the case in which the retailer chooses an order quantity, a
signal of demand is observed and then effort is exerted. Hence, if the demand
signal is strong relative to the order quantity, then the retailer does not need to
exert much effort. See Section 4 for additional discussion of coordination in
the presence of retail effort.

The transfer payment with the sales-rebate contract is

Tsðq,ws, r, tÞ ¼
wsq q < t
ðws � rÞqþ r tþ

R q
t Fð yÞdy

� �
q � t

:

�

when q� t the retailer pays ws�r for every unit purchased, an additional
r per unit for the first t units purchased and an additional r per unit for the
units not sold above the t threshold. The retailer’s profit function is then

prðq,ws, r, tÞ ¼ ð p� vþ grÞSðqÞ � ðcr � vÞq� gr�� Tsðq,ws, r, tÞ

For this contract to achieve supply chain coordination, qo must at least be a
local maximum:

@prðqo,ws, r, tÞ

@q
¼ ð p� vþ grÞFðq

oÞ � ðcr � vÞ �
@Tsðq

o,ws, r, tÞ

@q
¼ 0:

ð2:12Þ
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If t� qo the above condition is only satisfied with ws ¼ cs � gsFðq
oÞ, which

is clearly not acceptable to the supplier. But this contract is interesting only
if it achieves supply chain coordination for t<qo. So assume t<qo.

Define ws(r) as the wholesale price that satisfies Eq. (2.12):

wsðrÞ ¼ ð p� vþ gr þ rÞFðqoÞ � cr þ v ð2:13Þ

Given that wholesale price, the second-order condition confirms
prðq,wsðrÞ, r, tÞ is strictly concave in q for q>t. So qo is a local maximum.
But prðq,wsðrÞ, r, tÞ is strictly concave in q for q� t and, due to a ‘kink’ at q¼ t,
prðq,wsðrÞ, r, tÞ need not be unimodal in q. Let q ¼ argmaxq�t prðq,wsðrÞ, r, tÞ.
Hence, it is necessary to demonstrate that there exist coordinating
contracts such that qo is preferred by the retailer over q. Substitute ws(r)
into the retailer’s profit function:

prðq,wsðrÞ, r, tÞ ¼ �ðqÞ þ gs �� SðqÞ þ qFðqoÞ
� �

� rqFðqoÞ

þ
0 q < t

rq� r tþ
R q
t Fð yÞdy

� �
q � t

(

and

prðqo,wsðrÞ, r, tÞ ¼ �ðqoÞ þ gs �� SðqoÞ þ qoFðqoÞ
� �

þ r qoFðqoÞ � t�

Z qo

t

Fð yÞ dy

� �
:

With t¼ 0 the retailer earns more than �(qo), so qo is surely optimal.
With t¼ qo, the retailer’s profit function is decreasing for t� qo; q is at
least as good for the retailer as qo. Given that prðqo,wsðrÞ, r, tÞ is decreasing
in t, there must exist some t in the range [0, qo] such that prðqo,wsðrÞ, r, tÞ ¼
prðq,wsðrÞ, r, tÞ.

Now consider the allocation of profit. We have already established
that with t¼ 0 the retailer earns more than�(qo). Hence, there must be a t such
that prðqo,wsðrÞ, r, tÞ ¼ �ðqoÞ, i.e., the retailer earns the supply chain’s profit.
When t¼ qo, the retailer earns prðq,wsðrÞ, r, tÞ, and with a sufficiently large r
such that profit is zero; the supplier earns the supply chain’s profit. In fact,
there is generally a set of contracts that generate any profit allocation because
the sales-rebate contract is parameter rich: these three parameters are more
than sufficient to coordinate one action and to redistribute rents.

Now consider the supplier’s production decision. The supplier’s profit
function given a coordinating sales-rebate contract is

psðq,wsðrÞ, r, tÞ ¼ �gsð�� SðqÞÞ � csqþ Tsðq,wsðrÞ, r, tÞ:
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For q>t,

@psðq,wsðrÞ, r, tÞ

@q
¼ gsFðqÞ � cs þ wsðrÞ � rþ rFðqÞ

¼ ðr� gsÞðFðqÞ � FðqoÞÞ

The above is positive for q� qo only if r<gs. But if r� gs, then ws(r)� cs; the
supplier cannot earn a positive profit with r<gs. As a result, it must be that
r>gs, which implies the supplier loses money on each unit delivered to the
retailer above t: the retailer effectively pays the supplier ws(r)� r for each unit
sold above the threshold t and from Eq. (2.13),

wsðrÞ � r ¼ cs � v� gsFðq
oÞ � rFðqoÞ < cs:

So the sales-rebate contract does not coordinate the supply chain with
voluntary compliance.

2.7 The quantity-discount contract

There are many types of quantity discounts.14 This section considers an ‘all
unit’ quantity discount, i.e., the transfer payment is TdðqÞ ¼ wdðqÞq, where
wd(q) is the per unit wholesale price that is decreasing in q. The retailer’s profit
function is then

prðq,wdðqÞÞ ¼ ð p� vþ grÞSðqÞ � ðwdðqÞ þ cr � vÞq� gr�:

One technique to obtain coordination is to choose the payment schedule such
that the retailer’s profit equals a constant fraction of the supply chain’s profit.
To be specific, let

wdðqÞ ¼ ðð1� �Þð p� vþ gÞ � gsÞ
SðqÞ

q

� �
þ �ðc� vÞ � cr þ v:

The above is decreasing in q if l � �, where

� ¼
p� vþ gr

p� vþ g
,

14 Roughly speaking, the quantity-discount contract achieves coordination by manipulating the

retailer’s marginal cost curve, while leaving the retailer’s marginal revenue curve untouched.

Coordination is achieved if the marginal revenue and marginal cost curves intersect at the optimal

quantity. Hence, there is an infinite number of marginal cost curves that intersect the marginal revenue

curve at a single point. See Moorthy (1987) for a more detailed explanation for why many coordinating

quantity discount schedules exist. See Kolay and Shaffer (2002) for a discussion on different types of

quantity discounts. See Wilson (1993) for a much broader discussion of nonlinear pricing.
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since S(q)/q, i.e., sales per unit ordered, is decreasing in q. The retailer’s profit
function is now

prðq,wdðqÞÞ ¼ �ð p� vþ gÞSðqÞ � �ðc� vÞq� gr�

¼ �ð�ðqÞ þ g�Þ � gr�:

Hence, qo is optimal for the retailer and the supplier. As with the buyback and
revenue-sharing contracts, the parameter l acts to allocate the supply chain’s
profit between the two firms. However, the upper bound on l prevents too
much profit from being allocated to the retailer with a quantity discount.
Technically, the wd(q) schedule continues to coordinate even if l > �, but
then wd(q) is increasing in q. In that case the retailer pays a quantity premium.
See Tomlin (2000) for a model with both quantity-discount and quantity-
premium contracts.15

2.8 Discussion

This section studies five contracts, two of which are equivalent
(revenue-sharing and buyback contracts), to coordinate the newsvendor and
to divide the supply chain’s profit. Each contract coordinates by inducing the
retailer to order more than he would with just a wholesale-price
contract. Revenue-sharing and quantity-flexibility contracts do this by giving
the retailer some downside protection: if demand is lower than q, the retailer
gets some refund. The sales-rebate contract does this by giving the retailer
upside incentive: if demand is greater than t, the retailer effectively
purchases the units sold above t for less than their cost of production. The
quantity discount coordinates by adjusting the retailer’s marginal cost curve
so that the supplier earns progressively less on each unit. However, an
argument has not yet been made for why one contract form should be
observed over another.

The various coordinating contracts may not be equally costly to administer.
The wholesale-price contract is easy to describe and requires a single
transaction between the firms. The quantity discount also requires only a
single transaction, but it is more complex to describe. The other coordinating
contracts are more costly to administer: the supplier must monitor the
number of units the retailer has left at the end of the season, or the remaining
units must be transported back to the supplier, depending on where the units
are salvaged. Hence, the administrative cost argument does not explain the
selection among buyback, revenue-sharing and quantity-flexibility contracts,
but may explain the selection of a quantity-discount or a wholesale-price
contract.

15 Tomlin (2000) studies a supplier–manufacturer supply chain in which both firms incur costs to install

capacity and both firms incur costs to convert capacity into units.
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The risk neutrality assumption notwithstanding, the contracts do differ
with respect to risk. With the exception of the quantity-discount contract,
each of the coordinating contracts shifts risk between the two firms: as the
retailer’s share of profit decreases, his risk decreases and the supplier’s risk
increases. Hence, these contracts could provide some insurance to a risk averse
retailer, but would be costly to a risk averse supplier. See Eeckhoudt, Gollier
and Schlesinger (1995), Schweitzer and Cachon (2000) and Chen and
Federgruen (2000) for a discussion of risk in the single-firm newsvendor
model. Agrawal and Seshadri (2000) do study the influence of risk aversion
in supply chain contracting. They argue that risk aversion among retailers
provides an incentive for a distributor to provide risk intermediation
services. In their model the distributor offers a contract with a fixed fee, a
wholesale price, a return rate and premium fee for units ordered on an
emergency basis to cover demand in excess of the retailer’s order quantity.
Finally, Plambeck and Zenios (2000) provide a principle-agent model that
does incorporate risk aversion.

The supplier’s exposure to demand uncertainty with some of the
coordinating contracts could matter to the supplier if the retailer chose an
order quantity other than qo. For example, if the supplier offers a generous
buyback to the retailer, then the supplier does not want the retailer to order
too much products. Under voluntary compliance the supplier can avoid this
excessive ordering error by shipping only qo. But with forced compliance the
supplier bears the full risk of an irrational retailer, a risk that even a risk
neutral supplier may choose to avoid. However, with voluntary compliance
the supplier may ship less than the retailer’s order even if everyone is quite
rational: revenue sharing and quantity discounts always coordinate the
supplier’s action with voluntary compliance, quantity-flexibility contracts
generally, but not always, coordinate the supplier’s action and sales-rebate
contracts never do.

Now consider the application of these contracts in a setting with
heterogenous retailers that do not compete, i.e., the action of one retailer
has no impact on any other retailer, probably because of geographic
dispersion. In general, suppliers are legally obligated to offer the same
contractual terms to their retailers; hence, it is desirable for the supplier to
offer the same contract to all of her retailers, or at the very least, the same
menu of contracts.16 If only one contract is offered, then it coordinates all of
the retailers as long as the set of coordinating contracts does not depend on
something that varies across the retailers. For example, the coordinating
revenue-sharing contracts do not depend on the demand distribution, but do
depend on the retailer’s marginal cost. Hence, a single revenue-sharing
contract can coordinate retailers with heterogenous demands, but not
necessarily retailers with different marginal costs. However, in some cases
heterogeneity can be accommodated with a single contract. Consider the

16 Actually, a supplier can offer different contracts to retailers that do not compete.

256 G.P. Cachon



quantity-flexibility contract, which depends on the demand distribution, and
two retailers that have demands that differ by a scale factor; let retailer i’s
demand distribution be Fiðx j �iÞ ¼ Fðx=�iÞ, where �i is the scale parameter.
Hence, the same wholesale price coordinates different retailers,
wqð� j �iÞ ¼ wqð� j �jÞ.

The independence of a contract to some parameter is also advantageous if
the supplier lacks information regarding that parameter. For example, a
supplier does not need to know a retailer’s demand distribution to coordinate
the supply chain with a revenue-sharing contract, but would need to know the
retailer’s demand distribution with a quantity-flexibility, sales-rebate or
quantity-discount contract.

However, there may also be situations in which the supplier wishes to divide
the retailers by offering a menu of contracts. For example, Lariviere (2002)
studies a model with one supplier selling to a retailer that may exert effort to
improve his demand forecast. He considers whether it is useful to offer two
types of contracts, one for a retailer that exerts effort and one for a retailer
that does not. Since coordinating buyback contracts are independent of
the demand distribution, this separation requires the supplier to offer
noncoordinating buyback contracts, i.e., supply chain efficiency must be
sacrificed to induce forecasting. Quantity-flexibility contracts do depend on
the demand distribution, so a menu can be constructed with two coordinat-
ing quantity-flexibility contracts, i.e., supply chain efficiency need not be
sacrificed. Surprisingly, unless forecasting is very expensive, the supplier is still
better off using the menu of buyback contracts even though this sacrifices
some efficiency.

To summarize, the set of coordinating contracts is quite large and it is even
quite likely that there exist other types of coordinating contracts. While it is
possible to identify some differences among the contracts (e.g., different
administrative costs, different risk exposures, etc.) none of them is sufficiently
compelling to explain why one form should be adopted over another. More
theory probably will not provide the answer. We now need some data and
empirical analysis.

3 Coordinating the newsvendor with price-dependent demand

In the newsvendor model the retailer impacts sales only through his
stocking decision, but in reality a retailer may influence sales through many
different actions. Probably the most influential one is the retailer’s pricing
action. This section studies coordination in the newsvendor model with price-
dependent retail demand. A key question is whether the contracts that
coordinate the retailer’s order quantity also coordinate the retailer’s pricing. It
is shown that buybacks, quantity-flexibility and sales-rebate contracts do not
coordinate in this setting. Those contracts run into trouble because the
incentive they provide to coordinate the retailer’s quantity action distorts the
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retailer’s pricing decision. Revenue sharing coordinates if there are no
goodwill penalties, gs¼ gr¼ 0. With goodwill penalties there exists a single
coordinating revenue-sharing contract that provides only a single allocation of
the supply chain’s profit. The quantity discount does better: it coordinates and
allocates profit even if gr� 0, but gs¼ 0 is required. Another contract is
introduced, the price-discount contract, which is shown to coordinate and
arbitrarily allocate profit. It is essentially a buyback contract with price
contingent parameters, i.e., it is a buyback contract with parameters that are
set only after the retailer chooses his price. The idea of contingent contracts
can also be applied with revenue-sharing contracts when there are goodwill
penalties.

3.1 Model and analysis

This model is identical to the one in Section 2 except now the retailer
chooses his price in addition to his order quantity. Let F(q j p) be the
distribution function of demand, where p is the retail price. It is natural to
assume demand decreases stochastically in price, i.e., @Fðq j pÞ=@p > 0. In a
realistic model the retailer would be able to adjust his price throughout the
season, possibly for a fee for each adjustment. Such a dynamic pricing strategy
would allow the retailer to adjust his price to reflect demand conditions: e.g., if
demand were less than expected the retailer could accelerate price discounts.
This dynamic pricing problem is quite complex even when supply chain
coordination is not considered. Hence, to obtain initial insights, assume the
retailer sets his price at the same time as his stocking decision and the price is
fixed throughout the season.17

The integrated channel’s profit is

�ðq, pÞ ¼ ð p� vþ gÞSðq, pÞ � ðc� vÞq� g�

where S(q, p) is expected sales given the stocking quantity q and the price p,

Sðq, pÞ ¼ q�

Z q

0

Fð y j pÞdy:

The integrated channel profit function need not be concave nor unimodal (see
Petruzzi & Dada, 1999). Assume there exists a finite (but not necessarily
unique) optimal quantity-price pair, {qo, po}.

17 A hybrid model may be more tractable. For example, suppose the retailer chooses q, then observes a

demand signal and then chooses price. van Mieghem and Dada (1999) study a related model in the

context of a single firm. The multiretailer model in Section 5.2 is also closely related: order quantities

are chosen first, then demand is observed and then price is set to clear the market, i.e., price is variable

but not a decision the firms have direct control over.
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Let po(q) be the supply chain optimal price for a given q. The following
first-order condition is necessary for coordination (but not sufficient),

@�ðq, poðqÞÞ

@p
¼ Sðq, poðqÞÞ þ ð poðqÞ � vþ gÞ

@Sðq, poðqÞÞ

@p
¼ 0: ð3:1Þ

A contract fails to coordinate if it is unable to satisfy the first-order condition
at po(q), or it is able to satisfy the first-order condition at po(q) only with
parameters that fail to coordinate the quantity decision.

Consider the quantity-flexibility contract. The retailer’s profit function is

prðq, p,wq, �Þ ¼ ð p� vþ grÞSðq, pÞ � ðwq þ cr � vÞq

þ ðwq þ cr � vÞ

Z q

ð1��Þq

Fð y j pÞ dy� �gr

For price coordination the first-order condition must hold,

@prðq, poðqÞ,wq, �Þ

@p
¼ Sðq, poðqÞÞ þ ð poðqÞ � vþ grÞ

@Sðq, poðqÞÞ

@p

þ ðwq þ cr � vÞ

Z q

ð1��Þq

@Fð y j poðqÞÞ

@p
dy

¼ 0: ð3:2Þ

The second term in Eq. (3.2) is no smaller than the second term in Eq. (3.1), so
the above holds only if the third term is nonpositive. But the third term
is nonnegative with a coordinating wq, so coordination can only occur if
gs¼ 0 and either wq ¼ v� cr or �¼ 0. Neither is desirable. With wq ¼ v� cr
the supplier earns a negative profit (wq<cs), so the supplier certainly cannot be
better off with that coordinating contract. With �¼ 0 the quantity-flexibility
contract is just a wholesale-price contract, so the retailer’s quantity action
is not optimal (assuming the supplier desires a positive profit). Hence, the
quantity-flexibility contract does not coordinate the newsvendor with price-
dependent demand.

The sales-rebate contract does not fare better in this setting. With that
contract

@prðq, poðqÞ,ws, r, tÞ

@p
¼ Sðq, poðqÞÞ þ ð poðqÞ � vþ grÞ

@Sðq, poðqÞÞ

@p

� r

Z q

t

@Fð y j poðqÞÞ

@p
dy:
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Since the last term is negative when r>0 and t<q, the retailer prices below
the optimal price. Coordination might be achieved if something is added to
the sales-rebate contract to induce the retailer to a higher price. A buyback
could provide that counterbalance: a buyback reduces the cost of leftover
inventory, so a retailer need not price as aggressively to generate sales.

Now consider a buyback contract on its own. The retailer’s profit func-
tion is

prðq, p,wb, bÞ ¼ ð p� vþ gr � bÞSðq, pÞ � ðwb � bþ cr � vÞq� gr�:

For coordination the supply chain optimal price must satisfy the first-order
condition,

@prðq, poðqÞ,wb, bÞ

@p
¼ Sðq, poðqÞÞ þ ð poðqÞ � vþ gr � bÞ

@Sðq, poðqÞÞ

@p

¼ 0: ð3:3Þ

But a comparison of Eqs. (3.3) and (3.1) reveals Eq. (3.3) holds only if b¼�gs,
which may violate the b� 0 constraint. In addition, with b¼�gs the
coordinating wholesale price is not acceptable to the supplier, wbð�gsÞ ¼
cs � gs. Therefore, a buyback contract does not coordinate the newsvendor
with price-dependent demand.18 That result is also demonstrated by Marvel
and Peck (1995) and Bernstein and Federgruen (2000). While Emmons and
Gilbert (1998) recognize that the buyback contract does not coordinate this
model, they nevertheless demonstrate a buyback contract with b>0 may still
perform better than a wholesale-price contract.

The buyback contract fails to coordinate in this setting because the
parameters of the coordinating contracts depend on the price: from Eqs. (2.5)
and (2.6), the coordinating parameters are

b ¼ ð1� �Þð p� vþ gÞ � gs,

wb ¼ �cs þ ð1� �Þð pþ g� crÞ � gs:

For a fixed l, the coordinating buyback rate and wholesale price are linear
in p. Hence, the buyback contract coordinates the newsvendor with price-
dependent demand if b and wb are made contingent on the retail price
chosen, or if b and wb are chosen after the retailer commits to a price (but
before the retailer chooses q). This is the price-discount-sharing contract
studied by Bernstein and Federgruen (2000), which is also called a ‘bill back’
in practice. To understand the name for the contract, notice that the retailer

18 If gs¼ 0, then there is one buyback contract that coordinates, wb¼ cs and bs¼ 0. But that contract

does not leave the supplier with a positive profit.
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gets a lower wholesale price if the retailer reduces his price, i.e., the supplier
shares in the cost of a price discount with the retailer. To confirm that
this contract coordinates the supply chain, substitute the above contract
parameters into the retailer profit function:

prðq, p,wb, bÞ ¼ �ð p� vþ gÞSðq, pÞ � �ðc� vÞq� gr�

¼ �ð�ðq, pÞ þ g�Þ � gr�

Hence, for the retailer as well as the supplier, {qo, po} is optimal for l2 [0, 1].
Now consider the revenue-sharing contract. With revenue sharing the

retailer’s profit is

prðq, p,wr,�Þ ¼ ð�ð p� vÞ þ grÞSðq, pÞ � wr þ cr � �vð Þq� gr�:

Coordination requires

@prðq, poðqÞ,wr,�Þ

@p
¼ Sðq, poðqÞÞ þ ð poðqÞ � vþ gr=�Þ

@Sðq, poðqÞÞ

@p

¼ 0: ð3:4Þ

There are two important cases to consider: the first has gr¼ gs¼ 0, and
the second has at least one positive goodwill cost. Begin with the first case,
gr¼ gs¼ 0. In this situation,

@prðq, p,wr,�Þ

@p
¼
@�ðq, pÞ

@p

with any revenue-sharing contract. Thus, the retailer chooses po(q) no
matter which revenue-sharing contract is chosen. With full freedom to choose
the � and wr parameters, revenue sharing is able to coordinate the retailer’s
quantity decision with precisely the same set of contracts used when the
retailer price is fixed.

Recall that with the fixed price newsvendor revenue sharing and buy-
backs are equivalent: for every coordinating revenue-sharing contract there
exists a buyback contract that generates the same profit allocation for
all realizations of demand. Here, the contracts produce different outcomes.
The difference occurs because with a buyback the retailer’s share of revenue
(1�b/p) depends on the price, whereas with revenue sharing it is independent
of the price, by definition. However, the price contingent buyback
contract (which is also known as the price-discount contract) is again
equivalent to revenue sharing: if gr¼ gs¼ 0, the coordinating revenue-sharing
contracts yield

prðq, p,wr,�Þ ¼ ��ðq, pÞ
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and the price contingent buyback contracts yield the same profit for any
quantity and price,

prðq, p, bð pÞ,wbð pÞÞ ¼ ��ðq, pÞ:

With the second case (either gr>0 or gs>0 revenue sharing is less
successful. Now, according to Eq. (3.4), coordination is achieved only if
� ¼ gr/g. With only one coordinating contract, revenue sharing is able to
provide only one profit allocation, albeit both firms may enjoy a positive profit
with this outcome, which contrasts with the single coordination outcome of
the buyback contract. Again, the difficulty with coordination occurs because
the coordinating parameters generally depend on the retail price

� ¼ �þ
�g� gr

p� v
,

wr ¼ �ðc� vÞ � cr þ �v:

The dependence on the retail price is eliminated only in the special case
� ¼ l ¼ gr=g.

Coordination for all profit allocations is restored even in this case if, like
with the buyback contract, the parameters of the revenue-sharing contract
are made contingent on the retailer’s price. In that case revenue sharing is
again equivalent to the price-discount contract: price discounts are contingent
buybacks and contingent buybacks are equivalent to contingent revenue
sharing.

The final contract to investigate is the quantity discount. With the quantity
discount the retailer keeps all revenue, so only the retailer’s marginal cost
curve is adjusted. As a result, the quantity discount does not distort the
retailer’s pricing decision. In many cases, this is ideal. To explain, the retailer’s
profit function with a quantity discount is

prðq,wdðqÞ, pÞ ¼ ð p� vþ grÞSðq, pÞ � ðwdðqÞ þ cr � vÞq� gr�:

If gs¼ 0, then

@prðq,wdðqÞ, pÞ

@p
¼
@Sðq, pÞ

@p
þ ð p� vþ grÞSðq, pÞ ¼

@�ðq, pÞ

@p

and so po(q) is optimal for the retailer. On the other hand, if gs>0, then the
retailer’s pricing decision needs to be distorted for coordination, which the
quantity discount does not do. (It is possible that a quantity discount could be
designed to correct this distortion when gs>0, but more careful analysis is
required which is left to future research.)
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Assuming gs¼ 0, it remains to ensure that the quantity decision is
coordinated. The same schedule can be used as with a fixed retail price, but
now the schedule is designed assuming the optimal price is chosen:

wdðqÞ ¼ ðð1� �Þð p
o � vþ gÞ � gsÞ

Sðq, poÞ

q

� �
þ �ðc� vÞ � cr þ v,

where po¼ po(qo). It follows that

prðq,wdðqÞ, pÞ ¼ ð p� vþ grÞSðq, pÞ � �ðc� vÞq� gr�

� ðð1� �Þð po � vþ gÞ � gsÞSðq, p
oÞ

and so po is optimal for the retailer,

@prðq,wdðqÞ, pÞ

@p
¼
@�ðq, pÞ

@p
:

Given po is chosen,

prðq,wdðqÞ, p
oÞ ¼ �ð po � vþ gÞSðq, poÞ � �ðc� vÞq� gr�

¼ ð�ðq, poÞ þ g�Þ � gr�

and so qo is optimal for the retailer and the supplier. Coordination occurs
because the retailer’s pricing decision is not distorted, and the retailer’s
quantity decision is adjusted contingent that po is chosen.

3.2 Discussion

There are surely many situations in which a retailer has some control over
his pricing. However, incentives to coordinate the retailer’s quantity decision
may distort the retailer’s price decision. This occurs with the buyback,
quantity-flexibility and the sales-rebate contracts. Since the quantity discount
leaves all revenue with the retailer, it does not create such a distortion,
which is an asset when the retailer’s pricing decision should not be distorted,
i.e., when gs¼ 0. Revenue sharing does not distort the retailer’s pricing
decision when gr¼ 0¼ gs. In those situations the set of revenue-sharing
contracts to coordinate the quantity decision with a fixed price continue to
coordinate the quantity decision with a variable price. However, when there
are goodwill costs, then the coordinating revenue-sharing parameters
generally depend on the retail price. The dependence is removed with only a
single revenue-sharing contract; hence coordination is only achieved with a
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single profit allocation. Coordination is restored with arbitrary profit
allocation by making the parameters contingent on the retail price chosen,
e.g., a menu of revenue-sharing contracts is offered that depend on the price
selected. This technique also applies to the buyback contract: the price
contingent buyback contract, which is also called a price-discount-sharing
contract, coordinates the price-setting newsvendor. In fact, just as buybacks
and revenue sharing are equivalent with a fixed retail price, the price
contingent buyback and revenue sharing are equivalent when there are no
goodwill costs. When there are goodwill costs then the price contingent
buyback is equivalent to the price contingent revenue-sharing contract.

4 Coordinating the newsvendor with effort-dependent demand

A retailer can increase a product’s demand by lowering his price, but the
retailer can take other actions to spur demand: the retailer can hire more
sales people, improve their training, increase advertising, better maintain the
attractiveness of the product’s display, enhance the ambiance of the store
interior (e.g., richer materials, wider aisles) and he can give the product
a better stocking location within the store. All of those activities are costly.
As a result, a conflict exists between the supplier and the retailer: no matter
what level of effort the retailer dedicates toward those activities, the supplier
prefers that the retailer exert even more effort. The problem is that those
activities benefit both firms, but are costly to only one.

Sharing the cost of effort is one solution to the effort coordination
problem. For example, the supplier could pay some of the retailer’s adver-
tising expenses, or she could compensate the retailer for a portion of his
training cost. Several conditions are needed for cost sharing to be an effective
strategy: the supplier must be able to observe (without much hassle) that the
retailer actually engaged in the costly activity (so the supplier knows how
much to compensate the retailer), the retailer’s effort must be verifiable to the
courts (so that any cost sharing is enforceable) and the activity must directly
benefit the supplier.19 In many cases those conditions are met. For example,
the supplier generally can observe and verify whether or not a retailer
purchased advertising in a local newspaper. Furthermore, if the ad primarily
features the supplier’s product, then the benefit of the ad is directed
primarily at the supplier. Netessine and Rudi (2000a) present a coordinating
contract which involves sharing advertising costs in a model that closely
resembles the one in this section. In Wang and Gerchak (2001) the retailer’s
shelf space can be considered an effort variable. They also allow the
supplier to compensate the retailer for his effort, which in their model takes

19 If the firms interact over a long horizon it may be sufficient that the action is observable even if it is

not verifiable, i.e., enforcement can be due to the threat to leave the relationship rather than the threat

of court action.
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the form of an inventory subsidy. Gilbert and Cvsa (2000) study a model in
which effort is observable but not verifiable.

There are also many situations in which cost sharing is not as effective.
For example, a supplier probably will not pay for an ad that merely promotes
the retailer’s brand image. In that case the ad enhances the demand for all of
the retailer’s products, not just the supplier’s product. Also, there are many
demand-improving activities that are too costly for the supplier to observe.
For example, it may be too costly to visit a store on a frequent basis to ensure
the presentation of the supplier’s product is maintained to the supplier’s
satisfaction.20

This section studies the challenge of coordinating an action for which there
is no direct transfer payment. It is shown that most of the coordinating
contracts with the standard newsvendor model no longer coordinate in this
setting because the incentives they provide to coordinate the retailer’s quantity
decision distort the retailer’s effort decision. Only the quantity-discount
contract continues to coordinate the supply chain. In fact, the quantity-
discount contract can coordinate a retailer that chooses quantity, price
and effort.

4.1 Model and analysis

To model retail effort, suppose a single effort level, e, summarizes the
retailer’s activities and let g(e) be the retailer’s cost of exerting effort level e,
where g(0)¼ 0, g0(e)>0 and g00(e)>0. To help avoid confusion and to
simplify the notation, assume there are no goodwill costs, gr¼ gs¼ 0, v¼ 0 and
cr¼ 0. Let F(q j e) be the distribution of demand given the effort level e,
where demand is stochastically increasing in effort, i.e., @Fðq j eÞ=@e < 0.
Suppose the retailer chooses his effort level at the same time as his order
quantity. Finally, assume the supplier cannot verify the retailer’s effort level,
which implies the retailer cannot sign a contract binding the retailer to choose
a particular effort level. This approach to retail effort has been adopted in
a number of marketing papers. For example, see Chu and Desai (1995),
Desai and Srinivasan (1995), Desiraju and Moorthy (1997), Gallini and Lutz
(1992), Lal (1990) and Lariviere and Padmanabhan (1997).

The integrated channel’s profit is

�ðq, eÞ ¼ pSðq, eÞ � cq� gðeÞ,

where S(q, e) is expected sales given the effort level e,

Sðq, eÞ ¼ q�

Z q

0

Fð y j eÞdy:

20 However, in some cases it is too costly not to visit a store. For example, in the salty snack food

category is it common for suppliers to replenish their retailers’ shelves.
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The integrated channel’s profit function need not be concave nor unimodal.
For tractability, assume the integrated channel solution is well behaved,
i.e., �(q, e) is unimodal and maximized with finite arguments. (For instance,
if S(q, e) increases sufficiently quickly with e and g(e) is not sufficiently
convex, then infinite effort could be optimal, which is rather unrealistic.)
Let qo and eo be the optimal order quantity and effort.

The optimal effort for a given order quantity, eo(q), maximizes the supply
chain’s revenue net effort cost. That occurs when

@�ðq, eoðqÞÞ

@e
¼ p

@Sðq, eoðqÞÞ

@e
� g0ðeoðqÞÞ ¼ 0: ð4:1Þ

With a buyback contract the retailer’s profit function is

prðq, e,wb, bÞ ¼ ð p� bÞSðq, eÞ � ðwb � bÞq� gðeÞ:

For all b>0 it holds that

@prðq, e,wb, bÞ

@e
<
@�ðq, eÞ

@e
: ð4:2Þ

Thus, eo cannot be the retailer’s optimal effort level when b>0. But b>0 is
required to coordinate the retailer’s order quantity, so it follows that the
buyback contract cannot coordinate in this setting.

With a quantity-flexibility contract the retailer’s profit function is

prðq, e,wq, �Þ ¼ pSðq, eÞ � wq q�

Z q

ð1��Þq

Fð y j eÞdy

� �
� gðeÞ:

For all �>0 (which is required to coordinate the retailer’s quantity decision)

@prðq, e,wq, �Þ

@e
<
@�ðq, eÞ

@e
:

As a result, the retailer chooses a lower effort than optimal, i.e., the quantity-
flexibility contract also does not coordinate the supply chain in this setting.

The revenue-sharing and sales-rebate contracts fare no better. It can be
shown with �<1,

@prðq, e,wr,�Þ

@e
<
@�ðq, eÞ

@e
,
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and so the retailer’s optimal effort is lower than the supply chain’s. With the
sales-rebate contract it can be shown for r>0 and q>t,

@prðq, e,ws, r, tÞ

@e
>
@�ðq, eÞ

@e
,

which means the retailer exerts too much effort. Although the sales-
rebate contract does not coordinate on its own, Taylor (2000) demonstrates
it can coordinate the channel if it is combined with a buyback contract:
the buyback reduces the retailer’s incentive to exert effort, which
counteracts the retailer’s excessive incentive to exert effort with a sales rebate
alone. However, four parameters make for a complex contract. Krishnan
et al. (2001) also study the combination of a sales-rebate contract with
buybacks. However, they allow the retailer to choose effort after observing
demand.

The last contract to consider is the quantity discount. As in the
price-setting model, coordination can be achieved in the effort model by
letting the retailer earn the entire reward for exerting effort, which is the
revenue function, because the retailer is charged the entire cost of
effort. Therefore, the quantity discount should let the retailer retain the
revenues but charge a marginal cost based on expected revenue conditional
on the optimal effort. To explain, suppose the transfer payment is
TdðqÞ ¼ wdðqÞq, where

wdðqÞ ¼ ð1� �Þp
Sðq, eoÞ

q

� �
þ �cþ ð1� �Þ

gðeoÞ

q

and l2 [0, 1]. Given that Sðq, eoÞ=q is decreasing in q, this is indeed a quantity-
discount schedule. As already mentioned, it is almost surely not the only
coordinating quantity discount.

The retailer’s profit function with the quantity-discount contract is

prðq, eÞ ¼ pSðq, eÞ � ð1� �ÞpSðq, eoÞ � �cq� gðeÞ þ ð1� �ÞgðeoÞ:

As in the price-dependent newsvendor, the retailer chooses the supply chain
optimal effort because the retailer keeps all realized revenue. Given the
optimal effort eo, the retailer’s profit function is

prðq, eoÞ ¼ �pSðq, eoÞ � �cq� �gðeoÞ ¼ ��ðq, eoÞ,

and so the retailer’s optimal order quantity is qo, any allocation of profit is
feasible and the supplier’s optimal production is qo.
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This approach is sufficiently powerful that it is quite easy to design a
quantity-discount contract that coordinates the newsvendor with demand-
dependent on price and effort:

wdðqÞ ¼ ð1� �Þp
o Sðq, eoÞ

q

� �
þ �cþ ð1� �Þ

gðeoÞ

q
:

Again, the retailer retains all revenue and so optimizes price and effort.
Furthermore, the quantity decision is not distorted because the quantity-
discount schedule is contingent on the optimal price and effort, and not on the
chosen price and effort.

4.2 Discussion

Coordination with the effort-dependent demand model is complex when
the firms are not allowed to contract on the retailer’s effort level directly,
i.e., any contract that specifies an effort level for the retailer is either
unverifiable or unenforceable. Buybacks, revenue-sharing, quantity-flexibility
and sales-rebate contracts all fail to coordinate the retailer’s action because
they all distort the retailer’s marginal incentive to exert effort. [That distortion
occurs even if the retailer chose its effort after observing a demand signal, as in
Krishnan et al. (2001).] The quantity-discount contract does coordinate this
system because the retailer incurs the entire cost of effort but also receives the
entire benefit of effort.

A number of papers in the marketing and franchising literatures elab-
orate on the basic retail effort model. For example, in Chu and Desai (1995)
the supplier can also exert costly effort to increase demand, e.g., brand
building advertising, but the impact of effort occurs only with a lag: they
have a two-period model and period 1 effort by the supplier increases only
period 2 demand. They also enrich the retailer’s effort model to include two
types of effort, effort to increase short-term (i.e., current period) sales
and long-term effort to increase long-term customer satisfaction and demand
(i.e., period 2 sales). They allow the supplier to compensate the retailer by
paying a portion of his effort cost and/or by paying the retailer based on the
outcome of his effort, i.e., a bonus for high customer satisfaction scores.
The issue is the appropriate mix between the two types of compensation.
Lal (1990) also includes supplier effort, but, effort again is nonenforceable.
Although revenue sharing (in the form of a royalty payment) continues to
distort the retailer’s effort decision, it provides a useful incentive for the
supplier to exert effort: the supplier will not exert effort if the supplier’s
profit does not depend directly on retail sales. Lal (1990) also considers a
model with multiple retailers and horizontal spillovers: the demand-enhancing
effort at one retailer may increase the demand at other retailers. These
spillovers can lead to free riding, i.e., one retailer enjoys higher demand due to
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the efforts of others without exerting his own effort. He suggests that the
franchisor can control the problem of free riding by exerting costly monitoring
effort and penalizing franchisees that fail to exert sufficient effort.

While the models mentioned so far have effort-increasing demand, effort
can make other supply chain improvements. Two are discussed: effort to
reduce hazardous material consumption and effort to improve product
quality.

Corbett and DeCroix (2001) study shared-savings contracts between a
supplier of a hazardous material and a manufacturer that uses the material
in his output. They assume the product is an indirect material, i.e.,
the manufacturer’s revenue is not correlated with the amount of the
product used. For example, an automobile manufacturer does not earn more
revenue if it increases the amount of paint used on its vehicle (assuming the
increased amount of paint provides no perceived quality improvement).
However, with a traditional contract the supplier’s revenue does depend on
the amount of material used, e.g., the paint supplier’s revenue is proportional
to the amount of paint the manufacturer purchases. They also assume
both the manufacturer and the supplier can exert costly effort to reduce the
needed amount of material to produce each unit of the manufacturer’s
output. The manufacturer clearly has an incentive to exert some effort, since
using less material reduces his procurement cost. But the supplier certainly
does not have an incentive to reduce the manufacturer’s consumption if the
supplier’s revenue is increasing in consumption. However, it is also quite
plausible the supplier’s effort would reduce consumption, and further, the
supplier may even be more efficient at reducing consumption than the
manufacturer (i.e., the supplier’s effort cost to reduce consumption by a fixed
amount is lower than the manufacturer’s effort cost). Thus the supply
chain optimal effort levels may very well have both firms exerting effort to
reduce consumption.

The Corbett and DeCroix (2001) model adds several twists to the
newsvendor model with effort-dependent demand: both firms can exert effort,
as opposed to just one firm; and effort hurts one firm and helps the other,
whereas in the newsvendor model both firms benefit from effort. Given
that structure it is no longer possible to assign all of the costs and all of the
benefits of effort to one firm (as the quantity-discount contract does in the
newsvendor model). Hence, they show shared-savings contracts (which are
related to revenue-sharing contracts) do not coordinate their supply chain,
and unfortunately, they are unable to identify which contract would
coordinate their model.

Several papers study how effort in a supply chain influences quality.
In Reyniers and Tapiero (1995) there is one supplier and one buyer. The
supplier can choose between two production processes, one that is costly but
produces high quality (in the form of a low-defect probability) and one
that is inexpensive but produces low quality (a high-defect probability).
The choice of production process can be taken as a proxy for effort in this
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model. The buyer can test each unit the supplier delivers, but testing is
costly. Defective units that are discovered via testing are repaired for an
additional cost incurred by the supplier, i.e., an internal failure cost. If the
buyer does not test and the unit is defective, then an external failure cost is
incurred by the buyer. They allow a contract that includes a wholesale-price
rebate for internal failures and an external failure compensation, i.e., the
supplier pays the buyer a portion of the buyer’s external failure cost. Internal
failures are less costly to the supplier (repair cost plus rebate cost) than
external failures (compensation to the buyer), so the supplier benefits if the
buyer tests a higher fraction of units.

In Baiman, Fischer and Rajan (2000) there is a supplier that can exert
costly effort to improve quality and a buyer that exerts testing effort that
yields an imperfect signal of quality. Both effort levels are continuous
variables, as opposed to the discrete effort levels in Reyniers and Tapiero
(1995). If testing suggests the product is defective, the buyer incurs an internal
failure cost. If the testing suggests the product is not defective (and hence the
buyer accepts the product) then an external failure cost is incurred if the
product is in fact defective. They show that optimal supply chain performance
is achievable when both effort levels are contractible. Optimal performance
is also possible if the firms can verify the external and internal failures and
therefore commit to transfer payments based on those failures. Baiman,
Fischer and Rajan (2001) extend their model to include the issue of
product architecture. With modular design the firms can attribute external
failures to a particular firm: either the supplier made a defective component or
the supplier made a good component but the buyer caused a defect by poor
handling or assembly. However, with an integrated design it is not possible
to attribute blame for a product’s failure. Hence, the product architecture
influences the contract design and supply chain performance. See Novak and
Tayur (2002) for another model and empirical work on the issue of effort
and attributing responsibility for quality failures.

The quality literature suggests that firms that cannot contract on effort
directly can contract on a proxy for effort (the frequency of internal or
external failures), which is one solution around potential observability or
verifiability problems. See Holmstrom (1979) for another model with moral
hazard and effort signals.

Gilbert and Cvsa (2000) study a model with costly effort that is
observable but not verifiable, i.e., the firms in the supply chain can observe
the amount of effort taken, but the amount of effort taken is not verifiable to
the courts, and therefore not contractible. This distinction can be important,
as it is in their model. They have a supplier that sets a wholesale price and a
buyer that can invest to reduce his marginal cost. The investment to reduce
the marginal cost is observed by both firms before the supplier chooses
the wholesale price. The buyer cannot fully capture the benefit of cost
reduction because the supplier will adjust her wholesale price based on the
observed effort. Hence, the buyer invests in less effort to reduce cost than
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optimal. The supplier can do better if the supplier commits to a wholesale
price before observing the buyer’s cost reduction. However, demand is
random in their model (and observed at the same time the buyer’s cost
reduction is observed) and so it is beneficial to choose the wholesale price after
observing demand, which is in conflict with the incentive benefits of a
committed wholesale price. They demonstrate that a hybrid solution works
well: the supplier commits to a wholesale-price ceiling before observing the
buyer’s effort and the demand realization, and after the observations
the supplier chooses a wholesale price that is not greater than her whole-
sale-price ceiling, i.e., there is partial wholesale-price commitment and
partial flexibility.

5 Coordination with multiple newsvendors

This section considers two models with one supplier and multiple
competing retailers. The first model has a fixed retail price and competition
occurs by allocating demand among the retailers proportional to their
inventory. It is shown the retailers are biased toward ordering more inventory
than optimal because of a demand-stealing effect: each retailer fails to account
for the decrease in the other retailer’s demands when the retailer increases
his order quantity. As a result, with just a wholesale-price contract the
supplier can coordinate the supply chain and earn a positive profit.
Nevertheless, there are limitations to that coordinating contract: it provides
for only one division of supply chain profit; and it is not even the supplier’s
optimal wholesale-price contract. A buyback contract does not share those
limitations: with a buyback contract the supplier can coordinate the supply
chain and earn more than with the optimal wholesale-price contract.

The second model with retail competition yields qualitatively very different
results. In that model the following sequence of events occurs: the retailers
order inventory, market demand is observed and then the market-clearing
price is set. The market-clearing price is the price at which consumers are
willing to purchase all of the retailers’ inventory. Hence, retailers might incur a
loss on each unit when the market demand realization is low. The retailers
anticipate that possibility and respond by ordering less than the optimal
amount. As a result, in contrast to the quantity-allocation competition of the
first model, now the supplier needs an instrument to increase retail inventory.
Two are considered: resale price maintenance and buyback contracts. With
either one the supplier can coordinate the supply chain and extract all of the
supply chain’s profit.

5.1 Competing newsvendors with a fixed retail price

Take the single retailer newsvendor model (described in Section 2) and
make the following modifications: set cr¼ gr¼ gs¼ v¼ 0, increase the number
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of retailers to n>1; interpret D as the total retail demand, let F continue to be
the distribution function for D; and let retail demand be divided between the n
firms proportional to their stocking quantity, i.e., retailer i’s demand, Di, is

Di ¼
qi

q

� �
D,

where q ¼
Pn

i¼1 qi and q�i ¼ q� qi. See Wang and Gerchak (2001) for a
model that implements proportional allocation with deterministic demand.

Demands at the retailers are perfectly correlated with the proportional
allocation model. Hence, either every firm has excess demand (when D>q)
or every firm has excess inventory (when D<q). That could be a
reasonable model when customers have low search costs; a customer that
desires a unit finds a unit if there is a unit in the system. That search need
not involve an actual physical inspection of each store by every customer.
For example, information regarding availability could be exchanged
among customers through incidental social interactions that naturally occur
with daily activities. The model also presumes consumers do not care from
which retailer they make their purchases, i.e., there are no retail brand
preferences.

There are other demand-allocation models that maintain a constant retail
price. Parlar (1988), Karjalainen (1992) and Anupindi and Bassok (1999) and
Anupindi, Bassok and Zemel (1999) assign independent random demands to
each retailer and then redistributed the retailer’s excess demand. Netessine
and Shumsky (2001) also redistribute each retailer’s excess demand, but they
add a twist. In their model the retailers are actually airlines and they have two
fare classes. Lippman and McCardle (1997) adopt a more general approach
to demand allocation which includes the independent random demand
model. They represent aggregate demand as a single random variable and
then allocate demand using a splitting rule that depends on the realization
of demand (and not on the retailer’s order quantities). The retailer’s excess
demand is then redistributed. In those models some of the redistributed
demand may be lost, i.e., some customers may not be willing to continue their
shopping if the first retailer they visit has no stock. As a result, total sales
depend on the retailers’ total inventory and how inventory is distributed
among the retailers. With the proportional allocation model industry sales
does not depend on the distribution of inventory among the retailers. Thus,
the proportional allocation model is simpler to analyze.21 However, the
proportional allocation model is not a special case of the allocation model
adopted in Lippman and McCardle (1995). Nevertheless, the qualitative
insights from the models are consistent.

21 The allocation of demand across multiple retailers is analogous to the allocation of demand across a

set of products, which is known as the assortment problem. That problem is quite complex. See

Mahajan and van Ryzin (1999) for a review of that literature.
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There are also models that allocate demand dynamically. In Gans (2002)
customers search among retailers without having perfect knowledge of
the retailers’ stocking levels.22 As with Lippman and McCardle (1995),
Gans (2002) does not consider channel coordination. van Ryzin and Mahajan
(1999) assume customers may have different preferences for the retailers
and choose to purchase from their most preferred retailer that has stock
available.

Given the proportional allocation rule, the integrated supply chain faces
a single newsvendor problem. Hence the optimal order quantity is defined
by the familiar

FðqoÞ ¼
p� c

p
: ð5:1Þ

Because the integrated solution remains a single-location newsvendor
problem, the multiple retailer model with proportional allocation is a nice
generalization of the single retailer model.

In the decentralized system we want to investigate retail behavior with
either a wholesale-price contract or a buyback contract. (Since the retail
price is fixed, in this case there exists a revenue-sharing contract that is
equivalent to the buyback contract.) Retailer i’s profit function with a
buyback contract is

piðqi, q�iÞ ¼ ð p� wÞqi � ð p� bÞ
qi

q

� � Z q

0

FðxÞdx:

The above also provides the retailer’s profit with a wholesale-price contract
(i.e., set b¼ 0). The second-order condition confirms each retailer’s profit
function is strictly concave in his order quantity. Hence, there exists an
optimal order quantity for retailer i for each q�i. In game theory parlance,
retailer i has a unique optimal response to the other retailers’ strategies
(i.e., their order quantities). Let qi(q�i) be retailer i’s response function,
i.e., the mapping between q�i and retailer i’s optimal response. Since the
retailers have symmetric profit functions, qj(q�j)¼ qi(q�i), i 6¼ j.

A set of order quantities, fq*1 , . . . , q*n g, is a Nash equilibrium of the
decentralized system if each retailer’s order quantity is a best response, i.e., for
all i, q*i ¼ qiðq*�iÞ, where q*�i ¼ q* � q*i and q* ¼

Pn
j¼1 q*j . There may not exist

an Nash equilibrium, or there may be multiple Nash equilibria. If there is a
unique Nash equilibrium then that is taken to be the predicted outcome of the
decentralized game.

22 Gans (2002) presents his model more generally. He has multiple suppliers of a service that compete

on some dimension of quality, say their fill rate. Nevertheless, customers have less than perfect

information about the suppliers’ service levels and so they must develop a search strategy. The

suppliers compete knowing customers have limited information.
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Any Nash equilibrium must satisfy each retailer’s first-order condition:

@piðqi, qjÞ
qi

¼ q*
p� w

p� b

� �
� q*i Fðq*Þ � q*�i

1

q*

Z q*

0

FðxÞdx

� �
¼ 0:

Substitute q*�i ¼ q* � q*i into the above equation and solve for q*i given a
fixed q*:

q*i ¼ q*
p� wÞ=ðp� bð Þ � ð1=q*Þ

R q*
0 FðxÞdx

� �
Fðq*Þ � 1=q*

R q*
0 FðxÞ dx

: ð5:2Þ

The above gives each retailer’s equilibrium order conditional on q*

being the equilibrium total order quantity. Hence, the above describes
an equilibrium only if q* ¼ nq*i . Substitute Eq. (5.2) into q* ¼ nq*i and
simplify:

1

n
Fðq*Þ þ

n� 1

n

� �
1

q*

Z q*

0

FðxÞdx

� �
¼

p� w

p� b
: ð5:3Þ

The left-hand side of Eq. (5.3) is increasing in q* from 0 (when q*¼ 0) to 1
(when q*¼1). Hence, when b<w<p, there exists a unique q* that
satisfies Eq. (5.3). In other words, in this game there exists a unique
Nash equilibrium in which the total order quantity, q*, is implicitly given by
Eq. (5.3) and each retailer’s order quantity equals q*i ¼ q*=n.

Consider how the equilibrium order quantity changes in n. The left-hand
side of Eq. (5.3) is decreasing in n. Hence, q* is increasing in n for fixed
contractual terms: a single retailer that faces market demand D purchases
less than multiple retailers facing the same demand (with proportional
allocation). [This effect generalizes beyond just the proportional allocation
model, as demonstrated by Lippman and McCardle (1995).] Competition
makes the retailers order more inventory because of the demand-stealing
effect: each retailer ignores the fact that ordering more means the other
retailers’ demands stochastically decrease. Anupindi and Bassok (1999) and
Mahajan and van Ryzin (2001) also noticed this effect. However, the effect
does not apply universally: Netessine and Rudi (2000b) find that competition
may lead some retailers to understock when there are more than two retailers
and demands are not symmetric. Furthermore, if retailers sell complements,
rather than substitutes, then the demand-stealing effect is reversed:
each retailer tends to understock because it ignores the additional demand
it creates for other retailers.

Due to the demand-stealing effect the supplier can coordinate the
supply chain and earn a positive profit with just a wholesale-price
contract. To explain, let ŵwðqÞ be the wholesale price that induces the retailers
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to order q units with a wholesale-price contract (i.e., with b¼ 0). From
Eq. (5.3),

ŵwðqÞ ¼ p 1�
1

n

� �
FðqÞ �

n� 1

n

� �
1

q

Z q

0

FðxÞdx

� �� �
:

By definition ŵwðqoÞ is the coordinating wholesale price. Given that FðqoÞ ¼
ð p� cÞ=c and

1

q

Z q

0

FðxÞdx < FðqÞ,

it can be shown that ŵwðqoÞ > c when n>1. Hence, the supplier earns a positive
profit with that coordinating contract. With the single retailer model channel
coordination is only achieved when the supplier earns zero profit, i.e.,
marginal cost pricing, ŵwðqoÞ ¼ c.

Although the supplier can use the wholesale-price contract to coordinate
the supply chain, that contract is not optimal for the supplier. The supplier’s
profit function with a wholesale-price contract is

psðq, ŵwðqÞÞ ¼ qðŵwðqÞ � cÞ:

Assuming n>1, differentiate psðq, ŵwðqÞÞ with respect to q and evaluate at
ŵwðqoÞ, the coordinating wholesale price,

@psðqo, ŵwðqoÞÞ
@q

¼ �
qopf ðqoÞ

n
< 0:

Hence, rather than coordinating the supply chain with the wholesale price
ŵwðqoÞ, the supplier prefers to charge a higher wholesale price and sell less
than qo when n>1.

Although the supplier does not wish to use a wholesale-price contract to
coordinate the supply chain, it is possible the supplier’s profit with a
coordinating buyback contract may exceed her profit with the optimal
wholesale-price contract. Let wb(b) be the wholesale price that coordinates the
supply chain given the buyback rate. Since the buyback rate provides an
incentive to the retailers to increase their order quantity, it must be that
wbðbÞ > ŵwðqoÞ, i.e., to coordinate the supply chain the supplier must use
a wholesale price that is higher than the coordinating wholesale-price
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contract, which, recall, is lower than the supplier’s optimal wholesale price.
From Eqs. (5.1) and (5.3)

wbðbÞ ¼ p� ð p� bÞ
1

n

p� c

p

� �
þ

n� 1

n

� �
1

qo

Z qo

0

FðxÞdx

� �� �
:

Given that q*i ¼ q*=n, retailer i’s profit with a coordinating buyback contract is

piðq*i , q*�iÞ ¼ ð p� wðbÞÞqo=n� ð p� bÞ
1

n

� � Z qo

0

FðxÞdx

¼
p� b

pn2

� �
qo p� c�

p

qo

Z qo

0

FðxÞdx

� �

¼
p� b

pn2

� �
�ðqoÞ

The supplier’s profit with the coordinating contract is

psðqo,wbðbÞ, bÞ ¼ �ðqoÞ � npiðq*i , q*�iÞ

¼
pðn� 1Þ þ b

pn

� �
�ðqoÞ:

Hence, the supplier can extract all supply chain profit with b¼ p. As shown
earlier, the coordinating contract with b¼ 0 provides a lower bound for the
supplier’s profit (because the supplier could do even better with a higher
wholesale price than wb(0)). The ratio of the supplier’s lower bound to the
supplier’s maximum profit, �(qo), provides a measure of how much
improvement is possible by using a coordinating buyback contract:

psðqo,wbð0Þ, 0Þ

�ðqoÞ
¼

n� 1

n
:

Hence, as n increases the supplier’s potential gain decreases from using a
coordinating buyback contract rather than her optimal wholesale-price
contract. In fact, the supplier can use a wholesale-price contract to capture
most of the supply chain’s optimal profit with a relatively few number of
retailers: for n¼ 5 the supplier captures at least 80% of the optimal profit
and for n¼ 10 the supplier captures at least 90%. Mahajan and van Ryzin
(2001) also observe that downstream competition can mitigate the need for
coordinating contracts.
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5.2 Competing newsvendors with market-clearing prices

In the previous model retail competition influences the allocation
of demand. In this model, first analyzed by Deneckere, Marvel and Peck
(1997), competition influences the retail price. Specifically, the market
price depends on the realization of demand and the amount of inventory
purchased.

Suppose industry demand can take on one of two states, high or low.
Let q be the retailers’ total order quantity. When demand is low, the market-
clearing price is

plðqÞ ¼ ð1� qÞþ

and when demand is high the market-clearing price is

phðqÞ ¼ 1�
q

�

� 	þ
,

for �>1. Suppose either demand state is equally likely.
There is a continuum of retailers, indexed on the interval [0, 1].

Retailers must order inventory from a single supplier before the realization
of the demand is observed. After demand is observed the market-clearing
price is determined. Perfect competition is assumed, which means the
retailers continue to order inventory until their expected profit is zero.
Leftover inventory has no salvage value and the supplier’s production cost is
zero. Deneckere et al. (1997) show the qualitative insights from this model
continue to hold with a continuous demand state space, a general supplier cost
function and a general demand function. In another paper, Deneckere,
Marvel and Peck (1996) show the qualitative insights also hold if the retailers
choose their prices before the realization of demand. (In that model all
demand is allocated to the retailer with the lowest price, and any
residual demand is subsequently allocated to the retailer with the second
lowest price, etc.)

To set a benchmark, suppose a single monopolist controls the entire
system. In this situation the monopolist can choose how much of her
inventory to sell on the market after demand is observed. At that point the
cost of inventory is sunk, so the monopolist maximizes revenue: in the low-
demand state the monopolist sells q¼ 1/2 at price pl(1/2)¼ 1/2; and in the
high-demand state q¼ �/2 with the same price, ph(�/2)¼ 1/2. So the inventory
order should be one of those two quantities. Given the production cost is
zero, ordering �/2 units is optimal.23 Furthermore, the monopolist sells her

23 The monopolist is actually indifferent between �/2 and a greater amount. A positive production cost

would eliminate that result. But that is not an interesting issue. The important result is that the supply

chain optimal order quantity is the greater amount.
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entire stock in the high-demand state, but in the low-demand state the
monopolist does not sell some of her inventory. The monopolist’s expected
profit is

�o ¼ ð1=2Þplð1=2Þð1=2Þ þ ð1=2Þphð�=2Þð�=2Þ ¼
1þ �

8
:

Now consider the system in which the supplier sells to the perfectly
competitive retailers with just a wholesale-price contract. The retailer’s
expected profit is

1

2
plðqÞqþ

1

2
phðqÞq� wq ¼

1
2
qð2� q� q=�Þ � wq q � 1

1
2
qð1� q=�Þ � wq q > 1

:

�

Let q1(w) be the quantity that sets the above profit to zero when q� 1, which
is the equilibrium outcome due to perfect competition:

q1ðwÞ ¼
2�

1þ �
ð1� wÞ:

For q1(w)� 1 to hold, it must be that w� (1/2)�1/(2�). Let q2(w) be the
quantity that sets the above profit to zero when q>1,

q2ðwÞ ¼ �ð1� 2wÞ:

For q2(w)>1 to hold it must be that w<(1/2)�1/(2�).
Let ps(w) be the supplier’s profit. From the above results,

psðwÞ ¼
q1ðwÞw w � ð1=2Þ � 1=ð2�Þ
q2ðwÞw otherwise

:

�

Let w*(�) be the supplier’s optimal wholesale price:

w*ð�Þ ¼
1
2
� � 3

1
4 otherwise

(

and

psðw*ð�ÞÞ ¼

�

2ð1þ �Þ
� � 3

1
8
� otherwise

:

8<
:
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So when �� 3 the retailers order

q1ðw*ð�ÞÞ ¼
�

1þ �

and the market-clearing prices are

plðq1ðw*ð�ÞÞÞ ¼
1

1þ �
, phðq1ðw*ð�ÞÞÞ ¼

�

1þ �
:

When �>3 the retailers order

q2ðw*ð�ÞÞ ¼
�

2

and the market-clearing prices are

plðq2ðw*ð�ÞÞÞ ¼ 0, phðq2ðw*ð�ÞÞÞ ¼
1

2
:

No matter the value of � psðw*ð�ÞÞ < �o, so the supplier does
not capture the maximum possible profit with a wholesale-price contract.
When �� 3 the supplier falls short because the retailers sell too much in
the low-demand state. To mitigate those losses the retailers order less
than the optimal quantity, but then they are unable to sell enough in the
high-demand state. When �>3 the supplier falls short because the
retailers sell too much in the low-demand state even though they sell
the optimal amount in the high-demand state. Hence, in either case the
problem is that competition leads the retailers to sell too much in the low-
demand state. Recall, the monopolist does not sell all of her inventory in the
low-demand state, but the perfectly competitive retailers cannot be so
restrained.

To earn a higher profit the supplier must devise a mechanism to prevent
the low-demand state market-clearing price from falling below 1/2. In short,
the supplier must curtail the destructive competition that results from
having more inventory than the system needs. Deneckere et al. (1997) propose
the supplier implements resale price maintenance: the retailers may not sell
below a stipulated price. [For other research on resale price maintenance,
see Ippolito (1991), Shaffer (1991) and Chen (1999b).] Let p be that price.
When p is above the market-clearing price the retailers have unsold inventory,
so demand is allocated among the retailers. Assume demand is allocated so
that each retailer sells a constant fraction of his order quantity, i.e.,
proportional allocation.

Ch. 6. Supply Chain Coordination with Contracts 279



Given the optimal market-clearing price is always 1/2, the search for the
optimal resale price maintenance contract should begin with p ¼ 1=2.24 Let
q(t) be the order quantity of the tth retailer and let pr(t) be the tth retailer’s
expected profit. Assume the retailers’ total order quantity equals �/2, i.e.,Z 1

0

qðtÞdt ¼
�

2
: ð5:4Þ

Hence, the market price in either demand state is 1/2. We later confirm that
the retailers indeed order �/2 in equilibrium. Evaluate the tth retailer’s
expected profit:

prðtÞ ¼ �qðtÞwþ
1

2

1=2

�=2
qðtÞ

� �
pþ

1

2
qðtÞp :

the retailer sells (1/2)q(t)/(�/2) in the low-demand state and sells q(t) in the
high-demand state. Simplify the above profit:

prðtÞ ¼ qðtÞ
1þ �

4�
� w

� �
:

so the supplier can charge

w ¼
1þ �

4�
:

We must now confirm the retailers indeed order �/2 given that wholesale price.
Say the retailers order 1/2<q<�/2, so the tth retailer’s expected profit is

�qðtÞwþ
1

2

1=2

q
qðtÞ

� �
pþ

1

2
qðtÞ 1�

q

�

� 	
:

The above is decreasing in the relevant interval and equals 0 when the
wholesale price is w. So with the ð p,wÞ resale price maintenance contract
the retailers order q¼ �/2, the optimal quantity is sold in either state and the
retailers’ expected profit is zero.25 Hence, the supplier earns �o with that
contract.

24 The optimal market-clearing price is independent of the demand realization because the demand

model, q¼ �(1�p), has a multiplicative shock, �. The optimal market-clearing price would differ across

states with an additive shock, e.g., if the demand model were q¼ ��p. In that case resale price

maintenance could only coordinate the supply chain if the resale price were state dependent.
25 Given ðp,wÞ, any q(t) that satisfies Eq. (5.4) is an equilibrium, i.e., there are an infinite number of

equilibria. The authors do not specify how a particular equilibrium would be chosen.
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Resale price maintenance prevents destructive competition in the low-
demand state, but there is another approach to achieve the same
objective. Suppose the supplier offers a buyback contract with b¼ 1/2. Since
retailers can earn b¼ 1/2 on each unit of inventory, the market price
cannot fall below 1/2: for the market price to fall below 1/2 it must be
that some retailers are willing to sell below 1/2, but that is not rational if the
supplier is willing to give 1/2 on all unsold units. Therefore, the retailers sell
at most 1/2 in the low-demand state and �/2 in the high-demand state.

The retailers’ profit with a buyback contract is

1

2
ð plð1=2Þð1=2Þ þ bðq� 1=2ÞÞ þ

1

2
ð phðqÞqÞ � qw,

which simplifies to

q
3

4
� w�

q

2�

� �
:

(That profit assumes 1/2<q<�/2.) The supplier wants the retailers to
order q¼ �/2. From the above equation the retailers earn a zero profit with
q¼ �/2 when w¼ 1/2. Hence, the supplier maximizes the system’s profit with
a buyback that offers a full refund on returns.

Although resale price maintenance and the buyback contract achieve the
same objective, the supplier sets a higher wholesale price with the buyback
contract, i.e., 1/2>(1þ �)/4�: retailers do not incur the cost of excess
inventory in the low-demand states with a buyback contract, but they do with
resale price maintenance. A buyback contract is also not the same as a
revenue-sharing contract in this situation. (Section 2 demonstrates the two
contracts are equivalent in the single newsvendor model.) The buyback
contract prevents the market-clearing price from falling below 1/2 in the low-
demand state, but revenue sharing does not prevent destructive competition:
in the low-demand state the retailers have no alternative use for their
inventory, so they still attempt to sell all of it in the market. [However, revenue
sharing does prevent destructive price competition in Dana and Spier (2001)
because in their model the retailers incur a marginal cost for each sale rather
than each unit purchased.] Those contracts are also different in the single
newsvendor model with price-dependent demand (see Section 3). However, in
that model the revenue-sharing contract coordinates the supply chain and the
buyback contract does not. The key distinction is that in the single
newsvendor model the retailer controls the market price, whereas in this
competitive model the retailers do not.

It is interesting that a buyback contract coordinates the supply chain in
either competitive model even though in the first one the supplier must
discourage the retailers from ordering too much and in the second one the
supplier must encourage the retailers to order more. To explain this apparent
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contradiction, the wholesale-price component of the contract always reduces
the retailer’s order quantity and the buyback component always increases the
retailer’s order quantity. Thus, depending on the relative strength of those two
components, the buyback contract can either increase or decrease the retailers’
order quantities.

5.3 Discussion

Retail competition introduces several challenges for supply chain
coordination. There may exist a demand-stealing effect which causes each
retailer to order more than the supply chain optimal quantity because each
retailer ignores how he reduces his competitors’ demand. For coordination
the supplier needs to reduce the retailers’ order quantities, which can be
done with just a wholesale-price contract above marginal cost. But that
wholesale-price contract only provides for one division of the supply chain’s
profit, and it is not even the supplier’s optimal wholesale-price contract. The
supplier can do better with a buyback contract and coordinate the supply
chain. However, the incremental improvement over the simpler wholesale-
price contract decreases quickly as retail competition intensifies. In contrast to
the demand-stealing effect, in the presence of the destructive competition
effect the supplier needs to increase the retailers’ order quantities. This occurs
when demand is uncertain and the retail price is set to clear the market. When
demand is high the retailers earn a profit, but when demand is low deep
discounting to clear inventory leads to losses. The retailers anticipate this
problem and respond by curtailing their inventory purchase. Both resale price
maintenance and buyback contracts prevent deep discounting, and therefore
alleviate the problem.

There are several other papers that study supply chain coordination
with competing retailers. Padmanabhan and Png (1997) demonstrate a
supplier can benefit by mitigating retail competition with a buyback contract
even with deterministic demand and less than perfect retail competition.
In their model two retailers first order stock and then choose prices.
Retailer i sells qi ¼ �� 	pi � 
pj, where �, 	 and 
 are constants and 	>
.
With just a wholesale-price contract (b¼ 0), the retailers price to maximize
revenue, because their inventory is sunk. When the supplier offers a full
returns policy (b¼w), the retailers price to maximize profit because unsold
inventory can be returned for a full refund. The retailers price more
aggressively when they are maximizing revenue. They anticipate this behavior
when choosing their order quantity, and so order less when they expect
more intense price competition.26 Thus, for any given wholesale price the

26 When maximizing revenue the retailer chooses a price so that marginal revenue equals zero. When

maximizing profit the retailer chooses a price so that marginal revenue equals marginal cost. Thus, the

retailer’s optimal price is higher when maximizing profit.
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retailers order more with the full returns policy. Since demand is
deterministic, in neither case does the supplier actually have to accept
returns. So the supplier is better off with the full returns policy when demand
is deterministic.27 When demand is stochastic the supplier may not prefer the
full returns policy because that policy may induce the retailers to order too
much inventory. However, one suspects the supplier could benefit in
that situation from a partial return credit, i.e., b<w.28 See Bernstein
and Federgruen (1999) for a more complex model with deterministic
demand and competing retailers. See Tsay and Agrawal (2000) and
Atkins and Zhao (2002) for models with two retailers that compete on price
and service.

Several authors have studied coordination when retailers face oligopolistic
competition, i.e., they may earn nonzero profit in equilibrium. Even though
this is a different type of competition, the demand-stealing effect remains,
but establishing the existence and possibly the uniqueness of equilibrium
is generally more challenging. Cachon and Lariviere (2000) demonstrate
that revenue sharing can coordinate retailers that compete along a single
dimension, e.g., quantity-competing retailers or price-competing retailers.
Revenue sharing is not successful if the retailers compete both on quantity
and price (e.g., a firm’s demand depends on its price and possibly its fill rate,
for which quantity is taken as a proxy.) However, Dana and Spier (2001) find
that revenue sharing does coordinate perfectly competitive price-setting
newsvendors. Bernstein and Federgruen (2000) show that a nonlinear form
of the price-discount contract coordinates price- and quantity-competing
retailers.

Rudi et al. (2001) study a model with two retailers that each face a
newsvendor problem. Inventory can be shipped between the retailers for a
fee. Those shipments occur after demand is observed, but before demand
is lost. Hence, if retailer i has excess inventory and retailer j has
excess demand, then some portion of retailer i’s excess inventory can be
shipped to retailer j to satisfy retailer j’s excess demand. At first glance
it would appear the redistribution of excess demand that occurs in the
Lippman and McCardle (1995) model is qualitatively equivalent to the
redistribution of inventory that occurs in this model. One difference is
that the firms in the demand redistribution model do not incur an explicit
fee for each demand unit moved between the retailers. A second difference is
that the firms in the inventory redistribution model control the redistribution
process, and so demand is only lost if total demand exceeds total

27 Padmanabhan and Png (1997) state that the full returns policy helps the manufacturer by increasing

retail competition. They are referring to the competition in the ordering stage, not in the pricing stage.

The retailers order more precisely because they anticipate less aggressive competition in the pricing

stage.
28 In a slightly different model of imperfect competition between two retailers, Butz (1997)

demonstrates a buyback contract allows the supplier to coordinate the channel.
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inventory (assuming the firms set transfer prices so that Pareto improving
trades always occur).

Rudi et al. (2001) demonstrate the retailers may either order too much or
too little inventory in this model, depending on the transfer prices for
redistributed inventory. When the receiving firm must pay the maximum
fee (so he is indifferent between receiving the transfer and incurring a
lost sale), the firms order too much inventory. Each firm profits from
selling his inventory to the other firm, so each firm is biased toward ordering
too much. When the receiving firm pays the minimum fee (so the sending
firm is indifferent between salvaging excess inventory and shipping it to the
other firm), the firms order too little inventory (neither firm profits
from excess inventory, but can depend on some portion of the other
firm’s inventory). Given these two extremes, there exists a set of
intermediate transfer prices such that the firms order the optimal amount of
inventory.

Rudi et al. (2001) do not include a supplier in their model. The
supplier could be a facilitator of the inventory redistribution. For example, in
their model the price at which a firm sells excess inventory is the same as
the price at which a firm buys excess inventory. But with a supplier those
prices need not be the same: the supplier could buy excess inventory at one
price (a buyback) and redistribute at a different price (which could differ from
the initial wholesale price). The inclusion of the supplier would also change
each retailer’s inventory problem. In their model each retailer expects to sell
only a portion of his excess inventory, because the other retailer purchases
only enough to meet his excess demand. With a buyback contract the supplier
stands ready to buy all excess inventory at a fixed price. [Dong and Rudi
(2001) do study transshipment with a supplier but they only consider the
wholesale-price contract.]

Anupindi et al. (2001) study a general inventory redistribution game
with multiple locations. They adopt a ‘coopetive’ analysis: some decisions are
analyzed with concepts from cooperative game theory, whereas others
implement noncooperative game theory.

Lee and Whang (2002) have a supplier and free inventory redistribution at
an intermediate point in the selling season. [With Rudi et al. (2001) the
redistribution occurs at the end of the season, i.e., after a perfect
demand signal is received.] In their model the redistribution transfer price is
the clearing price of a secondary market rather than a price dictated by
the retailers or the supplier. They find that the spot market is advantageous
to the supplier for low margin items, but not for high margin items. If
the supplier cannot control the spot market, then the supplier can attempt
to influence the spot market via minimum order quantity requirements
or return policies. For example, a return policy will remove inventory
from the spot market and thereby raise its price. This is analogous to
the use of buybacks to prevent destructive price competition discussed in
Section 5.2.
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Gerchak and Wang (1999) and Gurnani and Gerchak (1998)
consider supply chains with multiple upstream firms rather than multiple
downstream firms. In these assembly systems the upstream firms are
different suppliers, each producing a component for the manufacturer’s
product (the downstream firm). Total production is constrained by the
supplier with the smallest output and the excess output of the other suppliers
is wasted. Hence, as with destructive competition, the suppliers are biased
toward producing too little. They study several contracts that encourage
the suppliers to increase their production quantities. Bernstein and
DeCroix (2002) also study coordination in assembly systems. They discuss
how the organization of the assembly structure influences supply chain
performance.

Bernstein et al. (2002) demonstrate that coordination of competing
retailers with a wholesale-price contract is easier with Vendor Managed
Inventory (the supplier controls the retailers’ inventory policies and the
retailers choose prices) than with standard operations, i.e., the retailers choose
prices and inventory policies. This represents a different approach to
coordination: instead of aligning incentive via contracts, the firms transfer
decision rights. The pros and cons of this approach relative to formal
contracts have not been fully explored.

Throughout this section it has been assumed the supplier is independent
of all of the retailers. However, in some markets a supplier may choose
to own her own retailer or to sell directly to consumers. Tsay and
Agrawal (1999) explore the channel conflicts such a move creates. It has
also been assumed that the supplier simultaneously offers a contract
to all retailers that is observable by all retailers. However, McAfee and
Schwarz (1994) argue that a supplier has an incentive to sequentially offer
contracts to retailers and to keep these contractual terms secret. Retailers
anticipate this behavior, respond accordingly and thereby destroy the
effectiveness of some contracts. See the following papers for additional
discussion on this issue: O’Brien and Shaffer (1992), Marx and Shaffer
(2001a,b, 2002).

6 Coordinating the newsvendor with demand updating

With the standard newsvendor problem the retailer has only one
opportunity to order inventory. However, it is reasonable that the retailer
might have a second opportunity to order inventory. Furthermore, the
retailer’s demand forecast may improve between the ordering epochs
(Fisher & Raman, 1996). Hence, all else being equal, the retailer would
prefer to delay all ordering to the second epoch. But that creates a problem for
the supplier. With a longer lead time the supplier may be able to procure
components more cheaply and avoid overtime labor. If the supplier
always has sufficient capacity to fill the retailer’s order, the supplier prefers
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an earlier rather than later order commitment by the retailer.29 Thus, supply
chain coordination requires the firms to balance the lower cost of early
production with the better information afforded by later production. It is
shown that coordination is achieved and profits divided with a buyback
contract as long as the supplier is committed to a wholesale price for each
order epoch.

6.1 Model and analysis

Based on Donohue (2000), consider a model in which the retailer
receives a forecast update only once before the start of the selling season.
Let �� 0 be the realization of that demand signal. Let G( � ) be its distribution
function and g( � ) its density function. Let F( � j �) be the distribution
function of demand after observing the demand signal. Demand is
stochastically increasing in the demand signal, i.e., Fðx j �hÞ < Fðx j �lÞ for all
�h>�l. For convenience, let period 1 be the time before the demand signal
and let period 2 be the time between the demand signal and the start of the
selling season.

Let qi be the retailer’s total order as of period i, i.e., q1 is the retailer’s
period 1 order and q2�q1 is the retailer’s period 2 order. The retailer’s period
2 order is placed after observing the demand signal. Within each period the
supplier chooses her production after receiving the retailer’s order. Early
production is cheaper than later production, so let ci be the supplier’s per unit
production cost in period i, with c1<c2. The supplier charges the retailer wi

per unit for units ordered in period i. In addition, the supplier offers to
buyback all unsold units for b per unit. The supplier offers these terms at the
start of period 1 and commits to not change the terms.30 Let p be the retail
price. Normalize to zero the salvage value of leftover inventory and any
indirect costs due to lost sales.

The supplier does not have a capacity constraint in either period and
delivers stock to the retailer at the end of each period. The supplier operates
under voluntary compliance, so the supplier may deliver less than the retailer
orders.31 However, the supplier may also produce more in period 1 than the
retailer orders. For simplicity, there is no holding cost on inventory carried
from period 1 to period 2.

29 This preference is not due to the time value of income, i.e., the supplier prefers an early order even if

the retailer pays only upon delivery.
30 There may be some incentive to alter the terms after the demand signal is received. Suppose the news

is good. In that case the supplier may prefer to leave the retailer with a smaller fraction of supply chain

profit (if the retailer has a constant minimum acceptable profit) or the supplier may argue that it

deserves a larger fraction of the profit as a reward for producing a good product. There is a large

literature in economics on renegotiation and its impact on contract design (see Tirole 1986; Demougin

1989; Holden, 1999).
31 Donohue (2000) assumes forced compliance. She also assumes the supplier offers a buyback

contract.
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All information is common knowledge. For example, both firms know
F( � j �) as well as G( � ). In particular, both firms observe the demand signal at
the start of period 2.32 Both firms seek to maximize expected profit.

Begin with period 2. Let �2(q2 j q1, �) be the supply chain’s expected revenue
minus the period 2 production cost:

�2ðq2 j q1, �Þ ¼ pSðq2 j �Þ � c2q2 þ c2q1: ð6:1Þ

Let q2(q1, �) be the supply chain’s optimal q2 given q1 and �. Let
q2(�)¼ q2(0, �), i.e., q2(�) is the optimal order if the retailer has no inventory
at the start of period 2. Given �2(q2 j q1, �) is strictly concave in q2,

Fðq2ð�Þ j �Þ ¼
p� c2

p
: ð6:2Þ

q2(�) is increasing in �, so it is possible to define the function �(q1) such that

Fðq1 j �ðq1ÞÞ ¼
p� c2

p
: ð6:3Þ

�(q1) partitions the demand signals into two sets: if �>�(q1) then the
optimal period 2 order is positive, otherwise it is optimal to produce nothing
in period 2.

The retailer also faces in period 2 a standard newsvendor problem, with the
modification that the retailer may already own some stock. Let p2(q2 j q1, �) be
the retailer’s expected revenue minus period 2 procurement cost,

p2ðq2 j q1, �Þ ¼ ð p� bÞSðq2 j �Þ � ðw2 � bÞq2 þ w2q1,

where assume the supplier delivers the retailer’s order in full. (To simplify
notation the contract parameters are not included in the arguments of the
functions considered in this section.) To coordinate the retailer’s period 2
decision, choose contract parameters with l2 [0, 1] and

p� b ¼ �p

w2 � b ¼ �c2

32 The supplier does not have to observe the signals directly if the supplier knows F( � j �). In that case

the supplier can infer � from the retailer’s order quantity because F( � j �) is strictly decreasing in �. See
Brown (1999) for a model in which the upstream firm is not able to use the downstream’s order

quantity to exactly infer the downstream firm’s demand signal.
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Not surprisingly, those parameters are analogous to the coordinating buyback
parameters in the single-period newsvendor model. With any of those
contracts

p2ðq2 j q1, �Þ ¼ �ð�2ðq2 j q1, �Þ � c2q1Þ þ w2q1:

Thus, q2(q1, �) is also the retailer’s optimal order, i.e., the contract coordinates
the retailer’s period 2 decision.

Now consider whether the supplier indeed fills the retailer’s entire period 2
order. Let x be the total inventory in the supply chain at the start of period 2,
x� q1. The supplier’s inventory at the start of period 2 is x�q1. Let y be the
inventory at the retailer after the supplier’s delivery in period 2. The supplier
completely fills the retailer’s order when y¼ q2. The supplier clearly delivers
the retailer’s full order when x� q2 because there is no reason to partially fill
the retailer’s order and have leftover inventory. If q2>x, the supplier must
produce additional units to deliver the retailer’s complete order. Let
�2ð y j x, q1, �Þ be the supplier’s profit, where x � y � q2,

�2ð y jx, q1, q2, �Þ ¼ bSð y j �Þ � byþ w2ð y� q1Þ � ð y� xÞc2

¼ ð1� �Þð�2ð y j q1, �Þ � c2q1Þ þ c2x� w2q1

where the above follows from the contract terms, w2 ¼ lc2 þ b. Given q2>x,
the supplier fills the retailer’s order entirely as long as q2 � q2ðq1, �Þ, i.e., the
supplier does not satisfy the retailer if the retailer happens to irrationally
order too much. Therefore, in period 2 the retailer orders the supply chain
optimal quantity and the supplier fills the order entirely, even with voluntary
compliance and no matter how much inventory the supplier carries
between periods.

In period 1, assuming a coordinating {w2, b} pair is chosen, the retailer’s
expected profit is

p1ðq1Þ ¼ �ðw1 � w2 þ �c2Þq1 þ �E½�2ðq2ðq1, �Þ j q1, �Þ�:

The supply chain’s expected profit is

�1ðq1Þ ¼ �c1q1 þ E½�2ðq2ðq1, �Þ j q1, �Þ�:

Choose w1 so that

w1 � w2 þ �c2 ¼ �c1

because then

p1ðq1Þ ¼ ��1ðq1Þ:
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It follows that the retailer’s optimal order quantity equals the supply
chain’s optimal order quantity, qo1, and any portion of the supply chain’s
profit can be allocated to the retailer. Given �1(q1) is strictly concave, qo1
satisfies:

@�1ðq
o
1Þ

@q1
¼ �c1 þ c2ð1� Gð�ðqo1ÞÞÞ þ

Z �ðqo
1
Þ

0

pS0ðqo1 j �Þgð�Þd�

¼ 0: ð6:4Þ

With centralized operations it does not matter whether inventory is left at
the supplier in period 1 because the supply chain moves all inventory to the
retailer in period 2: inventory at the supplier has no chance of selling.
With decentralized control supply chain coordination is only achieved if the
supplier does not hold inventory between periods: there is no guarantee, even
if the retailer orders the optimal period 2 quantity, that the retailer orders
all of the supplier’s inventory. However, it is quite plausible the supplier
might attempt to use cheaper period 1 production to profit from a possible
period 2 order.

Assuming the supplier fills the retailer’s second-period order (which we
earlier confirmed the supplier will do), the supplier’s period 2 profit is

�2ðx, q1, q2, �Þ ¼ bSðq2 j �Þ � bq2 � ðq2 � xÞþc2

¼ ð1� �Þ�2ðq2 j q1, �Þ � w2q2 þ xc2 � ðx� q2Þ
þc2:

Given that q2� q1, the above is strictly increasing in x for x� q1. Hence, the
supplier surely produces and delivers the retailer’s period 1 order (as long as
q1 � qo1). The supplier’s period 1 expected profit is

�1ðx j q1Þ ¼ �c1xþ E½�2ðx, q1, q2, �Þ�

¼ �c1xþ E½ð1� �Þ�2ðq2 j q1, �Þ� � w2q2 þ xc2

� c2

Z �ðxÞ

0

ðx� q2ð�ÞÞgð�Þ d�:

It follows that

@�1ðx j q1Þ

@x
¼ �c1 þ c2ð1� Gð�ðxÞÞÞ

and from Eq. (6.4)

@�1ðq
o
1 j q

o
1Þ

@x
¼ �c1 þ c2ð1� Gð�ðqo1ÞÞÞ < 0:
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Hence, with a coordinating {w1,w2, b} contract the supplier produces just
enough inventory to cover the retailer’s period 1 order. Overall, those
contracts coordinate the supply chain and arbitrarily allocate profits.

Interestingly, with a coordinating contract the supplier’s margin in period 2
is actually lower than in period 1:

w2 � c2 ¼ w1 � ð�c1 þ ð1� �Þc2Þ < w1 � c1:

Intuition suggests the supplier should charge a higher margin for the later
production since it offers the retailer an additional benefit over early
production. Nevertheless, that intuition is incompatible with supply chain
coordination (at least with a buyback contract).

6.2 Discussion

Forecast improvements present several challenges for supply chain
coordination. Just as in the simpler single-period model, the retailer must be
given incentives to order the correct amount of inventory given the forecast
update. In addition, the supplier must correctly balance inexpensive early
production against more expensive later production. Finally, the decentralized
supply chain must be careful about inventory placement, since unlike
with centralized operations, inventory is not necessarily moved to the optimal
location in the supply chain, i.e., inventory can become ‘stranded’ at the
supplier.

As in the single-location model, a buyback contract does coordinate this
supply chain and arbitrarily allocates profit, even with voluntary compliance.
Somewhat surprising, the supplier’s margin with later production is smaller
than her margin with early production, even though later production provides
the retailer with a valuable service.

There are a number of useful extensions to this work. Consider a model
with the following adjustments. Suppose the supplier at the start of period 1
picks her capacity, K, which costs ck per unit. The supplier can produce at
most K units over the two periods. Let c be the cost to convert one unit of
capacity into one product. In this setting the supply chain optimal solution
never produces in period 1: given that early production is no cheaper than
later production, the supply chain should delay production until after it has
the best demand forecast. A slight modification of the model lets the
supplier produce K units in each period. In that case there is some incentive to
conduct early production because then the total amount of inventory available
in period 2 increases.

In a qualitatively similar model Brown and Lee (1998) study pay-to-
delay contracts. With that contract the retailer reserves m units of the
supplier’s capacity in period 1 for a constant fee per unit. That commits the
retailer to purchase at least m units in period 2. They show both firms can
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be better off with the pay-to-delay contract than with a contract that does
not include minimum purchase agreements. However, the pay-to-delay
contract cannot coordinate this supply chain. The reason is simple,
minimum purchase agreements may result in more production than is
optimal given the information signal: if a bad demand signal is observed it
may be optimal for the supply chain to produce less than the minimum
purchase agreement.

Information acquisition occurs exogenously in both the Brown and
Lee (1998) and Donohue (2000), which is reasonable as long as the
information is learned before the selling season starts. But suppose the firms’
had a replenishment opportunity in the middle of the season. In that case early
sales provides information on future sales. However, demand equals sales only
if the retailer does not run out of inventory at the start of the season. See
Barnes-Schuster, Bassok and Anupindi (2002) for a model in which the
demand signal may be truncated due to lost sales. However, that is not the
only additional complication in their model. The optimal solution has
inventory held at the supplier between periods, hence coordination requires
that inventory not be stranded at the supplier at the start of the second period.
See Lu, Song and Regan (2002) for another model with midseason
replenishment opportunity.

In Kouvelis and Gutierrez (1997) demand occurs in each period, with
period 1 demand being the primary market demand and period 2 demand
being the secondary market demand. Leftover inventory from period 1 can
either be salvaged in the primary market or moved to the secondary market.
That decision depends on the realization of the exchange rate between the two
markets’ currencies. Hence, the information learned between periods is not a
demand signal, as in Donohue (2000), but rather the realization of period 2
effective production cost. They coordinate this supply chain (with one
manager responsible for each market’s decisions) using a nonlinear scheme.
Kouvelis and Lariviere (2000) show an internal market can also coordinate
this supply chain (see Section 10).

van Mieghem (1999) studies forecast updating with several additional
twists. In his model the downstream firm is the manufacturer and the
upstream firm is the subcontractor. At issue is the production of a component
that is part of the manufacturer’s product. The manufacturer has only one
market for his product, but the subcontractor can sell her component either
to the manufacturer or to an outside market. (But the subcontractor has
access to the manufacturer’s market only via the manufacturer, i.e., the
subcontractor cannot sell directly to that market.) Both markets have
random demand. Both firms choose a capacity level in period 1, where
the manufacturer’s capacity produces the component. At the start of
period 2 the firms observe demand in their respective markets and then
convert capacity into final output. Hence, like Donohue (2000), the firms
receive a demand signal between their early decision (how much capacity to
construct) and their later decision (how much to produce), albeit in
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van Mieghem (1999) it is a perfect demand signal. Unlike Donohue (2000), in
van Mieghem (1999) the downstream firm has production capability, the
upstream firm has a random opportunity cost for capacity not sold to the
downstream firm, and buyback contracts are not considered. See Milner and
Pinker (2000) for another model with early capacity decisions and later
forecast adjustments.

van Mieghem (1999) and Donohue (2000) also differ on what they assume
about the firms ability to commit to future actions. In Donohue (2000) the
supplier commits to a period 2 wholesale price, whereas in van Mieghem
(1999) the firms renegotiate their agreement between periods. Anand,
Anupindi and Bassok (2001) demonstrate that a supplier’s inability to commit
to future prices may cause a retailer to carry inventory purely for strategic
reasons. They have a two-period model with deterministic demand. The
supplier’s period 2 wholesale price is decreasing in the retailer’s period
1 inventory, thereby providing the retailer with a motivation to carry
inventory. See Gilbert and Cvsa (2000) for another model in which the
ability to commit to future wholesale prices matters.

Future research should consider a model with endogenous information
acquisition, i.e., the firms must exert effort to improve their demand forecasts.
Should one firm exert the effort or should both firms undertake forecast
improvement activities? To the best of my knowledge, that issue has not
been explored. There is also the possibility the firms could have different
forecasts: the firms could exert a different amount of effort toward forecasting
or the firms could have different sources of forecasting information. If there
are asymmetric forecasts, supply chain performance may improve via forecast
sharing: see Section 10 for a discussion of that issue.

7 Coordination in the single-location base-stock model

This section considers a model with perpetual demand and many
replenishment opportunities. Hence, the newsvendor model is not appro-
priate. Instead, the base-stock inventory policy is optimal: with a base-
stock policy a firm maintains its inventory position (on-order plus in-transit
plus on-hand inventory minus backorders) at a constant base-stock level. It is
assumed, for tractability, that demand is backordered, i.e., there is no lost sale.
As a result, expected demand is constant (i.e., it does not depend on the
retailer’s base-stock level). Optimal performance is now achieved by
minimizing total supply chain costs: the holding cost of inventory and the
backorder penalty costs. In this model the supplier incurs no holding
costs, but the supplier does care about the availability of her product at the
retail level. To model that preference, it is assumed that a backorder at the
retailer incurs a cost on the supplier. Since the retailer does not consider that
cost when choosing a base-stock level, it is shown the retailer chooses a
base stock level that is lower than optimal for the supply chain, which means
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the retailer carries too little inventory. Coordination is achieved and costs
are arbitrarily allocated by providing incentives to the retailer to carry
more inventory.

This model also provides a useful building block for the two-location model
considered in the next section.

7.1 Model and analysis

Suppose a supplier sells a single product to a single retailer. Let Lr be
the lead time to replenish an order from the retailer. The supplier has
infinite capacity, so the supplier keeps no inventory and the retailer’s
replenishment lead time is always Lr, no matter the retailer’s order quantity.
(There are two firms, but only the retailer keeps inventory, which is why
this is considered a single-location model.) Let �r¼E[Dr]. Let Fr and fr be the
distribution and density functions of Dr, respectively: assume that Fr is
strictly increasing, differentiable and Fr(0)¼ 0, which rules out the possibility
that it is optimal to carry no inventory.

The retailer incurs inventory holding costs at rate hr>0 per unit of
inventory. For analytical tractability, demand is backordered if stock is not
available. [There are a few papers that consider multiple demand periods
with lost sales: e.g., Moses and Seshadri (2000), Duenyas and Tsai (2001)
and Anupindi and Bassok (1999).] The retailer incurs backorder penalty
costs at rate 	r>0 per unit backordered. The supplier has unlimited capacity,
so the supplier need not carry inventory. However, suppose the supplier incurs
backorder penalty costs at rate 	s>0 per unit backordered at the retailer.
In other words, the supplier incurs a cost whenever a customer wants to
purchase the supplier’s product from the retailer but the retailer does not
have inventory. This cost reflects the supplier’s preference for maintaining
sufficient availability of her product at the retail level in the supply chain.
Let 	¼	rþ	s, so 	 is the total backorder cost rate incurred by the supply
chain. Cachon and Zipkin (1999) adopt the same preference structure
for the retailer, but in their model the supplier has limited inventory.
Their model is discussed in the next section. Narayanan and Raman
(1997) adopt a different preference structure: they assume a fixed fraction
of consumers who experience a stockout for the supplier’s product choose
to purchase another product from a different supplier at the same retailer.
Hence, the backorder cost for the supplier is her lost margin, whereas the
backorder cost for the retailer is the difference in the margin between
selling the supplier’s product and selling the other product (which may
actually benefit the retailer).

Sales occur at a constant rate �r, due to the backorder assumption, no
matter how the firms manage their inventory. As a result, the firms are
only concerned with their costs. Both firms are risk neutral. The retailer’s
objective is to minimize his average inventory holding and backorder cost per

Ch. 6. Supply Chain Coordination with Contracts 293



unit time. The supplier’s objective is to minimize her average backorder cost
per unit time.

Define the retailer’s inventory level to equal inventory in-transit to the
retailer plus the retailer’s on-hand inventory minus the retailer’s backorders.
(This has also been called the effective inventory position.) The retailer’s
inventory position equals his inventory level plus on-order inventory
(inventory ordered, but not yet shipped). Since the supplier immediately
ships all orders, the retailer’s inventory level and position are identical in
this setting.

Let Ir(y) be the retailer’s expected inventory at time tþLr when the
retailer’s inventory level is y at time t:

Irð yÞ ¼

Z y

0

ð y� xÞfrðxÞdx ¼

Z y

0

FrðxÞdx: ð7:1Þ

Let Br(y) be the analogous function that provides the retailer’s expected
backorders:

Brð yÞ ¼

Z 1
y

ðx� yÞfrðxÞdx ¼ �r � yþ Irð yÞ: ð7:2Þ

Inventory is monitored continuously, so the retailer can maintain a constant
inventory position. In this environment it can be shown that a base-stock
policy is optimal. With that policy the retailer continuously orders inventory
so that his inventory position always equals his chosen base-stock level, sr.

Let cr(sr) be the retailer’s average cost per unit time when the retailer
implements the base-stock policy sr:

crðsrÞ ¼ hrIrðsrÞ þ 	rBrðsrÞ

¼ 	rð�r � srÞ þ ðhr þ 	rÞIrðsrÞ:

Given the retailer’s base-stock policy, the supplier’s expected cost function is

csðsrÞ ¼ 	sBrðsrÞ

¼ 	sð�r � sr þ IrðsrÞÞ:

Let c(sr) be the supply chain’s expected cost per unit time,

cðsrÞ ¼ crðsrÞ þ csðsrÞ

¼ 	ð�r � srÞ þ ðhr þ 	ÞIrðsrÞ: ð7:3Þ
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c(sr) is strictly convex, so there is a unique supply chain optimal base-stock
level, sor . It satisfies the following critical ratio equation

I 0rðs
o
r Þ ¼ Frðs

o
r Þ ¼

	

hr þ 	
: ð7:4Þ

Let s*r be the retailer’s optimal base-stock level. The retailer’s cost function is
also strictly convex, so s*r satisfies

Frðs*r Þ ¼
	r

hr þ 	r
:

Given 	r<	, it follows from the above two expressions that s*r < sor , i.e., the
retailer chooses a base-stock level that is less than optimal. Hence, channel
coordination requires the supplier to provide the retailer with an incentive to
raise his base-stock level.

Suppose the firms agree to a contract that transfers from the supplier to the
retailer at every time t

tIIrð yÞ þ tBBrð yÞ

where y is the retailer’s inventory level at time t and tI and tB are constants.
Furthermore, consider the following set of contracts parameterized by
l2 (0, 1],

tI ¼ ð1� �Þhr

tB ¼ 	r � �	:

(Here we choose to rule out l¼ 0 since then any base-stock level is optimal.)
Given one of those contracts, the retailer’s expected cost function is now

crðsrÞ ¼ ð	r � tBÞð�r � srÞ þ ðhr þ 	r � tI � tBÞIrðsrÞ: ð7:5Þ

The contract parameters have been chosen so that

	r � tB ¼ �	 > 0

and

hr þ 	r � tI � tB ¼ �ðhr þ 	Þ > 0:

It follows from Eqs. (7.3) and (7.5) that with these contracts

crðsrÞ ¼ �cðsrÞ: ð7:6Þ
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Hence, sor minimizes the retailer’s cost, i.e., those contracts coordinate the
supply chain. In addition, those contracts arbitrarily allocate costs between
the firms, with the retailer’s share of the cost increasing in the parameter l.
Note, the l parameter is not explicitly incorporated into the contract, i.e., it is
merely used for expositional clarity.

Now consider the sign of the tI and the tB parameters. Since the contract
must induce the retailer to choose a higher base-stock level, it is natural to
conjecture tI>0, i.e., the supplier subsidizes the retailer’s inventory holding
cost. In fact, that conjecture is valid when l2 (0, 1]. It is also natural to
suppose tB<0, i.e., the supplier penalizes the retailer for backorders. But
l2 (0, 1] implies tB2 [�	s, 	r), i.e., with some contracts the supplier subsidizes
the retailer’s backorders (tB>0): in those situations the supplier encourages
backorders by setting tB>0 because without that encouragement the large
inventory subsidy leads the retailer to s*r > sor .

The above analysis is reminiscence of the analysis with the newsvendor
model and buyback contracts. This is not a coincidence, because this
model is qualitatively identical to the newsvendor model. To explain, begin
with the retailer’s profit function in the newsvendor model (assuming
cr¼ gr¼ gs¼ v¼ 0):

prðqÞ ¼ pSðqÞ � wq

¼ ð p� wÞq� pIðqÞ:

The retailer’s profit has two terms, one that increases linearly in q and the
other that depends on the demand distribution. Now let p¼ hrþ	r and w¼ hr.
In that case,

prðqÞ ¼ 	rq� ðhr þ 	rÞIrðqÞ ¼ �crðqÞ þ 	r�r:

Hence, there is no difference between the maximization of pr(q) and the
minimization of cr(sr).

Now recall that the transfer payment with a buyback contract is wq�bI(q),
i.e., there is a parameter (i.e., w) that affects the payment linearly in the
retailer’s action (i.e., q), and a parameter that influences the transfer payment
through a function (i.e., I(q)) that depends on the retailer’s action and the
demand distribution. In this model

tIIrð yÞ þ tBBrð yÞ ¼ ðtI þ tBÞIrð yÞ þ tBð�r � yÞ

so tB is the linear parameter and tIþ tB is the other parameter. In the
buyback contract the parameters work independently. To get the same effect
in the base-stock model the supplier could adopt a transfer payment that
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depends on the retailer’s inventory position, sr, and the retailer’s inventory.
That contract would yield the same results.

7.2 Discussion

Coordination with the infinite horizon base-stock model is qualitatively the
same as coordination in the single-period newsvendor model. In particular,
coordination via a holding cost and backorder cost transfer payment is
like coordination via a buyback contract. One suspects that quantity-
flexibility or sales-rebate like contracts could also coordinate in this setting.
Choi, Dai and Song (2002) consider a similar model with the addition of a
capacity constraint. They demonstrate that standard service level measures do
not provide sufficient control over the firm managing inventory.

8 Coordination in the two-location base-stock model

The two-location base-stock model builds upon the single-location base-
stock model discussed in the previous section. Now the supplier no longer has
infinite capacity. Instead, she must order replenishments from her source
and those replenishment always are filled within Ls time (i.e., her source has
infinite capacity). So in this model the supplier enjoys reliable replenishments
but the retailer’s replenishment lead time depends on how the supplier
manages her inventory. Only if the supplier has enough inventory to fill an
order does the retailer receive that order in Lr time. Otherwise, the retailer
must wait longer than Lr to receive the unfilled portion. That delay could
lead to additional backorders at the retailer, which are costly to both the
retailer and the supplier, or it could lead to lower inventory at the retailer,
which helps the retailer.

In the single-location model the only critical issue is the amount of
inventory in the supply chain. In this model the allocation of the supply
chain’s inventory between the supplier and the retailer is important as well.
For a fixed amount of supply chain inventory the supplier always prefers
that is more allocated to the retailer, because that lowers both her inventory
and backorder costs. (Recall that the supplier is charged for retail
backorders.) On the other hand, the retailer’s preference is not so clear: less
retail inventory means lower holding costs, but also higher backorder
costs. There are also subtle interactions with respect to the total amount of
inventory in the supply chain. The retailer is biased to carry too little
inventory: the retailer bears the full cost of his inventory but only receives a
portion of the benefit (i.e., he does not benefit from the reduction in the
supplier’s backorder cost). On the other hand, there is no clear bias for the
supplier because of two effects. First, the supplier bears the cost of his
inventory and does not benefit from the reduction in the retailer’s backorder
cost, which biases the supplier to carry too little inventory. Second, the
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supplier does not bear the cost of the retailer’s inventory (which increases
along with the supplier’s inventory), which biases the supplier to carry too
much inventory. Either bias can dominate, depending on the parameters of
the model.

Even though it is not clear whether the decentralized supply chain will
carry too much or too little inventory (however, it generally carries too
little inventory), it is shown that the optimal policy is never a Nash
equilibrium of the decentralized game, i.e., decentralized operation is never
optimal. However, the competition penalty (the percent loss in supply chain
performance due to decentralized decision making) varies considerably: in
some cases the competition penalty is relatively small, e.g., less than 5%,
whereas in other cases it is considerable, e.g., more than 40%. Therefore, the
need for coordinating contracts is not universal.

8.1 Model

Let hs, 0<hs<hr, be the supplier’s per unit holding cost rate incurred
with on-hand inventory. (When hs� hr the optimal policy does not carry
inventory at the supplier and when hs� 0 the optimal policy has unlimited
supplier inventory. Neither case is interesting.) The firms’ operating decisions
have no impact on the amount of in-transit inventory, so no holding cost
is charged for either the supplier’s or the retailer’s pipeline inventory.
Let Ds>0 be demand during an interval of time with length Ls. (As in the
single-location model, Ds>0 ensures that the supplier carries some inventory
in the optimal policy.) Let Fs and fs be the distribution and density functions
of that demand. As with the retailer, assume Fs is increasing and differentiable.
Let �s¼E[Ds]. Retail orders are backordered at the supplier but there is no
explicit charge for those backorders. The supplier still incurs per unit
backorder costs at rate 	s for backorders at the retailer. The comparable cost
for the retailer is still 	r. Even though there are no direct consequences to a
supplier backorder, there are indirect consequences: lower retailer inventory
and higher retailer backorders.

Both firms use base-stock policies to manage inventory. With a base-stock
policy firm i2 {r, s} orders inventory so that its inventory position
remains equal to its base-stock level, si. (Recall that a firm’s inventory level
equals on-hand inventory, minus backorders plus in-transit inventory and a
firm’s inventory position equals the inventory level plus on-order inventory.)
These base-stock policies operate only with local information, so neither
firm needs to know the other firm’s inventory position.

The firms choose their base-stock levels once and simultaneously. The
firms attempt to minimize their average cost per unit time. (Given that one
firm uses a base-stock policy, it is optimal for the other firm to use a base-
stock policy.) They are both risk neutral. There exists a pair of base-stock
levels, fsor , s

o
s g, that minimize the supply chain’s cost. [In fact, that policy is
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optimal among all possible policies. See Chen and Zheng (1994) for an elegant
proof.] Hence, it is feasible for the firms to optimize the supply chain, but
incentive conflicts may prevent them from doing so.

This model is essentially the same as the one considered by Cachon and
Zipkin (1999).33 However, the notation differs somewhat. (Caution, in some
cases the notation is inconsistent.)

The first step in the analysis of this model is to evaluate each firm’s
average cost. The next step evaluates the Nash equilibrium base-stock levels.
The third step identifies the optimal base-stock levels and compares them to
the Nash equilibrium ones. The final step explores incentive structures to
coordinate the supply chain. The remaining portions of this section
describe alternative coordination techniques, summarize the results and
discuss research in related models.

8.2 Cost functions

As in the single-location model, cr(y), cs(y) and c(y) are the firms’ and
the supply chain’s expected costs incurred at time tþLr at the retail level
when the retailer’s inventory level is y at time t. However, in the two-location
model the retailer’s inventory level does not always equal the retailer’s
inventory position, sr, because the supplier may stockout. Let ci(sr, ss) be
the average rate at which firm i incurs costs at the retail level and
c(sr, ss)¼ cr(sr, ss)þ cs(sr, ss). To evaluate ci, note that at any given time t the
supplier’s inventory position is ss (because the supplier uses a base-stock
policy). At time tþLs either the supplier’s on-hand inventory is (ss�Ds)

þ or
the supplier’s backorder equals (Ds�ss)

þ . Therefore, the retailer’s inventory
level at time tþLs is sr�(Ds�ss)

þ . So

ciðsr, ssÞ ¼ FsðssÞciðsrÞ þ

Z 1
ss

ciðsr þ ss � xÞfsðxÞdx :

at time tþLs the supplier can raise the retailer’s inventory level to sr with
probability Fs(ss), otherwise the retailer’s inventory level equals srþ ss�Ds.

33 Cachon and Zipkin (1999) assume periodic review, whereas this model assumes continuous review.

That difference is inconsequential. In addition to the local inventory measure, they allow firms to use

echelon inventory to measure their inventory position: a firm’s echelon inventory position equals all

inventory at the firm or lower in the supply chain plus on-order inventory minus backorders at the

retail level. For the retailer there is no difference between the local and echelon measures of inventory

position, but those measures are different for the supplier. They allow for either 	s¼ 0 or 	r¼ 0, but

those special cases are not treated here. They include holding costs for pipeline inventory into their cost

functions. Finally, they also study the Stackelberg version of this game (the firms choose sequentially

instead of simultaneously).
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Based on the analogous reasoning, let Ir(sr, ss) and Br(sr, ss) be the retailer’s
average inventory and backorders given the base-stock levels:

Irðsr, ssÞ ¼ FsðssÞIrðsrÞ þ

Z 1
ss

Irðsr þ ss � xÞfsðxÞ dx,

Brðsr, ssÞ ¼ FsðssÞBrðsrÞ þ

Z 1
ss

Brðsr þ ss � xÞfsðxÞdx:

Let pi(sr, ss) be firm i’s total average cost rate. Since the retailer only incurs
costs at the retail level,

prðsr, ssÞ ¼ crðsr, ssÞ:

Let Is(ss) be the supplier’s average inventory. Analogous to the retailer’s
functions (defined in the previous section)

Isð yÞ ¼

Z y

0

FsðxÞdx:

The supplier’s average cost is

psðsr, ssÞ ¼ hsIsðssÞ þ csðsr, ssÞ:

Let �(sr, ss) be the supply chain’s total cost, �ðsr, ssÞ ¼ prðsr, ssÞ þ psðsr, ssÞ.

8.3 Behavior in the decentralized game

Let si(sj) be an optimal base-stock level for firm i given the base-stock level
chosen by firm j, i.e., si(sj) is firm i’s best response to firm j’s strategy.
Differentiation of each firm’s cost function demonstrates that each firm’s
cost is strictly convex in its base-stock level, so each firm has a unique best
response.

With a Nash equilibrium pair of base stocks, fs*r , s*s g, neither firm has a
profitable unilateral deviation, i.e.,

s*r ¼ srðs*s Þ and s*s ¼ ssðs*r Þ:

Existence of a Nash equilibrium is not assured, but in this game existence of
a Nash equilibrium follows from the convexity of the firm’s cost functions
(see Friedman, 1986). (Technically it is also required that the firms’ strategy
spaces have an upper bound. Imposing that bound has no impact on the
analysis.) In fact, there exists a unique Nash equilibrium. To demonstrate
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uniqueness begin by bounding each player’s feasible strategy space, i.e., the set
of strategies a player may choose. For the retailer it is not difficult to show
that srðssÞ > ŝsr > 0, where ŝsr minimizes cr(y), i.e.,

FrðŝsrÞ ¼
	

hr þ 	
:

In other words, if the retailer were to receive perfectly reliable
replenishments the retailer would choose ŝsr, so the retailer certainly does
not choose sr � ŝsr if replenishments are unreliable. (In other words, ŝsr is
optimal for the retailer in the single-location model discussed in the previous
section.) For the supplier, ss(sr)>0 because @ps(sr, ss)/@ss<0 given Fs(ss)¼ 0
and c0sð yÞ < 0.

Uniqueness of the Nash equilibrium holds if for the feasible strategies,
sr > ŝsr and ss>0, the best reply functions are contraction mappings
(see Friedman, 1986), i.e.,

js0iðsjÞj < 1: ð8:1Þ

From the implicit function theorem

s0rðssÞ ¼ �

R1
ss

c00r ðsr þ ss � xÞfsðxÞdx

FsðssÞc00r ðsrÞ þ
R1
ss

c00r ðsr þ ss � xÞfsðxÞdx

and

s0sðsrÞ ¼ �

R1
ss

c00s ðsr þ ss � xÞfsðxÞdx

½hs � c0sðsrÞ� fsðssÞ þ
R1
ss

c00s ðsr þ ss � xÞfsðxÞ dx
:

Given sr > ŝsr and ss>0, it follows that c00r ðxÞ > 0, c0sð yÞ < 0, c00s ð yÞ > 0 and
Fs(ss)>0. Hence, Eq. (8.1) holds for both the supplier and the retailer.

A unique Nash equilibrium is quite convenient, since that equilibrium is
then a reasonable prediction for the outcome of the decentralized game.
(With multiple equilibria it is not clear the outcome of the game would even be
an equilibrium, since the players may choose strategies from different
equilibria.) Hence, the competition penalty is an appropriate measure of the
gap between optimal performance and decentralized performance, where the
competition penalty is defined to be

�ðs*s , s*r Þ ��ðsos , s
o
r Þ

�ðsos , s
o
r Þ

:
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In fact, there always exists a positive competition penalty, i.e., decentralized
operations always leads to suboptimal performance in this game.34 To
explain, note that the retailer’s marginal cost is always greater than the
supply chain’s

@crðsr, ssÞ

@sr
>
@cðsr, ssÞ

@sr

because c0rðsrÞ > c0ðsrÞ. Since both cr(sr, ss) and c(sr, ss) are strictly convex, it
follows that, for any ss, the retailer’s optimal base stock is always lower than
the supply chain’s optimal base stock. Hence, even if the supplier chooses sos ,
the retailer does not choose sor , i.e., srðs

o
s Þ < sor .

Although the Nash equilibrium is not optimal, Cachon and Zipkin
(1999) find in a numerical study that the magnitude of the competition
penalty depends on the parameters of the model. When the firms’ backorder
penalties are the same (i.e., 	r/	s¼ 1) the median competition penalty for their
sample is 5% and the competition penalty is no greater than 8% in 95% of
their observations. However, very large competition penalties are observed
when either 	r/	s<1/9 or 	r/	s>9. The retailer does not have a strong
concern for customer service when 	r/	s<1/9, and so the retailer tends to
carry far less inventory than optimal. Since the supplier does not have direct
access to customers, the supplier can do little to prevent backorders in
that situation, and so the supply chain cost is substantially higher than
need be. In the other extreme, 	r/	s>9, the supplier cares little about
customer service, and thus does not carry enough inventory. In that situation
the retailer can still prevent backorders, but to do so requires a substantial
amount of inventory at the retailer to account for the supplier’s long lead
time. The supply chain’s cost is substantially higher than optimal if the
optimal policy has the supplier carry inventory to provide reliable
replenishments to the retailer. However, there are situations in which the
optimal policy does not require the supplier to carry much inventory: either
the supplier’s holding cost is nearly as high as the retailer’s (in which case
keeping inventory at the supplier gives little holding cost advantage) or if
the supplier’s lead time is short (in which case the delay due to a lack of
inventory at the supplier is negligible). In those cases the competition penalty
is relatively minor.

In the single-location model decentralization always leads to less
inventory than optimal for the supply chain. In this setting the interactions
between the firms are more complex, and so decentralization generally leads to
too little inventory, but not always. Since the retailer’s backorder cost rate
is lower than the supplier’s backorder cost rate, for a fixed ss the retailer
always carries too little inventory, which certainly contributes to a less than
optimal amount of inventory in the system. However, the retailer is only a part

34 However, when 	s¼ 0 the optimal policy is a Nash equilibrium with just the right parameters. See

Cachon and Zipkin (1999) for details.
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of the supply chain. In fact, from Cachon and Zipkin’s (1999) numerical
study, the supplier’s inventory may be so large that even though the retailer
carries too little inventory, the total amount of inventory in the decentralized
supply chain may exceed the supply chain’s optimal quantity. Suppose 	r is
quite small and 	s is quite large. In that case the retailer carries very little
inventory. To attempt to mitigate the build up of backorders at the retail level
the supplier provides the retailer with very reliable replenishments, which
requires a large amount of inventory, an amount that may lead to more
inventory in the supply chain than optimal.

The main conclusion from the analysis of the decentralized game is that the
competition penalty is always positive, but only in some circumstances is it
very large. It is precisely in those circumstances that the firms could benefit
from an incentive scheme to coordinate their actions.

8.4 Coordination with linear transfer payments

Supply chain coordination in this setting is achieved when fsor , s
o
s g is a Nash

equilibrium. Cachon and Zipkin (1999) propose a set of contracts to achieve
that goal, but they do not answer two important questions: do the contracts
allow for an arbitrary division of the supply chain’s cost and is the optimal
solution a unique Nash equilibrium? This section studies their contracts and
answers both of those questions.

In the single-location model the supplier coordinates the supply chain with
a contract that has linear transfer payments based on the retailer’s inventory
and backorders. Suppose the supplier offers the same arrangement in this
model with the addition of a transfer payment based on the supplier’s
backorders:

tIIrðsr, ssÞ þ trBBrðsr, ssÞ þ tsBBsðssÞ,

where tI, t
r
B and tsB are constants and Bs(ss) is the supplier’s average backorder:

Bsð yÞ ¼ �s � yþ Isð yÞ:

Recall that a positive value for the above expression represents a payment
from the supplier to the retailer and a negative value represents a payment
from the retailer to the supplier. While both firms can easily observe Bs(ss), an
information system is needed for the supplier to verify the retailer’s inventory
and backorder.

The first step in the analysis provides some results for the optimal
solution. The second step defines a set of contracts and confirms those
contracts coordinate the supply chain. Then the allocation of costs is
considered. Finally, it is shown that the optimal solution is a unique Nash
equilibrium.
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The traditional approach to obtain the optimal solution involves
reallocating costs so that all costs are preserved. Base stock policies are
then optimal and easily evaluated.35 However, to facilitate the comparison of
the optimal policy to the Nash equilibrium of the decentralized game, it is
useful to evaluate the optimal base-stock policy without that traditional cost
reallocation.36

Given �(sr, ss) is continuous, any optimal policy with ss>0 must set the
following two marginals to zero

@�ðsr, ssÞ

@sr
¼ FsðssÞc

0ðsrÞ þ

Z 1
ss

c0ðsr þ ss � xÞfsðxÞdx ð8:2Þ

and

@�ðsr, ssÞ

@ss
¼ FsðssÞhs þ

Z 1
ss

c0ðsr þ ss � xÞfsðxÞ dx: ð8:3Þ

Since Fs(ss)>0, there is only one possible optimal policy with ss>0, f~ss1r , ~ss
1
s g,

where ~ss1r satisfies

c0ð~ss1r Þ ¼ hs, ð8:4Þ

and ~ss1s satisfies @�ð~ss1r , ~ss
1
s Þ=@ss ¼ 0. Eq. (8.4) simplifies to

Frð~ss
1
r Þ ¼

hs þ 	

hr þ 	
,

so it is apparent ~ss1r exists and is unique. Since�ð~ss1r , ssÞ is strictly convex in ss, ~ss
1
s

exists and is unique.
There may also exist an optimal policy with ss� 0. In that case the

candidate policies are f~ss2r , ~ss
2
s g, where ~ss2s � 0, ~ss2r þ ~ss2s ¼ s and s satisfies

Z 1
0

c0ðs� xÞfsðxÞdx ¼ 0: ð8:5Þ

The above simplifies to

35 Clark and Scarf (1960) pioneered that approach for the finite horizon problem. Federgruen and

Zipkin (1984) make the extension to the infinite horizon case.
36 This procedure does not prove base-stock policies are optimal, it merely finds the optimal base-stock

policies. Furthermore, it relies on the continuity of �(sr, ss), so it does not trivially extend to discrete

demand.
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PrðDr þDs � sÞ ¼
	

hr þ 	
,

so s exists and is unique.
Given that �ð~ss1r , ssÞ is strictly convex in ss, �ð~ss

1
r , ~ss

1
s Þ < �ð~ss2r , ~ss

2
s Þ whenever

@�ð~ss1r , 0Þ=@ss < 0. Since @�ðsr, 0Þ=@ss is increasing in sr, from Eq. (8.5), that
condition holds when ~ss1r < s, otherwise it does not. Therefore, f~ss1r , ~ss

1
s g is the

unique optimal policy when ~ss1r < s, otherwise any f~ss2r , ~ss
2
s g is optimal:

fsor , s
o
s g ¼

f~ss1r , ~ss
1
s g ~ss1r < ~ss2r

f~ss2r , ~ss
2
s g ~ss1r � ~ss2r

:

(

Now consider the firms’ behavior with the following set of contracts
parameterized by l2 (0, 1],

tI ¼ ð1� �Þhr, ð8:6Þ

trB ¼ 	r � �	, ð8:7Þ

tsB ¼ �hs
Fsðs

o
s Þ

1� Fsðsos Þ

� �
: ð8:8Þ

Cachon and Zipkin (1999) also propose those contracts, but they do not
include the l parameter.

The retailer’s cost function, adjusted for the above contracts is

crð yÞ ¼ ðhr � tIÞIrð yÞ þ ð	r � trBÞBrð yÞ � tsBBsðssÞ

¼ �cð yÞ � tsBBsðssÞ

and so

prðsr, ssÞ ¼ ��ðsr, ssÞ � tsBBsðssÞ: ð8:9Þ

Recall c(sr, ss)¼ cr(sr, ss)þ cs(sr, ss), so

psðsr, ssÞ ¼ hsIsðssÞ þ ð1� �Þcðsr, ssÞ þ tsBBsðssÞ

¼ ðhs þ tsBÞIsðssÞ þ ð1� �Þcðsr, ssÞ þ tsBð�s � ssÞ: ð8:10Þ

There are two cases to consider: either sos > 0 or sos ¼ 0. Take the first case.
If sos > 0, then Eq. (8.4) implies
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@prðsor , s
o
s Þ

@sr
¼

�

1� �

� �
@psðsor , s

o
s Þ

@ss
¼ �

@�ðsor , s
o
s Þ

@ss
¼ 0:

Further, prðsr, ssÞ is strictly convex in sr and psðsor , ssÞ is strictly convex in ss,
so fsor , s

o
s g is indeed a Nash equilibrium. In fact, it is the unique Nash

equilibrium. From the implicit function theorem, sr(ss) is decreasing, where, as
in the decentralized game without the contract, si(sj) is firm i’s best response
to firm j’s strategy,c

@srðssÞ

@ss
¼ �

R1
ss

c00ðsr þ ss � xÞfsðxÞdx

fsðssÞc00ðsrÞ þ
R1
ss

c00ðsr þ ss � xÞfsðxÞdx
� 0:

Hence, for sr¼ sr(ss) and l� 1 the supplier’s marginal cost is increasing:

@psðsrðssÞ, ssÞ
@ss

¼ FsðssÞ hs � ð1� �Þc
0ðsrðssÞÞ þ tsB

� �
� tsB:

Thus, there is a unique ss that satisfies ss(sr(ss))¼ ss, i.e., there is a unique Nash
equilibrium.

Now suppose sos � 0. It is straightforward to confirm all of the f~ss2r , ~ss
2
s g pairs

satisfy the firms’ first and second-order conditions. Hence, they are all Nash
equilibria. Even though there is not a unique Nash equilibrium, the firms’
costs are identical across the equilibria.

These contracts do allow the firms to arbitrarily allocate the retail
level costs in the system, but they do not allow the firms to arbitrarily
allocate all of the supply chain’s costs. This limitation is due to the l� 1
restriction, i.e., it is not possible with these contracts to allocate to the
retailer more than the optimal retail level costs: while the retailer’s cost
function is well behaved even if l>1, the supplier’s is not; with l>1 the
supplier has a strong incentive to increase the retail level costs. Of course, fixed
payments could be used to achieve those allocations if necessary. But since it is
unlikely a retailer would agree to such a burden, this limitation is not too
restrictive.

An interesting feature of these contracts is that the tI and trB transfer
payments are identical to the ones used in the single-location model. This is
remarkable because the retailer’s critical ratio differs across the models: in the
single-location model the retailer picks sr such that

FrðsrÞ ¼
	

	þ hr

whereas in the two-location model the retailer picks sr such that
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FrðsrÞ ¼
	þ hs

	þ hr
:

8.5 Other coordination methods

Alternatives to Cachon and Zipkin’s linear scheme have been studied to
coordinate similar supply chains under the special case that 	s¼ 0, i.e., the
supplier incurs no cost associated with retail backorders. That preference
structure is most appropriate for an internal supply chain in which each
location is operated by a separate manager. For example, instead of a
supplier, suppose the second stage in the supply chain is controlled by a
warehouse manager. That manager may have no direct interest in the
availability of the firm’s product at the retail level.

Lee and Whang (1999) base their coordination scheme on the work by
Clark and Scarf (1960). (They consider a periodic review model and their
firms minimize discounted costs rather than average costs.) Clark and Scarf
(1960), which focuses only on system wide performance, demonstrates that
base-stock policies are optimal and they can be evaluated from a series of
simple single-location optimization problems after the costs in the system are
reallocated among the locations. Lee and Whang (1999) take the Clark
and Scarf cost reallocation and show it can be used to coordinate
decentralized operations. In their arrangement the supplier subsidizes the
retailer’s holding cost at the rate of hs and charges the retailer an
additional backorder penalty cost per unit at rate hs. Given those transfers
let gr(y) be the retailer’s expected cost at time tþLr when the retailer’s
inventory level is y at time t,

grð yÞ ¼ ðhr � hsÞIrð yÞ þ ð	þ hsÞBrð yÞ

¼ ðhr þ 	ÞIrð yÞ þ ð	þ hsÞ �r � yð Þ

where 	¼	r since 	s¼ 0. gr(y) is strictly convex and minimized by
sor . However, due to shortages at the supplier, the retailer’s inventory
level, ILr, may be less than his inventory position, IPr. To penalize the
supplier for those shortages, the supplier transfers to the retailer at time t,
gp(ILr, IPr),

gpðx, yÞ ¼ grðxÞ � grð yÞ:

That transfer may be negative, i.e., the retailer pays the supplier, if the retailer
(for irrational reasons) orders IPr > sor and the supplier does not fill that
request completely, ILr<IPr. In addition, that transfer is not linear in the
retailer’s inventory position.
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The retailer’s final cost function is prðsrÞ ¼ grðsrÞ, i.e., from the retailer’s
perspective the supplier provides perfectly reliable deliveries, since the supplier
exactly compensates the retailer for any expected cost consequence of
delivering less than the retailer’s order. Hence, sor is the retailer’s optimal base-
stock level.

The supplier’s cost function with this arrangement is

csðsr, ssÞ ¼ hs½IsðssÞ þ Irðsr, ssÞ � Brðsr, ssÞ� þ

Z 1
ss

gpðsr þ ss � x, srÞfsðxÞdx

¼ hs½ssþsr��r��s��ð1�FsðssÞgrðsrÞ þ

Z 1
ss

grðsr þ ss � xÞfsðxÞ dx:

Differentiate:

@csðsr, ssÞ

@ss
¼ hs þ

Z 1
ss

g0rðsr þ ss � xÞfsðxÞ dx

¼ �	þ ðhs þ 	Þ FsðssÞ þ

Z 1
ss

Frðsr þ ss � xÞfsðxÞdx

� �
,

@2csðsr, ssÞ

@s2s
¼ ðhs þ 	Þ fsðssÞð1� FrðsrÞÞ þ

Z 1
ss

frðsr þ ss � xÞfsðxÞdx

� �
> 0:

So the supplier’s cost function is strictly convex and if the retailer’s base-
stock level is sor , then the supplier’s optimal base-stock level is sos , i.e., fs

o
r , s

o
s g

is a Nash equilibrium. It is also not difficult to show that fsor , s
o
s g is the unique

Nash equilibrium (assuming sos > 0 is optimal).37 However, this arrangement
provides for only one division of the supply chain’s profit. Fixed payments
could be used to reallocate costs differently.

There are several differences between this transfer payment contract and
Cachon and Zipkin’s contract. Lee and Whang charge the supplier a nonlinear
cost for supplier backorders, whereas Cachon and Zipkin charge a linear
one. In the linear contract the retailer must account for supplier shortages,
i.e., he does not receive direct compensation for those shortages, whereas with
the nonlinear contract the retailer need not be concerned with the supplier’s
inventory management decision. (In other words, with the linear contract
sr(ss) is not independent of ss, whereas it is with the nonlinear contract.)
Furthermore, they both have linear transfers associated with Ir and Br, but
those transfers are different: with the nonlinear contract tI¼ hs and trB ¼ �hs,
but that pair is not a member of the linear contracts (tI¼ hs requires
l¼ 1�hs/hr whereas t

r
B ¼ �hs requires l ¼ ð	r þ hsÞ=	).

37 The retailer’s best reply function is independent of ss. From the implicit function theorem, the

supplier’s reaction function is decreasing in sr; hence there is a unique Nash equilibrium.
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Chen (1999a) uses an accounting inventory approach to coordinate a
serial supply chain.38 One firm is chosen to compensate all other firms
for their actual costs.39 In this case, assume that firm is the supplier, i.e., the
supplier’s transfer payment rate to the retailer equals hr per unit of inventory
and 	r per backorder. That leaves the retailer with no actual cost, and
so no incentive to choose sor . To provide that incentive, the supplier
charges the retailer taI per unit of accounting inventory and taB per
accounting backorder, where the retailer’s accounting inventory equals the
inventory the retailer would have if the supplier always delivered the
retailer’s full order. Hence, the retailer’s expected payment to the supplier per
unit time is

taI IrðsrÞ þ taBBrðsrÞ ¼ ðt
a
I þ taBÞIrðsrÞ þ taBð�r � srÞ:

The retailer’s optimal base-stock level, s*r , minimizes that payment,

Frðs*r Þ ¼
taB

taI þ taB
:

Now set

taI ¼ �ðhr � hsÞ

taB ¼ �ðhs þ 	Þ

for l>0. It follows that

taB
taI þ taB

¼
hs þ 	

hr þ 	
,

and so from Eq. (8.4) the retailer chooses sor . With those contracts the retailer’s
expected payment is

�ðhr þ 	Þ½IrðsrÞ þ Frðs
o
r Þð�r � srÞ�:

38 There are several differences between this model and his. In his model there are order-processing

delays between stages whereas this model assumes orders are received immediately. In addition, he

accommodates more than two levels in the supply chain. Finally, he studies a periodic review model

and allows for discrete demand.
39 Chen also considers the possibility that there exists an owner of the entire supply chain who does not

make any operating decisions. Those decisions are made by the managers. In that situation the owner

can adopt all of the supply chain’s costs.

Ch. 6. Supply Chain Coordination with Contracts 309



Hence, the retailer’s action can be coordinated and any cost can be assigned
to the retailer. The supplier has no control over the transfer payment
received (once the terms are set), so the supplier minimizes the costs under
her control, which equal the supply chain’s costs. Thus, fsor , s

o
s g is a Nash

equilibrium.
Relative to the two previously discussed approaches for coordination,

Chen’s accounting inventory is most closely related to Lee and Whang’s
approach. In fact, in this setting they are essentially equivalent. In both
approaches the retailer’s cost function is based on the presumption that the
retailer’s orders are always filled immediately. Second, in Lee and Whang the
retailer’s effective holding cost per unit is hr�hs, and in Chen the retailer’s
holding cost is l(hr�hs). Similarly, the backorder penalty costs are 	þ hs and
l(	þ hs). When l¼ 1, the approaches are the same. By allowing for l 6¼ 1, the
accounting inventory approach allows for any division of profit, whereas
the Lee and Whang approach does not have that flexibility (merely because it
lacks that parameter). Finally, in both cases the supplier bears all remaining
costs in the supply chain, and so the supplier’s cost function is equivalent
with either scheme.

The equivalence between Chen’s accounting inventory and Lee and
Whang’s nonlinear contract is surprising because Chen does not appear to
charge the supplier for her backorders whereas Lee and Whang do charge a
nonlinear penalty function. However, accounting inventory does charge a
nonlinear penalty because the supplier compensates the retailer’s actual
costs. Thus, accounting inventory and the Lee and Whang approach are two
different ways to describe the same transfer payments. This is probably a
general result, but additional research is needed to confirm that conjecture
after all differences between the models are reconciled.

Porteus (2000) offers responsibility tokens to coordinate the supply
chain, which is also closely related to the Lee and Whang approach.40 As with
Lee and Whang, in Porteus the transfer rate from the supplier to the retailer
is hsIr�hsBr. However, Porteus does not include an explicit charge associated
with Bs. Instead, in lieu of actual inventory, the supplier issues a responsibility
token for each unit the retailer orders that the supplier is unable to fill.
From the retailer’s perspective that token is equivalent to inventory: the
retailer incurs a holding cost of hr�hs per token per unit time and incurs no
backorder penalty cost if the token is used to ‘fill’ demand. If a token is used
to fill demand then the supplier is charged the full backorder cost until the
supplier provides a unit of actual inventory to fill that demand. Similarly,
the supplier receives the retailer’s holding cost on each token since the
supply chain does not actually incur a holding cost on these imaginary tokens.
Hence, with this system the retailer receives a perfectly reliable supply
from the supplier and the supplier bears the consequence of her backorders,
just as with Lee and Whang. However, in Lee and Whang the supplier pays

40 He considers a periodic review, finite horizon model with multiple firms in a serial supply chain.
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the expected cost consequence of a backorder whereas with responsibility
tokens the supplier pays the actual cost consequence. The same holds with
accounting inventory. When all players are risk neutral this distinction does
not matter.

Watson (2002) considers coordination of a serial supply chain with AR(1)
demand. Given this demand process the optimal order at each stage of
the supply chain is not equal to demand, as it is with independent demand.
Hence, schemes that use local penalties, e.g., Chen’s (1999a) accounting
inventory or the linear transfer payments of Cachon and Zipkin (1999),
require each stage to forecast the ordering process of the subsequent stage,
which is nontrivial with this demand process, especially for the highest stages.
Watson proposes an alternative which is computationally friendlier. In his
scheme the stage is given incentives to manage echelon inventory, and so each
stage needs only to observe the demand process.

8.6 Discussion

In the two-location base-stock model decentralized operations always
leads to suboptimal performance, but the extent of the performance
deterioration (i.e., the competition penalty) depends on the supply chain
parameters. If the firms’ backorder costs are similar then the competition
penalty is often reasonably small. The competition penalty can be small even if
the supplier does not care about customer service because her operations
role in the supply chain may not be too important (e.g., if hs is large or if Ls is
small).

To coordinate the retailer’s action the firms can agree to a pair of linear
transfer payments that function like the buyback contract in the single-period
newsvendor model. To coordinate the supplier’s action Cachon and Zipkin
(1999) propose a linear transfer payment based on the supplier’s backorders.
With these contracts the optimal policy is the unique Nash equilibrium.
Further, they allow the firms to arbitrarily divide the retail level costs. Lee
and Whang (1999), Chen (1999a) and Porteus (2000) propose alternative
coordination schemes for the special case in which the supplier does not care
about retail level backorders.

There are a number of worthwhile extensions to the two-location base-
stock model. Caldentey and Wein (2000) study a model that is the two-
location model considered here, with the exception that the supplier chooses a
production rate rather than an inventory policy. They demonstrate that many
of the qualitative insights from Cachon and Zipkin (1999) continue to hold.
Cachon (1999) obtains the same finding for a two-echelon serial supply chain
with lost sales. Duenyas and Tsai (2001) also study a two-echelon serial supply
chain with lost sales but they include several twists. First, they consider
dynamic policies rather than just base-stock policies. Second, upstream
inventory is needed by the downstream firm to satisfy its demand, but
that inventory can also be used to satisfy demand in some outside market.
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Given a choice between the two demands, the supply chain prefers to use the
inventory to meet the needs of the downstream firm. But since demand is
stochastic, it may be optimal to satisfy some outside demand. They
demonstrate that while fixed wholesale-price contracts do not coordinate the
supply chain, they are nevertheless quite effective, i.e., the competition penalty
is small for most parameter settings. Finally, Parker and Kapuscinsky (2001)
tackle the considerably harder problem of coordinating a serial supply chain
with capacity constraints.

A natural next step after serial supply chains is to consider supply chains
with multiple retailers. However, the analytical complexity of even centralized
operations in those models poses quite a challenge. Cachon (2001) obtains
results for a two-echelon model with multiple retailers and discrete stochastic
demand using the theory of supermodular games (see Topkis, 1998). He
demonstrates that multiple Nash equilibria may exist, and the optimal
policy may even be a Nash equilibrium. Hence, decentralized operations
do not necessarily lead to suboptimal performance.41 Andersson and
Marklund (2000) and Axsater (2001) consider a similar model but approach
coordination differently.

Chen, Federgruen and Zheng (2001) (CFZ) study a model with one
supplier, multiple noncompeting retailers and deterministic demand.
[Bernstein and Federgruen (1999) study a closely related model with
competing retailers.] While the centralized solution is intractable, for the case
with fixed prices, and therefore fixed demand rates, Roundy (1985) provides a
class of policies that is nearly optimal. Within that class CFZ find the
centralized solution. They show that a single-order quantity-discount
policy cannot coordinate the action of heterogenous retailers and
they propose a set of transfer payments that does coordinate the supply
chain. The coordination issues in this model are quite different than in the
previously discussed multiechelon models with stochastic demand. For
example, in the two-location model the retailer’s action has no impact on
the supplier’s holding cost, whereas in the CFZ model the retailer’s action
impacts the supplier’s holding and order processing costs. Furthermore, in the
CFZ model, unlike with stochastic demand, all customer demands are met
without backordering and the supplier never delays a shipment.

9 Coordination with internal markets

In each of the previous models the firms agree to a contract that
explicitly stipulates transfer payments, e.g., the buyback rate is b or the
revenue share is � . However, there are situations that call for more flexibility,
i.e., the transfer payment rates are contingent on the realization of some

41 The true optimal policy is unknown for that supply chain, so performance is measured relative to the

optimal policy within the class of reorder point policies.
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random event that occurs after the contract is signed. This section studies a
model in which such contingency is provided via an internal market.

9.1 Model and analysis

Suppose there is one supplier, one production manager and two retailers.
The production manager is the supplier’s employee and the retailers are
independent firms. The following sequence of events occurs: the production
manager chooses a production input level e, which yields an output of Q¼Ye
finished units, where Y2 [0, 1] is a random variable; the production
manager incurs cost c(e), where c(e) is strictly convex and increasing; retailer
i observes �i, the realization of the random variable Ai>0; each retailer
submits an order to the supplier; the supplier allocates qi units to retailer i,
being sure that qi does not exceed retailer i’s order and q1þ q2�Q; and finally
retailer i earns revenue qipi(qi), where piðqiÞ ¼ �iq

�1=�
i and �>1 is the constant

demand elasticity. Let � be the realization of Y, A¼ {A1,A2} and �¼ {�1, �2}.
This model is closely related, albeit with different notation, to one developed
by Kouvelis and Lariviere (2000), which in turn is a variant of the model
developed by Porteus and Whang (1991).42 See Agrawal and Tsay (2001) and
Erkoc and Wu (2002b) for related models.

Before considering transfer payments between the firms, consider the
supply chain optimal actions. Given that each retailer’s revenue is strictly
increasing in his allocation, it is always optimal to allocate the entire output to
the retailers. Thus, let 
 be the fraction of Q that is allocated to retailer one.
Let p(
, �,Q) be total retailer revenue if retailer one is allocated 
Q units and
retailer two is allocated (1�
)Q units:

pð
,�,QÞ ¼ ð�1
ð��1Þ=� þ �2ð1� 
Þ
ð��1Þ=�

ÞQð��1Þ=�:

The optimal allocation of production to the two retailers depends on the
demand realizations but not on the production output. Further, revenue is
concave in 
, so let 
o(�) be the optimal share to allocate to retailer one:


oð�Þ ¼
��1

��1 þ �
�
2

: ð9:1Þ

Conditional on an optimal allocation, the retailers’ total revenue is

pð�,QÞ ¼ pð
oð�Þ,�,QÞ ¼ ð��1 þ �
�
2Þ

1=�Qð��1Þ=�:

42 Kouvelis and Lariviere (2000) do not label their players ‘supplier’ and ‘retailers’. More importantly,

they have two agents responsible for production: the output of production is �q1q2, where qi is the

action taken by the ith agent. Porteus and Whang (1991) have a single production agent and N demand

agents (which are the retailers in this model). Their production agent faces an additive output shock

rather than a multiplicative one. Their demand agents face a newsvendor problem with effort-

dependent demand.
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Total expected supply chain profit, �ðe,A,YÞ, is thus

�ðe,A,YÞ ¼ E½pðA,YeÞ� � cðeÞ:

Profit is concave in e, so the unique optimal production effort level, eo, satisfies

�0ðeoÞ ¼
�� 1

�

� �
ðeoÞ�1=�E½ðA�1 þ A�2Þ

1=�Y ð��1Þ=�� � c0ðeoÞ ¼ 0: ð9:2Þ

Now consider decentralized operations. To achieve channel coordination
it must be that the retailers purchase all of the supplier’s output and that
output must be allocated to the retailers properly. It is now apparent that a
fixed per unit wholesale price cannot achieve those tasks: for any fixed
wholesale price there is some realization of Y such that the retailers do
not purchase all of the supplier’s output. In addition, with a fixed wholesale
price it is possible the retailers desire more than the supplier’s output, in which
case the supplier must implement some allocation rule. The possibility of
rationing could cause the retailers to submit strategic orders, which in turn
could lead to an inefficient allocation of output (see Cachon & Lariviere,
1999). To alleviate those problems the supplier could make the transfer price
contingent on the realization of A and Q. To be specific, suppose the supplier
charges the retailers w per unit. Assuming retailer i receives qi units, retailer i’s
profit is

piðqi,wÞ ¼ �iq
ð��1Þ=�
i � wqi:

Retailer i’s optimal quantity, q*i , satisfies

@piðq*i ,wÞ
@qi

¼ 0 ¼
�� 1

�

� �
�iðq*i Þ

�1=�
� w:

It follows that q*i ¼ 

oð�ÞQ when w¼w(�,Q),

wð�,QÞ ¼
�� 1

�

� �
ð��1 þ �

�
2Þ

1=�Q�1=�:

Hence, when the supplier charges w(�,Q) the retailers order exactly Q units in
total and the allocation of inventory between them maximizes supply chain
revenue. Note that w(�,Q) is precisely the marginal value of additional
production,

@pð�,QÞ
@Q

¼ wð�,QÞ:

The supplier could offer the retailers a contract that identifies w(�,Q) as
the wholesale price contingent on the realizations of A and Y, but that surely
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would be an unruly contract (in length and complexity). Furthermore,
implementation of that contract requires the supplier to actually observe the
realizations of A, which may not occur. Fortunately, there is a simpler
alternative. The supplier merely commits at the start of the game to hold a
market for output after the retailers observe their demand realizations. The
unique market-clearing price is w(�,Q), and so the market optimizes the
supply chain’s profit without the supplier observing A.

It remains to determine the supplier’s compensation scheme for her
production manager. To complicate matters, assume the supplier is unable to
observe the production manager’s effort, i.e., e is noncontractible. But the
supplier is able to observe the firm’s final output, Ye. So suppose the supplier
pays the production manager

�� 1

�

� �
ðeoÞ�1=�E½ðA�1 þ A�2Þ

1=�Y ð��1Þ=��=E½Y � ¼ E½QwðA,QÞ j eo�=E½Q j eo�

ð9:3Þ

per unit of realized output. Hence, the supplier pays the production manager
the expected shadow price of capacity and sells capacity to the retailers for
the realized shadow price of capacity. Given that scheme, the production
manager’s expected utility is

uðeÞ ¼
�� 1

�

� �
ðeoÞ�1=�E½ðA�1 þ A�2Þ

1=�Y ð��1Þ=��e� cðeÞ

and the marginal utility is

u0ðeÞ ¼
�� 1

�

� �
ðeoÞ�1=�E½ðA�1 þ A�2Þ

1=�Y ð��1Þ=�� � c0ðeÞ:

A comparison with Eq. (9.2) reveals that the production manager’s optimal
effort is eo.

The supplier earns zero profit in expectation from the internal market:
E½QwðA,QÞ j eo� is the expected revenue from the retailers, and, from Eq. (9.3),
it is also the expected payout to the production manager. To earn a positive
profit the supplier can charge the production manager and/or the retailers
fixed fees. In fact, in more general settings, Kouvelis and Lariviere (2000)
show that supplier breaks even or loses money with the internal market
approach to supply chain coordination.43 Hence, this is a viable strategy for
the supplier only if it is coupled with fixed fees.

43 For example, suppose there were two production managers and output equaled Ye1e2, where ei
is the effort level of production manager i. In that case Kouvelis and Lariviere (2000) show that the

supplier/market maker loses money on the market. See Holmstrom (1982) for additional discussion

on coordination and budget balancing.
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9.2 Discussion

In this model one agent in the supply chain produces a resource
( production output) that has uncertain value to the other part of the supply
chain (i.e., the retailers). Coordination therefore requires the proper incentive
to produce the resource as well as the proper incentive to consume the
resource. Production can be coordinated with a single price (the expected
value of output) but its consumption requires a state-dependent price,
which can be provided via a market mechanism. Interestingly, the expected
revenue from selling the resource via the market may be less than the expected
cost to purchase the resource. Hence, there must be a market maker
that stands between the producers and consumers of the resource and the
market maker must be ready to lose money in this market. So the market
maker is willing to participate only if there exists some other instrument to
extract rents from the participants (e.g., fixed fees). In other words, the market
maker uses the market to align incentives, but does not directly profit from
the market.

The Donohue (2000) model is similar to this one in the sense that the
value of first-period production is uncertain: it depends on the realization of
the demand signal at the start of period 2. A market was not necessary in
that model because it is optimal for the retailer to purchase the
supplier’s entire period 1 output. Now suppose there is a holding cost for
inventory and the retailer’s holding cost is higher than the supplier’s. In that
case it may be optimal for the supply chain to produce more in period 1
than the retailer orders, i.e., the excess production is held in storage at the
supplier until needed in period 2. It remains optimal to move all period 1
production to the retailer in period 2: inventory at the supplier cannot satisfy
demand. But only w2¼ 0 can ensure the retailer orders all of the supplier’s
inventory. Unfortunately, with that price any period 2 order is optimal
for the retailer. Hence, the buyback contract with fixed wholesale prices in
each period is no longer a practical coordination scheme for the supply
chain. See Barnes-Schuster et al. (1998) for a more formal treatment of this
argument.

10 Asymmetric information

In all of the models considered so far the firms are blessed with full
information, i.e., all firms possess the same information when making their
decisions. Hence, any coordination failure is due exclusively to incentive
conflicts and not due to an inability by one firm to evaluate the optimal policy.
However, in practice full information is rare. Given the complexity and
geographic breadth of most modern supply chains it is not surprising that at
least one firm lacks some important piece of information that another firm
possesses. For instance, the manufacturer of a product may have a more
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accurate forecast of demand than the manufacturer’s supplier of a critical
component. In that case optimal supply chain performance requires more
than the coordination of actions. It also requires the sharing of information so
that each firm in the supply chain is able to determine the precise set of
optimal actions.

Sometimes sharing information is not difficult. For example, suppose the
relevant information is the demand distribution of a product with stationary
stochastic demand. Hence, the demand forecast can be shared by sharing past
sales data. (That might be technically challenging, but the credibility of the
forecast is not in doubt.) In that case the interesting research questions
include how to use that information to improve supply chain performance and
by how much performance improves (see Cachon & Fisher, 2000; Chen, 1998;
Gavirneni et al., 1999; Lee, So & Tang, 2000).

Unfortunately, there is also the possibility of opportunistic behavior
with information sharing. For example, a manufacturer may tell her supplier
that demand will be quite high to get the supplier to build a substantial
amount of capacity. This is particularly problematic when the demand
forecast is constructed from diverse and unverifiable pools of information.
Consider the demand forecast for a new product. The manufacturer’s sales
manager may incorporate consumer panel data into her forecast, which could
be shared with a supplier, but her forecast may also include her subjective
opinion based on a myriad of information gathered from her years of
experience in the industry. If the sales manager knows her market well, those
guesses and hunches may be quite informative, yet there really is no obvious
way for her to convey that information to the supplier other than to say in her
opinion expected demand is ‘x’. In other words, the sales manager has
important information that the supplier cannot easily verify, so the supplier
may not be sure ‘x’ is indeed the sales manager’s best forecast. Furthermore, it
is even difficult for the supplier to verify the forecast ex post: if demand turns
out to be less than ‘x’ the supplier cannot be sure the sale manager gave a
biased forecast since a low-demand realization is possible even if ‘x’ is
the correct forecast.

This section considers a supply chain contracting model with asymmetric
demand forecasts that is based on Cachon and Lariviere (2001).44 As before,
the main issues are which contracts, if any, achieve supply chain coordination
and how are rents distributed with those contracts. In this model coordination
requires (1) the supplier takes the correct action and (2) an accurate demand
forecast is shared.

In addition to information sharing, this model highlights the issue of
contract compliance, as was first discussed in Section 2. With forced
compliance (i.e., all firms must choose the actions specified in the contract)

44 See Riordan (1984) for a similar model: he has asymmetric information regarding demand,

asymmetric information regarding the supplier’s cost and the capacity and production decisions are

joined, i.e., production always equals capacity.
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supply chain coordination and accurate forecast sharing are possible.
However, with voluntary compliance (i.e., each firm chooses optimal actions
even if they deviate from those in the contract) information sharing is possible
but only if optimal supply chain performance is sacrificed.

10.1 The capacity procurement game

In the capacity procurement game a manufacturer, M, develops a
new product with uncertain demand. There is a single potential supplier,
S, for a critical component, i.e., even M is not able to make this
component. [See Milner and Pinker (2001) for a capacity contracting model
without asymmetric information in which the downstream firm is able to
provide some of its own capacity but still may depend on the upstream
firm’s capacity when demand is high.] Let D� be demand, where �2 {h, l},
Let F(x j �) be the distribution function of demand, where F(x j �)¼ 0
for all x<0, F(x j �)>0 for all x� 0, and F(x j �) is increasing and differen-
tiable. Furthermore, Dh stochastically dominates Dl, i.e., F(x j h)<F(x j l) for
all x� 0.

With full information both firms observe the � parameter. With asymmetric
information the � parameter is observed only by the manufacturer. In
that case the supplier’s prior beliefs are that Pr(�¼ h)¼  and Pr(�¼ l)¼ 1�.
The manufacturer also knows , i.e., the prior is common knowledge.

The interactions between M and S are divided into two stages. In
stage 1, M gives S a demand forecast and offers S a contract which
includes an initial order, qi. Assuming S accepts the contract, S then
constructs k units of capacity at a cost ck>0 per unit. In stage 2, M observes
D� and places her final order with S, qf, where the contract specifies the set of
feasible final orders. Then S produces min{D�, k} units at a cost of cp>0 per
unit and delivers those units to M. Finally, M pays S based on the agreed
contract and M earns r>cpþ ck per unit of demand satisfied. The salvage
value of unused units of capacity is normalized to zero. The qualitative
behavior of the model is unchanged if M only observes an imperfect signal
of demand in stage 2.

Like the newsvendor model studied in Section 2, this model has only
one demand period. But in the newsvendor model production occurs
before the demand realization is observed, whereas in this model
production, constrained by the initial capacity choice, occurs after the
demand realization is observed. This model is also different than the two-stage
newsvendor model considered in Section 6. In that model some production
can be deferred until after demand information is learned, but that
production is more expensive than early production. In this model the cost
of production is the same no matter in which stage it occurs. Hence, unlike in
the Section 6 model, it is never optimal to produce before the demand
information is learned.
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10.2 Full information

To establish a benchmark, in this section assume both firms observe � and
begin the analysis with the supply chain optimal solution. The supply chain
makes two decisions: how much capacity to construct, k, and how much to
produce. The latter is simple, produce min{k,D�} after observing demand.
Hence, the only substantive decision is how much capacity to build. Let S�(x)
be expected sales with x units of capacity,

S�ðxÞ ¼ x� E½ðx�D�Þ
þ
�

¼ x�

Z x

0

F�ðxÞdx:

Let ��(k) be the supply chain’s expected profit with k units of capacity,

��ðkÞ ¼ ðr� cpÞS�ðkÞ � ckk:

Given that ��(k) is concave, the optimal capacity, ko� , satisfies the newsvendor
critical ratio:

F�ðk
o
� Þ ¼

ck

r� cp
,

where F �ðxÞ ¼ 1� F�ðxÞ.
45 Let �o

� ¼ ��ðk
o
� Þ. Thus, supply chain coordination

is achieved if the supplier builds ko� units of capacity and defers all production
until after receiving the manufacturer’s final order.

Now turn to the game between M and S. There are many different types of
contracts the manufacturer could offer the supplier. Consider an options
contract: M purchases qi options for wo per option at stage 1 and then pays
we to exercise each option at stage 2. Hence, the total expected transfer
payment is

woqi þ weS�ðqiÞ:

That contract could also be described as a buyback contract: M pays
w¼woþwe at stage 1 for an order quantity of qi and S pays b¼we per unit in
stage 2 that M ‘returns’, i.e., does not take actual delivery. Alternatively, that
contract could be described as a wholesale-price contract (woþwe is the
wholesale price) with a termination penalty charged for each unitM cancels in
stage 2 (where wo is the termination penalty). Erkoc and Wu (2002a) study

45 Given that F�(0)>0, it is possible that ko� ¼ 0, but that case is not too interesting, so assume ko� > 0.

Boundary conditions are also ignored in the remainder of the analysis.
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reservation contracts in a capacity procurement game with convex capacity
costs: with a reservation contract M reserves a particular amount of capacity
before observing demand and then pays a fee to S for each unit of reserved
capacity that is not utilized once demand is observed. That contract is not
considered in this section.

On the assumption the supplier builds enough capacity to cover the
manufacturer’s options, k¼ qi, the manufacturer’s expected profit is

��ðqiÞ ¼ ðr� weÞS�ðqiÞ � woqi:

If contract parameters are chosen so that (r�we)¼ l(r�cp) and wo¼ lck,
where l2 [0, 1], then

��ðqiÞ ¼ ���ðqiÞ:

Hence, qi ¼ ko� is the manufacturer’s optimal order, the supply chain is
coordinated and the supply chain’s profit can be arbitrarily allocated between
the firms. Indeed, the supplier’s profit is (1�l)��(qi), so ko� also maximizes the
supplier’s profit, apparently confirming the initial k¼ qi assumption.

But there is an important caveat to the above analysis. Can the
manufacturer be sure the supplier indeed builds k¼ qi? Suppose the
manufacturer is unable to verify the supplier actually builds k¼ qi. Given
the supplier’s capacity depends on a number of factors that are hard for the
manufacturer to verify (labor practices, production schedules, component
yields, etc.), it is not surprising if there were situations in which the
manufacturer would be unable to prove the supplier built less than qi capacity.
With that in mind, consider the following profit function for a supplier
(assuming k<qi) who believes demand is �,

pðk, qi, �Þ ¼ ðwe � cpÞs�ðkÞ þ woqi � ckk

¼ ð1� �Þðr� cpÞs�ðkÞ � ckðk� �qiÞ:

It follows that

@pðko� , k
o
� , �Þ

@k
< 0,

i.e., ko� does not maximize the supplier’s profit if qi ¼ ko� . The source of the
problem is that the above cost function assumes the manufacturer pays wo

per option no matter what capacity is constructed. Therefore, only the
we parameter of the contract impacts the supplier’s decision on the margin,
i.e., the supplier sets his capacity as if the supplier is offered just a wholesale-
price contract.

320 G.P. Cachon



Cachon and Lariviere (2001) define forced compliance to be the case when
the supplier must choose k¼ qi and voluntary compliance to be the case
when the supplier can choose k<qi even though the manufacturer
pays woqi for qi options. Both situations represent extreme ends of a
spectrum: with forced compliance the supplier acts as if any deviation from
k<qi is infinitely costly, whereas with voluntary compliance the supplier
acts as if there are no consequences. Reality is somewhere in the middle.
(This discussion is analogous to the one with retail effort, which in reality is
neither fully contractible nor fully uncontractible.) Nevertheless, voluntary
compliance is worth study because the supplier is likely to build k<qi even if
there is some penalty for doing so. For example, suppose the supplier must
refund the manufacturer for any option the manufacturer purchased that the
supplier is unable to exercise, i.e., if D�>k, the supplier refunds the
manufacturer ðminfqi,D�g � kÞþwo. Even with such a penalty, the supplier has
a 1�F(k) chance of pocketing the fee for (qi�k) options without having built
the capacity to cover those options: if D�<k, then the manufacturer would not
know the supplier was unable to cover all options because the supplier covers
the options the manufacturer exercises. That incentive is enough to cause the
supplier to choose k<qi. Erkoc and Wu (2002a) propose an alternative
approach in the context of their reservation contract: they study a game in
which the supplier pays a penalty for each unit of capacity that is reserved but
is not delivered. They find sufficient penalties such that compliance is
achieved.

To summarize, with forced compliance the manufacturer can use a number
of contracts to coordinate the supply chain and divide its profit. However,
coordination with those contracts is not assured with anything less than forced
compliance. As a result, voluntary compliance is a more conservative
assumption (albeit, possibly too conservative).46

The remainder of this section studies the manufacturer’s contract
offer under voluntary compliance. As suggested above, with voluntary
compliance the manufacturer’s initial order has no impact on the supplier’s
capacity decision. It follows that transfer payments based on the initial
order also have no impact on the supplier’s capacity decision. To influence
the supplier’s capacity decision the manufacturer is relegated to a contract
based on his final order, qf. An obvious candidate is the wholesale-price
contract.

With a wholesale-price contract the supplier’s profit is

p�ðkÞ ¼ ðw� cpÞS�ðkÞ � ckk:

46 Intermediate compliance regimes are challenging to study because the penalty for noncompliance is

not well behaved in k: in general 1�F(k) is neither concave nor convex in k. See Krasa and Villamil

(2000) for a model in which the compliance regime is an endogenous variable. As already mentioned,

see also Erkoc and Wu (2002a) for an approach to achieve compliance.
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Note that the supplier evaluates his expected profit on the assumption that � is
certainly the demand parameter. The supplier’s profit is strictly concave in k,
so there exists a unique wholesale price for any k such that k is optimal for the
supplier. Let w�(k) be that wholesale price:

w�ðkÞ ¼
ck

F�ðkÞ
þ cp:

The manufacturer’s profit function can now be expressed as

��ðkÞ ¼ ðr� w�ðkÞÞS�ðkÞ,

i.e., the manufacturer can choose a desired capacity by offering the wholesale-
price contract w�(k). Differentiate the manufacturer’s profit function:

�0�ðkÞ ¼ ðr� w�ðkÞÞS
0
�ðkÞ � w0�ðkÞS�ðkÞ,

�00� ðkÞ ¼ ðr� w�ðkÞÞS
00
� ðkÞ � w00� ðkÞS�ðkÞ � 2w0�ðkÞS

0
�ðkÞ

¼ � r� cp þ
ck

F�ðkÞ

� �
f�ðkÞ � w00� ðkÞS�ðkÞ:

If w00� ðkÞ > 0, then ��(k) is strictly concave. So for convenience assume
w00� ðkÞ > 0, which holds for any demand distribution with an increasing failure
rate, i.e., the hazard rate, f�ðxÞ=ð1� F�ðxÞÞ, is increasing. The normal,
exponential and the uniform meet that condition, as well as the gamma and
Weibull with some parameter restrictions (see Barlow & Proschan, 1965).
Therefore, there is a unique optimal capacity, k*� , and a unique wholesale price
that induces that capacity, w*� ¼ wðk*� Þ. It follows from �0�ðk*� Þ ¼ 0 that the
supply chain is not coordinated, k*� < ko� :

F�ðk*� Þ ¼
ck

r� cp
1þ

f�ðk*� Þ

F �ðk*� Þ
2
S�ðk*� Þ

 !

¼ F�ðk
o
� Þ 1þ

f�ðk*� Þ

F �ðk*� Þ
2
S�ðk*� Þ

 !
:

10.3 Forecast sharing

Now suppose the supplier does not observe �. The supplier has a prior
belief regarding �, but to do better the supplier might ask the manufacturer for
her forecast of demand, since the supplier knows the manufacturer knows �. If
the manufacturer announces demand is low, the supplier should believe the
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forecast: a high-demand manufacturer is unlikely to bias her forecast
down. But a high-demand forecast is suspect, since there is the real possibility
a low-demand manufacturer would offer a high-demand forecast to get the
supplier to build more capacity: the manufacturer always wants more
capacity built if the manufacturer is not paying for it. Thus, a sophisticated
supplier ignores the manufacturer’s verbal forecast, and instead infers the
manufacturer’s demand from the contract the manufacturer offers. With that
understanding, the manufacturer shares her demand forecast by offering the
right contract.

To continue with that reasoning, in this model forecast sharing takes
place via a signaling equilibrium. With a signaling equilibrium the
supplier assigns a belief to each possible contract the manufacturer could
offer: either the contract is offered only by a high-demand manufacturer,
offered only by a low-demand manufacturer or it could be offered by either
type. There are different kinds of signaling equilibria. With a separating
equilibrium the supplier divides the contracts into the former two sets: either
the contract is a high-type contract or a low-type contract, but no contract is
offered by both types. With a pooling equilibrium the contracts are divided
into the latter two sets: either the contract is offered by a low-type or it is
offered by both types. In a pooling equilibrium there is no means to share a
high-demand forecast (since no contract is designated for only the high-type
manufacturer) and the low-demand forecast is shared only out of equilibrium
(since each type prefers the contract designated for both types, which conveys
no information regarding the manufacturer’s demand). Thus, forecast sharing
only occurs with a separating equilibrium: a high-type M offers the best
contract among those designated for high-types and a low-type M offers the
best contract among those designated for low-types.

A separating equilibrium is rational if a high-type M indeed prefers to offer
a high-type contract rather than to offer a low-type contract. The high-type
recognizes that if she offers a low-type contract the supplier builds capacity
based on the assumption demand is indeed low. Similarly, a separating
equilibrium must also have that a low-type M prefers to offer a low-type
contract rather than to offer a high-type contact. In other words, the low-type
manufacturer must not prefer to mimic a high-type manufacturer by choosing
a high-type contract. That condition is more onerous because if the low-type
M offers a high-type contract then the supplier builds capacity under the
assumption demand is high. See Cachon and Lariviere (2001) for a more
formal description of these conditions.

First consider separating equilibria with forced compliance. Recall, the
manufacturer can coordinate the supply chain with an options contract (and
the parameters of those contracts do not depend on the demand distribution).
The type � manufacturer’s profit with one of those contracts is l��ðqiÞ: with
forced compliance the supplier must build k¼ qi if the supplier accepts the
contract, so the supplier’s belief regarding demand has no impact on the
capacity choice given the supplier accepts the contract. The supplier’s profit is
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ð1� lÞ��ðqiÞ. Let �̂� be the supplier’s minimum acceptable profit, i.e., the
supplier rejects the contract if his expected profit is less than �̂�.47 Clearly both
types of manufacturers want a large share of the supply chain profit and for a
fixed share, both manufacturers want to maximize the supply chain’s profit.
However, a manufacturer could prefer a larger share of suboptimal profit over
a smaller share of optimal profit. Hence, the supplier must be diligent about
biased forecasts.

Suppose the low-type manufacturer offers an options contract with

�l ¼ 1�
�̂�

�o
l

and the high-type manufacturer offers minflh, �̂�hg, where

�h ¼ 1�
�̂�

�o
h

and

�̂�h ¼
�o

l � �̂�

�lðk
o
hÞ
:

Since minflh, �̂�hg > ll, the high-type manufacturer has no interest in
offering the low-type’s contract: with that contract the manufacturer
earns a smaller share (ll vs. minflh, �̂�hg) of a lower profit (�hðk

o
l Þ vs. �

o
h).

The low-type manufacturer also has no interest in offering the high-
type’s contract. By construction, the low-type manufacturer is indifferent
between earning her low-type profit, �o

l � �̂�, and earning �̂�h percent of the
high-type contract profit, �lðk

o
hÞ. As long as the high-type captures no more

than �̂�h percent of the supply chain’s profit, the low-type has no interest in
pretending to be a high-type. Thus, the above contracts are a separating
equilibrium.

With low demand the supplier earns �̂�. With high-demand the
supplier earns the same amount if lh < �̂�h, otherwise the supplier earns
more. The manufacturer would prefer to take more from the supplier when
lh > �̂�h, but then the supplier cannot trust the manufacturer’s forecast
(because a low-type would gladly accept some suboptimal supply chain
performance in exchange for a large fraction of the profit). Even though the
manufacturer may be unable to drive the supplier’s profit down to �̂�, the
supply chain is coordinated in all situations. Hence, with forced compliance

47 It is assumed �̂� is independent of �. But it is certainly plausible that a supplier’s outside opportunity

is correlated with the manufacturer’s demand: if the manufacturer has high demand, then other

manufacturers may have high demand, leading to a higher than average opportunity cost to the

supplier. Additional research is needed to explore this issue.
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information is exchanged via the parameters of the contract and not via the
form of the contract.

Now consider voluntary compliance. Here the manufacturer is relegated to
offering a wholesale-price contract. In a separating equilibrium the low-type
manufacturer offers w*

l and the high-type manufacturer would like to offer w*
h .

If w*
h > w*

l then it is possible the low-type manufacturer will not mimic the
high-type: mimicking gets the low-type manufacturer more capacity, but she
must pay a higher price. If w*

h � w*
l then mimicking certainly occurs: the low-

type manufacturer gets more capacity and pays no more per unit. In that case
the high-type manufacturer needs to supplement the wholesale-price contract
with some additional transfer payment that only a high-type manufacturer
would be willing to pay.

One suggestion is for the high-type M to also offer the supplier a fixed fee,
A. The low-type manufacturer earns �lðw*

l , lÞ when she reveals herself to be
a low-type, where ��ðw, �Þ is a type � manufacturer’s profit when the
supplier believes demand is type � 2 fl, hg. She earns �lðw*

h, hÞ � A when she
mimics the high-type (i.e., offers the high-type contract), so she does not wish
to mimic when

�lðw*
l , lÞ � �lðw*

h, hÞ � A:

The high-type prefers to offer that fixed fee rather than to offer the low-type’s
contract when

�hðw*
h, hÞ � A > �hðw*

l , lÞ:

There exists a fixed fee that satisfies both conditions when

�hðw*
h, hÞ ��hðw*

l , lÞ > �lðw*
h , hÞ ��lðw*

l , lÞ:

The above states that the high-type manufacturer has more to gain from the
supplier believing demand is high than the low-type manufacturer.

While the fixed fee works, there may be a cheaper approach for the
high-type manufacturer to signal. An ideal signal is not costly to a high-type
manufacturer but very costly to a low-type manufacturer. Clearly the
fixed fee is not ideal because it is equally costly to each type. A better signal
is for the high-type manufacturer to offer a higher wholesale price. For the
high-type manufacturer, a higher wholesale price is not costly at all initially,
while it is costly for the low-type:

@�hðw*
h, hÞ

@w
¼ 0,
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whereas, if w*
h � w*

l , then

@�lðw*
h, hÞ

@w
< 0:

Another option for the high-type manufacturer is to offer a firm commitment:
in stage 1 the manufacturer commits to purchase at least m units in stage 2,
i.e., qf�m, with any remaining units purchased for a wholesale price w.
That contract could also be called a capacity reservation contract: at stage 1
the manufacturer reserves m units of the supplier’s capacity that she promises
to utilize fully at stage 2. The firm commitment is not costly to the
manufacturer when D��m, but is costly when D�<m. Since Dl<m is more
likely than Dh<m, a firm commitment is more costly to the low-demand
manufacturer than the high-demand manufacturer. Hence, it too is a cheaper
signal than the fixed payment. Interestingly, a firm commitment is not
desirable with full information because it may lead to an ex-post-inefficient
action: if D�<m then the production of m�D� units is wasted. However, with
asymmetric information these contracts can enhance supply chain perfor-
mance by allowing for the credible communication of essential information.
See Cachon and Lariviere (2001) for a more detailed analysis of these different
types of signaling instruments.

10.4 Discussion

This section considers a model in which one member of the supply chain
has a better forecast of demand than the other. Since supply chain
coordination requires that the amount of capacity the supplier builds
depend on the demand forecast, supply chain coordination is achieved only
if the demand forecast is shared accurately. With forced compliance
the manufacturer can use an options contract to coordinate the supplier’s
action and to share information. However, sharing information is more
costly with voluntary compliance. Nevertheless, some techniques for
credibly sharing forecasts are cheaper than others. In particular, firm
commitments, which are not optimal with full information, are effective for a
manufacturer that needs to convince a supplier that her high-demand forecast
is genuine.

Given that forecast sharing is costly even with the best signaling
instrument, the high-demand manufacturer may wish to consider options
other than signaling. One option is for the manufacturer to pay the supplier
for units and take delivery of them in stage 1, i.e., before the demand
realization is observed. In that case the supplier’s profit does not depend
on the manufacturer’s demand distribution, so there is no need to share
information. However, this option completely disregards the benefit of
deferring production until after the demand realization is observed. A second
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option is for the manufacturer to choose a contract associated with a pooling
equilibrium. In that case the supplier evaluates the contract as if he is dealing
with a representative manufacturer. Hence, the terms are not as good as the
high-demand manufacturer could get with full information, but this option
could be attractive if there is a substantial cost to signal her high demand. (For
example, a person in excellent health might opt for a standard health group
life insurance plan merely to avoid the hassle of medical exams to demonstrate
her excellent health.) Integration of all of these options awaits further
research.

There are several other papers on supply chain contracting with
asymmetric information. Cohen, Ho, Ren and Terwiesch (2001) study the
forecasting process in the semiconductor equipment supply chain. In this
setting the supplier has a long lead time to complete a piece of equipment and
the manufacturer’s desired completion time is uncertain. The manufacturer
has an internal forecast for the desired delivery date and can provide a
forecast of the delivery date to the supplier. However, since the manufacturer
does not want the supplier to be late with a delivery, the manufacturer is
biased to forecast a delivery date that is sooner than really needed. (The
manufacturer is powerful in this supply chain and so can refuse to take
delivery of completed equipment until the equipment is actually needed.) The
supplier is well aware of this bias, but the research question is whether the
supplier acts as if the forecast is biased. For example, if the manufacturer
announces that the equipment is needed in the third quarter of a year does the
supplier act as if the manufacturer really needs it in the first quarter of the
following year. Using data from the industry they find that the supplier
indeed acts as if the forecasts are biased. Terwiesch, Ren, Ho and Cohen
(2002) extend this result to demonstrate empirically that suppliers given poor
delivery lead times to manufacturers that are notorious for biased forecasting.
Terwiesch and Loch (2002) also study signaling, but in the context of a
product designer with an unknown ability to create valuable designs to their
clients.

Porteus and Whang (1999) study a model that closely resembles the model
in this section except they have the supplier offering the contract rather than
the manufacturer. Hence, they study screening (the party without the
information designs the contract to learn information) rather than signaling
(the party with the information designs the contract to communicate
information). As a result, the supplier offers a menu of contracts, one designed
for each type of manufacturer.

Ha (1996) also studies a screening model. He has a supplier offering a
contract to a manufacturer with stochastic demand. [Corbett and Tang (1999)
study a similar model with deterministic demand.] The manufacturer knows
his cost, but that cost is uncertain to the supplier. After the supplier offers the
contract the manufacturer orders q units and sets the retail price. Supply chain
coordination is possible with full information; however, the coordinating
parameters depend on the manufacturer’s cost. (His coordinating contract
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prohibits the manufacturer from setting a price below a specified
threshold, i.e., a resale price maintenance provision.) If the supplier does
not know the manufacturer’s cost, Ha suggests the supplier offer a menu of
contracts: for each order quantity the supplier stipulates a transfer payment
and a minimum resale price. Each contract is targeted to a particular
manufacturer, i.e., manufacturers with different costs choose different
contracts and each manufacturer chooses the contract designed for his cost.
That latter property is due to the revelation principle (Myerson, 1979).48

Unfortunately, supply chain coordination is no longer possible. See
Lim (2001) for a screening model that separates producers that vary in the
quality of their output.

Corbett and de Groote (2000) study a model with one buyer, one
supplier, deterministic demand and fixed ordering costs for each level in the
supply chain. As in Porteus and Whang (1999) and Ha (1996), the contract
designer has a prior belief regarding the other firm’s cost and that firm
knows his cost precisely. They propose a quantity-discount schedule, which is
like a contract menu: there is a unique per unit price for each quantity the
buyer may choose. As in Ha (1996) supply chain coordination is not achieved if
there is asymmetric information. Corbett (2001) studies coordination with one
supplier, one buyer, stochastic demand, fixed ordering costs and asymmetric
information with respect to either the fixed ordering cost or the backorder
penalty cost. He finds that consignment stock influences incentives, sometimes
in a beneficial way, sometimes in a destructive way. (Consignment assigns
ownership of inventory at the downstream firm to the upstream firm.)

Brown (1999) is related to the capacity procurement model. He has one
supplier, one manufacturer and a single demand period with stochastic
demand. But there are some important differences. First, he considers only
forced compliance. Second, in his model the manufacturer announces her
demand forecast to the supplier, and then immediately places her final order,
i.e., there is no intermediate step in which the supplier builds capacity between
the initial and final order. Brown requires that the manufacturer’s order be
consistent with the announced forecast, i.e., assuming the forecast is true the
manufacturer’s order is optimal. This constraint is reasonable because the
supplier is able to immediately verify with certainty any inconsistency between
the forecast and the order quantity. In the capacity procurement model the
supplier is never able to verify for sure whether a biased forecast was provided,
so that constraint would be problematic. Furthermore, it is necessary for the
manufacturer to provide both an order quantity and a forecast, because there
is a continuum of forecasts (where a forecast includes a mean and a standard

48 Kreps (1990) describes the revelation principle as ‘‘. . .obvious once you understand it but somewhat

cumbersome to explain.’’ ( p. 691). See his book for a good entry into mechanism design. In a nutshell,

the revelation principle states that if there exists an optimal mechanism and that mechanism does not

completely reveal the player’s types, then the outcome of that mechanism can be replicated with a

mechanism that does reveal the player’s types. Thus, the search for optimal mechanisms can be

restricted to truth-inducing mechanisms.
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deviation) that yield the same optimal order quantity. In other words, he
allows for a continuum of manufacturer types.

Brown studies two related contracts, an options contract (which he refers to
as a buyback contract) and an options-futures contract. The latter is a
buyback contract with a maximum threshold that the manufacturer can
return: the manufacturer orders z units, pays cf for the first y units, pays w>cf
for the remaining z�y units, and can return up to z�y units for credit b<w.
Hence, the options-futures contract contains firm commitments.

Both types of contracts coordinate the supply chain with full information
and arbitrarily allocate profit. With asymmetric information Brown assumes
the supplier accepts the contract only if it yields a minimum expect profit.
However, with the buyback contract this fixed profit benchmark creates an
incentive for the manufacturer to announce a biased forecast. To explain, let �̂�
be that benchmark, let f�ð�Þ, �g be the mean–standard deviation pairs such
that the manufacturer’s order quantity is optimal and let �ð�ð�Þ, �Þ be the
supply chain’s profit with that order quantity. The manufacturer must offer a
contract in which the supplier’s share of supply chain profit, 1�l, is at least
�̂�=�oð�ð�Þ, �Þ. In the newsvendor setting �ð�ð�Þ, �Þ is decreasing in �, which
implies 1�l is increasing in �, and the manufacturer’s share, l, is decreasing in
�. Hence, the manufacturer’s optimal forecast has �¼ 0 even if in reality �>0.
If the supplier accepts that contract then his expected profit is in fact less than
�̂�. Brown shows this incentive is eliminated if the manufacturer offers a
futures-options contract: i.e., there exists a one for one relationship between
the set of options-futures contracts and the set of manufacturer types such
that a manufacturer always prefers the contract designated for his type.
Hence, as in capacity procurement model, firm commitments are a useful tool
for conveying information. They are particularly attractive in Brown’s model
because they do not result in suboptimal performance.

11 Conclusion

Over the last decade the legitimacy of supply chain contracting research has
been established and many research veins have been tapped. Several key
conclusions have emerged. First, coordination failure is common; incentive
conflicts plausibly arise in a wide range of operational situations. As a result,
suboptimal supply chain performance is not necessarily due to incompetent
managers or naive operating policies. Rather, poor supply chain performance
may be due to conflicting incentives and these incentive conflicts can be
managed. Second, in many situations there are multiple kinds of contracts
that achieve coordination and arbitrarily divide profit. Hence, the contract
selection process in practice must depend on criteria or objectives that have
not been fully explored, i.e., there is a need for additional research that
investigates the subtle, but possibly quite important, differences among the set
of coordinating contracts. Third, the consequence of coordination failure is
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context specific: there are situations in which supply chain performance is
nearly optimal with naive and simple contracts, but there are also situations
in which decentralized operations without proper incentive management
leads to substantially deteriorated performance. It is quite useful to
have theory that can help to contrast those cases. Fourth, this body of
work emphasizes that managing incentive conflicts can lead to Pareto
improvements, which is often referred to as a ‘win-win’ situation in practice.
This insight should help to break the ‘zero sum game’ mentality which is
understandably so prevalent among supply chain managers and is a strong
impediment to significant supply chain progress.49 While vigilance is always
prudent, a wise supply chain manager recognizes that not every offer is a wolf
in sheep’s clothing.

Unfortunately, theory has almost exclusively followed practice in
this domain, i.e., practice has been used as a motivation for theoretical
work, but theoretical work has not found its way into practice. This need not
be so. As already mentioned, one of the surprises of this research is that
coordination can be achieved with many different contractual forms. An
understanding of the subtle differences among these contracts may allow a
researcher to identify a particularly suitable contract form for an industry,
even if that contract form has no precedence in the industry. Just as there
has been documented improvements with innovations like delayed
differentiation (Lee, 1996) and accurate response (Fisher & Raman, 1996), it
should be possible to generate equally valuable improvements via innovations
in incentive design.

As a first step toward wider implementation, this research needs to
develop an empirical–theoretical feedback loop. As this chapter illustrates, the
literature contains a considerable amount of theory, but an embarrassingly
paltry amount of empiricism. Thus, we have little guidance on how the
theory should now proceed. For example, we have identified a number of
contracts that coordinate a supplier selling to a newsvendor but can we
explain why certain types have been adopted in certain industries and not
others? Can we explain why these contracts have not completely eliminated
the Pareto inferior wholesale-price contract? A standard argument is that
the wholesale-price contract is cheaper to administer, but we lack any evidence
regarding the magnitude of the administrative cost of the more complex
contracts. And even if the coordinating contracts are adopted, such as
buybacks or revenue sharing, are coordinating parameters chosen in practice?
For example, the set of revenue-sharing contracts is much larger than the set
of coordinating revenue-sharing contracts. If we observe that firms choose
noncoordinating contracts, then we need an explanation. Irrational or
incompetent behavior on the part of managers is a convenient explanation,
but it is not satisfying to build a theory on irrational behavior. A theory is

49 In a zero sum game one player’s payoff is decreasing in the other player’s payoff, so one player can

be made better off only by making the other player worse off.
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interesting only if it can be refuted and irrational behavior cannot be refuted.
A better approach is to challenge the assumptions and analysis of the theory.
With some empiricism we should be able to identify which parts of the theory
are sound and which deserve more scrutiny.

The franchise literature could provide a useful guide to researchers in
supply chain contracting. An excellent starting point is Lafontaine and Slade
(2001). They review and compare the extensive theoretical and empirical
results on franchising. Some of the predictions from theory are indeed
supported by numerous empirical studies, while others are lacking. It is clear
that the give-and-take between theory and data has been enormously
successful for that body of work.

On a hopeful note, some preliminary activity in the empirical domain has
fortunately begun. Mortimer (2000) provides an analysis of revenue-sharing
contracts in the video cassette rental industry. Cohen, Ho, Ren and Terwiesch
(2002) carefully evaluate forecast sharing in the semiconductor equipment
industry. Their findings are consistent with the premise in Cachon
and Lariviere (2001): if forecasts are not credible, then they will be ignored
and supply chain performance suffers. Follow on work of theirs demonstrates
that providing poor forecasts leads to lower future credibility and lower
received service from a supplier. Novak and Eppinger (2001) empirically
evaluate the interaction between product complexity and the make or buy
decision, and find support for the property rights theory of vertical integration.
Finally, Randall, Netessine and Rudi (2002) study whether e-retailers choose
to drop ship or hold their own inventory. The appropriate strategy for a
retailer depends on the characteristics of its product and industry, as predicted
by the theoretical work in Netessine and Rudi (2000a), and they indeed
find that e-retailers that chose the appropriate strategy were less likely to
bankrupt.

Even though our most rewarding efforts now lie with collecting data, it is
still worthwhile to comment on areas of the theory that need on additional
investigation. Current models are too dependent on single-shot contracting.
Most supply chain interactions occur over long periods of time with many
opportunities to renegotiate or to interact with spot markets. For some steps
in this direction, see Kranton and Minehart (2001) for work on buyer–
supplier networks and long-run relationships; Plambeck and Taylor (2002)
for a model with renegotiation of quantity-flexibility contracts; and Wu,
Kleindorfer and Zhang (2002) and Lee and Whang (2002) for the impact of
spot markets on capacity contracting and inventory procurement,
respectively.

More research is needed on how multiple suppliers compete for the
affection of multiple retailers, i.e., additional emphasis is needed on many-to-
one or many-to-many supply chain structures. In the context of auction
theory, Jin and Wu (2002) and Chen (2001) study procurement in the many-
to-one structure and Bernstein and Véricourt (2002) offer some initial work on
a many-to-many supply chain. Forecasting and other types of information
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sharing require much more attention. Lariviere (2002) provides recent work in
this area. Finally, more work is needed on how scarce capacity is allocated in a
supply chain and how scarce capacity influences behavior in the supply chain.
Recent work in this area is provided by Zhao, Deshpande and Ryan (2002)
and Deshpande and Schwarz (2002).

To summarize, opportunities abound.

Acknowledgements

I would like to thank the many people who carefully read and commented on
the first two drafts of this manuscript: Ravi Anupindi, Fangruo Chen, Charles
Corbett, James Dana, Ananth Iyer, Ton de Kok, Yigal Gerchak, Mark
Ferguson, Paul Kleindorfer, Howard Kunreuther, Marty Lariviere, Serguei
Netessine, Ediel Pinker, Nils Rudi, Leroy Schwarz, Sridhar Seshadri, Greg
Shaffer, Yossi Sheffi, Terry Taylor, Christian Terwiesch, Andy Tsay and
Kevin Weng. I am, of course, responsible for all remaining errors.

References

Agrawal, N., A.A. Tsay (2001). Intrafirm incentives and supply chain performance, in: J.S. Song,

D.D. Yao (eds.), Supply Chain Structures: Coordination, Information and Optimization (Volume 42

of the International Series in Operations Research and Management Science), Norwell, MA, Kluwer

Academic Publishers, pp. 44–72.

Agrawal, V., S. Seshadri (2000). Risk intermediation in supply chains. IIE Transactions 32, 819–831.

Ailawadi, K. (2001). The retail power-performance conundrum: what have we learned. Journal of

Retailing 77, 299–318.

Anand, K., H. Mendelson (1997). Information and organization for horizontal multimarket

coordination. Management Science 43, 1609–1627.

Anand, K., R. Anupindi, Y. Bassok (2001). Strategic inventories in procurement contracts. University

of Pennsylvania Working Paper, Philadelphia, PA.

Andersson, J., J. Marklund (2000). Decentralized inventory control in a two-level distribution system.

European Journal of Operational Research 127(3), 483–506.

Anupindi, R., R. Akella (1993). An inventory model with commitments. University of Michigan

Working Paper.

Anupindi, R., Y. Bassok (1999). Centralization of stocks: retailers vs. manufacturer. Management

Science 45(2), 178–191.

Anupindi, R., Y. Bassok, E. Zemel (2001). A general framework for the study of decentralized

distribution systems. Manufacturing and Service Operations Management 3(4), 349–368.

Atkins, D., X. Zhao (2002). Supply chain structure under price and service competition. University of

British Columbia Working Paper.

Aviv, Y. (2001). The effect of collaborative forecasting on supply chain performance. Management

Science 47(10), 1326–1343.

Aviv, Y., A. Federgruen (1998). The operational benefits of information sharing and vendor managed

inventory (VMI) programs. Washington University Working Paper, St. Louis, MO.

Axsater, S. (2001). A framework for decentralized multi-echelon inventory control. IIE Transactions

33, 91–97.

332 G.P. Cachon



Baiman, S., P. Fischer, M. Rajan (2000). Information, contracting and quality costs. Management

Science 46(6), 776–789.

Baiman, S., P. Fischer, M. Rajan (2001). Performance measurement and design in supply chains.

Management Science 47(1), 173–188.

Barlow, R.E., F. Proschan (1965). Mathematical Theory of Reliability, John Wiley & Sons.

Barnes-Schuster, D., Y. Bassok, R. Anupindi (2002). Coordination and flexibility in supply contracts

with options. Manufacturing and Service Operations Management 4, 171–207.

Bassok, Y., R. Anupindi (1997a). Analysis of supply contracts with total minimum commitment. IIE

Transactions 29(5).

Bassok, Y., R. Anupindi (1997b). Analysis of supply contracts with commitments and flexibility.

University of Southern California Working Paper.

Bernstein, F., G. DeCroix (2002). Decentralized pricing and capacity decisions in a multi-tier system

with modular assembly. Duke University Working Paper.

Bernstein, F., A. Federgruen (1999). Pricing and replenishment strategies in a distribution system with

competing retailers. Forthcoming Operations Research.

Bernstein, F., A. Federgruen (2000). Decentralized supply chains with competing retailers under

demand uncertainty. Forthcoming Management Science.

Bernstein, F., F. Véricourt (2002). Allocation of supply contracts with service guarantees. Duke

University Working Paper.

Bernstein, F., F. Chen, A. Federgruen (2002). Vendor managed inventories and supply chain

coordination: the case with one supplier and competing retailers. Duke University Working Paper.

Bloom, P., V. Perry (2001). Retailer power and supplier welfare: the case of Wal-Mart. Journal of

Retailing 77, 379–396.

Boyaci, T., G. Gallego (1997). Coordination issues in simple supply chains. Columbia University

Working Paper, New York, NY.

Bresnahan, T., P. Reiss (1985). Dealer and manufacturer margins. Rand Journal of Economics 16(2),

253–268.

Brown, A. (1999). A coordinating supply contract under asymmetric demand information:

guaranteeing honest information sharing. Vanderbilt University Working Paper, Nashville, TN.

Brown, A., H. Lee (1998). The win-win nature of options based capacity reservation arrangements.

Vanderbilt University Working Paper, Nashville, TN.

Butz, D. (1997). Vertical price controls with uncertain demand. Journal of Law and Economics 40,

433–459.

Cachon, G. (1998). Competitive supply chain inventory management, in: S. Tayur, R. Ganeshan,

M. Magazine (eds.), Quantitative Models for Supply Chain Management, Boston, Kluwer.

Cachon, G. (1999). Competitive and cooperative inventory management in a two-echelon supply chain

with lost sales. University of Pennsylvania Working Paper, Philadelphia, PA.

Cachon, G. (2001). Stock wars: inventory competition in a two echelon supply chain. Operations

Research 49(5), 658–674.

Cachon, G. (2002). The allocation of inventory risk and advanced purchase discounts in a supply

chain. University of Pennsylvania Working Paper.

Cachon, G., M. Fisher (2000). Supply chain inventory management and the value of shared

information. Management Science 46(8), 1032–1048.

Cachon, G., M. Lariviere (1997). Capacity allocation with past sales: when to turn-and-earn.

Management Science 45(5), 685–703.

Cachon, G., M. Lariviere (1999). Capacity choice and allocation: strategic behavior and supply chain

performance. Management Science 45(8), 1091–1108.

Cachon, G., M. Lariviere (2000). Supply chain coordination with revenue sharing: strengths and

limitations. Forthcoming. Management Science.

Cachon, G., M. Lariviere (2001). Contracting to assure supply: how to share demand forecasts in a

supply chain. Management Science 47(5), 629–646.

Cachon, G., P. Zipkin (1999). Competitive and cooperative inventory policies in a two-stage supply

chain. Management Science 45(7), 936–953.

Ch. 6. Supply Chain Coordination with Contracts 333



Caldentey, R., L. Wein (1999). Analysis of a production-inventory system. Massachusetts Institute of

Technology Working Paper, Cambridge, MA.

Chen, F. (1998). Echelon reorder points, installation reorder points, and the value of centralized

demand information. Management Science 44(12), S221–S234.

Chen, F. (1999). Decentralized supply chains subject to information delays. Management Science

45(8), 1076–1090.

Chen, Y. (1999). Oligopoly price discrimination and resale price maintenance. Rand Journal of

Economics 30(3), 441–455.

Chen, F. (2001). Auctioning supply contracts. Columbia University Working Paper.

Chen, F., A. Federgruen (2000). Mean-variance analysis of basic inventory models. Columbia

University Working Paper.

Chen, F., Y.S. Zheng (1994). Lower bounds for multi-echelon stochastic inventory system.

Management Science 40(11), 1426–1443.

Chen, F., A. Federgruen, Y. Zheng (2001). Coordination mechanisms for decentralized distribution

systems with one supplier and multiple retailers. Management Science 47(5), 693–708.

Cho, R., Y. Gerchak (2001). Efficiency of independent downstream firm could counteract coordination

difficulties. University of Waterloo Working Paper.

Chod, J., N. Rudi (2002). Resource flexibility with responsive pricing.

Choi, K.S., J.G. Dai, J.S. Song (2002). On measuring supplier performance under vendor-managed

inventory programs. University of California at Irvine Working Paper.

Chu, W., P. Desai (1995). Channel coordination mechanisms for customer satisfaction. Marketing

Science 14(4), 343–359.

Clark, A.J., H.E. Scarf (1960). Optimal policies for a multi-echelon inventory problem. Management

Science 6, 475–490.

Cohen, M., T. Ho, J. Ren, C. Terwiesch (2001). Measuring inputed costs in the semiconductor

equipment supply chain. University of Pensylvania Working Paper.

Corbett, C. (2001). Stochastic inventory systems in a supply chain with asymmetric information: cycle

stocks, safety stocks, and consignment stock. Operations Research 49(4), 487–500.

Corbett, C., G. DeCroix (2001). Shared savings contracts in supply chains. Management Science

47(7), 881–893.

Corbett, C., X. de Groote (2000). A supplier’s optimal quantity discount policy under asymmetric

information. Management Science 46(3), 444–450.

Corbett, C., U. Karmarkar (2001). Competition and structure in serial supply chains. Management

Science 47(7), 966–978.

Corbett, C., C. Tang (1999). Designing supply contracts: contract type and information asymmetry,

in: S. Tayur, R. Ganeshan, M. Magazine (eds.), Quantitative Models for Supply Chain

Management, Boston, Kluwer Academic Publishers.

Dana, J., K. Spier (2001). Revenue sharing and vertical control in the video rental industry. The

Journal of Industrial Economics 49(3), 223–245.

Debo, L. (1999). Repeatedly selling to an impatient newsvendor when demand fluctuates: a supergame

theoretic framework for co-operation in a supply chain. CarnegieMellonUniversityWorking Paper.

Demougin, D.M. (1989). A renegotiation-proof mechanism for a principal-agent model with moral

hazard and adverse selection. Rand Journal of Economics 20(2), 256–267.

Deneckere, R., H. Marvel, J. Peck (1996). Demand uncertainty, inventories, and resale price

maintenance. Quarterly Journal of Economics 111, 885–913.

Deneckere, R., H. Marvel, J. Peck (1997). Demand uncertainty and price maintenance: markdowns as

destructive competition. American Economic Review 87(4), 619–641.

Desai, P., K. Srinivasan (1995). Demand signalling under unobservable effort in franchising.

Management Science 41(10), 1608–1623.

Desiraju, R., S. Moorthy (1997). Managing a distribution channel under asymmetric information with

performance requirements. Management Science 43, 1628–1644.

Deshpande, V., L. Schwarz (2002). Optimal capacity allocation in decentralized supply chains. Purdue

University Working Paper.

334 G.P. Cachon



Dolan, R., J.B. Frey (1987). Quantity discounts: managerial issues and research opportunities/

commentary/reply. Marketing Science 6(1), 1–24.

Dong, L., N. Rudi (2001). Supply chain interaction under transshipments. Washington University

Working Paper.

Donohue, K. (2000). Efficient supply contracts for fashion goods with forecast updating and two

production modes. Management Science 46(11), 1397–1411.

Duenyas, I., C.-Y. Tsai (2001). Centralized and decentralized control of a two-stage tandem

manufacturing system with demand for intermediate and end products. University of Michigan

Working Paper, Ann Arbor, MI.

Duenyas, I., W. Hopp, Y. Bassok (1997). Production quotas as bounds on interplant JIT contracts.

Management Science 43(10), 1372–1386.

Eeckhoudt, L., C. Gollier, H. Schlesinger (1995). The risk-averse (and prudent) newsboy. Management

Science 41(5), 786–794.

Emmons, H., S. Gilbert (1998). Returns policies in pricing and inventory decisions for catalogue

goods. Management Science 44(2), 276–283.

Eppen, G., A. Iyer (1997). Backup agreements in fashion buying – the value of upstream flexibility.

Management Science 43(11), 1469–1484.

Erhun, F., P. Keskinocak, S. Tayur (2000). Spot markets for capacity and supply chain coordination.

Carnegie Mellon Working Paper, Pittsburgh, PA.

Erkoc, M., S.D. Wu (2002a). Managing high-tech capacity expansion via reservation contracts. Lehigh

University Working Paper.

Erkoc, M., S.D. Wu (2002b). Due-date coordination in an internal market via risk sharing. Lehigh

University Working Paper.

Ertogral, K., D. Wu (2001). A bargaining game for supply chain contracting. Lehigh University

Working Paper.

Federgruen, A., P. Zipkin (1984). Computational issues in an infinite-horizon, multiechelon inventory

model. Operations Research 32(4), 818–836.

Ferguson, M., G. DeCroix, P. Zipkin (2002). When to commit in a multi-echelon supply chain with

partial information updating. Duke University Working Paper.

Fisher, M., A. Raman (1996). Reducing the cost of demand uncertainty through accurate response to

early sales. Operations Research 44, 87–99.

Friedman, J. (1986). Game Theory with Applications to Economics, Oxford, Oxford University Press.

Gallini, N., N. Lutz (1992). Dual distribution and royalty fees in franchising. The Journal of Law,

Economics, and Organization 8, 471–501.

Gans,N. (2002).Customer loyalty and supplierquality competition.ManagementScience48(2), 207–221.

Gavirneni, S., R. Kapuscinski, S. Tayur (1999). Value of information in capacitated supply chains.

Management Science 45(1), 16–24.

Gerchak, Y., Y. Wang (1999). Coordination in decentralized assembly systems with random demand.

University of Waterloo Working Paper, Waterloo, Ontario, Canada.

Gerchak, Y., R. Cho, S. Ray (2001). Coordination and dynamic shelf-space management of video

movie rentals. University of Waterloo Working Paper, Waterloo, Ontario.

Gilbert, S., V. Cvsa (2000). Strategic supply chain contracting to stimulate downstream process

innovation. University of Texas at Austin Working Paper.

Gurnani, H., Y. Gerchak (1998). Coordination in decentralized assembly systems with uncertain

component yield. University of Waterloo Working Paper, Waterloo, Ontario, Canada.

Ha, A. (2001). Supplier-buyer contracting: asymmetric cost information and the cut-off level policy for

buyer participation. Naval Research Logistics 48(1), 41–64.

Ha, A., L. Li, S.-M. Ng (2000). Price and delivery logistics competition in a supply chain. Yale School

of Management Working Paper, New Haven, CT.

Holden, S. (1999). Renegotiation and the efficiency of investments. Rand Journal of Economics

30(1), 106–119.

Holmstrom, B. (1979). Moral hazard and observability. Bell Journal of Economics 10(1), 74–91.

Holmstrom, B. (1982). Moral hazard in teams. Bell Journal of Economics 13(2), 324–340.

Ch. 6. Supply Chain Coordination with Contracts 335



Ippolito, P. (1991). Resale price maintenance: economic evidence from litigation. Journal of Law and

Economics 34, 263–294.

Iyer, A., M. Bergen (1997). Quick response in manufacturer-retailer channels. Management Science

43(4), 559–570.

Jeuland, A., S. Shugan (1983). Managing channel profits. Marketing Science 2, 239–272.

Jin, M., S.D. Wu (2002). Procurement auctions with supplier coalitions: validity requirements and

mechanism design. Lehigh University Working Paper.

Karjalainen, R. (1992). The newsboy game. University of Pennsylvania Working Paper, Philadelphia,

PA.

Katz, M. (1989). Vertical contractual relations, in: R. Schmalensee, R. Willig (eds.), Handbook of

Industrial Organization, Vol. 1. Boston, North-Holland.

Kolay, S., G. Shaffer (2002). All-unit discounts in retail contracts. University of Rochester Working

Paper.

Kouvelis, P., G. Gutierrez (1997). The newsvendor problem in a global market: optimal centralized

and decentralized control policies for a two-market stochastic inventory system. Management

Science 43(5), 571–585.

Kouvelis, P., M. Lariviere (2000). Decentralizing cross-functional decisions: coordination through

internal markets. Management Science 46(8), 1049–1058.

Kranton, R., D. Minehart (2001). A theory of buyer-seller networks. American Economic Review

91(3), 485–508.

Krasa, S., A. Villamil (2000). Optimal contracts when enforcement is a decision variable. Econometrica

68(1), 119–134.

Kreps, D.M. (1990). A Course in Microeconomic Theory, Princton, Princeton University Press.

Krishnan, H., R. Kapuscinski, D. Butz (2001). Coordinating contracts for decentralized supply chains

with retailer promotional effort. University of Michigan Working Paper.

Lafountaine, F. (1992). Agency theory and franchising: some empirical results. Rand Journal of

Economics 23(2), 263–283.

Lafontaine, F., M. Slade (2001). Incentive contracting and the franchise decision, in: K. Chatterjee,

W. Samuelson (eds.), Game Theory and Business Applications, Boston, Kluwer Academic

Publishing.

Lal, R. (1990). Improving channel coordination through franchising. Marketing Science 9, 299–318.

Lariviere, M. (1998). Supply chain contracting and co-ordination with stochastic demand, in: S. Tayur,

R. Ganeshan, M. Magazine (eds.), Quantitative Models for Supply Chain Management, Boston,

Kluwer.

Lariviere, M. (2002). Inducing forecast revelation through restricted returns. Northwestern University

Working Paper.

Lariviere, M., V. Padmanabhan (1997). Slotting allowances and new product introductions. Marketing

Science 16, 112–128.

Lariviere, M., E. Porteus (2001). Selling to the newsvendor: an analysis of price-only contracts.

Manufacturing and Service Operations Management 3(4), 293–305.

Lee, H. (1987). A multi-echelon inventory model for repairable items with emergency lateral

transshipments. Management Science 33(10), 1302–1316.

Lee, H. (1996). Effective inventory and service management through product and process redesign.

Operations Research 44(1), 151–159.

Lee, H., S. Whang (1999). Decentralized multi-echelon supply chains: incentives and information.

Management Science 45(5), 633–640.

Lee, H., S. Whang (2002). The impact of the secondary market on the supply chain. Management

Science 48, 719–731.

Lee, H., V. Padmanabhan, T. Taylor, S. Whang (2000). Price protection in the personal computer

industry. Management Science 46(4), 467–482.

Lee, H., K.C. So, C. Tang (2000). The value of information sharing in a two-level supply chain.

Management Science 46, 626–643.

336 G.P. Cachon



Lim, W. (2001). Producer-supplier contracts with incomplete information. Management Science

47(5), 709–715.

Lippman, S., K. McCardle (1997). The competitive newsboy. Operations Research 45, 54–65.

Lu, X., J.S. Song, A. Regan (2002). Rebate, returns and price protection policies in supply chain

coordination. University of California at Irvine Working Paper.

Mahajan, S., G. van Ryzin (1999). Retail inventories and consumer choice, in: S. Tayur, R. Ganeshan,

M. Magazine (eds.), Quantitative Models for Supply Chain Management, Boston, Kluwer.

Mahajan, S., G. van Ryzin (2001). Inventory competition under dynamic consumer choice. Operations

Research 49(5), 646–657.

Majumder, P., H. Groenevelt (2001). Competition in remanufacturing. Production and Operations

Management 10(2), 125–141.

Marvel, H., J. Peck (1995). Demand uncertainty and returns policies. International Economic Review

36(3), 691–714.

Marx, L., G. Shaffer (2001a). Bargaining power in sequential contracting. University of Rochester

Working Paper.

Marx, L., G. Shaffer (2001b). Rent shifting and efficiency in sequential contracting. University of

Rochester Working Paper.

Marx, L., G. Shaffer (2002). Base contracts in games with ex-post observability. University of

Rochester Working Paper.

Messinger, P., C. Narasimhan (1995). Has power shifted in the grocery channel. Marketing Science

14(2), 189–223.

Milner, J., E. Pinker (2001). Contingent labor contracting under demand and supply uncertainty.

Management Science 47(8), 1046–1062.

Moinzadeh, K., S. Nahmias (2000). Adjustment strategies for a fixed delivery contract. Operations

Research 48(3), 408–423.

Moorthy, K.S. (1987). Managing channel profits: comment. Marketing Science 6, 375–379.

Mortimer, J.H. (2000). The effects of revenue-sharing contracts on welfare in vertically separated

markets: evidence from the video rental industry. University of California at Los Angeles Working

Paper, Los Angeles, CA.

Moses, M., S. Seshadri (2000). Policy mechanisms for supply chain coordination. IIE Transactions

32, 245–262.

Myerson, R. (1979). Incentive compatibility and the bargaining problem. Econometrica 47, 399–404.

Nahmias, S. (1993). Production and Operations Analysis, Boston, Irwin.

Narayanan, V., A. Raman (1997). Contracting for inventory in a distribution channel with stochastic

demand and substitute products. Harvard University Working Paper.

Netessine, S., N. Rudi (2000). Supply chain structures on the internet: marketing-operations

coordination. University of Pennsylvania Working Paper, Philadelphia, PA.

Netessine, S., N. Rudi (2000b). Centralized and competitive inventory models with demand

substitution. Forthcoming, Operations Research.

Netessine, S., R. Shumsky (2001). Revenue management games. University of Pennsylvania Working

Paper, Philadelphia, PA.

Novak, S., S. Eppinger (2001). Sourcing by design: product complexity and the supply chain.

Management Science 47(1), 189–204.

O’Brien, D., G. Shaffer (1992). Vertical control with bilateral contracts. Rand Journal of Economics

23, 299–308.

Padmanabhan, V., I.P.L. Png (1995). Returns policies: make money by making good. Sloan

Management Review Fall, 65–72.

Padmanabhan, V., I.P.L. Png (1997). Manufacturer’s returns policy and retail competition. Marketing

Science 16(1), 81–94.

Parker, R., R. Kapuscinsky (2001). Managing a non-cooperative supply chain with limited capacity.

University of Michigan Working Paper.

Parlar, M. (1988). Game theoretic analysis of the substitutable product inventory problem with

random demands. Naval Research Logistics Quarterly 35, 397–409.

Ch. 6. Supply Chain Coordination with Contracts 337



Pasternack, B. (1985). Optimal pricing and returns policies for perishable commodities. Marketing

Science 4(2), 166–176.

Pasternack, B. (1999). Using revenue sharing to achieve channel coordination for a newsboy type

inventory model. CSU Fullerton Working Paper, Fullerton.

Petruzzi, N., M. Dada (1999). Pricing and the newsvendor problem: a review with extensions.

Operations Research 47, 183–194.

Plambeck, E., T. Taylor (2002). Sell the plant? The impact of contract manufacturing on innovation,

capacity and profitability. Stanford University Working Paper.

Plambeck, E., S. Zenios (2000). Performance-based incentives in a dynamic principal-agent model.

Manufacturing and Service Operations Management 2, 240–263.

Porteus, E. (2000). Responsibility tokens in supply chain management. Manufacturing and Service

Operations Management 2(2), 203–219.

Porteus, E., S. Whang (1991). On manufacturing/marketing incentives. Management Science 37(9),

1166–1181.

Porteus, E., S. Whang (1999). Supply chain contracting: non-recurring engineering charge, minimum

order quantity, and boilerplate contracts. Stanford University Working Paper.

Randall, R., S. Netessine, N. Rudi (2002). Inventory structure and internet retailing: an empirical

examination of the role of inventory ownership. University of Utah Working Paper.

Reyniers, D., C. Tapiero (1995). The delivery and control of quality in supplier-producer contracts.

Management Science 41(10), 1581–1589.

Riordan, M. (1984). Uncertainty, asymmetric information and bilateral contracts. Review of Economic

Studies 51, 83–93.

Rochet, J., L. Stole (2002). Nonlinear pricing with random participation. Review of Economic Studies

69, 277–311.

Roundy, R. (1985). 98%-effective integer ratio lot-sizing for one-warehouse multi-retailer systems.

Management Science 31, 1416–1430.

Rubinstein, A. (1989). The electronic mail game: strategic behavior under ‘almost common

knowledge’. American Economic Review 79(3), 385–391.

Rudi, N., S. Kapur, D. Pyke (2001). A two-location inventory model with transhipment and local

decision making. Management Science 47(12), 1668–1680.

Scheller-Wolf, A., S. Tayur (1997). Reducing international risk through quantity contracts. Carnegie

Mellon Working Paper, Pittsburgh, PA.

Schweitzer, M., C. Cachon (2000). Decision bias in the newsvendor problem: experimental evidence.

Management Science 46(3), 404–420.

Shaffer, G. (1991). Slotting allowances and resale price maintenance: a comparison of facilitating

practices. Rand Journal of Economics 22, 120–135.

Silver, E., D. Pyke, R. Peterson (1998). Inventory Management and Production Planning and Scheduling,

New York, John Wiley and Sons.

Spengler, J. (1950). Vertical integration and antitrust policy. Journal of Political Economy, 347–352.

Stidham, S. (1992). Pricing and capacity decisions for a service facility: stability and multiple local

optima. Management Science 38(8), 1121–1139.

Tagaras, G., M.A. Cohen (1992). Pooling in two-location inventory systems with non-negligible

replenishment lead times. Management Science 38(8), 1067–1083.

Taylor, T. (2001). Channel coordination under price protection, midlife returns and end-of-life returns

in dynamic markets. Management Science 47(9), 1220–1234.

Taylor, T. (2002). Coordination under channel rebates with sales effort effect. Management Science

48(8), 992–1007.

Taylor, T. (2002b). Sale timing in a supply chain: when to sell to the retailer. Columbia University

Working Paper.

Tayur, S., Ganeshan, R., Magazine, M. (eds.) (1998). Quantitative Models for Supply Chain

Management, Boston, Kluwer.

Terwiesch, C., C. Loch (2002). Collaborative prototyping and the pricing of custom designed products.

University of Pennsylvania Working Paper.

338 G.P. Cachon



Terwiesch, C., J. Ren, T. Ho, M. Cohen (2002). An empirical analysis of forecast sharing in the

semiconductor equipment supply chain. University of Pennsylvania Working Paper.

Tirole, J. (1986). Procurement and renegotiation. Journal of Political Economy 94(2), 235–259.

Tomlin, B. (2000). Capacity investments in supply chain: sharing-the-gain rather than sharing-the-

pain. University of North Carolina Working Paper.

Topkis, D. (1998). Supermodularity and Complementarity, Princeton, Princeton University Press.

Tsay, A. (1999). Quantity-flexibility contract and supplier-customer incentives. Management Science

45(10), 1339–1358.

Tsay, A. (2001). Managing retail channel overstock: markdown money and return policies. Journal of

Retailing 77, 457–492.

Tsay, A. (2002). Risk sensitivity in distribution channel partnership: implications for manufacturer

return policies. Journal of Retailing 78, 147–160.

Tsay, A., N. Agrawal (1999). Channel conflict and coordination: an investigation of supply chain

design. Santa Clara University Working Paper, Santa Clara, CA.

Tsay, A., N. Agrawal (2000). Channel dynamics under price and service competition. Manufacturing

and Service Operations Management. 2(4), 372–391.

Tsay, A., W.S. Lovejoy (1999). Quantity-flexibility contracts and supply chain performance.

Manufacturing and Service Operations Management 1(2), 89–111.

Tsay, A., S. Nahmias, N. Agrawal (1998). Modeling supply chain contracts: a review, in: S. Tayur,

R. Ganeshan, M. Magazine (eds.), Quantitative Models for Supply Chain Management, Boston,

Kluwer.

van Mieghem, J. (1999). Coordinating investment, production and subcontracting. Management

Science 45(7), 954–971.

van Mieghem, J., M. Dada (1999). Price vs production postponement: capacity and competition.

Management Science 45(12), 1631–1649.

van Ryzin, G., S. Mahajan (1999). Supply chain coordination under horizontal competition. Columbia

University Working Paper, New York, NY.

Wang, Y., Y. Gerchak (2001). Supply chain coordination when demand is shelf-space dependent.

Manufacturing and Service Operations Management 3(1), 82–87.

Wang, Y., L. Jiang, Z.J. Shen (2001). Consignment sales, price-protection decisions and channel

performances. Case Western Reserve University Working Paper.

Watson, Noel (2002). Execution in supply chain management: dynamics, mis-steps and mitigation

strategies. University of Pennsylvania Dissertation.

Webster, S., S.K. Weng (2000). A risk-free perishable item returns policy. Manufacturing and Service

Operations Management 2(1), 100–106.

Whang, S. (1995). Coordination in operations: a taxonomy. Journal of Operations Management

12, 413–422.

Wilson, R. (1993). Nonlinear Pricing, Oxford, Oxford University Press.

Wu, D.J., P. Kleindorfer, J. Zhang (2002). Optimal bidding and contracting strategies for capital-

intensive goods. European Journal of Operational Research 137, 657–676.

Yüksel, O., H. Lee (2002). Sharing inventory risks for customized components. Stanford University

Working Paper.

Zhao, H., V. Deshpande, J. Ryan (2002). Inventory sharing and rationing in decentralized dealer

networks. Purdue University Working Paper.

Ch. 6. Supply Chain Coordination with Contracts 339



Chapter 7

Information Sharing and Supply
Chain Coordination

Fangruo Chen
Graduate School of Business, Columbia University

New York, NY 10027, USA

1 Introduction

The performance of a supply chain depends critically on how its members
coordinate their decisions. And it is hard to imagine coordination without
some form of information sharing. A significant part of supply chain
management research is devoted to understanding the role of information in
achieving supply chain coordination. It is the purpose of this chapter to review
this literature.1

The first part of the chapter focuses on papers that have contributed to our
understanding of the value of shared information. We first consider
information pertaining to the downstream part of the supply chain. The
next is upstream information. Finally, we discuss papers that study the
consequences of imperfect transmission of information. All the papers here
adopt the perspective of a central planner whose goal is to optimize the
performance of the entire supply chain.

The chapter then proceeds to discuss papers that address incentive issues
in information sharing. Here it is made explicit and prominent that supply
chains are composed of independent firms with private information. The
goal is to understand whether or not incentives for sharing information
exist, and if not, how they can be created. This section is divided into
three parts. When one firm has superior information, it may hide it to
gain strategic advantage or reveal it to gain cooperation. The former, the
less-informed party may try to provide incentives for the informed to release

1 For a summary of recent industry initiatives to improve supply chain information flows, see Lee and

Whang (2000).

A.G. de Kok and S.C. Graves, Eds., Handbooks in OR & MS, Vol. 11
� 2003 Elsevier B.V. All rights reserved.

341



its information. This is called screening, and it constitutes the first part of
the section. If the informed tries to convey its private information, it is
often the case that he has to ‘put his money where his mouth is’ in order
to be credible, i.e., signaling. This is the second part of the section.
The last part of the section deals with situations where it is difficult to say
if a supply chain member has more or less information; they simply
have different information about something they all care about (e.g., the
potential market size of a product). Here a common question is if inform-
ation sharing will emerge as an equilibrium outcome in some nonco-
operative game.

The chapter ends with some thoughts on future research directions.
The structure of the chapter provides an implicit taxonomy for thinking

about research on supply chain information sharing. Specifically, the sections
and subsections provide categories so that (hopefully) every piece of relevant
research finds its home. It is important to mention that the unnumbered,
boldfaced headings are meant to represent examples within a category, and
the examples may not be exhaustive. For example, Section 2.2 deals with the
value of upstream information, and within this subsection are several
examples (i.e., cost, lead time, capacity information). This should not be taken
to mean either that these are the only types of upstream information or that
they can only come from upstream. For example, an upstream supply chain
member (e.g., a manufacturer) may have some private information about
demand that the (downstream) retailers do not have, so demand information
is a possible type of upstream information. On the other hand, a seller may
not know a buyer’s cost structure, so cost information can also come from
downstream. In other words, the headings without section/subsection
numbers are not part of the taxonomy anymore.

A few words on how we choose the papers and what we are going to do
with them. The emphasis here is modeling, not analysis. Therefore, we prefer
papers with modeling novelties, and we want as much variety as possible given
limited space. So if there are several papers that are close to each other in the
‘novelty space’, we will just take one with a simple reference to the others.
Within a collection of papers, if there is no clear logical progression, we will
simply review them in chronological sequence. We will often present a
model without stating all the assumptions. The mentioning of results is often
brief and is meant to whet your appetite so that the original paper becomes
irresistable. We sometimes purposely ‘trivialize’ a model by further
specializing it (e.g., by making assumptions that a top journal referee would
be hard pressed to swallow). The reader should be assured that this is done for
ease of presentation and for crystallizing the main ideas without getting
bogged down on details. In terms of notation, we try to be consistent with
the original paper. The risk of this is that the reader may see different
symbols for, say, the wholesale price. But the chapter is sufficiently modu-
larized that we hope, the reader can easily see which symbol belongs where.
Needless to say, the papers presented in this chapter reflect the author’s
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knowledge and taste at a certain point in time, the former of which is
inevitably incomplete while the latter is constantly evolving.

2 Value of information

The perspective taken by this part of the literature is often that of a central
planner, who determines decision rules to optimize the performance of the
entire supply chain. The decision rules reflect the information available to
the managers who implement the rules. For example, the inventory manager
at a supply chain stage only has access to local inventory information, and so
the decision rule (determined by the central planner) for this manager must
be based on the local information. Clearly, if we increase the information
available to the manager (e.g., by providing access to inventory information
at other supply chain locations), the set of feasible decision rules is enlarged
and the supply chain’s performance may improve. The resulting improvement
is then the value of the additional information. This section reviews
papers that try to quantify the value of information in different supply chain
settings.

2.1 Downstream information

A significant part of the literature is interested in the value of information
pertaining to the downstream part of the supply chain (i.e., the part that is
closer to the end customers). We first consider papers that deal with
information sharing within a supply chain. A typical setup here is one where
the members of a supply chain share their information about the end customer
demand, in the form of realized demand or updated demand forecasts,
although other types of information are also discussed. We then review
models where information sharing takes place at a supply chain’s boundary,
e.g., when the supply chain’s customers provide advance warnings of their
demands. While most researchers use the supply chain-wide costs as the
performance measure, there is a stream of papers that use the ‘bullwhip
effect’ (i.e., the amplification of the order variance up the supply chain) as a
surrogate performance measure. These papers are considered at the end of this
subsection.

Information sharing within a supply chain
Here are some papers that study the value of giving the upstream

members of a supply chain access to downstream information, which can
be the point-of-sale data or information about the control rule used by
a downstream member. The customer demand process can be stationary or
nonstationary, and the structure of the supply chain can be serial or
distributional.

Ch. 7. Information Sharing and Supply Chain Coordination 343



Chen (1998a) studies the value of demand/inventory information in a
serial supply chain. The model consists of N stages. Stage 1 orders from
stage 2, 2 from 3,. . . , and stage N orders from an outside supplier with
unlimited stock. The lead times from one stage to the next are constant and
represent delays in production or transportation. The customer demand
process is compound Poisson. When stage 1 runs out of stock, demand is
backlogged. The system incurs linear holding costs at every stage, and linear
backorder costs at stage 1. The objective is to minimize the long-run average
total cost in the system.

The replenishment policy is of the (R, nQ) type. Each stage replenishes
a stage-specific inventory position according to a stage-specific (R, nQ)
policy: when the inventory position falls to or below a reorder point R, the
stage orders a minimum integer multiple of Q (base quantity) from its
upstream stage to increase the inventory position to above R. In case
the upstream stage does not have sufficient on-hand inventory to satisfy this
order, a partial shipment is sent with the remainder backlogged at the
upstream stage. The base quantities are fixed and the reorder points are
the only decision variables. Moreover, the base quantities, which are
denoted by Qi for stage i, ¼ 1,. . . ,N, satisfy the following integer-ratio
constraint:

Qiþ1 ¼ niQi, i ¼ 1, . . . ,N � 1

where ni is a positive integer. This assumption is made to simplify analysis,
but it also reflects some practical considerations aimed at simplifying
material handling such as packaging and bulk breaking. Moreover, there is
evidence that the system-wide costs are insensitive to the choice of base
quantities.2

Two variants of the above (R, nQ) policy are considered. One is based
on echelon stock: each stage replenishes its echelon stock with an
echelon reorder point. A stage’s echelon stock is the inventory position
of the subsystem consisting of the stage itself as well as all the
downstream stages, which includes the outstanding orders of the stage, either
in transit or backlogged at the (immediate) upstream stage, plus the
inventories in the subsystem, on hand or in transit, minus the customer
backorders at stage 1. Let Ri be the echelon reorder point at stage
i, i¼ 1, . . . ,N. Therefore, under an echelon-stock (R, nQ) policy, stage i
orders a multiple of Qi from stage iþ 1 every time its echelon stock falls to or
below Ri.

2 Such insensitivity results have been established for single-location models, see Zheng (1992) Zheng

and Chen (1992). This property is likely to carry over to multistage models. Also, the optimality of

(R, nQ) policies has been established by Chen (2000a) for systems where the base order quantities are

exogenously given.
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Alternatively, replenishment can be based on installation stock: each
stage controls its installation stock with an installation reorder point. A
stage’s installation stock refers to its local inventory position, i.e., its
outstanding orders (in transit or backlogged at the upstream stage) plus its
on-hand inventory minus backlogged orders from its (immediate) down-
stream stage. Let ri be the installation reorder point at stage i, i¼ 1, . . . ,N.
Therefore, under an installation-stock (R, nQ) policy, stage i orders a
multiple of Qi from stage i þ 1 every time its installation stock falls to
or below ri. Note that echelon-stock (R, nQ) policies require centralized
demand information, while installation-stock (R, nQ) policies only
require local ‘demand’ information, i.e., orders from the immediate
downstream stage. When every customer demands exactly one unit, i.e., the
demand process is simple Poisson, each order by stage i is exactly of
size Qi, i ¼ 1, . . . ,N. In this case, the (R, nQ)policy reduces to the (R,Q)
policy.

From Axsäter and Rosling (1993), we know that installation stock
(R, nQ) policies are special cases of echelon stock (R, nQ) policies. The two
policies coincide when

R1 ¼ r1, and Ri ¼ Ri�1 þQi�1 þ ri, i ¼ 2, . . . ,N:

(Note that ri is an integer multiple of Qi�1 for i � 2.) To see the intuition
behind this result, suppose the demand process is simple Poisson so that
(R, nQ) policies reduce to (R,Q) policies. Under the installation stock (R,Q)
policy, orders are ‘nested’ in the sense that every order epoch at stage i
coincides with an order epoch at stages i � 1, i � 2, . . . , 1. The installation
stock at stage j after each order is rj þQj for all j. Consequently, just before
stage i places an order, its echelon stock, which is the sum of the installation
stocks at stages 1 to i, is

Pi�1
j¼1 ðrj þQjÞ þ ri. Let this echelon stock level

be Ri, i ¼ 1, . . . ,N. It is easy to verify that the echelon reorder points so
defined satisfy the above equalities and the resulting echelon-stock policy is
identical to the installation-stock policy.

Echelon stock (R, nQ) policies have very nice properties. As a result, the
optimal echelon reorder points can be determined sequentially in a bottom-up
fashion starting with stage 1. Essentially, after a proper transformation,
the batch-transfer model reduces to a base-stock model of the Clark and
Scarf (1960) type. On the other hand, installation stock (R, nQ) policies
are not as nice; a heuristic algorithm is available for determining the
optimal installation-stock reorder points, based on several easy-to-compute
bounds.

As mentioned earlier, echelon-stock policies require centralized demand
information, while installation stock policies only require local information.
The relative cost difference between the two is a measure of the value of
centralized demand information. An extensive numerical study (with 1,536
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examples) shows that the value of information ranges from 0 to 9% with an
average of 1.75%.

Gavirneni, Kapuscinski and Tayur (1999) study different patterns of
information flow between a retailer and a supplier. The retailer faces
independent and identically distributed (i.i.d.) demands and replenishes his
inventory by following an (s,S) policy. At the beginning of each period, the
retailer reviews his inventory level (on-hand inventory minus customer
backorders), and if it is below s, he places an order with the supplier to
raise the inventory level to S. The supplier satisfies this order as much as
possible. In the event the supplier does not have sufficient on-hand inventory
to satisfy the retailer order, a partial shipment is made to the retailer,
and the retailer obtains the unfilled part of the order from an external
source. There is no delivery lead time with both sources of supply. Customer
demand arises at the retailer during the period, with complete backlogging.
The focus of the analysis is the supplier, who after satisfying (partially or fully)
a retailer order at the beginning of each period, decides how much to produce
for the period. Production takes one period and is subject to a capacity
constraint. The supplier incurs linear inventory holding costs and linear
penalty costs for lost retailer orders. The objective is to determine a
production strategy to minimize the supplier’s costs, under various scenarios
that differ in terms of the supplier’s information about the downstream part
of the supply chain.

The first scenario assumes that the supplier has no information about
the retailer except for the orders the retailer has placed in the past. Moreover,
the supplier is rather naive in assuming that the orders from the retailer
are i.i.d. Under this assumption, the best the supplier can do is to follow
the modified base-stock policy with the same order-up-to level in every
period.3

The second model assumes that at the beginning of each period, the
supplier knows the number of periods i since the last retailer order.
In addition, the supplier knows the demand distribution at the retailer, the
fact that the retailer follows an (s,S) policy, and the specific policy parameters
used by the retailer. Given this information, the supplier is able to
determine the probability that the retailer is going to place an order in the
coming period and the distribution of the order size. This influences
the current production decision. It is shown that the optimal policy for the
supplier in this case is again a modified base-stock policy with state-dependent
order-up-to level zi.

3 A modified base-stock policy with order-up-to level z works like this: if the inventory position (on-

hand inventory plus work-in-process minus backorders) is less than z, produce as much as possible

under the capacity constraint to increase it to z; if the inventory position is above z, produce nothing.

In the context of Gavirneni et al., there are no backorders at the supplier, only lost sales, and there is

no work-in-process at any review time. The optimality of such a policy has been established by

Federgruen and Zipkin (1986a,b).
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The third and final model assumes that the supplier has access to all
the information available to her in the second model. In addition,
at the beginning of each period, the supplier knows the value of j, the
number of units sold by the retailer since the last retailer order. Again, a
modified base-stock policy with state-dependent order-up-to level zj is
optimal.4

A numerical study has been conducted by Gavirneni et al. to
understand the differences between the above three models. From the
first model to the second, the percentage decrease in supplier costs varies
from 10 to 90%; and the savings increase with capacity. From the second
model to the third model, the savings range from 1 to 35%. They also report
sensitivity results on the cost savings as a function of the supplier capacity, the
supplier cost parameters, the retailer demand distribution, and the retailer’s
policy parameters. The key observations are: (1) when the retailer
demand variance is high, or the value of S � s is either very high or very
low, information tends to have low values, and (2) if the retailer demand
variance is moderate, and the value of S � s is not extreme, information can
be very beneficial.

Lee, So and Tang (2000) study the value of sharing demand information in
a supply chain model with a nonstationary demand process. The supply chain
consists of two firms, one retailer and one manufacturer. The customer
demand process faced by the retailer is an AR(1) process:

Dt ¼ d þ �Dt�1 þ "t

where d > 0, � 1 < � < 1, and "t are independent random variables
with a common normal distribution with mean zero and variance �2.
Both firms know the values of the parameters of the demand process, i.e., d, �
and �. The retailer sees the realization of demand in each period, while
the manufacturer’s information depends on, well, what the retailer provides.

The retailer reviews its inventory at the end of each period. Take
period t. The retailer satisfies Dt, the demand for period t, from its on-hand
inventory with complete backlogging. At the end of the period, the
retailer places an order for Yt units with the manufacturer. The manufacturer

4 One can imagine that the retailer transmits his demand data to the supplier in every period via

some electronic medium. The supplier can then determine the value of j and use that information

in her production decisions (through the state-dependent policy). A supplier’s optimal use of timely

demand information from a retailer has been addressed in other papers. For example, Gallego,

Huang, Katircioglu and Leung (2000) address this issue in a continuous-time model without

capacity constraints. They also show that it is not always in the retailer’s interests to share demand

information with the supplier. Another reference is Bourland, Powell and Pyke (1996) who study a

supply chain model with a component plant (seller) and a final assembly plant (buyer). The

production cycles of the two factories do not coincide. Traditionally, information sharing occurs

only when the buyer places an order. They study the impact of real-time communication of the

buyer’s demand data.
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satisfies this order from its own on-hand inventory, also with complete
backlogging.5 At the beginning of the next period (period tþ 1) the
manufacturer places an order with an outside supplier with ample stock to
replenish its own inventory. For easy exposition, we assume that the lead
times at both sites are zero, i.e., transportation from the outside supplier to the
manufacturer or from the manufacturer to the retailer is instantaneous. (Note
that if part of Yt is backlogged at the manufacturer, that backlog will remain
there until the end of period tþ 1, even though the manufacturer’s
replenishment lead time is zero. This is because the manufacturer only fills
the retailer’s orders at the ends of periods. The case with a different sequence
of events can be analyzed similarly.)

We begin with the retailer’s ordering decisions. Suppose we are now at the
end of period t. What is the ideal inventory level for the retailer going into
period tþ 1? Since the delivery lead time is zero, the retailer can be myopic,
i.e., to minimize its expected holding and backorder costs incurred in period
tþ 1. The demand in period tþ 1 is Dtþ1 ¼ d þ �Dt þ "tþ1, which is normally
distributed with mean d þ �Dt and standard deviation �. (Dt has been realized
by the end of period t.) Therefore, the ideal inventory level going into period
tþ 1 is

St ¼ d þ �Dt þ k�

where k is a constant depending on the holding and backorder cost parameters
at the retailer. (This is a well-known formula for the newsvendor model with
normal demand.) To derive the order quantity Yt, suppose the retailer’s
inventory at the beginning of period t is St�1. Thus

St�1 �Dt þ Yt ¼ St

or

Yt ¼ Dt þ St � St�1:

This gives us the demand process facing the manufacturer. (The value of Yt

can be negative, an unpleasant scenario, which should indicate to you the
potential suboptimality of the myopic policy. But let us confine ourselves to
cases where this rarely happens.)

5 The original assumption made in Lee et al. is that if the manufacturer’s on-hand inventory is

insufficient to satisfy a retailer order, the manufacturer will make up the shortfall from an external

source. The analytical benefit of this assumption is that the retailer always gets its orders filled in full.

But this actually complicates the demand process at the manufacturer, who is effectively operating

under a lost-sales regime. It is well known that when we combine lost sales with a positive

replenishment lead time, it is very difficult to characterize the distribution of the total demand (or

satisfied retailer orders in this case) over a lead time. This problem is not addressed in Lee et al. The

same comment applies to Raghunathan (2001), to be reviewed shortly.
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Now consider the manufacturer’s ordering decisions. Suppose we are at the
beginning of period tþ 1, having just received and satisfied (completely or
partially) the retailer order Yt. What is the manufacturer’s ideal inventory
level for the beginning of period tþ 1? Since the manufacturer’s replenishment
lead time is zero and the outside supplier has ample stock, the manufacturer
can also be myopic, minimizing its expected holding and backorder costs in
period tþ 1 alone. (This argument is again not water-tight because the
manufacturer’s myopic inventory level in one period may prevent it from
reaching its myopic inventory level in the next period, i.e., there can be too
much inventory. If so, the myopic policy is not optimal. Let us not worry
about this here.) In period tþ 1, the retailer order is Ytþ1, which can be
expressed as

Ytþ1 ¼ Dtþ1 þ Stþ1 � St ¼ Dtþ1 þ �ðDtþ1 �DtÞ:

Since Dtþ1 ¼ d þ �Dt þ "tþ1, we have

Ytþ1 ¼ ð1þ �Þd þ �
2Dt þ ð1þ �Þ"tþ1: ð2:1Þ

The manufacturer’s ideal inventory for period tþ 1 can be written as

Tt ¼ E½Ytþ1� þ K Std½Ytþ1�

where K is a constant depending on the manufacturer’s holding and
backorder costs. Moreover, the manufacturer’s minimum expected (one-
period) cost is proportional to Std½Ytþ1�, the value of which depends on what
the manufacturer knows about the retailer’s demand process at the beginning
of period tþ 1.

As mentioned earlier, the manufacturer knows the value of Yt in any case.
If there is no sharing of demand information between the retailer and the
manufacturer, the latter does not see Dt. Since Yt ¼ Dt þ �ðDt �Dt�1Þ and
Dt ¼ d þ �Dt�1 þ "t, we have

Dt ¼
Yt � d � "t

�
:

Plugging this into (2.1), we have

Ytþ1 ¼ d þ �Yt � �"t þ ð1þ �Þ"tþ1:

Therefore

Std½Ytþ1j no sharing � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð1þ �Þ2

q
: ð2:2Þ
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On the other hand, if demand information is shared with the manufacturer,
the latter sees the value of Dt, then we have from (2.1)

Std½Ytþ1j sharing � ¼ �ð1þ �Þ: ð2:3Þ

From (2.2) to (2.3), we see the reduction in the manufacturer’s costs as a
result of information sharing. (Recall that the manufacturer’s costs are
proportional to the standard deviation of its lead time demand, i.e., Ytþ1.) The
savings can be significant, as Lee et al. have shown by analytical and
numerical results.

In a note commenting on Lee et al., Raghunathan (2001) argues that the
manufacturer can do much better in the case without information sharing.
The idea is that the manufacturer can use its information about the retailer’s
order history to greatly sharpen its demand forecast. Let us see how this
works. From Yt ¼ Dt þ �ðDt �Dt�1Þ, we have

Dt ¼
1

1þ �
Yt þ

�

1þ �
Dt�1:

Applying the above equation repeatedly, we have

Dt ¼
1

1þ �

Xt�1
i¼1

�

1þ �

� �i

Ytþ1�i þ
�

1þ �

� �t

D0

where it is assumed D0 ¼ d þ "0. Plugging the above into (2.1),

Ytþ1 ¼ ð1þ �Þd þ
�2

1þ �

Xt�1
i¼1

�

1þ �

� �i

Ytþ1�i þ
�tþ2

ð1þ �Þt
D0 þ ð1þ �Þ"tþ1

with

Std½Ytþ1j no sharing � ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2tþ4

ð1þ �Þ2t
þ ð1þ �Þ2

s
:

It can be shown that the above expression is less than (2.2), suggesting that the
value of information is less than what is reported in Lee et al. Moreover, as
t!1, the benefits effectively disappear.

Cachon and Fisher (2000) provide a model to quantify the value of
downstream inventory information in a one-warehouse multiretailer system.
When the warehouse has access to real-time inventory status at the retailers as
opposed to just retailer orders, it can make better ordering and allocation
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decisions. The supply chain benefits, but by how much? (We choose not to
refer to the warehouse as a supplier, for the view taken here is that of a central
planner.)6

The model consists of one warehouse and multiple, identical retailers.
The periodic customer demands at the retailers are i.i.d., both across retailers
and across time periods. The retailers replenish their inventories by ordering
from the warehouse, who in turn orders from an external source with
unlimited inventory. Complete backlogging is assumed at both the retail and
the warehouse level. The replenishment lead time at the warehouse is constant,
so are the transportation lead times from the warehouse to the retailers.
Linear inventory holding costs are incurred at the warehouse and the
retailers, and linear penalty costs are incurred at the retailers for customer
backorders. The objective is to minimize the long-run average system-wide
holding and backorder costs (i.e., the central planner’s view).

Inventory transfers from the warehouse to the retailers are restricted to
be integer multiples of Qr, an exogenously given base quantity. Similarly,
orders by the warehouse (to the external source) must be integer multiples of
QsQr, for some positive integer Qs, another given parameter. The decisions for
the retailers are when to place an order with the warehouse, and how many
batches (each of size Qr) to order, and the decisions for the warehouse are
when to place an order with the outside source, and how many sets of
batches to order (each set consists of Qs batches, each of size Qr).

In the scenario with traditional information sharing, the warehouse
only observes the retailers’ orders. Thus a replenishment policy can only be
based on local information. Specifically, each retailer follows an ðRr, nQrÞ

policy, i.e., whenever its inventory position (its outstanding orders, in transit
or backlogged at the warehouse, plus its on-hand inventory minus its
customer backorders) falls to Rr or below, order a minimum integer multiple
of Qr to increase its inventory position to above Rr. Similarly, the warehouse

6 There is a large body of literature on one-warehouse multiretailer systems. One way to categorize this

literature is by looking at whether or not there are economies of scale in transferring inventory from

one location to another. If the answer is no, then the focus is on the so-called one-for-one

replenishment policies. The key references in this area are: for continuous-time models, Sherbrooke

(1968), Simon (1971), Graves (1985), Axsäter (1990), Svoronos and Zipkin (1991), Forsberg (1995) and

Graves (1996); and for discrete-time models, Eppen and Schrage (1981), Federgruen and Zipkin

(1984a,b), Jackson (1988) and Diks and de Kok (1998). If there are economies of scale, then a batch-

transfer policy makes more sense. The key references here are: for continuous-time models,

Deuermeyer and Schwarz (1981), Moinzadeh and Lee (1986), Lee and Moinzadeh (1987a,b),

Svoronos and Zipkin (1988), Axsäter (1993b, 1997, 1998, 2000) and Chen and Zheng (1997); and for

discrete-time models, Aviv and Federgruen (1998), Chen and Samroengraja (1999, 2000a) and Cachon

(2001). For comprehensive reviews on the above literature, see Axsäter (1993a) and Federgruen (1993),

and Chapter 10 of this volume by Sven Axsäter. Most of the replenishment policies studied are based

on local inventory information, and only a couple use centralized demand/inventory information. The

objectives of these papers are typically to show how to determine the system-wide costs for a given class

of policies. The desire to understand the value of demand/inventory information appeared only

recently.
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follows an ðRs,nQsÞ policy: whenever its inventory position (orders in transit
plus on-hand inventory minus backlogged retailer orders) falls to RsQr or
below, order an integer multiple of QsQr units. The decision variables are the
reorder points Rr and Rs.

When the warehouse is unable to satisfy every retailer’s order in a period,
it follows an allocation policy. It is called a batch priority policy that works
as follows. Suppose a retailer orders b batches in a period, then, the first
batch in the order is assigned priority b, the second batch is assigned priority
b� 1, etc. All batches ordered in a period (by all retailers) are placed in a
shipment queue, with the batch having the highest priority enters the queue
first. (The rationale for this allocation policy is that a retailer ordering the
most batches in a period is, naturally, considered to have the highest need for
inventory.) When multiple batches have the same priority, they enter the
queue in a random sequence. A shipment queue is maintained for each period.
The retailers’ orders are satisfied in the order in which the shipment queues are
created and within each shipment queue, on a first-in first-out basis. Notice
that the warehouse’s stock allocation is based on the retailers’ ‘needs’ at the
time the orders are placed.

The second scenario, called full information sharing, is where the
warehouse has access to the retailers’ inventory status on a real-time basis.
In this case, the retailers continue to use the ðRr,nQrÞ policy described earlier.
The warehouse, however, uses more sophisticated rules for ordering
and allocation. The exact policy is complicated. The idea behind the new
ordering policy is that the warehouse should perform some sort of cost-benefit
analysis for each set of batches added to an order, with the cost being
additional holding cost at the warehouse and the benefit being less delay
for the retailers’ orders. On the other hand, with immediate access to
retailers’ inventory status, the warehouse can allocate inventory (to satisfy
backlogged retailer orders) based on the retailers’ needs at the time of
shipment.

By comparing the system-wide costs under traditional and full information
sharing, one obtains a measure of the value of downstream inventory
information. In a numerical study with 768 examples, it is found that
information sharing reduces supply chain costs by 2.2% on average, with the
maximum at 12%.7

Aviv and Federgruen (1998) consider a supply chain model consisting of a
supplier and multiple retailers. The members of the supply chain are
independent firms. In this decentralized setting, they attempt to characterize
the value of sales information, which is defined to be the reduction in supply

7 Cachon and Fisher also provide a lower bound on the system-wide costs under full information, and

compare that with the costs under traditional information sharing. This does not change the picture on

the value of information in any significant way, meaning the proposed full-information policy is near-

optimal. Moreover, they show, again via numerical examples, that significant savings can be had if the

lead times or batch sizes (due to fixed ordering costs) are reduced, which may be expected from better

information-linkup. Similar findings have been reported in Chen (1998b).
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chain-wide costs if the supplier has access to real-time sales data at the retail
level.8 They then proceed to consider the impact of a vendor managed
inventory (VMI) program, which comes with real-time information sharing
and puts the supplier in the position of a central planner for the supply chain.
Their main conclusions are based on three models: a decentralized model
without information sharing, a decentralized model with information sharing,
and a centralized model with information sharing.

We begin with the base model. There are J retailers. Customer demands are
stochastic and occur at the retail sites only. The retailers monitor their
inventories periodically. The demand processes at the retailers are
independent. Demands in different periods at the same retailer are i.i.d.
according to a retailer-specific distribution. When demand exceeds on-hand
inventory at a retailer, the excess demand is backlogged. The retailers
replenish their inventories from the supplier, who in turn replenishes its own
inventory through production. The transportation lead times from the
supplier to the retailers are constant but may be retailer-specific. The
production lead time at the supplier is also constant. The production quantity
that the supplier can initiate in a period is subject to a constant capacity
constraint. Each retailer incurs a fixed cost for each order it places with the
supplier, linear inventory holding costs, and linear penalty costs for
customer backorders. These cost parameters are stationary over time, but
they can be retailer-specific. The supplier incurs linear holding costs for its on-
hand inventory and linear penalty costs for backorders of retailer orders.
This latter cost component is a contract parameter, which is given
exogenously and represents a revenue for the retailers. There are no fixed
costs for initiating a production run at the supplier.

The replenishment policies at the retailers are of the ðm,�Þ type,
whereby the retailer reviews its inventory position every m periods and places
an order to increase it to �. The values of the policy parameters can be retailer-
specific, with ðmj, �jÞ for retailer j, j ¼ 1, . . . , J. Let M be the least common
multiple of m1, . . . ,mJ . Therefore, the joint order process of the retailers
regenerates after a grand replenishment cycle of M periods. In general, the
replenishment cycles of the retailers are not coordinated. Aviv and Federgruen
consider two extreme arrangements in this regard. One is called ‘peaked’,
in which all retailers order at the beginning of a grand replenishment
cycle, and the other ‘staggered’, in which the retailer cycles are spread out to
achieve a smooth order process for the supplier. (The staggered pattern is
clearly defined if the retailers are identical. Otherwise, one needs to spell
out what is meant by ‘smooth’. Staggered policies have been proposed and
studied by Chen and Samroengraja (2000a) in one-warehouse multiretailer
systems.)

8 This paper therefore deviates from the mainstream approach of quantifying the value of information

in centralized models.
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Given that the demand process at the supplier is cyclical, it is reasonable
to expect that the supplier’s production policy is also cyclical. Aviv and
Federgruen assume that the supplier follows a modified base-stock policy with
cyclical order-up-to levels, whereby the supplier initiates a production run,
subject to the capacity constraint, in period t to increase its inventory position
to �m, if period t is the mth period in the grand cycle, m ¼ 0, 1, . . . ,M � 1.9 In
the event that the supplier cannot satisfy all retailers’ orders in a period, an
allocation mechanism is given that is based on some measure of expected
needs of the retailers. A shipment can be sent to a retailer even though it is not
the retailer’s ordering period. (Recall that the retailers order intermittently.)
Of course, this occurs only when the supplier backlogs an order (or part of it)
from the retailer and fills it in a subsequent period.

The firms minimize their own long-run average costs in a noncooperative
fashion. Ideally, the solution to this noncooperative game can be obtained by
using some established equilibrium concept. Since this is intractable, Aviv and
Federgruen take a two-step approach: first, the retailers optimize assuming the
supplier has ample stock, and then, given the retailers’ decisions, the supplier
optimizes. This completes our description of the base model.

The second model retains the above decentralized structure but assumes
that the supplier observes the realized demands at the retail sites immediately.
This information allows the supplier to better anticipate the orders that the
retailers are going to place in future periods. As a result, the supplier can use a
state-dependent, modified base-stock policy, where the state now includes not
only where in a grand cycle the current period is but also a summary of
relevant sales information from the retail sites.

Finally, the third model assumes that a VMI program is in place,
which provides the supplier with immediate access to the sales data at the
retail sites and gives the supplier the rights to decide when and how much to
ship to each retailer. It is assumed that the VMI contract is such that it is
in the supplier’s interests to minimize the total costs in the supply chain.
Aviv and Federgruen propose a heuristic method to solve this centralized
planning problem.

A numerical study shows that the average improvement in supply
chain costs from the first to the second model is around 2%, with a range
from 0 to 5%. Most of these savings accrue to the supplier. From the second
model to the third, the average improvement is 4.7%, with a range from 0.4
to 9.5%. It is also found that the value of information sharing and
VMI increases, as the degree of heterogeneity among the retailers increases,
the lead times become longer, or the capacity becomes tighter. Finally, the
system tends to perform better with staggered retailer cycles rather than the
peaked pattern.

9 They also consider a policy with a constant order-up-to level. For proofs of the optimality of the

cyclical base-stock policies in single-location settings, see Aviv and Federgruen (1997) and Kapuscinski

and Tayur (1998).
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One of the key drivers for production-inventory planning decisions is
demand forecast. In any given period, the firm determines a set of predictions
for the demands in future periods based on its information about the
operating environment and planned activities. As time progresses and new
information becomes available, the firm revises its demand forecast. From the
standpoint of production-inventory planning, an important question is how
to integrate the evolving demand forecast into the planning decisions. Below,
we summarize several papers that address this question.

Gullu (1997) studies a two-echelon supply chain consisting of a central
depot and N retailers. The depot serves as a transshipment center where
an order arriving at the depot from an outside supplier is immediately
allocated among the retailers. (Thus the depot does not hold inventory.)
Customer demand arises only at the retailers, with unsatisfied demand fully
backlogged. The objective is to determine a depot replenishment/allocation
policy that minimizes the system-wide costs. A unique feature of the model is
that each retailer maintains a vector of demand forecasts for a number of
future periods, and this vector is updated from one period to the next.
Gullu considers two models, one that utilizes the demand forecasts in the
replenishment/allocation decision and the other that ignores the forecasts.
By comparing the two models, one sees the value of demand information
(contained in the forecasts).

The evolution of demand forecasts is described by the martingale model
of forecast evolution (MMFE).10 Let Dj

t be retailer j’s demand forecasts
for periods t, tþ 1, . . . at the end of period, t, j ¼ 1, . . . ,N. That is,

Dj
t ¼ ðd

j
t, t, d

j
t, tþ1, . . .Þ

where d j
t, t is the realized demand for period t (thus not really a forecast) and

d j
t, tþk, k � 1, is the retailer’s forecast, made at the end of period t, for the
demand in period tþ k. In the additive model, Dj

t is obtained by adding an
error term (or adjustment) to each relevant component of Dj

t�1, i.e.,

d j
t, t ¼ d j

t�1, t þ "
j
t, 1

d j
t, tþ1 ¼ d j

t�1, tþ1 þ "
j
t, 2

..

.

Let �"" jt ¼ ð"
j
t, 1,"

j
t, 2, . . .Þ and �""t ¼ ð �""

1
t , . . . , �""

N
t Þ. Gullu assumes that " jt, k ¼ 0 for all

k >M for some positive integer M, for all t and all j. In other words, the new

10 For the development of the MMFE model, see Hausman (1969), Graves, Meal, Dasu and Qiu

(1986), Graves, Kletter and Hetzel (1998), Heath and Jackson (1994). Hausman (1969) and Heath and

Jackson (1994) also consider a multiplicative model.
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information collected during period t only affects the demand forecasts in M
periods (i.e., the current period and the next M � 1 periods). Moreover, it is
assumed that �""t, for all t, are independent and have the same multivariate
normal distribution with zero mean. It is, however, possible that for a
given t, the different components of �""t are correlated. This allows for modeling
of demand correlation over time and across retailers. Finally, the initial
forecast for the demand in a period that is more than M periods away is a
constant, i.e.

d j
t, tþk ¼ �

j, 8t and 8k �M:

(Thus � j is the mean demand per period at retailer j.) Consequently,

d j
t, t ¼ d j

t�1, t þ "
j
t, 1 ¼ � � � ¼ �

j þ
XM
i¼1

" jt�iþ1, i

Letting �2j, i be the variance of " jt, i, we have

Var½d j
t, t� ¼

XM
i¼1

�2j, i

Note that at the end of period t� 1, the conditional variance of d j
t, t given

d
j
t�1, t is only �

2
j, 1. In other words, as the demand forecast for a fixed period is

successively updated, the variance for the demand in that period is
successively reduced. This reduction in demand uncertainty in turn leads to
improvement in supply chain performance.11

Under the above demand model, Gullu considers two scenarios depending
on whether or not the demand forecasts are used in the depot’s allocation
decision. The depot’s replenishment policy is the order-up-to S policy,
i.e., in each period, the depot places an order with the outside supplier to
increase the system-wide inventory position to the constant level S.12 The
key analytical results are that the use of demand forecasts leads to lower
system-wide costs and if and only if the backorder penalty cost rate is higher
than the holding cost rate (identical cost rates are assumed across retailers), a
lower system-wide inventory position. (This latter result is well known for the
newsvendor model with normal demand.) There are also various asymptotic
results for some special cases, which we omit.

11 Updates of demand forecasts do not always make them more accurate, see Cattani and Hausman

(2000) for both empirical and theoretical evidence.
12 It is possible that the supply chain’s performance can be improved if the depot’s replenishment

decision takes into account the demand forecasts at the retail level. This should be investigated. If you

are familiar with Eppen and Schrage (1981), then you can see that the Gullu model is basically the

Eppen–Schrage model with forecast evolution. The analysis is also similar to Eppen-Schrage’s.
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Toktay and Wein (2001) consider a single-item, single-stage, capacitated
production system with an MMFE demand process. Random demand for the
item arises in each period. Demand is satisfied from the finished-goods
inventory, which is replenished by a production system with capacity Ct in
period t. That is, the system can produce up to Ct units of the product in
period t, with Ct in different periods being i.i.d. normal random variables with
mean � and variance �2C. If demand exceeds the finished-goods inventory, the
excess demand is fully backlogged. Let It be the (finished goods) inventory
level at the end of period t. The system incurs holding and backorder
costs equal to ðhIþt þ bI�t Þ in period t, where h and b are the holding and
backorder cost rates. Let Pt be the production quantity in period t. Thus
Pt ¼ minfQt�1,Ctg, where Qt�1 is the number of production orders waiting to
be processed at the end of period t� 1. At the end of each period t, Rt, new
orders are released to the production system. Thus Qt ¼ Qt�1 � Pt þ Rt. The
objective is to find a release policy fRtg to minimize the expected steady-state
holding and backorder costs.13

Let Dt be the demand in period t. The demand process is stationary with
E½Dt� ¼ l. (Thus we need � > l for stability.) Let Dt, tþi be the forecast
for Dtþi determined at the end of period t, i � 0. Thus Dt, t is the realized
demand in period t. It is assumed that nontrivial forecasts are available only
for the next H periods, i.e., Dt, tþi ¼ l for all i > H. Define "t, tþi ¼ Dt, tþi�

Dt�1, tþi, i � 0: It is then clear that "t, tþi ¼ 0 for al i > H. Thus "t ¼
ð"t, t, "t, tþ1, . . . , "t, tþHÞ is the forecast update vector whose value is observed at
the end of period t. The forecast update vectors (for different periods) are
assumed to be i.i.d. normal random variables with zero mean.

Toktay and Wein consider two classes of release policies: one ignores the
forecast information, and the other utilizes it. In the former case, Rt ¼ Dt.
Under the initial condition that Q0 ¼ 0 and I0 ¼ sm, the proposed release
policy leads to Qt þ It ¼ sm for all t.14 To integrate the demand forecasts into
the release policy, consider

Rt ¼
XH
i¼0

Dt, tþi �
XH�1
i¼0

Dt�1, tþi ¼
XH�1
i¼0

"t, tþi þDt, tþH ¼
XH
i¼0

"t, tþi þ �:

Under this release policy and with proper initial conditions, one can show
that for all t

Qt þ It �
XH
i¼1

Dt, tþi ¼ sH

13 What queuing folks call a release policy is called a replenishment policy by inventory folks.
14 In traditional inventory lingo, Qt is the outstanding orders, while It is the inventory level. The sum of

the two is the inventory position. The proposed policy is thus a base-stock policy whereby the

inventory position is maintained at a constant level.
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for some constant sH which can be controlled by setting the initial
inventory level.15 A key finding of the paper is the observation that excess
production capacity, as measured by �� l, and demand information, as
contained in the demand forecasts, are substitutes. (Other studies on capa-
citated problems with forecast evolution include Gullu (1996) and Gallego
and Toktay (1999).)

Aviv (2001) considers a supply chain model with one retailer and one
supplier. Customer demand arises at the retailer, who replenishes its inventory
from the supplier, who in turn orders from an outside source with ample
stock. The two members of the supply chain independently forecast the
customer demands in future periods and periodically adjust their forecasts as
more information becomes available. The retailer and the supplier are
modeled as a team in the sense that they share a common objective to
minimize the system-wide costs, but they do not necessarily share their
demand forecasts. Aviv studies the following three scenarios. In scenario one,
the two members neither share their demand forecasts nor use their own
demand forecasts in making replenishment decisions. In scenario two, they
still do not share their demand forecasts, but now they each integrate
their own forecasts in their replenishment decisions. In scenario three, they
share their demand forecasts and use the shared information in their
replenishment decisions.

Aviv uses an MMFE demand model. The demand in period t, dt, is the
sum of a constant and a stream of random variables representing
adjustments to the forecast of dt made at different times leading up to period
t. Specifically,

dt ¼ �þ "t þ
X1
i¼0

ð"rt, i þ "
s
t, iÞ

where � is a constant, f"tgt�1 are i.i.d. normal random variables, the
components of the vector fð"rt, i, "

s
t, iÞg
1
i¼0 are independent and each a bi-variate

normal and the vectors (for differentt) are i.i.d., and f"tgt�1 are independent of
fð"rt, i, "

s
t, iÞgt�1, i�0. All the random variables have zero mean. (Different

notation is used in Aviv.) As a result, fdtg is a sequenceof i.i.d. normal
random variables with mean �. At the beginning of period �, for any �, the
retailer privately observes the vector f"rt0, t0��gt0��, and the supplier privately

15 Again one can draw some connection to inventory theory here. As noted above Qt þ It is the

inventory position at the end of period t. So the second release policy corresponds to a modified base-

stock policy that is based on an ‘adjusted inventory position.’ The adjustment is the total forecasted

demand in the nextH periods. From inventory theory, the ‘optimal’ adjustment should be based on the

demand during the replenishment ‘lead time.’ The problem is that there is no lead time here, only

capacity. The proposed release policy seems to draw an equivalence between ‘lead time’ and the

forecast horizon in a capacitated production system. If capacity is tight, then the ‘lead time’ should be

long, and the opposite holds if capacity is ample. But that has little to do with the forecast horizon.
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observes the vector f"st0, t0��gt0��. Therefore, by the beginning of period
t� k, k � 0, the retailer has observed the value of

P1
i¼k "

r
t, i whereas the

supplier has observed the value of
P1

i¼k "
s
t, i: It is easy to see that as they get

closer and closer to period t, i.e., as k decreases, the supply chain members
have less and less uncertainty about dt (or better and better forecast for dt). In
scenario three, the supply chain members share their private information.
This enables them to improve (by unifying) their demand forecasts.

In a numerical study, Aviv found that integrating the forecast updates in
the replenishment decisions reduces, on average, the supply chain costs by
11%, and information sharing between the retailer and the supplier brings in
an additional reduction of 10%.

It is worthwhile to note that demand forecasts can take other forms with
different patterns of evolution. For example, a parameter of the demand
distribution may be unknown. Beginning with a prior distribution for the
unknown parameter, one can sharpen the estimate of the parameter after
each observation of demand. The production/inventory decisions can be
made to dynamically reflect the new information that becomes available as
time progresses. Alternatively, demands in different periods may be
correlated and the data on early sales can be used to update the forecasts
for the later sales. The following are additional papers that incorporate
adjustments of demand forecasts: Scarf (1959, 1960), Iglehart (1964),
Murray and Silver (1966), Hausman and Peterson (1972), Johnson and
Thompson (1975), Azoury and Miller (1984), Azoury (1985), Bitran, Haas
and Matsuo (1986), Miller (1986), Bradford and Sugrue (1990), Lovejoy
(1990, 1992), Matsuo (1990), Fisher and Raman (1996), Eppen and Iyer
(1997a,b), Sobel (1997), Barnes-Schuster, Bassok and Anupindi (1998),
Brown and Lee (1998), Lariviere and Porteus (1999), Dong and Lee (2000),
Donohue (2000), Milner and Kouvelis (2001), and Ding, Puterman and Bisi
(2002). On the other hand, the demand process can be modulated by an
exogenous Markov chain; the state of the exogenous Markov chain
determines the current period’s demand distribution. For inventory models
with Markov-modulated demands, see Song and Zipkin (1992, 1993, 1996a),
Sethi and Cheng (1997), Chen and Song (2001), and Muharremoglu and
Tsitsiklis (2001).

Advance warnings of customer demands
When members of a supply chain share information, no new information

is created; only existing information moves from one place to another.
In some situations, however, customers can, and are willing to, provide
advance warnings of their demands. These warnings represent new
information for the supply chain. And the question is how to exploit such
information.

Hariharan and Zipkin (1995) study inventory models where customers
provide advance warnings of their demands. Customer orders arise
randomly. Each order comes with a due date, a future time when the
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customer wishes to receive the goods ordered. They call the time from
a customer’s order to its due date the demand lead time. The customer
does not want to receive delivery before the due date. Deliveries after due
dates are possible, but undesirable. They show that demand lead times are the
opposite of supply lead times in terms of their impact on the system
performance.

A simple model illustrates the basic idea. Suppose customer orders
arrive according to a simple Poisson process. Each customer orders a single
unit. The demand lead time is a constant l, i.e., an order at time t calls for a
‘demand’ at time tþ l. Demand is satisfied from on-hand inventory, with
complete backlogging. Inventory is replenished from an outside source with
ample stock, and the supply lead time is a constant L. There are no economies
of scale in ordering.

If l � L, then one can satisfy all customer demands perfectly without
holding any inventory. Here is how to achieve that. Whenever a customer
order arrives, wait ðl � LÞ units of time before placing an order for one unit
with the outside supplier. This replenishment unit will arrive just in time to
satisfy the customer’s demand (at time tþ l).

Now suppose l < L. From basic inventory theory, we know that the
inventory position at time t should ‘cover’ the total demand during the supply
lead time (i.e., the lead time demand). Note that at time t, the total demand in
the interval ðt, tþ lÞ is already known due to advance ordering, whereas
the demand in ðtþ l, tþ LÞ remains unknown (it is a Poisson random
variable with mean lðL� lÞ where l is the arrival rate of customer orders).
Let dt be the known part, and Dt the unknown portion. The lead time demand
is DL

t ¼ dt þDt. Therefore, the inventory position at time t should consist
of dt and a buffer inventory S for protection against the uncertain part of
the lead time demand Dt. The inventory level at time tþ Lis
ðdt þ SÞ �DL

t ¼ S �Dt. Therefore, the expected holding and backorder cost
rate at time tþ L can be written as

E½hðS �DtÞ
þ
þ bðS �DtÞ

�
�

where h and b are the holding and backorder cost rates. Let S* be the S value
that minimizes this cost expression. If we set the inventory position at time t to
dt þ S*, then we know that the expected holding and backorder costs one
supply lead time later are minimized. If this inventory position can be achieved
for all t, then the system’s long-run average costs are minimized and we have
an optimal policy. Here is a proof. Assume at t ¼ 0, the inventory position is
d0 þ S*. (If it is lower than this target level, order enough to make up the
shortfall; otherwise, just wait until the inventory position at some time �
equals d� þ S*.) Then, whenever a customer order arrives, order one unit from
the outside source. This is just like the one-for-one replenishment policy used
in the conventional system without advance ordering, with a caveat that
replenishment orders are based on customer orders not customer demands.
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It is a simple matter to see that the inventory position at any time coincides
with the ideal target. The key point of the above exercise is that a system with
demand lead time l and supply lead time L is essentially the same as the
conventional system with supply lead time ðL� lÞ. Thus, demand lead time is
the opposite of supply lead time, an elegant characterization of the value of
(one type of) demand information.

Hariharan and Zipkin also study advance ordering in other models, where
the supply lead time is stochastic or where the replenishment process consists
of multiple stages. We omit the details.

One limitation of the Hariharan–Zipkin construct is that all
customers come with the same demand lead time. This assumption is relaxed
in Chen (2001a) the customer population is divided into M segments.
The customers from segment m are homogeneous and provide a common
demand lead time lm, m ¼ 1, . . . ,M. In this multisegment case, it is still
rather straightforward to characterize the value of advance ordering,
even in a multistage serial inventory system. But the main objective of
Chen (2001a) is to study the incentives required by the customers in order for
them to willingly offer advance warnings of their demands and how these
incentives can be traded off against the benefits of demand information
embodied in the advance orders. We will review Chen (2001a) in greater detail
in Section 3.1.

Gallego and Özer (2001) provide a discrete-time version of the above
multisegment model of advance ordering. Time is divided into periods. In each
period t, a demand vector is observed: ~DDt ¼ ðDt, t, . . . ,Dt, tþNÞ, where Dt, s is
orders placed by customers in period t for deliveries in period s and N is a
constant (positive integer) and is referred to as the information horizon.16

(Therefore, the customer population effectively consists of N þ 1 segments.)
For this demand process, Gallego and Özer prove optimal policies in a
single-location model with or without fixed ordering costs. They consider
multiple scenarios where the planning horizon can be finite or infinite and the
cost parameters can be nonstationary. The main result is that if there are
fixed order costs, the optimal policy is a state-dependent (s,S) policy;
otherwise, the optimal policy is a state-dependent base-stock policy. But what
is the state? Define for any s � t

Ot, s ¼
Xt�1
�¼s�N

D�, s

16 The reader may notice that this demand model, where customers place orders in advance of their

requirements, resembles the MMFE model considered earlier. In fact, strictly speaking, the demand

model with advance orders can be considered a special case of the forecast evolution model. The only,

perhaps superficial, distinction is that the updates in the advance-orders model represent actual

customer orders, whereas the updates in the MMFE don’t have to be. Moreover, the advance-orders

model assumes no order cancellation (i.e., the updates are always nonnegative). No such assumption

has been detected under the MMFE framework.
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which represents what we know at the beginning of period t about the
demand in period s. As in any inventory model, we care about the total
demand during the supply lead time, which is assumed to be a constant
L. Define

OL
t ¼

XtþL
s¼t

Ot, s

which is what we, standing at the beginning of period t, know about the future
demands in periods t, tþ 1, . . . , tþ L. (Therefore, the lead time demand is
total demand over Lþ 1 periods; the extra period is simply due to the
convention that orders are placed at the beginning of a period and costs are
assessed at the end of a period.) The modified inventory position at
the beginning of period t is simply the inventory level (on-hand minus
backorders) plus outstanding orders minus OL

t . (Therefore, the known part of
the lead time demand has been taken out of the inventory position. This is just
for control purposes, of course, as we will see.) The state of the inventory
system consists of the above modified inventory position plus what we
know about the demands beyond the supply lead time, i.e.

~OOt ¼ ðOt, tþLþ1, . . . ,Ot, tþN�1Þ:

The optimal (s,S) policy has control parameters that are dependent on ~OOt

and operates based on the modified inventory position. That is, at the
beginning of period t, if the modified inventory position is at or below sð ~OOtÞ,
order to increase it to Sð ~OOtÞ; otherwise, do nothing. When there are no fixed
order costs, the action is simply ordering to increase the modified inventory
position up to Sð ~OOtÞ every period. For this latter case, and when the problem
is stationary, the base-stock level no longer depends on ~OOt. This makes
intuitive sense.

Other related studies include Gallego and Özer (2000), Özer (2000),
Karaesmen, Buzacott and Dallery (2001) and Özer and Wei (2001). These
papers show how advance demand information can be used to improve
performance in various production/distribution systems with or without
capacity constraints.

A mirror image of customers providing advance demand information is
the decision maker postponing a decision until after customers have
placed their orders. This is, e.g., the case when a firm switches from a make-
to-stock regime to a make-to-order regime. The postponement reduces
the uncertainty confronting the decision-maker, improving the quality of
the decision and thus performance. For more on the impact of the
postponement of operations decisions, see the cases of Benetton (by
Signorelli and Heskett, 1984) and Hewlett-Packard (by Kopczak and Lee,
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1994) and the papers by Lee and Tang (1998) and Van Mieghem and Dada
(1999) and the references therein. Refer to Chapter 5 of this volume by Hau
L. Lee and Jayashankar M. Swaminathan for extensive discussions on
postponement strategies.

The bullwhip phenomenon
The bullwhip effect refers to a phenomenon where the replenishment orders

generated by a stage in a supply chain exhibit more volatility than the demand
the stage faces. Recently there has been a flurry of activities on the bullwhip
effect. We review this part of the literature here mainly because information
sharing (e.g., sharing of customer demand information) is often suggested to
combat the undesirable effect.

Many economists have studied the bullwhip phenomenon; they are
interested in it because empirical observations refute a conventional wisdom
that inventory smoothes production. A firm carries inventory, the conven-
tional wisdom goes, which serves as a buffer to smooth out the peaks and
valleys of demand. This in turn generates a relatively stable environment for
production. So production should be smoother than demand. Unfortunately,
industry data point to the other way. Why? Possible explanations include: the
use of (s,S) type of replenishment policies, the presence of positive serial
correlation in demand, etc. See Blinder (1982, 1986), Blanchard (1983), Caplin
(1985) and Kahn (1987). Other explanations call for industrial dynamics and
organizational behavior (Forrester 1961) and irrational behavior on the part
of decision-makers (Sterman 1989).

We focus on the operations management literature, which has provided
some new insights into the bullwhip phenomenon. The general approach in
this literature is to first specify the environment (e.g., revenue/cost structure,
characteristics of the demand process, etc.) in which a supply chain member
operates, and then show that when the supply chain member optimizes its own
performance, it generates orders that are more volatile than the demand
process it faces. The implicit message here is that the supply chain member
should not be blamed for the bullwhip effect; it is the environment that has
created the observed behavior. Sometimes, one can change the environment,
with potential benefits for some members of the supply chain or the supply
chain as a whole.

Lee, Padmanabhan and Whang (1997a,b), Lee, Padmanabhan and
Whang, (1997b) exemplify the above approach. They have identified four
causes for the bullwhip effect. The first is the demand characteristics. In a
single-location inventory model with a positively correlated demand
process, they show that the optimal policy that minimizes, say, the retailer’s
costs leads to variance amplification. There is an intuitive explanation.
When the retailer observes a low demand, he takes that as a signal of
low future demands as well and places an order that reflects that lowered
forecast. Conversely, a high demand suggests to him that the demands in
the future periods are likely to be high as well. He then places a large
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order based on that outlook. In sum, due to the positive correlation between
the demands in different periods, the orders placed by the retailer exhibit
larger swings than the demands he observes. The second cause is the
possibility of supply shortage. To see the intuition, consider a supply chain
with one supplier, whose capacity fluctuates over time, and multiple
retailers. In periods when the supplier’s capacity is likely to be insufficient,
the retailers – engaged in a rationing game to secure an adequate supply for
themselves – place large orders (larger than what they would order if there
were no capacity shortage). Suppose a retailer faces a deterministic demand
stream, say, 4 units per period. So he would order 4 units when no capacity
shortage is expected, and order more otherwise. Clearly, when the capacity
fluctuates over time, the order stream has a larger variance than the demand
stream (which has zero variance). The third cause is economies of scale in
placing orders. When there is a fixed cost in placing an order, it makes sense to
order once every few periods. This order batching leads to the bullwhip effect.
The fourth cause is fluctuating-purchase costs. In periods when the supply is
cheap, you want to buy a lot and stockpile, whereas in periods when supply
is expensive, you wait. It is easy to see that the high–low prices encourage
extreme orders. In order to dampen the bullwhip effect, one has to attack
the root causes. Lee et al. have described several industry initiatives that
do just that.

Below, we describe a supply chain model that has been used to show that a
quasi-optimal operating policy amplifies the order variance.17 Graves (1999)
considers a supply chain-model with a nonstationary demand process.
The demand process is an autoregressive integrated moving average
(ARIMA) process:

d1 ¼ �þ "1

dt ¼ dt�1 � ð1� �Þ"t�1 þ "t, t ¼ 2, 3, . . .

where dt is the demand in period t, � and � are known constants, and "t are
i.i.d. normal random variables with mean zero and variance �2. It is assumed
that 0 � � � 1.18 From the above description of the demand process, one
can write

dt ¼ "t þ �"t�1 þ � � � þ �"1 þ �:

Note that each period, there is a shift in the mean of the demand process: the
random shock "t shifts the mean of the demand process by �"t, starting from
period tþ 1. Therefore, each random shock has a permanent effect on the

17 For other such studies, see, e.g., Chen, Drezner, Ryan and Simchi-Levi (2000), Ryan (1997) and

Watson and Zheng (2001).
18 The above demand process is also known as an integrated moving average (IMA) process of order

(0,1,1), see Box, Jenkins and Reinsel (1994).
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demand process. Note that � ¼ 0 corresponds to an i.i.d. demand process,
whereas � ¼ 1 is a random walk. In general, a larger � means the process
depends more on the most recent demand realization.

For the above demand process, a first-order exponential-weighted moving
average provides a minimum mean square forecast. Define

F1 ¼ �

Ftþ1 ¼ �dt þ ð1� �ÞFt, t ¼ 1, 2, . . . :

where Ftþ1 is the forecast for the demand in period tþ 1, after observing the
demand in period t. It is easy to verify that

dt � Ft ¼ "t, t ¼ 1, 2, . . . :

Therefore, the exponential-weighted moving average is an unbiased forecast
with a minimum mean square error. Note that

Ftþ1 ¼ dtþ1 � "tþ1 ¼ �"t þ �"t�1 þ � � � þ �"1 þ �:

At the end of period t (after the realization of dt or "t), the forecast for dtþi for
any i � 1 is equal to Ftþ1.

Consider, for a moment, a single-location, single-item inventory system
with the above demand process. Assume that when demand exceeds on-hand
inventory, the excess demand is completely backlogged. Moreover, the
replenishment lead time is L periods, where L is a known integer. The events
in each period are sequenced as follows: demand is realized, an order is placed,
the order from L periods ago is received, and demand and backorders (if any)
are filled from inventory. Consider a base-stock policy, with the order-up-to
level for period t being

St ¼ S0 þ LFtþ1

where S0 is some constant. Note that LFtþ1 is the forecast for the lead
time demand from period tþ 1 to period tþ L. (And recall that the
order-up-to level should cover the lead time demand.) There is no optimality
proof for this policy; but if orders are allowed to be negative, the policy
is optimal. Let us assume that orders can be negative, and thus the order-
up-to level for each period is reached exactly. We have the order quantity in
period t,

qt ¼ dt þ ðSt � St�1Þ ¼ dt þ LðFtþ1 � FtÞ
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Note that the order quantity qt reflects the most recent demand dt as
well as an update on the forecast for the total demand during the next L
periods.19

Let xt be the inventory level (on-hand inventory minus backorders) at the
end of period t. Graves shows that under the above policy,

E½xt� ¼ S0 þ �, Std½xt� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL�1
i¼0

ð1þ i�Þ2

vuut :

Note that when the lead time demand is normally distributed, the minimum
costs of the system are proportional to Std½xt�, which can sometimes,
especially when � is large, be a convex function of L. This is in sharp contrast
with the traditional setting with i.i.d. demands, where the minimum costs are
proportional to the square root of L. Our intuition is challenged, and it is
because of the nonstationary demand process!

Another observation is that the variance of qt is larger than the variance of
dt, given Ft. To see this, first recall that dt ¼ Ft þ "t. Thus, Var½dtjFt� ¼ �

2. On
the other hand, since Ftþ1 � Ft ¼ �"t, we have

qt ¼ dt þ LðFtþ1 � FtÞ ¼ ðFt þ "tÞ þ L�"t ¼ Ft þ ð1þ L�Þ"t:

Therefore, Var½qt jFt� ¼ ð1þ L�Þ2�2. This shows that the variance of the
order process exceeds the variance of the demand process, and this
amplification increases with lead time and � (larger � means a less stable
demand process). Graves shows that the order process fqtg has the same
characteristics as the demand process fdtg. Thus one can easily extend the
analysis to a multistage serial system and show that the order variance is
further amplified upstream.

Although attention to the bullwhip effect can sometimes help us
identify opportunities to improve supply chain performance, it is dangerous
if we take as our goal the reduction or elimination of the bullwhip effect.
This point is illustrated in a paper by Chen and Samroengraja (1999).
They consider a supply chain model with one supplier and N identical
retailers. The perspective is that of a central planner whose goal is to
minimize the total cost in the supply chain. The supplier’s production
facility is subject to a capacity constraint, and transportation from the
supplier to the retailers incurs fixed costs as well as variable costs. They

19 We are not going to make a big deal out of negative orders here. If you continue to feel that negative

orders are annoying, first consult Graves (1999) for further discussions on this and if that is still not

enough, then you have a challenging, and potentially rewarding, task ahead of you.
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consider two classes of replenishment strategies at the retail level. One is the
staggered policy, whereby each retailer places an order to increase its
inventory position to a constant base-stock level Y every T periods, and
the reorder intervals of different retailers are staggered so as to smooth
the aggregate demand process at the supply site. The other strategy is the
ðR,QÞ policy, whereby each retailer orders Q units from the supplier as soon
as its inventory position decreases to R. These two types of replenishment
strategies are commonly used in practice when there are fixed ordering costs.
The supplier replenishes its inventory through production; the production
policy is a base-stock policy modified by a capacity constraint. Numerical
examples show that although the ðT ,YÞ policy gives a smoother
demand process at the supply site, the ðR,QÞ policy often provides a lower
system-wide cost.20

It is also interesting to note that discussions on the bullwhip effect can
sometimes become confusing and pointless. Consider a supply chain with a
manufacturer and a retailer. The retailer agrees to share its point-of-sale
information with the manufacturer. For some unexplained reasons
(historical?), the manufacturer has a quantity discount policy in place that
charges a lower per-unit price for a larger order. Finally, the manufacturer can
ship a retailer order in any way it desires so long as a certain service level is
achieved at the retail site. In this decentralized model with information sharing
and a specific contractual relationship, the manufacturer can plan its
production based on the true demand information at the retail site. From the
standpoint of the supply chain, what matters is the manufacturer’s production
quantities and the shipment quantities to the retailer. The retailer’s orders do
not matter very much; they exist largely for accounting purposes. There is
nothing to worry about even if the retailer’s orders are more volatile than the
customer demands.

In summary, the existence of the bullwhip effect is only a characteristic of
an operating policy, which reflects the economic forces underlying the supply

20 Cachon (1999) also studies the impact of staggered ordering policies, which he calls scheduled or

balanced ordering policies, on the supply chain performance. The setup is still the one-warehouse N-

identical-retailer supply chain. The class of policies considered is that of ðT ,R,QÞ policies: each retailer

orders every T periods according to an ðR, nQÞ policy based on its own inventory position, and the

reorder intervals of different retailers are staggered. Cachon provides an exact method to evaluate the

supply chain costs under a ðT ,R,QÞ policy as well as numerical examples that illustrate how the supply

chain costs respond to changes in the parameters T and Q. Primary conclusions are that the staggering

of retailer reorder intervals generally reduces the demand variance at the warehouse and that the

combination of increasing T and decreasing Q is an effective way to decrease the total supply chain

costs in systems with a small number of retailers and low customer demand variability. Although the

general objective of Cachon (1999) coincides with that of Chen and Samroengraja (1999), i.e., to study

the impact of variance-reduction policies on supply chain performance, the models are different

(whether or not there is a capacity constraint at the warehouse), so are the approaches (the former

focuses on a sensitivity analysis whereas the latter compares the optimal solutions from two classes of

policies that offer different degrees of variance reduction).

Ch. 7. Information Sharing and Supply Chain Coordination 367



chain and the experience and knowledge of the people who manage it. It is a
symptom, not a problem.21

2.2 Upstream information

So far, our discussions have been confined to the sharing of information
coming from the demand side, i.e., an upstream supply chain member’s
access to downstream information. We now turn to supply-side information.
Interestingly, upstream information has received much less attention in the
literature.

Cost information
Chen (2001b) considers a procurement problem facing an industrial

buyer. Given Q units of input, the buyer can generate profits RðQÞ, an
increasing and concave function. The buyer’s net profit is therefore RðQÞ
minus the purchase cost incurred for the input. For convenience, let us call
Rð�Þ the buyer’s revenue function. The buyer seeks a procurement strategy to
maximize its expected (net) profit.

There are n ð> 1Þ potential suppliers for the buyer’s input. For supplier
i, i ¼ 1, . . . , n, the cost of producing Q units of the buyer’s input is ciQ, for
any Q. It is common knowledge that the suppliers’ unit costs, ci’s, are
independent draws from a common probability distribution Fð�Þ over ½c, c�.
Supplier i privately observes the value of ci, but not the costs of other
suppliers, i ¼ 1, . . . , n.

Here is an optimal solution to the buyer’s procurement problem. The
buyer announces a quantity-payment schedule, Pð�Þ, which is basically a
commitment that says that the buyer will pay PðQÞ for Q units of input, for

21 Any discussion of the bullwhip effect would be incomplete without mentioning the beer game, which

is described in Sterman (1989) and some of the references therein. The game simulates a four-stage

supply chain, consisting of a manufacturer, a distributor, a wholesaler, and a retailer. The demand at

the retail site is 4 kegs of beer per period for the first several periods, and then jumps to 8 kegs per

period for the rest of the game. The players, who manage the four supply chain stages, do not know the

demand process a priori. For several decades, the beer game has been a very effective tool to illustrate

the bullwhip effect to an uncountable number of students in many countries. But it has a shortcoming;

it merely demonstrates a phenomenon without offering any solutions. How should we play the game?

Nobody knows the answer, a quite awkward situation especially in a classroom setting. It is easy to say

what we should have done in hindsight, but that is not helpful to the supply chain’s managers. In fact,

it is quite possible that most strategies could be explained with a belief system that uses the past to

predict the future in a particular way. Frankly, there is little we can teach our students about how to

manage a supply chain that resembles the beer game setup (at least, not yet). Interestingly, if we replace

the 4–8 demand stream with a stream of i.i.d. random variables, and suppose the players all know the

demand distribution, then we know how the game should be played. (This game will be discussed in

Section 2.3 of this chapter). Under the optimal strategy, the bullwhip effect does not exist. But it may

still occur (and it has) depending on the strategies used by the managers. So here is a game that can be

used to illustrate the bullwhip effect, which we can say with confidence is bad. For a description of the

i.i.d. version of the beer game and some teaching experience with it, see Chen and Samroengraja

(2000b).
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any Q. A supplier, if chosen by the buyer, is free to choose any quantity to
deliver to the buyer and be paid according to the preannounced plan.
Therefore, the buyer has effectively proposed a business proposition to the
potential suppliers. Of course, different suppliers will value this business deal
differently, with the lowest-cost supplier deriving the highest value. In an
English auction, the suppliers openly bid up the price they are willing to pay
for the buyer’s proposed contract, with the winner being the supplier willing to
pay the highest price.22 With a little bit of thinking, the lowest-cost supplier
always wins the contract and pays a price equal to the value that the second-
lowest cost supplier derives from the contract.

To better understand the above solution, suppose the buyer is a retailer,
who buys a product from a supplier and resells it to customers. The selling
price to the customers is p per unit, which is exogenously given. The total
customer demand is D, a random variable with cumulative distribution
function Gð�Þ. If demand exceeds supply, the excess demand is lost. Otherwise,
the excess supply is useless and can be disposed of at no cost. The total
quantity sold to customers is thus minfQ,Dg. The buyer’s expected revenue is

RðQÞ ¼ pE½minfQ,Dg� ¼ pE½Q� ðQ�DÞþ� ¼ pQ� p

Z Q

0

GðyÞdy:

Note that this revenue function is concave and increasing in Q. To make
things even simpler, suppose the suppliers’ costs are drawn from the uniform
distribution over ½0, 1�. Under this condition, the optimal quantity-payment
schedule is

PðQÞ ¼
1

2
RðQÞ:

Note that this payment schedule is independent of the number of potential
suppliers. Moreover, it is a revenue-sharing contract: the business deal that the
buyer proposes calls for a 50–50 split of the buyer’s revenue. It is also a returns
contract, which says that the buyer pays the winning supplier a wholesale price
of w ¼ p=2 for each unit of input delivered (before demand realization), and in
case there is excess supply after demand is realized, the buyer can return the
excess inventory to the supplier for a full refund. Under this contract, and
assuming the returned inventory has no value to any supplier, a supplier, if he
wins, earns the following expected revenue (as a function of the production
quantity Q):

E
p

2
Q�

p

2
ðQ�DÞþ

h i
¼ PðQÞ:

22 The theory of auctions is huge and well developed. Vickrey (1961) is seminal. Myerson (1981) and

Riley and Samuelson (1981) are important milestones for their contributions to optimal auction design.

McAfee and McMillan (1987) and Klemperer (1999) provide comprehensive reviews.
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To put our hands around the inefficiencies caused by the asymmetric
cost information, let us further assume that GðxÞ ¼ x for x 2 ½0, 1� and p ¼ 2.
In this case, RðQÞ ¼ 2Q�Q2, and the optimal quantity-payment schedule
becomes PðQÞ ¼ Q�Q2=2. As mentioned earlier, the lowest-cost supplier
wins the contract. Let C1 be the cost of the winning supplier. (Thus
C1 ¼ minfc1, . . . , cng.) The quantity delivered by the winning supplier solves
the following problem

QðC1Þ ¼ argmaxQPðQÞ � C1Q ¼ argmaxQð1� C1ÞQ�Q2=2:

Therefore QðC1Þ ¼ 1� C1. The total profit for the supply chain (the buyer
plus the winning supplier) is RðQðC1ÞÞ � C1QðC1Þ ¼ 1� C1, with an expected
value

p ¼ 1� E½C1�:

On the other hand, the efficient input quantity, one that maximizes the supply
chain profit, is

Q*ðC1Þ ¼ argmaxQRðQÞ � C1Q ¼ argmaxQð2� C1ÞQ�Q2:

Therefore, Q*ðC1Þ ¼ ð2� C1Þ=2. Note that Q*ðC1Þ > QðC1Þ; asymmetric cost
information reduces the input quantity. The maximum expected supply chain
profit under full information is

p* ¼ pþ
1

4
E½C2

1�:

Therefore the supply chain inefficiency due to asymmetric information is

p* � p ¼
1

4
E½C2

1� ¼
1

2ðnþ 1Þðnþ 2Þ

which is decreasing in n. This is the value created if the suppliers disclose their
cost information. But why should they?

Lead time information
Another important piece of information coming from the supply side is the

status of a replenishment order. Chen and Yu (2001a) address the value of
lead time information in the following inventory model. A retailer buys a
single product from an outside supplier, stores it in a single location, and sells
it to her customers. Customer demand arises periodically, with demands
in different periods being i.i.d. random variables. If demand exceeds the on-
hand inventory in a period, the excess demand is backlogged. On-hand
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inventories incur holding costs, and customer backorders incur penalty costs.
The analysis is done from the retailer’s standpoint; how to make
replenishment decisions so as to minimize the retailer’s long-run average
holding and backorder costs.

Here is the supply process. Let Lt be the lead time for an order placed in
period t. And fLtg is a Markov chain with a finite state space. The one-step
transition matrix of the Markov chain is chosen so as to prevent
order crossovers (so orders are received in the sequence in which they were
placed). The supply process is exogenous, i.e., the evolution of the Markov
chain is independent of the operations of the retailer’s inventory system.23

The supplier observes the state of the Markov chain fLtg, and he may or may
not share this information with the retailer.

Two scenarios are considered. First, suppose the retailer knows the value of
Lt for each period t before her replenishment decision. In this case, the
optimal policy is to place an order in period t so as to increase the retailer
inventory position up to a base-stock level that is a function of Lt, for all t.
That is, a state-dependent, base-stock policy is optimal. On the other hand,
suppose now that the supplier does not share with the retailer the lead time
information. In this case, the retailer has to rely on the history of order
arrivals to infer something about the current lead time and make her
replenishment decisions accordingly. By comparing these two solutions, one
sees the value of lead time information. Numerical evidence indicates that the
value of lead time information is small for small-volume items, but significant
for high-volume items where the percentage cost savings due to lead time
information can be as high as 41%.

Capacity information
Our third example deals with the value of capacity information. Chen

and Yu (2001b) consider a model with one retailer and one supplier.
There is a single selling season. The retailer has two opportunities to place
orders with the supplier before the season starts, one at time 0 and one at time
1. At time 0, the supplier has unlimited capacity, i.e., whatever the retailer
orders will be ready for the selling season. At time 1, the supplier’s capacity is
uncertain, and it can be written as C � ", where C is the ‘forward capacity’,
i.e., the supplier’s capacity at time 1 perceived at time 0, and ", which can be
positive or negative, is an external random shock reflecting uncertainties
between time 0 and time 1. At time 0, there are two possible states, high or
low, for the total demand in the selling season. A cumulative distribution is
given for each demand state. At time 1, the true demand-state is revealed; the
retailer now has better demand information. This suggests that there is a
benefit for the retailer to postpone the ordering decision to time 1. But the cost

23 Song and Zipkin (1996b) have provided several concrete examples to motivate such a lead time

process. Other models of random lead times have been provided by Kaplan (1970), Nahmias (1979),

Ehrhardt (1984) and Zipkin (1986).
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of doing this is that the retailer may not get what he orders (at time 1), due to
the supplier’s capacity constraint. Let q0 be the quantity ordered by the
retailer at time 0, and qs1 the quantity ordered at time 1 if the demand state is
s, s ¼ high or low. The optimal values of these quantities balance the benefit
from demand information with the cost of capacity risk.

Before time 0, it is common knowledge that C comes from a given
probability distribution. At time 0, before the retailer decides on the value of
q0, the supplier privately observes the realized value of C. The retailer
then offers a menu of contracts: a mapping from the supplier’s reported
capacity (which can be different from the true value of C) to q0. The supplier
then reports a value of C, effectively choosing a value for q0. (This is the
screening idea, to be discussed in detail in Section 3.1.) The solution to this
asymmetric information case is then compared with the full-information
scenario where the retailer also sees the value of C (before deciding q0).
The comparison gives the value to the retailer of knowing the supplier’s
forward capacity.

2.3 Information transmission

Chen (1999a) considers a supply chain model where information
transmission is subject to delays. A firm has N divisions arranged in series.
Customer demand arises at division 1, division 1 replenishes its inventory
from division 2, 2 from 3, etc., and division N orders from an outside supplier.
The demands in different periods are independent draws from the same
probability distribution. Each division is managed by a division manger.
Information in the form of replenishment orders flows from downstream to
upstream, triggering material flow in the opposite direction. Both flows are
subject to delays.24

An important feature of the model is that the division managers only
have access to local inventory information. That is, each manager knows
(1) his on-hand inventory, (2) the orders he has placed with the upstream
division, (3) the shipments he has received from the upstream division, (4) the
orders he has received from the downstream division, and (5) the shipments he
has sent to the downstream division. However, he does not exactly know the
shipments that are in transit from the upstream division that may be
unreliable, and neither does he know the orders from the downstream division
that are currently being processed. The decisions made by each manager can
only be based on what he knows.

The first model considered by Chen assumes that the division managers
behave as a team, i.e., they have a common goal to minimize the system-wide
costs.25 This is reasonable when, for e.g., the owner of the firm has

24 This may remind you of the beer game, which is described in Sterman (1989). A key difference is the

i.i.d. demand process assumed here.
25 For the economic theory of teams, see Marschak and Radner (1972).
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implemented a cost-sharing plan whereby each manager’s objective function is
a fixed, positive proportion of the overall cost of the system. It is shown
that the optimal decision rule for each division manager is to follow an
installation, base-stock policy. Division i’s installation stock is equal to its
net inventory (on-hand inventory minus backorders) plus its outstanding
orders. Recall that manager i knows the orders he has placed (with the
upstream division) as well as the shipments he has received (from the upstream
division). The difference between the two is the outstanding orders. Therefore,
installation stock is local information. The optimal decision rule for each
division manager is to place an order in each period to restore the division’s
installation stock to a constant target level, which may be division-specific.

The solution to the team model reveals the role played by the information
lead times (delays in the information flow). In terms of division i’s
safety stock, the information lead time from division i to i þ 1 plays
exactly the same role as the production/transportation lead time from division
i þ 1 to i; the safety stock level only depends on the sum of the two lead times.
(This is intuitive at first glance. But the optimality proof requires some
finessing.)

An alternative to the team model is the cost-centers model, where each
manager is evaluated based on his division’s performance. But how should
local performance be determined? Chen suggests using the so-called
accounting inventory level. The accounting inventory level at a division is
its net inventory under the hypothetical scenario where no orders by the
division will ever be backlogged at the upstream division. Note that the
accounting inventory level may differ from the actual inventory level, because
the upstream division is not always reliable. A division is charged a
holding cost if its accounting inventory level is positive and a penalty cost
otherwise.26 It has been shown that the owner of the firm can choose the cost
parameters so that when the individual division managers minimize their
own (accounting) costs, the system-wide costs are also minimized.27

Firms decentralize the control of their operations for many reasons. One
key reason is that the local managers are better informed about the local
operating environments than the owner is. Therefore, it makes sense to let the
local managers make local decisions. In the above supply chain model, let us
suppose the division managers all know the true demand distribution, but
the owner of the firm does not. Consider the following two scenarios. In one,
the owner solves the team model based on her (erroneous) knowledge of the

26 The accounting and management literature advocates that individuals should only be evaluated on

controllable performance, see, e.g., Horngren and Foster (1991). For this reason, the actual local

inventory level (on-hand inventory minus backorders) at a division is inadequate as a basis for

measuring local performance, since it is also affected by decisions made at the other divisions. The

accounting inventory level removes the impact of the upstream division, but is still affected by the

downstream division’s orders.
27 For other coordination mechanisms for serial inventory systems, see Lee and Whang (1999) and

Porteus (2000). Gérard P. Cachon discusses these papers in Chapter 6 of this volume.
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demand distribution and tells her employees to implement the installation,
base-stock policies she found. (The owner only provides the decision rule,
leaving the division managers to implement it. Since the division managers
only have access to local information, the decision rule must be based on local
information.) Call this the dictator scenario. In the other scenario, the owner
organizes the divisions as cost centers. After the owner has specified a
measurement scheme, each division manager chooses a replenishment strategy
to minimize his accounting costs by using the true demand distribution. In
both cases, the system-wide performance will be suboptimal, because the
owner’s inaccurate knowledge about the demand distribution has been used in
one way or another. Numerical examples provided by Chen show that the
system-wide performance under cost centers is nearly optimal, whereas the
dictator scenario can be far from optimal. The benefit of decentralization is
clear. Moreover, the measurement scheme for the cost centers is rather robust
with respect to shifts in the demand distribution; a scheme based on an
outdated demand distribution works very well for a new demand distribution
so long as the division managers update their replenishment strategies based
on the new information.

Finally, what if managers make mistakes? To explore this issue, consider
the following specific irrational behavior. Manager i strives to maintain his net
inventory at a constant level Y : if it is below Y , order the difference; otherwise,
do nothing. It is a mistake because the decision-maker forgets about the
outstanding orders. (Recall that the optimal strategy is to maintain the
installation stock at a constant level.) This mistake corresponds to
the ‘misperceptions of feedback’ Sterman (1989) found in the beer game.
A simulation study shows that such mistakes can be very costly, especially
those committed at the downstream part of the supply chain.28

When a downstream manager follows an erroneous strategy, the upstream
managers receive distorted (and delayed) demand information. This is at the
heart of the problem. Now consider the following alternative design of
information flow in the supply chain. When division 1 places an order, he is
also required to report the demand in the previous period. This demand
information is then relayed to the upstream managers along with the orders.
Assume that the rational managers place their orders according to the
accurate demand information, whereas the irrational ones follow the
above ‘forgetful’ strategy. In this way, a downstream ordering mistake can
no longer corrupt the upstream order decisions. Simulation results indicate
that by making the accurate demand information accessible to the upstream
members of the supply chain, the system becomes much more robust. This is
another reason for sharing demand information.

Most of the supply chain models on information sharing assume that the
transmission of information is instantaneous and reliable. (We just saw one

28 Watson and Zheng (2001) provide a more recent attempt to address supply chain mismanagement

due to irrational managerial behavior.
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exception.) Moreover, they assume (implicitly) that information/knowledge
is always transmittable. (We will see an exception soon.) However, managers
are sometimes endowed with knowledge that is so specific to the local
operating environment that it is very difficult to share such knowledge. This is
perhaps what people mean by ‘experience’, the sharing (or rather the
acquisition) of which may take years of apprenticeship. So a more realistic
view of organizations is that there are two kinds of knowledge: one can be
readily shared (e.g., sales data) and the other is difficult to share, i.e.,
information sharing takes time and effort, is imperfect with noise, or is just
impossible. When the local, specific knowledge plays a dominant role, it is
important to give the manager possessing the knowledge the authority to
make decisions that have the most use of the knowledge. In other words,
decision rights should reflect the dispersion of knowledge in an organization.
This is, however, not the only challenge in designing an organization
because the distribution of knowledge is, to some extent, manageable.
This points to another aspect of organizational design, i.e., an organization’s
information structure (or ‘who knows what’). We refer the reader to
Hayek (1945), Jensen and Meckling (1976, 1992) for further discussions on
specific knowledge and the design of organizations. Below, we review a paper
from the operations literature that studies the above issues in a supply chain
context.

Anand and Mendelson (1997) consider a firm that produces and sells a
product in n markets. Production takes place in one location, and the total
cost of producing Q units is assumed to be

TCðQÞ ¼ cQþ
1

2
�Q2:

A common reason cited for assuming increasing marginal costs is capacity
constraints, e.g., overtime is used when production exceeds a certain threshold
level and the overtime wage is higher than the regular wage. The nmarkets each
face an independent, linear demand curve. Consider market i, i ¼ 1, . . . , n.
There are only two possible market states, high or low. If the market is high,
the (inverse) demand curve is PðqiÞ ¼ aH � bqi, where qi is the quantity of the
product allocated to market i, and PðqiÞ is the corresponding market clearing
price. On the other hand, if the market is low, the demand curve is
PðqiÞ ¼ aL � bqi, with aL < aH . (No transshipments are allowed among the
markets after the initial allocation.) The market state is denoted by a binary
random variable, si: if si ¼ 1 (0) the market is high (low).

A key feature of the model is that the n markets are managed by branch
managers who possess two types of information: one is specific knowledge
that is not transmittable to anyone else, and the other is transferable data.
This is modeled by assuming that si ¼ xiyi, where both xi and yi are binary
random variables, with xi representing transferable market-i data and
yi the unobservable market-i condition, i ¼ 1, . . . , n. It is assumed that
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fxi, yi, i ¼ 1, . . . , ng are independent random variables with Prðxi ¼ 1Þ ¼ t and
Prðxi ¼ 0Þ ¼ 1� t, 0 < t < 1, and Prðyi ¼ 0Þ ¼ Prðyi ¼ 1Þ ¼ 1=2, i ¼ 1, . . . , n.
The value of t is common knowledge. The branch manager at market i
observes the value of xi as well as a binary signal Li that may contain
information about yi with yi ¼ Li with probability 1� � and yi ¼ 1� Li with
probability �. If � ¼ 0 or 1, then the signal is perfect; if � ¼ 1=2, then the
signal does not provide any new information beyond the prior on yi. It is clear
that we can restrict to 0 � � � 1=2 without loss of generality. Under this
restriction, the value of ð1� �Þ represents the precision of the signal. The local
signal Li is branch manager i’s specific knowledge that is not transferable to
anyone else, i ¼ 1, . . . , n. (Refer to the original paper for motivating stories
behind this elaborate design. An alternative view one may take is that
information is always transmittable, but some kinds of information are very
costly to transmit.)

The decision variables are the supply quantities qi. The objective of any
decision maker (to be specified below) is to maximize the firm’s expected
profits, which are equal to the revenues generated by the branches minus the
production cost that depends on the total quantity.

Anand and Mendelson then consider three different organizational
designs, depending on where decision rights reside and how information is
distributed (through the design of the firm’s information system, e.g.). The
first design is a centralized one, where a ‘center’ makes all the decisions by
using all the transferable data but none of the specific knowledge. The firm
thus has in place an information system that allows the branches to report
their transferable data, xi for i ¼ 1, . . . , n, to the center. The second design
is decentralized, where each branch manager i makes his own quantity
decision qi based on his own specific knowledge ðLiÞ and transferable data (xi).
Therefore, in this case, there is no information sharing so that all local
knowledge (transferable or not) remains local. The third design is in between
the previous two, with the branches making their own quantity decisions
based on their specific knowledge and all the transferable data (again, enabled
by an intra-firm information system). That is, branch manager i determines
the value of qi with knowledge of ðx1, x2, . . . , xnÞ and Li, i ¼ 1, . . . , n. This
design is referred to as the ‘distributed’ structure. The analysis of the second
and the third organizational structures follows that of a team model, where
the team members (i.e., branch managers) share a common goal but have
access to different sets of information. (The team model thus assumes
away all potential incentive problems. Anand and Mendelson also consider
transfer-pricing schemes when incentive issues cannot be ignored.)

It is intuitive (and true) that the distributed design dominates the
decentralized design in terms of the firm’s expected profits. The difference
represents the value of information sharing, which is shown to increase in
the number of branches at first and then decrease. In other words, the
distributed structure adds more value to firms that operate in a moderate
number of markets. On the other hand, the difference between the centralized
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and decentralized systems captures the tradeoff between coordination,
information sharing, and local knowledge. The centralized system benefits
from better coordination of quantity decisions (due to centralized decision-
making) and the pooling of all the transferable data. However, the
decentralized system sometimes performs better than the centralized system,
indicating the usefulness of the local knowledge.

In their concluding remarks, Anand and Mendelson said that ‘the design of
organizations requires an analysis of what kinds of information the firm needs
to acquire, alternative ways of distributing this informational endowment and
ways of structuring the organization (i.e., allocation of decision rights) to
match its information structure’. (The parenthetical explanation is added.)
What they have done in their paper is to treat the allocation of information
and decision rights as design variables to be jointly determined, leaving out
information acquisition.

3 Incentives for sharing information

Information sharing in supply chains with independent players is tricky.
When a player has superior information, two things may happen. He may
withhold it to gain strategic advantage, or he may reveal it to gain cooperation
from others. If the former, the other (less informed) players try to provide
incentives for him to reveal his private information; this is called screening. If
the latter, we have signaling, i.e., revealing information in a credible way.
Sometimes it is impossible to say who has more or less information; players
simply have different information about something they all care about. For
example, different retailers may obtain different signals about the market
demand for a product. In this case, a player’s willingness to share his
information depends on if the others are going to share their information and
how the revealed information will be put to use. This section reviews papers
that deal with information exchanges in decentralized supply chains.29

29 A branch of economics (sometimes called information economics) addresses issues arising from

various information asymmetries. One type of information asymmetry is often studied under the

heading ‘moral hazard,’ which refers to situations where one party (called agent) performs a task on

behalf of another (called principal), and the agent’s effort level is unobservable to the principal. A

conflict arises because the principal prefers the agent to work hard while the agent dislikes exerting

effort. The solution is an incentive contract that pays the agent for his output. The principal-agent

theory, originating from economics, has been used/developed in the accounting, marketing, and lately

operations literatures. Kreps (1990) provides an excellent introduction to the principal-agent theory;

some of the seminal papers in this area are cited later in this chapter. For principal-agent models in the

operations literature, see, e.g., Porteus and Whang (1991), Chen (2000b), Plambeck and Zenios (2000,

2002). We choose not to review this part of the literature here because the goal of providing incentives

in principal-agent models is to induce a certain level (or pattern) of effort by an agent (not to facilitate

information sharing). By the way, many of the ideas behind the papers reviewed in this section

originated from economics often under rubrics such as adverse selection, mechanism design, or

signaling.
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3.1 Screening

This subsection presents several examples where a firm tries to ‘smoke out’
either consumer preferences or private information held by an employee or by
a supply chain partner.30

A simple example
A product line usually refers to a range of goods of the same generic type,

but differentiated along some attributes. For example, Dell offers two lines of
notebook computers, Inspiron and Latitude, and each product line consists of
models with different speeds, storage capacities, etc. An important question is
how a firm can optimally design and price a product line.

Suppose a monopolist is offering a line of goods differentiated along
a quality dimension. There are two consumers, with different demand
intensities for quality. (This is thus a toy problem. But the basic ideas are
here.) Consumer i values the variety with quality level q at 	iq, i ¼ 1, 2,
with 0 < 	1 < 	2. Therefore, both consumers prefer more quality, but differ in
their willingness to pay for any given quality level. Each consumer buys one
unit of the good, or nothing at all. There are constant marginal costs of
production at any given quality level, and the marginal cost of producing
variety q is q2.

Consider first the case of a perfectly discriminating monopolist who is able
to sell to each consumer individually (i.e., deny one consumer access to the
product offered to the other consumer) and prevent any resales. The
monopolist will thus charge each consumer his reservation price and the only
remaining problem is what variety to offer to each consumer. To solve
this problem, simply maximize 	iq� q2 over q for each i. Therefore, the
optimal strategy is to offer quality level 	i=2 to consumer i and charge him
	2i =2 for it. Both consumers will buy the products offered them and derive zero
surplus. The firm may be able to achieve this ideal solution in some cases. For
example, a telephone company is routinely charging different rates to business
users and residential users (it is relatively easy for the company to verify if a
user is business or residential and it is very difficult to trade phone calls
between business and residential users). In other cases, it is impossible to deny
one consumer access to the products offered to other consumers, for technical
or legal reasons. In other words, a product line, whatever it may be, must
be made available to all types of consumers. What should the monopolist
do then?

First, note that the above solution will not work when consumers
self-select. When given the above two variety-price combinations: ð	i=2, 	

2
i =2Þ

30 There is a large body of research on screening in queuing contexts. For example, a service provider

can charge different prices for different priority levels. An arriving customer decides which priority

class to join based on his/her (private) cost of waiting. For a comprehensive survey of this literature,

see Hassin and Haviv (2001).
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for i ¼ 1, 2, consumer 1 will continue to choose ð	1=2, 	
2
1=2Þ, but consumer 2

will switch from ð	2=2, 	
2
2=2Þ to ð	1=2, 	

2
1=2Þ and earns a positive surplus

(before, he earned zero surplus). In order to prevent consumer 2 from
switching, the firm must lower the price for variety 	2=2, if everything else
stays unchanged. Finding the monopolist’s optimal strategy involves a
systematic tradeoff among multiple dimensions. Let ðqi, piÞ, i ¼ 1, 2, be the
quality-price pairs offered to the market (i.e., the two consumers). Suppose
consumer i chooses ðqi, piÞ. (If the two pairs are identical, then the product line
consists of only one good.) We first consider the case where both consumers
are served (i.e., they each buy a unit). The monopolist’s problem can be
written as:

max
q1,p1,q2,p2

ðp1 � q21Þ þ ðp2 � q22Þ

s:t: 	1q1 � p1 ðP1Þ

	2q2 � p2 ðP2Þ

	1q1 � p1 � 	1q2 � p2 ðSL1Þ

	2q2 � p2 � 	2q1 � p1 ðSL2Þ

where the objective function represents the firm’s total profits, the first two
constraints ((P1) and (P2)) are necessary in order for the consumers to
participate, and the last two constraints ((SL1) and (SL2)) ensure that the
consumers choose the right bundle. This problem is easy. First note that
	2q1 � p1 � 	1q1 � p1 and the right side is nonnegative from (P1). This,
together with (SL2), implies that 	2q2 � p2. Therefore, (P2) is redundant and is
thus deleted. Moreover, (P1) must bind, for otherwise, one can simultaneously
increase p1 and p2 by the same amount without violating any constraints. Note
that (SL1) and (SL2) can be combined to produce:

	2ðq2 � q1Þ � p2 � p1 � 	1ðq2 � q1Þ:

It then follows that q2 � q1, which then implies p2 � p1. On the other hand,
(SL2) must bind, because if not, one can increase p2 to get a better solution for
the monopolist. Therefore, p2 � p1 ¼ 	2ðq2 � q1Þ � 	1ðq2 � q1Þ because
q2 � q1. Consequently, (SL1) is implied by the binding version of (SL2) plus
q2 � q1. In sum, the above optimization is equivalent to

max
q1, p1, q2, p2

ðp1 � q21Þ þ ðp2 � q22Þ

s:t: p1 ¼ 	1q1

	2q2 � p2 ¼ 	2q1 � p1

q2 � q1:
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This has a closed-form solution:

q*1 ¼ max 	1 �
	2
2
, 0

� �
, q*2 ¼

	2
2
:

Note that compared with the previous solution without consumer self-
selection, the lower demand-intensity consumer (i.e., consumer 1) gets a lower
quality product, a lower price, and the same (zero) surplus, whereas the higher
demand-intensity consumer gets the same quality product, a lower price, and
a positive surplus. Moreover, if we interpret q*2 � q*1 as the breadth of
the product line, self-selection leads to a broader range of goods. Finally, if
	1 � 	2=2, consumer 1 is not served.

The above simple example captures the basic idea of screening. For more
sophisticated models involving consumer self-selection, see, for e.g., Mussa
and Rosen (1978), Maskin and Riley (1984) and Moorthy (1984).

Quality, broadly interpreted, represents product attributes for which the
consumer preference is of the more-is-better kind. Other product attributes
include color, size, taste, etc., and each consumer is likely to have a unique
ideal point in the attribute space.31 It is possible to differentiate products
along these dimensions as well. For this part of the literature, we refer the
reader to Shocker and Srinivasan (1979), Green and Krieger (1985), Lancaster
(1979, 1990), de Groote (1994), Dobson and Kalish (1988, 1993), Nanda
(1995), Chen, Eliashberg and Zipkin (1998), and Yano and Dobson (1998).
A recent book edited by Ho and Tang (1998) contains further references on
this topic.

Market segmentation and product delivery
Different customers may exhibit different degrees of aversion to

waiting: some want to have their orders delivered right away, while others
can tolerate a delay. Therefore, the delivery schedule of a product can be a
useful tool for segmenting the market. One benefit of such a segmentation
strategy is that when a customer places an order that does not have to be
shipped immediately, the firm obtains advance demand information that
can be used for better production-distribution planning. A potential cost of
this strategy occurs when a price discount must be offered in order for a
customer to accept a delay. How can a firm design an optimal price-delivery
schedule?

Chen (2001a) provides a model to address the above question. A firm sells a
single product to consumers. The firm announces a price-delay schedule
fðpk, �kÞg

K
k¼0, for some nonnegative integer K , where pk is the price a customer

31 The ideal-point model is often used to describe consumer preferences along dimensions that are not

quality-like. For example, a consumer’s utility of buying a product with level x of certain attribute can

be written as A� ðx� aÞ2, where A is the maximum possible utility level and a is the ideal attribute

level for the consumer. Different consumers can have different ideal attribute levels.
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pays if he agrees to have his order shipped �k units of time after order
placement, with 0 ¼ �0 < �1 < � � � < �K and p0 > p1 > � � � > pK . The max-
imum price p0 is paid only if a consumer wants immediate shipment.

The consumers divide into M segments. Let umð�Þ be the maximum
(or reservation) price that the customers in segment m are willing to pay for
one unit of the product if their orders are shipped � units of time after order
placement, m ¼ 1, . . . ,M. It is assumed that umð�Þ is decreasing, differentiable,
convex with u0mð�Þ < u0mþ1ð�Þ ð< 0Þ for all �.32 Thus, segment 1 is uniformly
more sensitive to waiting than segment 2, segment 2 more so than segment 3,
and so on. The surplus that a type-m customer derives from ðpk, �kÞ is
umð�kÞ � pk. His objective is to choose a pair from the schedule that maximizes
his surplus, i.e., consumer self-selection.

The product is replenished by an N-stage supply chain. Stage 1 is the final
stocking point from which product is shipped to customers, stage 1 is
replenished by stage 2, stage 2 by stage 3, etc., and stage N by an outside
supplier with ample stock. The transit time from one stage to the next is
constant. Customer orders are satisfied first-come, first-served according to
the sequence of their shipping dates, not the dates in which the orders are
placed. If the firm cannot ship an order on the date chosen by the customer
because the product is out of stock (at stage 1), the order is backlogged. The
backlogged orders are shipped as soon as inventory becomes available. In this
case, the firm incurs a goodwill loss (or backorder cost). In addition, the firm
incurs holding costs for inventories held in the supply chain and variable costs
for every unit sold.

Determining an optimal price-delivery schedule turns out to be a hard
problem. Below is a brief description of the solution.

The optimal schedule always has the segments bundled in a sequential
manner, with lower segments choosing higher prices and shorter delays.
For example, suppose there are five segments in the market, and the firm
offers fðp0, 0Þ,ðp1, �1Þ, ðp2, �2Þg. Sequential bundling means something like the
following. Suppose segments 1 and 2 choose ðp0,0Þ, segment 3 chooses ðp1, �1Þ,
and segments 4 and 5 choose ðp2, �2Þ. Given this, a property of the optimal
schedule is that segment 3 is indifferent between ðp1, �1Þ and ðp0, 0Þ, and
segment 4 is indifferent between ðp2, �2Þ and ðp1, �1Þ. (It is assumed that when
indifferent, a consumer will choose the lower price.) These indifference
relationships imply that a price-delay schedule is fully specified by the delays
and the marginal segments, i.e., ð�1, �2Þ and segments 3 and 4 in the above
example.

32 Note that umð0Þ � umð�Þ is the cost of waiting for a segment-m customer. The assumption that umð�Þ is

convex implies that the cost of waiting is concave, i.e., the marginal cost of waiting is decreasing. This

is true if, for example, the excitement about the product decreases over time after the order is placed. In

this case, the marginal cost of waiting is very high in the first few days, while the excitement still lingers,

and decreases as time goes by.
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Now fix the price-delay schedule and consider the firm’s supply chain.
Suppose segment m chooses a shipping delay equal to lm, m ¼ 1, . . . ,M.
Therefore, if a segment-m customer places an order at time t, the
corresponding demand occurs at time tþ lm. Suppose lm > 0 for some m.
Therefore, some orders serve as warnings of future demand, and the question
is how this information can be incorporated into the firm’s replenishment
strategy. The optimal strategy, and the corresponding minimum supply chain
costs, can be obtained by carefully separating the known demand information
from the unknown and following the approach of Chen and Zheng (1994).
The optimal policy is an echelon base-stock policy with floating order-up-to
levels (one for each stage).

To gain some intuition on how the shipping delays translate into cost
savings, suppose N ¼ 2. Let the lead times at stages 1 and 2 be 4 and 2
periods respectively. To make matters really simple, assume there is only one
segment choosing a shipping delay of l periods. It is easy to see that if l ¼ 6,
the supply chain faces no demand uncertainty at all and as a result, no
inventories need to be carried at any stage. Now suppose l ¼ 5. In this case,
there is no need to carry any inventory at stage 1. Consider the problem
facing stage 2. Say a customer order arrives at time t (at stage 1). This order
needs to be shipped out of stage 1 at time tþ l ¼ tþ 5. This means that the
order needs to be shipped out of stage 2 at time tþ 1. Therefore, stage 2’s
problem is basically a single-location inventory problem where customers
choose a shipping delay of 1 period. This, together with the fact that the
lead time at stage 2 is 2 periods, implies that the demand uncertainty facing
stage 2 is just one-period worth of demand, not the usual two-periods worth
of demand. Finally, if, say, l ¼ 3, then both stages will need to carry some
safety stock. With some thinking, the reader will see that the demand
uncertainty facing stage 1 is one-period ð¼ 4� 3Þ worth of demand and the
demand uncertainty facing stage 2 remains to be two-periods worth of
demand.

An optimal price-delay schedule can be obtained by solving an
optimization problem that captures both the costs and benefits of the
segmentation strategy. Numerical results show that the net benefit of this
strategy can be substantial.

Screening and moral hazard
Sometimes the party being screened also takes hidden actions. Chen (2000c)

studies such a model. Suppose a firm sells a single product through a single
sales agent. The market demand is the sum of the agent’s selling effort ðaÞ, the
market condition ð	Þ, and a random shock ð"Þ, i.e.

X ¼ aþ 	 þ "

where 	 and " are independent random variables, Prð	 ¼ 	HÞ ¼ � and
Prð	 ¼ 	LÞ ¼ 1� � for 0 < � < 1 and 	 > 	L > 0, and " � Nð0; �2Þ. The agent
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privately observes the value of 	, and the agent’s effort level is not observable
to the firm. The firm’s decisions are how to compensate the agent for his work
(i.e., a wage contract) and how much to produce before demand realization.
Given a contract, the agent decides whether or not to accept it and if so, how
much effort to expend.33

The model assumes the following sequence of events: (1) the firm (or
principal) offers a menu of wage contracts (for screening); (2) the agent
privately observes the value of 	; (3) the agent decides whether or not to
participate (work for the firm) and if so, which contract to sign; (4) under a
signed contract, the firm determines the production quantity, and the agent
makes the effort decision; and (5) " is realized.

Consider the agent’s decisions when offered a menu of contracts. First, he
considers each contract on the menu and determines the maximum
expected utility that can be obtained under the contract. Suppose s( � ) is
the contract being considered, i.e., s(x) is the wage paid to the agent if
the total sale is x. Assume the agent’s utility for net income z is UðzÞ ¼ �e�rz

with r > 0.34 Note that U( � ) is increasing and concave, implying that
the agent is risk averse. The net income is the wage received, SðXÞ, minus
the cost of effort, VðaÞ ¼ a2=2.35 To determine the maximum expected
utility achievable under sð�Þ, the agent solves the following optimization
problem

max
a

E �e�rðsðXÞ�VðaÞÞ
� �

:

Recall that the agent has already observed the value of 	 when evaluating the
contract. Therefore, the above expectation is with respect to " given the
observed value of 	. If the maximum expected utility is greater than or
equal to �U0, U0>0, the agent’s reservation utility representing the best
outside opportunity for the agent, then s is said to be acceptable to the

33 Coughlan (1993) reviews the salesforce compensation literature. A common assumption is that the

total sales is a function of selling effort and a random shock and that effort is unobservable to the firm.

This is the moral hazard problem, which has been widely studied in the economics/agency-theory

literature, see, e.g., Shavell (1979), Harris and Raviv (1978, 1979), Holmstrom (1979, 1982) and

Grossman and Hart (1983). If, in addition to the moral hazard problem, the firm is in an informational

disadvantage in terms of the sales environment, i.e., the sales people have superior information about

the sales response function (the productivity of selling effort, the sensitivity of customers to price

changes, the sales prospects, etc.), then the firm also faces an adverse selection problem. The typical

solution is a menu of contracts. The salesforce compensation literature in marketing includes Basu,

Lal, Srinivasan and Staelin (1985), Lal (1986), Lal and Staelin (1986), Rao (1990) and Raju and

Srinivasan (1996).
34 The negative exponential utility function is widely used in agency models.
35 The quadratic form is not critical for the analysis. An often-assumed feature of the cost-of-effort

function is increasing marginal cost of effort.
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agent.36 Among all the contracts on the menu, the agent chooses the one with
the highest achievable expected utility and participates if this utility level
exceeds �U0.

We now turn to the principal’s problem. Recall that the firm must make
its production decision before observing the total sales. This is reasonable
when the customers demand fast delivery of their orders and the
production lead time is relatively long. (It is thus impossible to follow
make-to-order.) Let Q be the production quantity. Let c be the cost per
unit produced. If X � Q, the excess supply is salvaged at p per unit. On the
other hand, if X > Q, the excess demand must be satisfied by a special
production run at a cost of c0 per unit. Let the unit selling price be 1þ c (the
profit margin is thus normalized to 1). To avoid trivial cases, assume
p < c < c0 < 1þ c. As mentioned before, the firm makes contracting as well
as production decisions with the objective of maximizing its expected profit
(the principal is thus risk neutral). If sð�Þ is the contract signed by the agent,
the firm’s profit is

ð1þ cÞX � sðXÞ � cQþ pðQ� XÞþ � c0ðQ� XÞ�

¼ X � sðXÞ � ½ðc� pÞðQ� XÞþ þ ðc0 � cÞðQ� XÞ��

where wþ ¼ maxfw, 0g and w� ¼ maxf�w, 0g. Note that the optimal produc-
tion quantity minimizes

E½ðc� pÞðQ� XÞþ þ ðc0 � cÞðQ� XÞ��

where the expectation is with respect to X given the principal’s knowledge
about the market condition and the agent’s selling effort (inferred, not
observed) after a contract is signed.

Since there are only two possible market conditions, the firm needs
to offer at most two contracts. Let sHð�Þ be the contract chosen by the
high-type agent, and sLð�Þ chosen by the low type. The principal, by
putting herself in the shoes of the agent, can anticipate the amount of
selling effort under each type. Let aH be the selling effort of the high-
type agent, and aL the effort of the low type. Assume that sHð�Þ 6¼ sLð�Þ. In
this case, the principal discovers the market condition after observing the
contract choice made by the agent. If 	 ¼ 	H then X � NðaH þ 	H , �

2Þ;
otherwise, if 	 ¼ 	L, then X � NðaL þ 	L, �

2Þ. And the principal can make
her quantity decision accordingly. This is a benefit the principal obtains
from screening.

One way to achieve screening is by offering a menu of (two) linear
contracts. Let sHðxÞ ¼ �Hxþ �H be the contract intended for the high-type
agent, and sLðxÞ ¼ �Lxþ �L the contract intended for the low-type agent,
with �H , �L � 0. It can be shown that the optimal values of the contract

36 It is reasonable to assume that the reservation utility does not depend on the agent’s type, because

what distinguishes the high type from the low type is the market condition, something unrelated to the

agent’s intrinsic quality.
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parameters are

�H ¼
1

1þ r�2

�L ¼
1

1þ r�2
max 1�

�

1� �
ð	H � 	LÞ, 0

� �

�L ¼ �
lnU0

r
� �L	L �

1� r�2

2
�2L

�H ¼ �
lnU0

r
þ �Lð	H � 	LÞ � �H	H �

1� r�2

2
�2H :

Another way to achieve screening is suggested by Gonik (1978). Under his
scheme, the firm asks the salesperson to submit a forecast of the total sales. If
the forecast is F , then sðx jFÞ – a given function of the actual total sales x
parameterized by F – is the compensation for the agent. Therefore, the firm is
effectively offering a menu of contracts; by submitting a forecast, the agent
chooses a particular contract from the menu. Gonik’s original proposal
uses the following functional forms: sðx jxÞ ¼ �xþ � for all x, and for any x
and F,

sðx jFÞ ¼
sðF jFÞ � uðF � xÞ x � F
sðF jFÞ þ vðx� FÞ x > F

�

where �, �, u, and v are contract parameters chosen by the firm with
u > � > v > 0. Note that sðx j xÞ � sðx jFÞ for all F and x. Therefore, if the
agent expects to sell x units, it is in his best interest to submit a forecast that is
equal to x. Also, for any given F , sðx jFÞ is increasing in x, providing the agent
with incentives to generate more sales.

It can be shown that the agent’s optimal effort level is a* ¼ �, which is
entirely determined by only one contract parameter, �, and it is independent
of the agent’s type. Moreover, the optimal forecast decision is
F* ¼ z* þ a* þ 	 ¼ z* þ �þ 	 for some value z*, which depends on �, u, v
but is independent of � and the agent’s type. Therefore, the high-type agent
forecasts FH ¼ z* þ �þ 	H and the low-type forecasts FL ¼ z* þ �þ 	L. The
agent is screened!

Numerical examples comparing the menu of linear contracts with the
Gonik scheme show that the former dominates the latter in terms of the firm’s
expected profits.

Screening in supply chains
An important type of information asymmetry in supply chains is about cost

structures. A supplier may only have imperfect knowledge about a buyer’s
cost structure, and vice versa. Here again the less informed may try to screen
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the more informed with a menu of contracts. Below, we describe a few
papers that deal with screening in supply chains with asymmetric cost
information.37

Ha (2001) provides a screening model where the supplier does not know
the buyer’s marginal cost. The setting is that of the newsvendor model
(with pricing): the buyer faces a demand that is stochastic and price-sensitive,
and before demand realization, an order quantity must be determined
together with the selling price. The demand model is the additive kind,
i.e., D ¼ �ðpÞ þ Y where p is the selling price, � is a decreasing and concave
function, and Y is a random variable independent of p. Let s be the supplier’s
marginal cost of production, and c the buyer’s marginal cost (of
selling and maybe additional processing). A key feature of the model is that
c is known only to the buyer, with the supplier endowed with a prior
distribution of c over a finite interval. Everything else is assumed to be
common knowledge. The analysis is from the standpoint of the supplier: how
to offer a menu of contracts to the buyer so as to maximize the supplier’s
expected profit.

The contract menu is restricted to be of the form: fpðĉÞ, qðĉÞ,RðĉÞg, where ĉ is
the buyer’s announced marginal cost (which can be different from the true cost
c), and works as follows: if the buyer announces ĉ, then the supplier will
deliver qðĉÞ units to the buyer for a total payment of RðĉÞ, and the buyer is to
set the selling price at pðĉÞ. The functions pð�Þ, qð�Þ and Rð�Þ are chosen by the
supplier. Given this menu, the buyer then decides whether or not to sign a
contract and if so, which one (by choosing ĉ). Ha (2001) has solved this
mechanism design problem.

As mentioned in Ha (2001) the above menu of contracts is a nonlinear
contract with price fixing, and this may run into problem with commercial
laws such as Resale Price Maintenance (RPM), see, e.g., Tirole (1988). This
would not be a problem if the contract menu is changed to fqðĉÞ,RðĉÞg and the
retailer is free to choose any selling price after contract signing. Ha has not
solved this problem, except for a special case where the selling price
is exogenously given.

Corbett and de Groote (2000) consider a model with one supplier and one
retailer, where the retailer’s holding cost parameter hb is unknown to the
supplier. The basic setup is a two-stage economic lot-sizing problem with
deterministic demand and no backlogging, with an additional restriction
that the supplier’s lot size is equal to the retailer’s (i.e., the lot-for-lot
replenishment). The supplier, however, is endowed with a prior distribution of
hb. The problem facing the supplier can be formulated as a direct revelation
game, whereby the supplier asks the retailer to announce the value of hb: if
the announced value is ĥhb, then the lot size is QðĥhbÞ and the discount is PðĥhbÞ
given as a lump-sum payment per unit of time. The task is to determine the

37 A careful reader would realize that some of the models discussed in Section 2.2 fall under this

category.
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pair of functions Qð�Þ and Pð�Þ so as to minimize the supplier’s expected costs
subject to the incentive compatibility constraint that the retailer always wants
to announce his true holding cost. Corbett and de Groote show that the
optimal Qð�Þ and Pð�Þ are both decreasing functions, which can thus be
interpreted as a quantity discount scheme because larger quantities are
associated with larger discounts.

Corbett (2001) considers a supplier–retailer model with stochastic demand.
The setup is basically the same as the classic (Q, r) model: whenever the
retailer inventory position falls to the reorder point r, it orders (and the
supplier produces) a batch of Q units. The twist here is that the supplier makes
the lot-sizing decision (i.e., the value of Q) and incurs a fixed cost for each
batch produced, and that the retailer determines the reorder point r and is
responsible for the holding and backorder costs incurred at the retail site.38

The inefficiency in this supply chain is evident if there is no coordination: the
supplier will set the batch size to be infinity! Corbett derives screening
solutions for the following scenarios: (1) the supplier privately observes the
value of the fixed cost, and (2) the retailer privately observes the backorder
penalty cost. Also discussed is how consignment – the practice of giving the
ownership of retailer inventory to the supplier – affects supply chain
coordination. We omit the details. For other studies on supply chain models
with asymmetric cost information, see Corbett, Zhou and Tang (2001) and the
references therein.

Another type of information asymmetry in supply chains is about demand
information. For example, a retailer, due to its proximity to the market, may
possess better information about the demand than the supplier may. Cachon
and Lariviere (1999) consider a one-period model with one supplier and N
retailers. The retailers are local monopolists, each of which receives a private
signal about its own market, which in turn determines its desired stocking
level. The supplier has a finite capacity, and must determine an allocation
mechanism in the event the sum of the retailer orders exceeds the capacity.
(An allocation mechanism is therefore a mapping from a vector of retailer
orders to a vector of capacity allocations.) They consider various allocation
mechanisms and their impact on the supply chain. They found that some
mechanisms induce the retailers to truthfully order their desired quantities,
but the supply chain often fares better with a mechanism that induces
order inflation (i.e., the retailers order more than they need hoping to get a
higher allocation in the event of capacity shortage). In other words, the
truthful sharing of retailer order information is not necessarily the appropriate
goal for the supply chain. A recent paper by Deshpande and Schwarz (2002)

38 Here lies a critical assumption: the supplier sets the retailer’s order quantity. It is worth thinking

about an alternative model where there are two quantity decisions: the supplier sets its production

quantity, and the retailer sets its order quantity. Under the current cost structure, it is reasonable to

assume that the production quantity is larger than the order quantity. Consequently, the supplier will

also incur some inventory holding costs. How would supply chain coordination come about in this

case? The same comment applies to Corbett and de Groote (2000).
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considers a similar problem and derives an optimal mechanism from the
supplier’s standpoint.

3.2 Signaling

We begin with a simple example to illustrate the basics of signaling. We
then review several supply chain models where an informed party likes to
convey a piece of private information to the uninformed. These models are,
interestingly, all set forth in the context of new product introductions.

A simple example
Consider a supply chain with one manufacturer and one retailer. The

manufacturer (she) produces one product and sells it through the retailer (he).
The retailer faces a linear demand function D ¼ a� p. The demand intercept,
a, has two possible values: a ¼ 8 or a ¼ 4. The manufacturer observes the
value of a, while the retailer assesses a probability of � that a ¼ 8 and a
probability of 1� � that a ¼ 4, 0 < � < 1. And the manufacturer is aware of
this assessment by the retailer. To make numbers simple, say the
manufacturer’s marginal cost of production is zero. The one-period game
begins with the manufacturer offering a wholesale price w. Then, the retailer
sets the retail price p. Finally, the market demand is realized and profits
accrue to the two players.

To start, let us consider the full information case, i.e., the value of a is
also known to the retailer. In the high-type case (i.e., a ¼ 8), the retailer
chooses p to maximize ðp� wÞð8� pÞ when the wholesale price is w. The
optimal solution is p ¼ ð8þ wÞ=2. Given this, the manufacturer maximizes
wð8� ð8þ wÞ=2Þ. The solution is wH ¼ 4, which leads to a retail price of
pH ¼ 6. The profits for the manufacturer and the retailer are pMH ¼ 8 and
pRH ¼ 4, respectively. On the other hand, if a ¼ 4, i.e., the low-type case, we
have wL ¼ 2, pL ¼ 3, pML ¼ 2, and pRL ¼ 1.

We can already see that the high-type manufacturer has an incentive to
‘pretend’ to be low type. For example, suppose, miraculously, the high-type
manufacturer charges w ¼ 2 and the retailer believes she is actually low type.
The retailer then chooses a retail price p to maximize ðp� wÞð4� pÞ, leading to
p ¼ 3. In this case, the high-type manufacturer’s profit is wð8� pÞ ¼ 10, which
is higher than pMH ¼ 8 under full information. The intuition is clear: the
manufacturer ‘prefers’ the retailer to think the demand intercept is low and
hence, to charge a lower retail price leading to a higher demand. Interestingly,
the retailer’s actual profit in this case is ðp� wÞð8� pÞ ¼ 5, which is also higher
than the profit under full information pRH ¼ 4. On the other hand, the low-type
manufacturer does not want the retailer to think otherwise. To verify this is a
good exercise.

Now back to the case with asymmetric information. Suppose the
manufacturer sets the wholesale price at w. Let �ðwÞ be the probability the
retailer attributes to the event that a ¼ 8. If, e.g., �ðwÞ ¼ �, then the retailer
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obtains no new information about the demand intercept after observing w.
The other extreme is �ðwÞ ¼ 0 or 1, in which case the retailer learns the exact
value of the demand intercept. With w and �ðwÞ, the retailer chooses a retail
price to maximize his expected profits:

ðp� wÞ½8�ðwÞ þ 4ð1� �ðwÞÞ � p� ¼ ðp� wÞ½4þ 4�ðwÞ � p�:

Therefore, the optimal solution is

pðw,�ð�ÞÞ ¼
4þ 4�ðwÞ þ w

2
¼ 2ð1þ �ðwÞÞ þ

w

2
:

Given �ð�Þ, the manufacturer can anticipate what the retailer is going to do
through the above equation for each possible value of w. The optimal
wholesale price for the high-type manufacturer is the solution to

max
w

pMH ðwÞ¼
def

wð8� pðw,�ð�ÞÞÞ ¼ w 6� 2�ðwÞ �
w

2

� 	
:

Let the solution be w*
H . Similarly, the low-type’s optimal wholesale price w*

L

solves

max
w

pML ðwÞ¼
def

wð4� pðw,�ð�ÞÞÞ ¼ w 2� 2�ðwÞ �
w

2

� 	
:

In sum, given �ð�Þ, the two players simply play a Stackelberg game with the
manufacturer as the leader and the retailer as the follower. But the story does
not end here. Where does �ð�Þ come from? It must be consistent with the
pricing strategies that prevail in the Stackelberg game. For example, if
w*
H 6¼ w*

L, then a wholesale price equal to w*
H signals to the retailer that a ¼ 8,

and a wholesale price of w*
L signals a ¼ 4. Therefore, to be consistent, we

must have �ðw*
HÞ ¼ 1 and �ðw*

LÞ ¼ 0. On the other hand, if w*
H ¼ w*

L, then the
retailer is going to see only one wholesale price no matter what
the manufacturer type is. In this case, consistency calls for �ðw*

HÞ ¼ �. In
the former case, we have a separating equilibrium because the retailer is able
to separate the two manufacturer types; in the latter, a pooling equilibrium
because the two manufacturer types do the same thing. A belief structure that
is consistent is referred to as an equilibrium belief.

Let us see if there exists any equilibrium, separating or pooling, in the
above game.

Suppose a pooling equilibrium exists. Let w0 be the wholesale price
chosen by both types of the manufacturer. Let �0ð�Þ be the retailer belief.
Recall that consistency calls for �0ðw0Þ ¼ �. We claim that if � < 3� 2

ffiffiffi
2
p
�

0:1716, then the following strategy profile and belief form a pooling
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equilibrium: w0 ¼ 2� 2�, �0ðwÞ ¼ � for all w � 2� 2� and �0ðwÞ ¼ 1 for all
other w. To verify, all we need to do is check that under the given belief,
w0 ¼ 2� 2� is indeed the optimal choice for both manufacturer types.
Consider first the high type. If the manufacturer offers a wholesale price w
greater than w0, then pMH ðwÞ ¼ 4w� w2=2, which is maximized at w ¼ 4 with
pMH ð4Þ ¼ 8. If w ¼ w0, pMH ðw

0Þ ¼ 6w0 � ðw0Þ
2=2� 2�w0. It is easy to verify that

pMH ðw
0Þ > 8 when � < 3� 2

ffiffiffi
2
p

. Moreover, for all w < w0, pMH ðwÞ ¼ 6w� w2=
2� 2�w is increasing in w. This shows that the high-type manufacturer’s
optimal choice of a wholesale price is w0. Now consider the low-type
manufacturer. If the low-type manufacturer offers a wholesale price w > w0,
the retailer thinks the manufacturer is of high type. Under this scenario, the
low-type manufacturer’s profit function is pML ðwÞ ¼ �w

2=2. Therefore, it is not
in the interest of the low-type manufacturer to ‘pretend’ to be of high type.
For all w � w0, pML ðwÞ ¼ 2w� w2=2� 2�w, which is maximized at w ¼ w0.
This establishes that the above strategy–belief combination is a pooling
equilibrium.39

The following is a separating equilibrium: wH ¼ 4, wL ¼ 6�
ffiffiffiffiffi
20
p
� 1:5279,

�ðwÞ ¼ 0 for all w � wL, and �ðwÞ ¼ 1 for all w > wL. To verify, first consider
the high-type manufacturer. For any wholesale price w greater than wL, the
retailer thinks a ¼ 8 and the manufacturer faces the profit function
pMH ðwÞ ¼ 4w� w2=2, which is maximized at w ¼ 4 with pMH ð4Þ ¼ 8. If the
manufacturer wants to pretend to be of low type, he must offer a wholesale
price w � wL. Over this range, pMH ðwÞ ¼ 6w� w2=2, which is an increasing

39 Various equilibrium refinements are possible. We consider one here, i.e., the test of equilibrium

domination that is also known in the literature as the ‘intuitive criterion.’ The reader is referred to

Kreps (1990) for discussions on the intuitive criterion and references to other refinements. In the above

pooling equilibrium, the high-type manufacturer obtains an expected profit ð8� p0Þw0, where p0 is the

retailer’s selling price in the equilibrium, i.e.

p0 ¼ 2ð1þ �Þ þ w0=2 ¼ 3þ �:

Likewise, the low-type manufacturer’s equilibrium expected profit is ð4� p0Þw0. The first step in the

test is to identify all signals (i.e., wholesale prices) that are ‘equilibrium dominated.’ A wholesale price

w is equilibrium dominated if the maximum achievable profit for the manufacturer under w is less than

what she gets in equilibrium. Consider the high-type manufacturer. We know her expected profit in

equilibrium is ð8� p0Þw0. If she charges wholesale price w and the retailer sets the retail price at p, her

profit is ð8� pÞw. The maximum achievable profit is 8w, which is obtained when p ¼ 0. Thus w is

equilibrium dominated at the high type if

8w < ð8� p0Þw0 or w < ð1� p0=8Þw0 ¼
ð5� �Þð1� �Þ

4
¼
def

~wwH :

Similarly, w is equilibrium dominated at the low type if

4w < ð4� p0Þw0 or w < ð1� p0=4Þw0 ¼
ð1� �Þ2

2
¼
def

~wwL:

The central idea of the intuitive criterion is that it should be obvious what the retailer’s beliefs should

be at wholesale prices that are equilibrium dominated. For example, if the retailer observes w < ~wwH ,

then the signal must not come from the high-type manufacturer and thus �ðwÞ ¼ 0. Similarly, a signal
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function in w for w � wL. Therefore, misleading the retailer gives the high-
type manufacturer a profit lower than or equal to 6wL � w2

L=2 ¼ 8, which is
not better than ‘truth-telling’. This verifies that the optimal choice for the
high-type manufacturer is wH ¼ 4. On the other hand, recall from our earlier
discussions that the low-type manufacturer will never want to pretend to be of
high-type (doing so would give him a negative profit). For wholesale prices
w � wL, the low-type manufacturer’s profit function is pML ðwÞ ¼ 2w� w2=2. It
is easy to see that this function is increasing over w � wL. Thus the low-type
manufacturer’s optimal wholesale price is wL. Moreover, the choices by the
two manufacturer types confirm the above retailer belief. We thus have a
separating equilibrium.

You may wonder if there exists any other pooling or separating
equilibrium. It is a good exercise to try to find one. To read more about
signaling games, see, Kreps (1990), Fudenberg and Tirole (1992) and Kreps
and Wilson (1982).

Demand signaling in new product introductions
When a manufacturer introduces a new product to the market, it often

possesses some private information about the potential market demand for
the product. This information is critical for a retailer who is deciding whether
or not to carry the product because the retailer may not be able to
recoup the overhead for a low-demand product. Similarly, the information is
valuable to a supplier who is considering how much capacity to build for the
manufacturer’s product; building a lot of capacity for a low-demand product
is wasteful. In both cases, the manufacturer has an incentive to report

w < ~wwL tells the retailer that the manufacturer cannot be of low type. But can she be of high type in this

case? No, because ~wwL < ~wwH and thus w < ~wwH . We are in a quandary here; a reasonable assumption is

that such a wholesale price will never be observed. Under this assumption, the intuitive criterion

suggests that �ðwÞ ¼ 0 for all w < ~wwH . Notice that �0ðwÞ ¼ � for the same range. (Check that

~wwH < w0.) Let us see if this change in retailer belief will change the manufacturer’s signaling strategy,

assuming the retailer continues with his optimal response pðw,�ð�ÞÞ where �ð�Þ is the updated belief.

First, consider the high-type manufacturer. If she offers w < ~wwH , then �ðwÞ ¼ 0 and

pMH ðwÞ ¼ 6w� w2=2 < 6 ~wwH � ð ~wwH Þ
2=2

which can be shown to be less than 8, which is the manufacturer’s expected profit if the wholesale price

is 4 (and thus the retailer thinks she is high type), which in turn is less than what she gets by charging

w0. Therefore, the high-type’s choice remains intact. Now consider the low-type manufacturer. For any

w < ~wwH , we have

pML ðwÞ ¼ 2w� w2=2 < 2 ~wwH � ð ~wwH Þ
2=2:

It can be shown that if � < 0:11 then

2 ~wwH � ð ~wwH Þ
2=2 < ðw0Þ

2=2

where the right-hand side is the low-type manufacturer’s expected profit if she chooses w0 as the

wholesale price. Consequently, for � < 0:11, the pooling equilibrium is sustained by the intuitive

criterion.
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high demand, whether the actual demand is high or low. (This is different than
the scenario considered in the above example, where the manufacturer benefits
if the retailer thinks the market is low.) As a result, a simple announcement by
the manufacturer will not be believed. To be credible, the manufacturer
needs to put money where its mouth is, i.e., signaling. Below are several papers
that deal with this issue.

Chu (1992) considers a distribution channel consisting of a manufacturer
and a retailer. The product, produced by the manufacturer and sold by the
retailer, draws a demand that depends on the market condition, the retail price
P, and the manufacturer’s advertising expenditure A:

Qi ¼ a� biPþ f ðAÞ, i ¼ H,L

where Qi is the demand for the product under market condition i, a is
a constant, bi is the demand sensitivity to price, and f ð�Þ is a concave,
increasing function. Assume bH < bL. Thus, for any given P and A,
the demand is higher when the market condition is ‘H’. For convenience,
we say the market condition is either high ði ¼ HÞ or low ði ¼ LÞ. The
manufacturer knows the true market condition, whereas the retailer assesses
a probability � that the market is high (and the manufacturer knows of
this assessment). The manufacturer incurs a constant marginal cost of
production C.

A signaling game is where the manufacturer (with superior information)
moves first by offering a wholesale price Pw and spending A on advertising.
Given Pw and A, the retailer updates his belief about the market
condition from � to �̂�, decides whether or not to carry the manufacturer’s
product, and if the latter, sets the retail price. The retailer incurs a fixed cost F
for carrying the product. The retailer will accept the manufacturer’s offer if
his expected profit (excluding the carrying cost) exceeds F , and will reject
it otherwise.

Chu makes an additional assumption that as soon as the retailer accepts
the manufacturer’s offer, he sees the true market condition. Therefore, the
retail price can be made contingent upon the value of the slope bi.

An equilibrium for the signaling game consists of a manufacturer strategy
fPi

w,A
ig, i ¼ H,L, a retailer accept/reject strategy Rðx, yÞ that is a binary

function, and a retailer belief �ðx, yÞ, which is the posterior probability that
the market is high, for any possible offer ðPw,AÞ ¼ ðx, yÞ from the
manufacturer. Recall that the retailer’s pricing decision is made after learning
the market condition. Thus if the retailer accepts an offer ðx, yÞ from the
manufacturer, the optimal retail price is

Piðx, yÞ ¼ argmaxPðP� xÞða� biPþ f ðyÞÞ, i ¼ H,L:
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Let the retailer’s profit (excluding the fixed cost F) be piRðx, yÞ, i.e., p
i
Rðx, yÞ ¼

ðPiðx, yÞ � xÞða� biPiðx, yÞ þ f ðyÞÞ. Before the accept/reject decision, the
retailer’s expected profit is pRðx, yÞ¼

def
�ðx, yÞpHR ðx, yÞ þ ð1� �ðx, yÞÞp

L
Rðx, yÞ.

Therefore, if pRðx, yÞ � F , the retailer accepts the manufacturer’s offer
ðx,yÞ, i.e., Rðx,yÞ ¼ 1; otherwise, if pRðx, yÞ < F , the retailer rejects the offer
ðx, yÞ, i.e., Rðx, yÞ ¼ 0. Anticipating all this, the manufacturer, knowing
her own type, maximizes her profits:

ðPi
w,A

iÞ¼argmaxPw,ARðPw,AÞðPw�CÞða�b
iPiðPw,AÞþf ðAÞÞ, i ¼ H,L:

An equilibrium with ðPH
w ,A

HÞ 6¼ ðPL
w,A

LÞ is a separating equilibrium;
otherwise, if ðPH

w ,A
HÞ ¼ ðPL

w,A
LÞ¼

def
ðP̂Pw, ÂAÞ, we have a pooling equilibrium.

For a separating equilibrium, the consistency requirement for the retailer
belief is �ðPH

w ,A
HÞ ¼ 1 and �ðPL

w,A
LÞ ¼ 0. For a pooling equilibrium,

consistency requires �ðP̂Pw, ÂAÞ ¼ �.
Chu has identified a separating equilibrium, where the high-type

manufacturer advertises and prices above its complete information levels.
He has also identified a pooling equilibrium, where both the high-type and the
low-type manufacturers advertise and price at or above the complete
information levels of the high-type manufacturer. (The complete information
case is simply one where the retailer knows the true market condition, and the
two players carry out a Stackelberg game with the manufacturer as the leader,
setting the wholesale price and the advertising expenditure, and the retailer
as the follower, setting the retail price, with an option to reject the
manufacturer’s offer.)

Chu proceeds to consider the case where the retailer moves first to screen
the manufacturer. This is achieved through a slotting allowance, which is a
lump-sum payment from the manufacturer to the retailer in order for the
latter to carry the product. The game proceeds in the following sequence. The
retailer specifies a slotting allowance, which the manufacturer can either
accept or reject. If rejected, the game ends with zero profit for both parties. If
the manufacturer agrees to pay the slotting allowance, she gets to set the
wholesale price and an advertising expenditure. Given these, the retailer then
sets the retail price after observing the market condition (as in the signaling
case).

Notice that once the manufacturer has accepted to pay the slotting
allowance, the rest of the game is the same as in the complete information
case, because the retailer sees the market condition (due to screening) before
his pricing decision. It is possible to choose a slotting allowance such that only
the high-type manufacturer finds it acceptable. For example, let the slotting
allowance be the high-type manufacturer’s maximum profits in the complete
information case. (Recall that this is what the manufacturer can achieve in the
Stackelberg game with complete information, where the manufacturer moves
first by announcing the wholesale price Pw and the advertising expenditure A,
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and the retailer follows by setting the retail price P.) It is clear that such a
slotting fee is unacceptable to the low-type manufacturer. In this case, only
high-type products will be carried by the retailer, who takes all the channel
profits.

So, signaling or screening? This is, of course, determined by the balance of
power in the channel. Clearly, the manufacturer prefers to move first, by
signaling, whereas the retailer prefers to move first too, by screening. From the
channel’s perspective,the result depends on the effectiveness of advertising.

Consider, for a moment, the complete information case. Compared with
the channel-optimal solution, the Stackelberg solution leads to a wholesale
price greater than the manufacturer’s marginal cost, which in turn leads to a
retail price greater than the channel-optimal retail price. This is the well-
known double-marginalization phenomenon.40 On the advertising side,
because the manufacturer reaps only part of the benefits from advertising
(because the retailer also makes a margin), the advertising level in the
Stackelberg solution tends to be lower than the channel-optimal advertising
level. In sum, inefficiencies result because the wholesale price is too high and
the advertising expenditure is too low.

Now consider the asymmetric information case with a high-type
manufacturer. (It is reasonable to ignore the low-type manufacturer if a
low-type product is not sustainable.) As mentioned earlier, the signaling game
leads to a wholesale price and an advertising level both higher than those in
the Stackelberg solution (with complete information). Therefore, signaling
increases the wholesale-price distortion (further away from the channel
optimum) but decreases the advertising distortion. When advertising has low
effectiveness, the former effect dominates the latter, leading to a channel profit
even lower than in the Stackelberg solution. In contrast, screening with a
slotting allowance restores the channel profit to the Stackelberg-game level,
because the slotting allowance, being a fixed fee, does not alter the pricing and
advertising decisions in the channel. Therefore, one can say that signaling
involves wasteful expenditures, whereas screening keeps the money in the
channel. On the other hand, if advertising is highly effective, then the channel
may be better off with signaling.

Lariviere and Padmanabhan (1997) further investigate the role of
slotting allowances in new product introductions. Suppose, as before, a
manufacturer introduces a new product through an independent retailer. The
manufacturer begins by offering the terms of trade, consisting of a wholesale
price w and a slotting allowance A. The retailer then either accepts or rejects
the terms. If the former, the retailer agrees to carry the product and proceeds
to set a retail price p and exert merchandising effort e. The quantity sold can
be expressed as

Dðe, pÞ ¼ � þ f ðeÞ � �p

40 Spengler (1950) is the first to discuss this phenomenon.
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where � is a market-size parameter, � measures demand sensitivity to price,
and f ð�Þ is an increasing, concave function. The cost of merchandising effort is
assumed to be e as well, i.e., a linear effort-cost model. The retailer incurs a
fixed cost K for carrying the product. He accepts the contract offered by the
manufacturer if and only if his profit is nonnegative. A key feature of the
model is that the two players possess asymmetric information about the
market size. It is assumed that � takes one of two possible valuesH and L with
H > L. The manufacturer knows the value of �, whereas the retailer assesses a
probability 	 that � ¼ H (and the manufacturer knows about this assessment).
As in all signaling games, the retailer may infer something about the value of �
from the terms of trade offered ðw,AÞ, i.e., forming a posterior belief �ðw,AÞ
that � ¼ H.

Lariviere and Padmanabhan have characterized a separating equilibrium
in the above signaling game. The equilibrium consists of a contract offered
by the manufacturer, ðŵw, ÂAÞ, and a supporting retailer belief �ð�,�Þ such
that �ðŵw, ÂAÞ ¼ 1 and �ðw,AÞ ¼ 0 for all ðw,AÞ 6¼ ðŵw, ÂAÞ. The parameters of
the model are such that if the market is low, it is impossible for the
manufacturer and the retailer to make nonnegative profits at the same time.
Therefore, in any separating equilibrium where the retailer learns the true
type of the manufacturer, only the high-type product may be accepted by the
retailer.

Let us identify the constraints that a separating equilibrium must
satisfy. Suppose the manufacturer offers ðw,AÞ that leads the retailer to
believe that the market is high. The retailer’s profit function (excluding
fixed costs) is thus

pRðe, pÞ ¼ ðp� wÞðH þ f ðeÞ � �pÞ þ A� e:

The retailer’s optimal response is thus ð ~ee, ~ppÞ¼
def

argmaxðe, pÞpRðe, pÞ. Note
that the slotting allowance, since it is fixed, does not affect the retailer’s
pricing and effort decisions. But it certainly affects whether or not the retailer
will accept the manufacturer’s offer. Acceptance results only if

pRð ~ee, ~ppÞ � K :

In order for the belief to be correct in equilibrium, it must be unprofitable for
the low-type manufacturer to mimic the high-type. Suppose the low-type
manufacturer offers ðw,AÞ, the contract offered by the high-type. As a result,
the retailer believes� ¼ H and thus responds by choosing ð ~ee, ~AAÞ. The
manufacturer’s profit is thus:

pLMðw,AÞ ¼ ðw� cÞðLþ f ð ~eeÞ � � ~ppÞ � A

where c is the manufacturer’s marginal production cost. Doing so must be
unprofitable for the low-type manufacturer, i.e., pLMðw,AÞ � 0. On the other
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hand, the high-type manufacturer’s profit is

pHMðw,AÞ ¼ ðw� cÞðH þ f ð ~eeÞ � � ~ppÞ � A:

The high-type manufacturer seeks a separating equilibrium that maximizes her
profit by solving the following optimization problem:

max
ðw,AÞ

pHMðw,AÞ

s:t: ð ~ee, ~ppÞ ¼ argmaxðe, pÞpRðe, pÞ

pRð ~ee, ~ppÞ � K

pLMðw,AÞ � 0:

The solution ðŵw, ÂAÞ is the contract the high-type manufacturer will offer in
equilibrium.

The following results have been obtained. First, when the fixed cost K
is lower than a threshold level K*, the separating equilibrium does not
involve any slotting allowance, i.e., ÂA ¼ 0, and the wholesale price ŵw is
greater than the full information wholesale price (for high market
condition).41 Second, when K � K*, the separating equilibrium requires a
positive slotting allowance, i.e., ÂA > 0, and a wholesale price ŵw that is
still greater than the full information price. The main message here is that
slotting allowances can be a useful signaling device to show to the retailers
that the products the manufacturers are introducing are promising. This
is in contrast with Chu (1992) who models slotting allowances only as a
screening device.

Desai and Srinivasan (1995) study demand signaling in the presence
of moral hazard. A principal sells a product through an independent
agent. The product is new, and the principal has private information about the
demand for the product.42 The agent can also influence the demand by
expending selling effort, which is not observable to the principal. Both the
principal and the agent are risk neutral. The issue is the contract emerging
between the two parties in this two-sided information asymmetry model.

More specifically, the demand function is either QH or QL with

QJ ¼ TJ � pþ f ðaÞ þ ", J ¼ H,L

41 The full information case is where the retailer also observes the value of �. In this case, due to the

assumptions made about the model parameters, the only relevant problem is what faces the high-type

manufacturer. This problem is solved in a Stackelberg fashion with the manufacturer being the leader

and the retailer the follower.
42 The model can be interpreted in other ways. We choose this principal-agent, new-product story for

convenience.
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where TH > TL. The principal knows the true demand function, whereas
the agent remains uncertain. For convenience, if the demand function is QH ,
we say the principal is of high-type; otherwise, the principal is of low-type.
The agent’s prior belief is that the principal is of high-type with probability �,
with 0 < � < 1. It is assumed that both types of principals have the
same marginal cost c. The agent determines the selling price p and selling
effort a, whose impact on sales is captured by an increasing concave
function f ð�Þ. The cost of effort (to the agent) is wðaÞ, a convex increasing
function. The demand is subject to a random shock " with mean zero.
Although the realized demand is observable and contractible, the selling
effort is not.

The sequence of events is as follows. The principal offers a contract to the
agent; the contract specifies a payment from the agent to the principal that can
be a function of the realized demand. Given a contract, the agent then updates
his belief about the principal’s type, from his prior belief � to a posterior belief
�̂�. Based on this updated belief, the agent chooses a selling price and an effort
level to maximize his expected profit. The principal, anticipating the agent’s
behavior, selects a contract that maximizes her expected profit, under the
constraint that the expected profit for the agent is at least u, a reservation
utility level reflecting the agent’s outside opportunities.

Desai and Srinivasan, citing Arrow (1985) that simple linear contracts are
prevalent in practice, start with a simple, two-part contract with a fixed fee F
and a variable fee r, so that the agent pays the principal F þ rq if the realized
demand is q. They then consider a nonlinear contract with a quadratic
component.

First, notice that although the model involves private information on both
sides, it is crucial to have the private demand information (held by the
principal). To see this, let us first consider the first-best scenario where both
parties have full information, i.e., the agent also knows the true demand
function, and the principal can observe the agent’s selling effort. In this case,
the principal can demand a specific level of effort. Given a contract ðr,F , aÞ of
variable fee, fixed fee, and effort level, the agent chooses a retail price to
maximize his expected profit. This is an easy problem. In the solution, the
principal sets the variable fee r equal to her marginal cost c (to avoid double
marginalization), the agent earns exactly his reservation utility, and the
principal extracts all the surplus (via the fixed fee). It can be verified that the
first-best effort level and fixed fee are higher with the high-type principal than
with the low-type principal.

Now suppose the agent’s selling effort is unobservable to the principal (but
the agent still knows the true demand function). The solution to this problem
is also well known. From agency theory, since the agent is risk neutral, the
moral hazard problem can be easily overcome by making the agent a residual
claimant. For either type of principal, simply set the variable fee to the
marginal cost and the fixed fee to make the agent’s participation constraint
binding. The first-best solution prevails.
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The above discussions make it clear that if the principal did not hold
private demand information, the problem would be trivial. From now on, we
focus on the case with asymmetric demand information. To understand the
impact of moral hazard on demand signaling, Desai and Srinivasan first
consider the signaling game without moral hazard, i.e., assuming the principal
can observe the agent’s selling effort. The signaling instruments are therefore
ðr,F , aÞ. They have identified a separating equilibrium in which the high-
type principal offers ðrS,FS, aSÞ, whereas the low-type principal offers her
corresponding first-best contract. It is shown that rS > rHfb , FS < FH

fb , and
aS ¼ aHfb , where r

H
fb , F

H
fb and aHfb are the variable fee, fixed fee, and effort level in

the high-type principal’s first-best solution. The somewhat unintuitive result is
that it is unnecessary for the high-type principal to distort the effort level
(from the first-best level) in order to credibly convey its type; a distortion in
the variable fee suffices. (Since the variable fee is raised, the fixed fee must be
reduced to meet the agent’s participation constraint.)

If the agent’s selling effort is unobservable to the principal (thus not
contractible) – as in the original case with two-sided information asymmetry –
the principal’s signaling instruments are reduced to ðr,FÞ. A separating
equilibrium for this game has also been identified, where the high-type
principal offers ðrSM ,FSMÞ, and the low-type principal continues to offer
her first-best contract. It has been shown that rHfb < rSM < rS and FS <
FSM < FH

fb . This leads to a main conclusion of the paper that moral
hazard dampens the signaling distortions of the fixed and variable fees.
Moreover, the high-type principal makes less profit when the agent’s effort
is unobservable.

Interestingly, when we allow nonlinear contracts, the first-best solution
can be achieved for both types of principals even in the presence of moral
hazard. This is established under a three-part contract where the agent’s
payment to the principal is F þ r1qþ r2q

2, with q being the realized demand.
A separating equilibrium has been identified where both types of principals
earn their first-best profits. The above conclusion is obtained under the
following additional assumptions: u ¼ 0, c ¼ 0, f ðaÞ ¼ a, and wðaÞ ¼ a2. It is
worth noting that in equilibrium, the two variable fees are such that r1 > 0
and r2 < 0. In other words, the first best is achieved not by making the agent a
residual claimant. This is in contrast with the way in which the first best
is achieved when the principal does not hold private information about
demand.

The above three papers on demand signaling focus on a manufacturer’s
task of conveying her private demand information to a retailer, a downstream
supply chain partner. We next consider the problem of signaling to an
upstream supply chain partner.

In the relationship between a manufacturer and her supplier, it is often the
case that the manufacturer knows more about the demand (for the end
product) than the supplier does. Suppose the supplier is always the bottleneck
of the supply chain, i.e., production is constrained only by the supplier’s
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capacity. From the manufacturer’s standpoint, the more capacity the
supplier installs the better (a higher capacity relaxes the constraint on
production). Therefore, the manufacturer has an incentive to inflate her
demand forecast, hoping the supplier will increase his capacity. But, of course,
the supplier knows this and will not take the manufacturer’s demand forecast
at face value. The result is a communication breakdown leading to an
efficiency loss. Is there a way for the manufacturer to reveal her demand
forecast in a credible way?

Cachon and Lariviere (2001) provide a model to address the
above question. A manufacturer sells a single product that has uncertain
demand, D. The manufacturer relies on a single supplier for a critical
component of the product. Let K be the supplier’s capacity, which must be
built before demand realization. Some demand may be lost due to the capacity
constraint, with minfD,Kg being the demand fulfilled and the rest lost.
The supplier incurs a cost for every unit of capacity built. A key feature of
the model is that the manufacturer possesses private information about
the demand. It is assumed that D ¼ 	X , where 	 and X are independent
random variables. Moreover, 	 has only two possible values, H and L with
H > L. The parameter 	 may be interpreted as an indicator of the market
condition. The manufacturer observes the value of 	, whereas the supplier
assesses a probability � that 	 ¼ H and 1� � that 	 ¼ L. (Both players have
the same information about X , i.e., its distribution.) For convenience, the
manufacturer observing 	 ¼ H is said to be of high-type, whereas if 	 ¼ L,
low-type. The manufacturer moves first by offering a contract to the supplier,
the supplier builds capacity given the contract and his belief about demand,
demand is then realized, and finally, production takes place (within the
capacity set by the supplier). This is a signaling game because the informed
party (i.e., the manufacturer) takes a more active role by designing the
contract.

Let Z be the set of all admissible contracts. Both the supplier and the
manufacturer agree that only contracts in Z are considered. (Cachon and
Lariviere consider linear contracts with commitments and options.)
The supplier’s capacity decision depends on the contract offered by the
manufacturer and his belief about the market condition. Let z 2 Z be the
contract offered, and b the supplier’s belief, i.e., b is a probability distribution
for the values of 	. Note that b might be a function of z. Let pðK , z, bÞ be the
supplier’s expected profit if he builds capacity K . The optimal capacity level,
from the supplier’s standpoint, is then Kðz, bÞ ¼ argmaxKpðK , z, bÞ.
Consequently, the manufacturer’s expected profit is a function of her type t,
the contract offered to the supplier z, and the supplier’s belief b about the
market condition, i.e., �tðz, bÞ, t ¼ H,L.

We focus on separating equilibria, whereby the supplier learns the
manufacturer’s type upon seeing the contract offered by the manufacturer.
That is, given a contract z, the supplier assigns probability one to either 	 ¼ H
or 	 ¼ L. For convenience, denote the former by b ¼ H and the latter b ¼ L.
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Therefore, the supplier’s belief can be characterized by a partition of Z, i.e.,
ZH and ZL with Z ¼ ZH [ ZL and ZH \ ZL ¼ ;. If a contract z 2 ZH is
offered, b ¼ H; otherwise if z 2 ZL is offered, b ¼ L. In equilibrium, the
supplier’s belief must be correct, i.e.

max
z2ZL

�Lðz,LÞ � max
z2ZH

�Lðz,HÞ and max
z2ZH

�Hðz,HÞ � max
z2ZL

�Hðz,LÞ:

In words, given the supplier’s belief (i.e., a partition of Z), a type-t
manufacturer has no incentives to mislead the supplier into believing
that she is of type-t0, t 6¼ t0. A partition or belief with the above properties
is called an equilibrium partition or equilibrium belief. Corresponding to an
equilibrium partition, ZH and ZL, is a pair of contracts, zH and zL, that are
offered by the high- and low-type manufacturer, respectively. Clearly,

zt ¼ argmaxz2Zt
�tðz,tÞ, t ¼ H,L:

A separating equilibrium, then, consists of an equilibrium partition, ZH and
ZL, and a corresponding pair of contracts, zH and zL.

Now assume that

�tðz,HÞ � �tðz,LÞ, 8z 2 Z, t ¼ H,L: ð3:1Þ

In words, for any contract, the manufacturer, regardless of her type, is
better off if the supplier believes that the market condition is high
rather than low. This seems plausible because a belief of high market
condition leads the supplier to build more capacity, to the benefit of the
manufacturer. Below, we characterize a separating equilibrium under the
above condition.

Let z*L be the optimal contract for the low-type manufacturer in the full-
information case, i.e.,

z*L ¼ argmaxz2Z�Lðz,LÞ:

Assume that the above optimization problem has a unique solution;
thus �Lðz*L,LÞ > �Lðz,LÞ for all z 6¼ z*L. It is easy to establish that any
equilibrium partition ðZH ,ZLÞ has z*L 2 ZL. The proof is by contradiction.
Suppose z*L 2 ZH . Then �Lðz*L,HÞ � �Lðz*L,LÞ > �Lðz,LÞ for all z 2 ZL,
where the first inequality follows from (3.1). Thus the low-type wants to
pretend to be the high-type. Thus ðZH ,ZLÞ is not an equilibrium partition,
a contradiction.

Now take any equilibrium partition ðZH ,ZLÞ. Let ðzH , zLÞ be the
corresponding pair of contracts offered by the two manufacturer types.
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From the above discussion, zL ¼ z*L. Also, by the definition of equilibrium
partitions, we have

�LðzH ,HÞ � �Lðz*L,LÞ ð3:2Þ

and

�HðzH ,HÞ � max
z2ZL

�Hðz,LÞ: ð3:3Þ

Also by the definition of zH and (3.1), for any z 2 ZH , �HðzH ,HÞ �
�Hðz,HÞ � �Hðz,LÞ. This inequality, together with (3.3), implies

�HðzH ,HÞ � max
z2Z

�Hðz,LÞ: ð3:4Þ

Therefore, the high-type manufacturer’s expected profit, i.e., �HðzH ,HÞ, is no
greater than the maximum value of the objective function in

max
z2Z

�Hðz,HÞ

s:t: �Lðz,HÞ � �Lðz*L,LÞ

�Hðz,HÞ � max
z02Z

�Hðz
0,LÞ

where the first and second constraints are from (3.2) and (3.4) respectively.
Suppose this problem has a unique solution z ¼ z*H . Define Z*

H ¼ fz*Hg and
Z*

L ¼ ZnZ*
H . It is easy to verify that ðZ*

H ,Z*
LÞ is an equilibrium partition. The

contract offered by the high-type (resp., low-type) manufacturer is z*H (resp.,
z*L) with the corresponding expected profit �Hðz*H ,HÞ (resp., �Lðz*L,LÞ). Thus
ðZ*

H ,Z*
L, z*H , z*LÞ is a separating equilibrium. Note that from the above

arguments, both manufacturer types can do no better than this with any other
equilibrium partition.

While the supplier in Cachon and Lariviere (2001) is the only source of
supply for the manufacturer, Van Mieghem (1999) considers a setting with
two sources of supply: the manufacturer’s in-house production facility and an
outside supplier (i.e., subcontractor). At the beginning of the game, the
manufacturer and the subcontractor simultaneously and independently make
their capacity investment decisions, i.e., the manufacturer decides how much
in-house capacity KM to build and the subcontractor decides on its own
capacity KS. The manufacturer faces market demand DM , which can be served
by in-house as well as the subcontractor’s production. Moreover, the
subcontractor can also sell its product to a separate market with demand DS.
At the time of the capacity decisions, only a joint probability distribution of
DM and DS is known (to both players). After the capacity decisions, the
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demands are realized and the firms decide on their production/sales quantities.
More specifically, the manufacturer determines how much to produce in-
house (i.e., xM) and how much to order from the subcontractor (i.e., xMt ); the
subcontractor decides how much to sell to its own market (i.e., xS) and how
much of the manufacturer’s order to fill (i.e., xSt ). Of course, xM � KM ,
xM þ xMt � DM , xSt � xMt , xSt þ xS � KS, and xS � DS. These production/
sales decisions are governed by various contractual arrangements between
the two firms. In one contract (called the price-only contract), a transfer price
pt is specified ex ante for each unit supplied by the subcontractor. (This price is
known before the capacity decisions.) In this scenario, the two firms
sequentially solve for their production/sales quantities, with the manufacturer
as the first mover. Under another contractual arrangement, there are simply
no ex-ante contracts and the parties negotiate the transfer quantity and
price after the demands are realized. In this scenario, the firms arrive at
production/sales quantities that maximize their total profits and the surplus
(relative to a scenario with no transactions between the two) is split between
them based on their relative bargaining power, which is captured by an
exogenous index. Van Mieghem also considers state-dependent contracts: a
price-only contract with pt being a function of the installed capacities and the
realized demands, or an incomplete contract/bargaining arrangement where
the bargaining-power index is state-dependent. For each of these contractual
arrangements, one can solve the resulting two-stage stochastic game and
examine a contract’s impact on the coordination of both capacity and
production/sales decisions. Although information sharing is not the focus of
Van Mieghem (1999) (infact, there is no information asymmetry), the paper
does provide an interesting discussion on coordinating capacity and quantity
decisions in a manufacturer-subcontractor supply chain. Among the key
findings are (1) a higher transfer price can actually increase the manufacturer’s
profit and (2) only state-dependent contracts (price-only or incomplete
contract) can coordinate both the quantity and capacity decisions. It
remains an interesting open question as to the impact of information
asymmetries (about demands, capacities, costs, etc.) on the manufacturer–
subcontractor supply chain.

3.3 Information sharing in competitive environments

We begin by considering papers that deal with information sharing
among horizontal competitors, e.g., competing retailers sharing market
demand information. These papers are all published in economics journals in
the 1980s. (Are economists tired of this problem? Extensions to supply
chains may breathe new life.) Recently, there have been several attempts
to generalize the horizontal information-sharing literature to vertical
information sharing in supply chains, e.g., will competing retailers share
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their demand information with their common supplier? We will discuss these
papers as well.43

A simple example
We begin with a simple example to illustrate the incentives of sharing

demand information between two competitors.44 Consider a duopoly facing
stochastic linear demand, p ¼ a�Q, where p is the market price, a is a
random variable, and Q is the total output of the duopolists. Assume that
a ¼ 50, 150 with equal probabilities. Also, the marginal production costs are
zero for both firms. The two firms are engaged in a Cournot competition, i.e.,
making quantity decisions independently. Before their quantity decisions, firm
1 observes the true value of a, while firm 2 does not receive any private signal
about a. Consider a two-stage game. In the first stage, firm 1 decides whether
or not to share its information about a with firm 2. Information sharing, if it
occurs, is assumed to be truthful. Firm 1 then observes the true value of a.
Information transmission takes place according to the agreement reached in
the first stage.45 In the second stage, the firms make quantity decisions based
on their information about a.

First, suppose firm 1 has decided to conceal its information about a. The
second-stage game is thus a Bayesian game (with incomplete information).
Firm 1’s strategy is a decision rule that specifies a quantity for each signal it
may receive. Let firm 1’s output be qh1 if it observes a ¼ 150 and ql1 if it

43 A somewhat related paper is Lee and Whang (2002) who consider a supply chain with one supplier

and n retailers. These supply chain members are independent firms. The retailers face a selling season

with two periods. The retailers independently make their inventory decisions at the beginning of the

first period by ordering from the supplier. The retailers are able to adjust their inventory levels after the

first-period demands are realized by trading among themselves through a secondary market. They

study the impact of the secondary market on the supply chain. The paper is related if one considers the

secondary market as an institution that facilitates the sharing (more precisely, the aggregation) of the

information embodied in the first-period demands (about the needs for inventories at the beginning of

the second period). In this respect, Mendelson and Tunca (2001) is also related. Another paper that

touches upon information sharing in a competitive environment is Anupindi and Bassok (1999), who

study a decentralized supply chain with one manufacturer and two retailers. The retailers order

inventories from the manufacturer, and their ordering decisions are interdependent because of

consumer market search, i.e., there is a positive probability that a consumer who experiences a

stockout at one retailer will look for inventory at the other retailer. It is clear that market search

provides incentives for one retailer to increase its inventory (to capture the benefits of demand

spillovers), given the other retailer’s ordering decision; and such incentives are stronger when search

becomes easier. The consequence is that the manufacturer sees an increase in total retailer order

quantities as market search increases, which can be facilitated by the installation of an information

system that makes the inventory status at the retailers visible to the consumers.
44 This example was given by Gal-Or (1985).
45 If firm 1 first observes a and then decides whether or not to share the information with firm 2, we

have a very different model. It looks like a signaling problem, with retail competition as a subgame.

Ch. 7. Information Sharing and Supply Chain Coordination 403



observes a ¼ 50. Let q2 be firm 2’s output. Firm 2’s best response to firm 1’s
strategy is obtained by solving:

max
q2

1

2
ð50� ql1 � q2Þq2 þ

1

2
ð150� qh1 � q2Þq2:

That is,

q2 ¼
200� ql1 � qh1

4
: ð3:5Þ

Similarly, firm 1’s best strategy against firm 2’s quantity is

ql1 ¼
50� q2

2
, and qh1 ¼

150� q2

2
: ð3:6Þ

Solving (3.5) and (3.6) gives a Bayesian Nash equilibrium: ðql1, q
h
1, q2Þ ¼

ð25
3
, 175

3
, 100

3
Þ. The expected profits for firm 1 and firm 2 are:

ðpns1 , p
ns
2 Þ ¼ ð

15, 625
9

, 10, 000
9
Þ, where the superscript ‘ns’ stands for ‘no sharing of

information’.
Now suppose firm 1 has decided to share its information with firm 2. If

a ¼ 50, the two firms each produce 50=3; otherwise, if a ¼ 150, they each
produce 50. The expected profits are ðps1,p

s
2Þ ¼ ð

12, 500
9

, 12, 500
9
Þ.

Comparing the above two scenarios, we see that it is to the interest of the
informed firm to conceal its information. Note that the total profits of the two
firms are also higher with no information sharing. This is a pretty gloomy
picture for information sharing.

A body of literature in economics is devoted to the investigation of
information sharing among horizontal competitors. It turns out that whether
or not it is optimal to share information depends on many things, including
the type of competition (Cournot or Bertrand), the type of information
(e.g., common demand information or private cost information), and whether
the products sold by the competitors are substitutes or complements.

Duopoly with demand information: Cournot and Bertrand, substitutes
and complements

Vives (1984) considers the following duopoly model. Two firms, each
producing a differentiated good, face the following inverse demand functions:

pi ¼ �� �qi � �qj, i, j ¼ 1, 2, j 6¼ i

where qi are the quantities of the goods and pi their prices, with j� =�j � 1.
If � ¼ 0, the goods are independent and the firms are local monopolists.
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If � > 0, the goods are substitutes. If � < 0, they are complements. Both
firms have constant and equal marginal costs, which are normalized to
zero. The two firms are engaged in either Cournot competition where
they compete in quantities or Bertrand competition where they compete
in prices.

Note that profits of firm i are given by pi ¼ piqi. Since pi is symmetric in
pi and qi and the demand curves are linear, Cournot (resp., Bertrand)
competition with substitutes has similar strategic properties as Bertrand (resp.,
Cournot) competition with complements.

The common demand intercept, �, is a normally distributed random
variable with known mean and variance. It is assumed that the firms employ
an ‘independent testing agency’ to collect samples of �. Through the agency,
firm i has contracted for ni observations: ðri1, . . . , rini Þ, where rik ¼ �þ uik, and
the uik’s are i.i.d. normal random variables with zero mean and variance �2u
and they are independent of �. Moreover, firm i has instructed the agency to
put the first mi observations that it has contracted for in a common pool,
available for the other firm. Therefore, firm i’s best (minimum variance
unbiased) estimate of � based on ni þmj, j 6¼ i, observations is

si ¼ �þ

Pni
k¼1 uik þ

Pmj

k¼1 ujk

ni þmj
:

If m1 ¼ m2 ¼ 0, then there is no sharing of information. On the other hand, if
m1 ¼ n1 and m2 ¼ n2, there is a complete sharing of information.

The firms play a two-stage game. First, they decide how much
information to put in the common pool, i.e., choosing m1 and m2

independently. (n1 and n2 are not decision variables in the model.) The
values of ni and mi, i ¼ 1, 2, are common knowledge. The agency then collects
independent observations of � and distributes the information according to
the agreement reached in the first stage (i.e., transmitting some information to
a firm privately and some to the common pool). At the second stage, the firms
independently choose their quantities in Cournot competition or prices in
Bertrand competition. Each pair of ðm1,m2Þ defines a subgame with
incomplete information, which can be solved by using the concept of
Bayesian Nash equilibrium.

Here are some results obtained by Vives. In Cournot competition
with substitutes (or Bertrand competition with complements), expected
profits of firm i decrease with mi. So no information sharing is the unique
equilibrium. In Cournot competition with complements (or Bertrand
competition with substitutes), expected profits of firm i increase with
mi and with mj, j 6¼ i. So complete information sharing is the unique
equilibrium. If the goods are independent, expected profits of firm i
are increasing in mj and unaffected by mi, j 6¼ i. In this case, any pair of
ðm1,m2Þ is an equilibrium.
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Oligopoly with demand information: Cournot, substitutes
Gal-Or (1985) provides an alternative model of information sharing in an

oligopoly model with Cournot competition. There are n firms producing a
common product at no cost. The industry is facing a linear demand function:

p ¼ a� bQþ u, a, b > 0

where p is price and Q is the total quantity produced. The prior distribution of
u is normal with zero mean and a finite variance. Before making their quantity
decisions, each firm receives a noisy signal for u. The signal observed by firm i
is xi. The following assumptions characterize the signals:

xi ¼ ui þ ei, ui � Nð0, �Þ, ei � Nð0,mÞ;

Covðei, ejÞ ¼ 0, i 6¼ j;

Covðui, ejÞ ¼ 0, 8i, j;

Covðui, ujÞ ¼ h, i 6¼ j;

u ¼
Xn
i¼1

ui=n:

Furthermore, it is assumed that h � 0, a parameter that measures the
(positive) level of correlation among the signals.

Before making quantity decisions, the firms choose whether or not to reveal
their private signals to the other firms, and how complete this revelation will
be. This is modeled by assuming that an outside agency is responsible for
information transmission. The firms are required to commit themselves to a
fixed amount of garbling prior to learning their signals. Upon learning its
private signal, each firm i reports its private signal xi to the agency, who then
reports a message x̂xi to the other firms, with

x̂xi ¼ xi þ fi, fi � Nð0, siÞ

where the fi’s are independent of each other and of any uj and ej, j ¼ 1, . . . , n.
The value of si represents the level of garbling. If this noise variance is zero for
all firms, we have complete information sharing. If it is infinite for all firms,
there is no sharing of information. The case with a finite noise variance
represents partial information sharing.

Gal-Or characterizes a symmetric equilibrium in the following two-stage
game. (A symmetric equilibrium is reasonable because the firms have
symmetric cost/information structure.) At the first stage, each firm i chooses si
independently. Once chosen, this vector of noise variances becomes common
knowledge. The firms then receive their private signals, and the outside agency
reports messages with levels of garbling determined in the first stage. At the
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second stage, the firms make their quantity decisions simultaneously. Each
firm i’s strategy is a decision rule that determines its output level as a function
of its private signal xi and the vector of messages reported by the outside
agency. The conclusion is that no information sharing is the unique symmetric
Nash equilibrium. Therefore, allowing for partial revelation and various
degrees of correlation between the private signals does not change the
incentives for sharing demand information. Similar results have been obtained
by Clarke (1983).

Duopoly with cost information: Cournot and Bertrand, substitutes
Gal-Or (1986) shows that the incentives for sharing information depend not

only on the type of competition (Cournot or Bertrand) and the relationship
between the products (substitutes or complements), as Vives (1984) has
shown, but also on the type of information under consideration. The private
signals received by Gal-Or’s firms are about unknown private costs, instead of
an unknown demand intercept as in previous works. She considers a duopoly
model consisting of two firms each producing a differentiated product. The
demand is linear, as in Vives (1984), with an additional assumption that � > 0,
i.e., the products are substitutes. The production costs are linear, with ci the
unit cost of production for firm i, i ¼ 1, 2. The value of ci is a normal random
variable with zero mean and a known variance, with c1 and c2 being
independent. Each firm receives a signal for its own unit cost. Firm i receives
signal zi, where

zi ¼ ci þ ei, i ¼ 1, 2

where ei � Nð0,mÞ, ei and cj are independent for any i and j, and e1 and e2 are
independent.

Information sharing is implemented by an outside agency. Prior to
receiving their private signals, each firm commits to a level of garbling that the
agency will use in reporting the private information. The reported signal is

ẑzi ¼ zi þ fi, fi � Nð0, siÞ, i ¼ 1, 2

where f1 and f2 are independent, and fi is independent of cj and ej for all i and
j. As in Gal-Or (1985), the values of the si’s are determined independently by
the firms at the first stage of the game, and they represent the degree of
information sharing. At the second stage of the game, the firms choose their
output levels (in Cournot competition) or prices (in Bertrand competition).
The second-stage strategy is a decision rule based on available information,
i.e., zi and ẑj, j 6¼ i, for firm i.

The main finding is that complete (resp., no) information sharing is a
dominant strategy in Cournot (resp., Bertrand) competition. Notice that
changing the type of information (from demand to cost) reverses the
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incentives for information sharing. A similar set of results was obtained by
Shapiro (1986).46

Vertical information sharing in the presence of horizontal competition
Consider a supply chain with multiple parties and dispersed information.

Suppose a subset of those parties, called the insiders, have decided to share
information among themselves. What is the impact of such an agreement on
the insiders, the outsiders (i.e., those who do not engage in information
sharing), and the supply chain as a whole? The answer to this question is
complicated partly due to the spillover effect of information sharing. That is,
an outsider may gain valuable information from the insiders either directly if
the insiders fail to keep the shared information confidential or indirectly by
observing the actions taken by the insiders. The former kind of information
leakage may be prevented by the insiders through a contract protecting the
confidentiality of the shared data, while the latter kind is impossible to avoid
as long as the shared information affects the behavior of an insider that is
observable to the outsiders. The outsiders may change what they do
upon learning the information, with potentially significant impact on the
insiders’ profits and their decisions whether or not to share information in the
first place.

Li (2002) considers a model with one manufacturer and n symmetric
retailers (n � 2). The retailers sell an identical product, which is produced by
the manufacturer. Both production and sales incur constant marginal costs,
which are normalized to zero. The consumer market (to which the retailers
sell) is characterized by the inverse demand function, p ¼ aþ 	 �Q, i.e., the
prevailing retail price p is determined by a known constant a, a random
variable 	, and the total supply Q, which is the sum of the individual quantities
given by the retailers. (Thus the retailers engage in a Cournot competition.)
The manufacturer determines the wholesale price P. Each retailer i receives a
private signal Yi about 	, with the joint distribution of ð	,Y1, . . . ,YnÞ being
common knowledge.

The sequence of events is as follows:

(1) Each retailer decides whether or not to share his private signal with the
manufacturer. If a retailer decides to share, the information revelation
is assumed to be truthful. Let K be the set of retailers who decide to
share their information. Because the retailers are symmetric, we only
need to know the cardinality of K, i.e., jKj¼

def
k, k ¼ 0, 1, . . . , n.

(2) Each retailer receives his private signal. Information transmission
occurs according to the arrangements made in the first step.

(3) The manufacturer sets the wholesale price. The wholesale price P is
thus a function of the disclosed information fYj, j 2 Kg.

46 Li (1985) generalizes the above literature on the incentives for sharing demand or cost information in

Cournot oligopolies by making weaker distributional assumptions about the random variables.
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(4) The retailers simultaneously choose their sales quantities and place
orders with the manufacturer. Retailer i’s strategy thus depends on
whether or not i is a member of K , his signal Yi, the wholesale price P,
and the information embedded in the wholesale price P (which is
observable to all).

(5) The manufacturer produces the retailer orders.

Li shows that there is an equilibrium outcome where P is a monotone
function of

P
j2K Yj . Thus in equilibrium, the retailers i 2 K (i.e., the

outsiders) can infer the value of o
P

j2K Yj. Moreover, knowing this sum is as
good as knowing the individual signals Yj, j 2 K . Therefore, the leakage of the
private signals from the insiders to the outsiders is complete. In other words,
even though the information sharing is between the retailers in K and the
manufacturer, we could as well imagine that the retailers in K announce their
private signals in public.

Suppose that k retailers have decided to share information with the
manufacturer, k ¼ 0, 1, . . . , n. Let �S

RðkÞ be the expected profits for a retailer
who shares information, and �N

R ðkÞ the expected profits for a retailer who
does not share information. Let�MðkÞ be the manufacturer’s expected profits.
Li shows that �MðkÞ is increasing and concave in k. Therefore, the
manufacturer always benefits if a retailer decides to share information. On the
other hand, �N

R ðk� 1Þ > �S
RðkÞ for all k ¼ 1, . . . , n. In words, a retailer is

always better off by switching from sharing information to not sharing.
Consequently, no information sharing is the unique equilibrium outcome.

If the manufacturer’s gains from information sharing exceed the losses of
the retailers, the manufacturer can pay the retailers for their private
information. Let �ðkÞ be the supply chain’s total profit when k retailers share
information, k ¼ 0, 1, . . . , n. Thus �ðkÞ ¼ �MðkÞ þ k�S

RðkÞ þ ðn� kÞ�N
R ðkÞ.

Li shows that �ðnÞ � �ð0Þ if and only if ðn� 2Þðnþ 1Þ � 2s, where s is an
indicator of the informativeness of the retailers’ private signals, with a smaller
s value meaning more informative. Consequently, there is no guarantee that
the supply chain will benefit from information sharing. In cases where the
supply chain does benefit from information sharing (when the number of
retailers is large or the demand signals are informative), there exists a Pareto
improvement if the manufacturer pays the retailers for sharing their
information.

Li has also considered a case where the retailers hold private information
about their costs. This is done by modifying the above model with demand
uncertainty as follows. First, let 	:0, thus eliminating demand uncertainty.
Let Ci be retailer i’s marginal cost, i ¼ 1, . . . , n. After making decisions about
whether or not to share their cost information with the manufacturer but
before making quantity decisions, each retailer i observes his own cost Ci. The
retailers’ costs are assumed to be positively correlated.

As expected, the manufacturer always benefits if a retailer decides to share
his cost information. However, complete information sharing, i.e., all retailers
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decide to share their cost information with the manufacturer, is now always an
equilibrium. And it is the unique equilibrium sometimes. Moreover, complete
information sharing increases the supply chain’s total profits.47

There are two recent extensions of Li (2002). One is Li and Zhang (2001),
where the manufacturer can produce before the retailers make their quantity
decisions. Production after receiving the retailers’ orders is still possible, but
incurs a higher cost. Moreover, the manufacturer must satisfy all retailers’
orders. The manufacturer makes the early-production decision and the
wholesale price decision at the same time. By and large, replacing make-to-
order with make-to-stock does not alter the qualitative insights. The second
extension is Zhang (2002), who focuses on the sharing of demand information
but considers both Cournot and Bertrand competition with substitutes and
complements. It is thus a direct generalization of Vives (1984) to a supply
chain setting.

4 Future research

The role of information in achieving supply chain coordination will
continue to be a fruitful research area. As in the past, research will progress in
many directions.

4.1 Full information, centralized control

Here we imagine a supply chain controlled by a central planner with all
relevant information. The challenge is to determine a strategy that optimizes
the supply chain-wide performance. Many people say that this is the
traditional way of thinking in operations management/operations research.
But that should not be construed to mean that the area is unimportant. In
fact, there are many important problems that are begging for solutions.

To see how difficult these problems can be and how little we understand
them, simply consider a two-level supply chain with one distribution center
replenishing multiple local sales offices. (This kind of supply chain structure is
often under the unglamorous name of one-warehouse multiretailer systems.)
The truth of the matter is nobody knows what the optimal policy is. Many
have studied ‘heuristic’ policies; the ones that seem to make intuitive sense.
One example is the control rules that are based on echelon inventory
positions, i.e., the replenishment strategy at the distribution center is based on
the total inventory (on-hand and in-transit) in the system. The allocation

47 The fact that the retailers will share their cost information with the manufacturer is striking at first

glance. This may have a lot to do with the assumption that the decision whether or not to share

information is made before observing the private information. This assumption is particularly strong

with the cost information; if the retailers have been in the business for a while, it seems reasonable that

they have better information about their own costs than anyone else prior to making information-

sharing decisions. Another scenario that may alter the result is when the parties interact repeatedly.
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decision at the distribution center when it runs out of stock is often of the
myopic sort or based on some, often arbitrary, priority rule. This heuristic
approach sometimes puts us in a very awkward position, where a strategy
based on full information is actually inferior to a strategy that is based only on
local information (e.g., the so-called installation-stock policies). Information
has a negative value!

To be sure, many years of work has suggested to us that the optimal
strategy for the above system (or many other multiechelon systems with
common cost or topological structures) is, if it exists, likely to be very
complex. So for all practical purposes, we should confine ourselves to heuristic
policies that are easy to implement. But the quest for better heuristics will
never stop, unless we know that the heuristic we have is already very close to
optimality. The most powerful statement one can make about a heuristic’s
closeness to optimality is the worst-case gap between the two. Since the
optimal policy is unknown, the worst-case analysis must rely on bounds on the
optimal performance. Discovering heuristics with small worst-case gaps is the
holy grail of multiechelon inventory theory.48

4.2 Decentralized information, shared incentives

Now replace the central planner with local managers who are each
responsible for managing part of the supply chain. These managers only
have access to local information. But they share a common goal to optimize
the supply chain-wide performance. This is the team-model approach
(Marschak and Radner 1972). And it is appropriate when, e.g., the supply
chain consists of multiple divisions of the same firm, and the divisions’
incentives are aligned. It is an intermediate step to a full-blown decentralized
system.

An important feature of team models is that the control rules used by the
local managers can only be based on local information. To obtain a solution
to a team model, it is convenient to take the view of an analyst, who optimizes
the system-wide objective by restricting to strategies that can be implemented
by the local managers (i.e., a strategy, when followed by a local manager using
his local information, leads to an unambiguous decision). Therefore, it
looks like a centralized planning model, but with an added informational

48 A lower-bounding methodology has been given by Chen and Zheng (1994) for general stochastic

multiechelon inventory systems. But the use of lower bounds in evaluating the optimality of heuristic

policies has been sporadic and is largely numerical. It is hard to resist the temptation to mention the

spectacular successes achieved for general multiechelon inventory systems with deterministic demand,

for which a class of heuristic policies – the so-called power-of-two policies – have been guaranteed to be

within 2% of optimality. See, e.g., Maxwell and Muckstadt (1985), Roundy (1985, 1986), and

Federgruen, Queyranne and Zheng (1992). So far, unfortunately, the only comparable result for a

stochastic system is the one in Chen (1999b) established for a simple two-stage serial system. In

Chapter 10 of this volume, Sven Axsäter reviews studies of heuristic policies in one-warehouse

multiretailer systems.

Ch. 7. Information Sharing and Supply Chain Coordination 411



constraint. The difference between the team model and its full-information,
central-planner counterpart reveals the value of information. Section 2 of this
chapter has reviewed many papers in this area. This will continue to be a
fruitful research direction.

4.3 Decentralized information, independent entities

A full-blown decentralized supply chain consists of independent firms with
asymmetric information. Section 3 of this chapter has covered many such
models. As mentioned there, a member of the supply chain may take the
initiative of ‘setting the stage’ by either screening or signaling, or the
supply chain’s members come together (cooperatively or noncooperatively)
to form some trading rules. This is a relatively new area for many in
operations management. Below we describe several promising research
directions.

One potentially fruitful research area is the integration of price discovery
with a firm’s internal optimization. In Section 2.2, we have already seen a
procurement example with one buyer and multiple potential suppliers with
private cost information. There, the solution is a marriage between an auction
mechanism and a supply contract. Infusing auction theory into operations
management research is exciting.

Another interesting research direction is information acquisition. In
Section 3.1, we saw an example where a firm can ‘buy’ advance demand
information from customers. The challenge was to balance the cost of
information acquisition with the benefit of the acquired information. It is
certainly possible to study information acquisition in other contexts, with
other kinds of information and between members of a supply chain.

In Section 3.3, we have seen papers dealing with information sharing
among competing firms. How about competing supply chains? Information
sharing between two supply chains can happen in many different ways:
(1) same-layer, cross-channel (e.g., retailer to retailer, supplier to supplier),
(2) inter-layer, same-channel (retailer to supplier), and (3) inter-layer,
cross-channel (retailer in supply chain A to supplier in supply chain B, and
vice versa). Opportunities abound.49

4.4 Bounded rationality and robust supply chain design

Real firms (and people) have limitations. First of all, their data may be
inaccurate. For example, a retailer may not know exactly how many units of a
product are in the store. This occurs even at successful retailers who have

49 For an example on competing supply chains, see Corbett and Karmarkar (2001) and the references

therein.
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invested large sums in information technology, mostly to track sales and
automate transactions.50 In supply chains, inaccurate data may also result
from imperfect transmission of information, which can be noisy and laden
with delays. On the other hand, managers like to have easy, intuitively
appealing control rules. This is simply because people have limited
information-processing power. The same holds for modelers/analysts/
researchers: real-world problems are complex with multiple facets, and it is
impossible to include all the complexities in a model. (Simply put, people –
managers or not – are boundedly rational.) As a result, any ‘optimal solution’
obtained from a model is unlikely to be implemented as is; at best, it will
inform a manager’s ‘insight’ or ‘intuition’, which in turn influences the final
decision. Given inaccurate data, modeling limitations, and managers’ desire
for simplicity, there is a pressing need to develop simple control mechanisms
that are robust to such imperfections. This is virtually an uncharted territory.
But it is worthwhile to ask the question.
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1 Introduction

Supply chain management includes the implementation of efficient policies
related to procurement of raw material, transforming them into semifinished
and finished products and distributing them to the end customer, thereby
transcending multiple business units. Poor supply chain management (more
often than not) predominantly results in excessive amounts of inventory, the
largest asset for many firms. Inventory is generally carried by firms to hedge
against uncertainty of different types (demand, process and supply) as well as
to account for economic efficiencies. The former is managed with safety stocks
(either in raw material or in finished goods), and the latter through batches
(lot sizes). Typically, both these types of inventories need to be considered
simultaneously, as one is affected by the other. Outside the manufacturing
floor, a major challenge that companies face relates to the management of
safety stocks rather than with the choice of economic lot sizes. Thus, efficient
coordination of the supply chain relies heavily on how well the uncertainties
related to demand, process and supply are managed. Tactical planning is the
setting of key-operating targets (such as safety stocks, planned lead times and
batch sizes) across the different units in a coordinated manner. These key-
operating targets then provide guidance as to which day-to-day operations
(either in manufacturing, logistics or procurement) can be executed. While
several software tools are available in the execution arena (using the more
mature area of deterministic mathematical programming), effective tactical
planning tools are yet to be fully developed.

A.G. de Kok and S.C. Graves, Eds., Handbooks in OR & MS, Vol. 11
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Although it would be ideal from a research standpoint to develop large-
scale integrated models consisting of multiple entities while trying to
understand effective supply chain practices, it is often very difficult (and in
most cases impossible) to get any useful insights from such large models
because they are intractable. As a result, researchers in the area of
operations management over the past 50 years have tried to develop insights
on simpler models which could then be used as building blocks to study
more complex and real supply chains. The approach adopted has been one
where one decomposes a multilevel supply chain – such as an assembly
or a distribution system – and analyzes individual facilities with specific
characteristics under different conditions. Such models will be the main
focus of this chapter. For practical applications large-scale models have been
developed and implemented based on these building blocks. Some of these
papers will be briefly reviewed at the end of this chapter (these also discussed
in Chapters 9 and 12).

Before introducing the different parameters related to analysis of such
models, we will introduce three important notions related to the modeling and
analysis that differentiate supply chain models developed by researchers in the
past. First is related to the time granularity of themodel, second to time horizon
of the study and the third related to performance measures. In terms of
granularity, the model of analysis of any inventory system (for single or
multiple facility) could be based either on a continuous basis or on a
periodic basis. In models with continuous review (of inventory and other
parameters), the assumption is that demand occurs continuously with a
demand rate (units/time) that could be deterministic or stochastic, and
costs that are incurred every instant of time. In a periodic review setting (or
discrete-time models), the assumptions are that demand occurs every period
whose granularity could be dependent on the actual environment (say a day, a
week, a month or quarter). In many real environments the review process is
periodic; we will focus on such models called discrete-time models in this
chapter. Discrete-time models can be developed for a single period, multiple
periods or for an infinite horizon. The performance measures related to the
analysis of discrete-time models could be single-period costs, discounted
multiperiod or infinite-horizon costs or average costs over the infinite horizon
(the breakup of these costs will be explained later). Alternatively, for each
horizon of analysis, we may specify a service-level requirement. Previous
research-oriented books that have addressed supply chain models include
Graves, Rinnoy Kan and Zipkin (1993), Tayur, Ganeshan and Magazine
(1998) and Zipkin (2000).

Once a complex multistage, multiproduct supply chain has been
decomposed to its basic building block, we are left with single-product,
single-stage (or facility) models that interact with each other through up-
stream and downstream parameters. The decomposition into a single-product
setting itself needs some care: for example, if multiple products share a certain
common capacity, or if there are fixed costs in ordering a set of products, these
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interactions across products have to be accounted for. Once decomposed, any
single facility in a supply chain faces three types of parameters – downstream
parameters, upstream parameters and facility parameters.

� Downstream parameters: Downstream parameters are those that depend
on (1) actions of the facilities downstream (such as the customers); (2) the
way information obtained from downstream facilities is processed; (3) the
contractual relationship with downstream facilities. In developing a
supply chain model for a single facility, the main downstream parameters
to be considered are as follows.

– Demand process: The demand that gets generated at any facility
depends on the operations and decisions of the downstream facilities
(the customers). Seldom do we find real environments where demand is
deterministic because of the uncertainties in the business environment.
As a result, we will concentrate on models with stochastic demand. In a
discrete-time setting, the simplest stochastic demand assumption is that
it is i.i.d (independent and identically distributed). This implies that in
each period the demand is independent from other periods but is
generated from the same distribution. Another (more realistic) related
assumption is that of independent but nonidentical demands in
different periods also called nonstationary distribution. Finally, the
demand process can be modeled in a more complex way in terms of
being dependent as well as different in each period (autocorrelated
demands are discussed in greater detail in Chapter 7).

– Forecasts and information: In many business environments, it is not
possible to respond to the generated demand immediately (due to lead
time for production, supply and distribution as well as capacity
constraints). In such cases, the facility develops forecasts for demand in
any period and utilizes that to produce ‘enough’ to match the
requirements of demand. Another way to predict the demand is to gain
more information about the ordering process at the downstream facility
(which generates the demand) or try to predict unknown parameters in
the demand distribution using the information about realized demand
until then. These predictions are utilized to develop the inventory policy
for the facility.

– Contracts: Contracts with downstream facilities typically determine the
costs as well service that need to be provided by the facility. Contracts
dictate whether late or partial shipments will be allowed as well as the
penalty cost for stocking-out or delaying the shipment. Multiperiod
discrete-time models can be differentiated based on none, partial or
complete backlogging of demand. In the case of no backlogging (also
called lost sales), the firm loses all the demand that it fell short off in a
given period whereas in the complete backlogging case, the firm is
allowed to ship the remaining order in future periods (but has to incur
the penalty). Other parameters in the contract could be level of service
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(such as fill-rate constraint), quality, vendor-managed inventory, end of
life returns as well as delivery flexibility. Supply chain models have
been developed with the fundamental objective of optimal contracts.
For details, see Lariviere (1998), Tsay, Nahmias and Agarwal (1998),
Cachon (2003) and Chen (2003).

� Upstream parameters: Upstream parameters depend on the decisions of
the suppliers upstream related to their production process.

– Lead time: In most real environments, there are significant lead
times involved before the material ordered is obtained from the
supplier. Some suppliers are more reliable than others in that their lead
times for fulfillment are more accurate and do not vary a whole lot from
period to period. In extreme cases, suppliers may situate a hub near the
facility in which case the lead time is negligible and can be ignored.
Supply chain models can be developed with zero lead time, fixed
deterministic lead time and stochastic lead time. As will be noted later,
many results related to zero lead times can be extended to fixed
deterministic lead times. It is also quite common today to have dual lead
times, either because of multiple suppliers, or because there are multiple
options on how to obtain material from the same supplier.

– Yield: Yield refers to the percentage of requested order that got
delivered from the supplier. Generally, yield is modeled as a random
number that represents the fraction of the order that was satisfied.
Additive models of yield have also been developed. Clearly, both yield
and the lead time together determine the supply process. For example, a
supplier may deliver the products always in 2 weeks but may falter in
terms of amount of delivery. On the other hand, the supplier could
be delivering the exact quantities ordered but may be delivering them
with different lead times.

� Facility parameters: The performance of the facility among other factors
depends on the capacity available for production, the number of products
produced, setup costs and variable costs associated with production,
randomness in the production process, and operational policies such as
inventory decisions as well as sequencing and scheduling.

– Capacity: Most real facilities have finite capacity for production in
any given period which can be increased to an extent through out-
sourcing on a need basis. However, incorporating capacity into a supply
chain model may make it more difficult to analyze. As a result, the
earliestmodels assumed infinite capacities in theprocess andmore recent
models have incorporated finite fixed capacity in their analysis.

– Costs: There are four types of costs associated with the production
and inventory at the facility. First, there is a per unit production cost (or
variable cost of production). Second, there could be a fixed cost asso-
ciated with production. This cost typically reflects the costs associated
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with changing the setup of machines (equivalent of setup or changeover
time). Third, there is a per unit holding cost that is charged to inventory
remaining at the facility at the end of the period. Finally, there may be a
salvage cost (usually negative) which represents the salvage value of the
inventory at the end of the horizon. These costs alongwith the stock-out
or penalty cost described earlier comprise the total costs incurred by the
facility.

– Product and process characteristics: The number of products that are
produced at the facility and their interrelationships (complementary or
substitutes) affect the performance of the facility. Further, the process
characteristics such as yield influence the performance.Asmore product
and process characteristics are incorporated in a single model, it
becomes more difficult to obtain analytical insights. For most part of
this chapter, we will discuss the base case with single product, neglecting
the above characteristics. However, we will discuss results related to
some of the above in Section 5 on extensions.

– Operational decisions: The fundamental decision in almost all supply
chain models relates to (1) how much inventory to stock in a given
period and (2) when to produce/order. All the models discussed in this
chapter develop insights on these two fundamental questions. This is
often called the inventory policy or inventory ordering policy. The
inventory policy determines the operating performance of the facility.
Clearly, the scheduling of different products, their lot sizes and
their sequence affects the real performance in cases where there are
multiple products. In most of the discrete-time models (the focus of this
chapter) this aspect is typically ignored.

In Section 2, we present the notation that will be used throughout the
chapter. In Sections 3 and 4, we discuss models with the stationary and
nonstationary demand, respectively. In Section 5, we discuss various
extensions – multilevel systems, multiproduct systems, multiple suppliers,
random yield and perishability of products. We discuss industry applications
in Section 6 and conclude in Section 7.

2 Notations used

In this section we will provide a list of all notations used in this chapter for
ease of reference.

h per unit holding cost incurred on inventory in a period
s per unit salvage cost at the end of the horizon
p per unit stock-out cost on demand not satisfied in a period
c per unit production/ordering cost of the product
K setup cost for production/ordering
� demand realized in a period

Ch. 8. Tactical Planning Models for Supply Chain Management 427



� mean value of �
� standard deviation of �
f,F probability density and cumulative density functions for �
x beginning inventory in a period
y inventory level after an order has been placed
Jn(x) optimal cost to go with n periods remaining in the horizon with x

units on hand
G( y) expected one-period cost given the inventory level is y after ordering
� discount rate 0<�� 1
�(x) threshold function where �(x)¼ 1, x>0 and �(0)¼ 0
C capacity available in a period
l lead time for supply in a period
pl probability density for lead time from the supplier equal to l periods

Any of the variables above with a subscript t (such as �t or xt) represent
the value of the variable for the time period t. Similarly, any of the above
variables with a * in the superscript (such as y*) represent the optimal value.

3 Stationary and independent demand

Stationary and independent demand models assume that the demand �
in every period comes from i.i.d distribution. With the i.i.d assumption
in demand, one typically need not be concerned about the particular period
t one is analyzing as well as the demand history up to that period if
other variables such as cost are also stationary. This simplifies the analysis
and as a result we will focus on these models first. Note that an elaborate
description and analysis of these models have appeared in earlier handbooks
edited by Heyman and Sobel (1984) and Graves et al. (1993) (Table 1).

3.1 Single period

The single-period stochastic inventory model deals with the problem of
deciding how much to order at the beginning of the period given that
demand is uncertain and there are penalty costs for lost demand and holding
costs for excess inventory. This problem is also called the newsvendor problem
because it mimics the issue faced by a newsvendor who needs to decide how
many copies of a newspaper need to be purchased at the beginning of the day
given that for every copy that sells there is a profit and every copy that
remains at the end of the day there is a loss. Note that in the following
discussions we assume cost minimization to be the objective (by assigning a
penalty cost for lost demand); however, these problems can also be studied
as profit-maximization problems.

To begin we will assume the simplest model where there are no salvage and
setup costs (s¼ 0, K¼ 0) as well as the lead time for delivery is zero. Let x be

428 J.M. Swaminathan and S.R. Tayur



the starting inventory at the facility, then the objective is to minimize the
expected costs during the period by producing/ordering enough to bring the
inventory level to y� x after ordering. We further assume that �h<c<p.
Then the single-period expected cost L( y, x) given x is

Lð y, xÞ ¼ cð y� xÞ þ p
Z 1
y

ð� � yÞdFð�Þ þ h

Z y

0

ð y� �Þ dFð�Þ ð3:1Þ

The first term represents the ordering cost while the second and third terms
represent the penalty and holding costs, respectively.

Let G( y) be defined as follows

Gð yÞ ¼ cyþ p
Z 1
y

ð� � yÞdFð�Þ þ h

Z y

0

ð y� �ÞdFð�Þ

¼ Lð y,xÞ þ cx ð3:2Þ

It is clear that G( y) is convex in y. As a result, L( y,x) is convex in y.
The optimal value of the cost L* is obtained by setting the first derivative
equal to 0 which gives

y* ¼ F�1
p� c

pþ h

� �
¼ F�1

p� c

ðp� cÞ þ ðcþ hÞ

� �
ð3:3Þ

The ratio (p�c)/(pþ h) is called the critical fractile and the value of y* is
called the base-stock level. Since it is optimal to order or produce up to an
inventory level of y* at the beginning of each period, such a policy is also
called an order-up-to policy. An order-up-to policy orders up to y* if x<y*
and does not order anything if x� y*. An important thing to notice about this
policy is that the order-up-to level y* is independent of the initial inventory.

Table 1
Papers on the base case: single-product single-stage stationary and independent demand

Year Reference Year Reference

1951 Arrow, Harris and Marschak 1971 Morton
1958 Karlin 1972 Wijngaard
1958 Karlin and Scarf 1979 Ehrhardt
1960 Scarf 1979 Nahmias
1963 Iglehart 1986a,b Federgruen and Zipkin
1965b Veinott 1989 De Kok
1965 Veinott and Wagner 1991 Zheng
1966b Veinott 1991 Zheng and Federgruen
1970 Kaplan 1993 Tayur
1971 Porteus 1996 Van Donselaar, De Kok and Rutten
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Another interesting point about (3.3) is that the critical fractile can be written
as a fraction of underage costs and overageþ underage costs where overage
cost is the cost of having one additional unit than demanded (cþ h) and the
underage cost is the cost having one less unit than demanded (p�c). The
above value of y* can also be computed by equating marginal benefits to
marginal costs as given in (3.4).

ðp� cÞð1� Fð yÞÞ ¼ ðcþ hÞFð yÞ ð3:4Þ

The difference between y* and � (the average demand) is referred to as the
buffer stock. The earliest reference of this term (as indicated by Arrow, Karlin &
Scarf, 1958) appears in Edgeworth (1888) within a banking context where the
probability of running out was prespecified. Arrow, Harris and Marschak
(1951) provide the first reference of this model with underage and overage costs.

If the per unit salvage cost s is included in the model, then the overage cost
is equal to cþ hþ s and the critical fractile is adjusted accordingly. If the
facility has a production capacity of C units in the period, then the optimal
policy is as follows.

y* ¼

F�1
p� c

pþ h

� �
if x � F�1

p� c

pþ h

� �
� xþ C

xþ C if xþ C � F�1
p� c

pþ h

� �

x if x � F�1
p� c

pþ h

� �

8>>>>>>><
>>>>>>>:

ð3:5Þ

The policy given above is also termed as a modified base-stock policy since
the policy tries to get as close to the base-stock level when there is capacity
constraint.

3.1.1 Setup costs
In the above model one could include a setup cost K each time an order is

placed (or production initiated). The corresponding cost function is given by
(for y� x)

Lð y,xÞ ¼ cð y� xÞ þ K�ð y� xÞ þ p
Z 1
y

ð� � yÞdFð�Þ þ h

Z y

0

ð y� �Þ dFð�Þ

¼ Gð yÞ þ K�ð y� xÞ � cx ð3:6Þ

We know that given that an order is going to be placed ( y>x), the function
L( y, x) is convex in y since G( y) is convex in y and the value is minimized at
y* ¼ F�1 ðp� cÞ=ðpþ hÞð Þ. The associated cost is equal to G( y*)þK�cx.
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Clearly, if G(x)�cx�G( y*)þK�cx or G(x)�G( y*)þK then it is not
optimal to place an order. However, if G(x)>G( y*)þK then it is optimal to
order to reach y*. Thus, with the introduction of the setup cost the optimal
inventory policy has two parameters often referred to as (s,S) policy where if
x<s then the inventory level is brought to S and if x� s then no orders are
placed. In the above policy S¼ y* and s�S is chosen in such a way so that
G(s)¼G(S)þK.

3.1.2 General cost assumptions
Thus far we have assumed that ordering, holding and shortage costs

are linear. One can also have other types of functions for these costs
which are nonlinear and maybe concave or convex. Let us denote the
holding, penalty and ordering cost functions as ĥh, �̂� and ĉ, respectively
(for now we will neglect the salvage costs). Clearly, if ĥh and �̂� are convex
then G( y) as defined in (3.2) is convex in y so one can find the optimal y*.
The optimal y* will not be given by a simple critical fractile anymore. As
indicated in Porteus (1991), the case of quadratic holding and stock-out costs
(defined on the positive values of the argument) leads to an interesting result
in that the optimal inventory level is equal to mean � when overage and
underage costs are identical under other standard assumptions. Note that this
is different from the linear case where we stock the median value when the
underage and overage costs are equal. If the holding and stock-out
costs are nonlinear and nonconvex even then under certain conditions
the optimal y* can be found. Those conditions are that if G( y) can be
written as Gð yÞ ¼ Aþ

R1
0 gð y� �Þf ð�Þdð�Þ where A is constant and g is

quasi convex and f(�) is a polya frequency function (P.F.F) of order 3
[Karlin, 1958].

The model and results get somewhat changed if we have convex
ordering/production costs but linear penalty and holding costs. Karlin
(1958) shows that if ĉðxÞ is convex in x and limx!0 ĉðxÞ ¼ 0 then y*(x) is
increasing in x but y*(x)�x (the amount ordered) is decreasing in x. This is
called a generalized base-stock policy. The special case of piecewise
linear convex costs leads to a generalized policy with finite number of distinct
base-stock levels. For example, the case with two piecewise linear function
often results in real life when there are two suppliers and the less-expensive
supplier may have limited capacity.

If the production costs are concave, Karlin (1958) presented conditions
under which a generalized (s,S) policy is optimal. This policy is represented
by two parameters s and S as well as the optimal inventory level y(x), where
no orders are placed if x� s and y is such that y(u)� y(x)�S� s when
u� x� s. Basically, this policy tends to place large orders when the inventory
level is lower, thereby benefiting from economies of scale associated with the
concave costs. Porteus (1971) considered the special case where the costs are
concave and piecewise linear (consider a case where there is a setup cost)
and showed that there exist finite breakpoints s1 � � � � � sn � Sn � � � � � S1
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such that the ordering policy is to order up to S1 if x<s1; order up to S2 if
s1� x� s2 and so on, and do not order if x� sn. Porteus (1991) provides
detailed examples and explanations for the piecewise linear convex and
concave costs.

3.2 Multiple-period dynamic model

The single-period models studied in the previous section are applicable
only in very limited settings such as products that sell in one season, perishable
products and products at the end of their life cycle. Most of the other settings
require analysis of the inventory system over multiple periods. There are two
types of models that are studied in this context – finite horizon and time
horizon. In the time horizon models, there are a fixed number of periods and
the objective is to minimize the discounted total expected costs over the
horizon. In the infinite-horizon models, the objective could be either to
minimize the discounted expected costs or the average expected costs over the
infinite horizon. Another source of differentiation is related to whether
unsatisfied demand is lost or backlogged.

The demand in every period is assumed to be independent and identically
distributed. In addition, the costs are assumed linear and stationary in order
to obtain nice structures on the optimal policy. The sequence of events in
every period is similar to the single-period model in that orders are placed at
the beginning of the period; demand is observed during the period; maximum
demand is satisfied at the end of the period and resulting costs are incurred.
The assumption is that the lead time is negligible so that the orders placed
are available at the end of the period. The finite-horizon problem with
backlogging can be formulated as follows. Let Jn(x) be the optimal cost
to go given that there are n periods remaining in the horizon and x is the
on-hand inventory.

JnðxÞ ¼ min
y�x

cð�xÞ þ Gnð yÞ þ �

Z 1
0

Jn�1ð y� �ÞdFð�Þ

�
ð3:7Þ

Note that in the above formulation, we assume that the terminal costs are
zero but one could add salvage costs at the end of the horizon. Since the
single-period cost function G( y) is convex in y, one can use recursion to show
that the objective is convex in y and hence there exists an optimal base-stock
level y* in each period. In the lost-sales case the cost-to-go recursion is given
as follows and a similar analysis can be done.

JnðxÞ¼min
y�x

cð�xÞ þ Gnð yÞ þ �

Z y

0

Jn�1ð y� �ÞdFð�Þ þ

Z 1
y

Jn�1ð0Þ dFð�Þ

� ��
ð3:8Þ
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A more compact representation of the above problem can be presented by
creating a function v( y, �) given by

vð y, �Þ ¼
að y� �Þ � � y
bð y� �Þ � � y

�
ð3:9Þ

and utilizing that in the cost-to-go function.

JnðxÞ ¼ min
y�x

cð�xÞ þ Gnð yÞ þ �

Z 1
0

Jn�1ðvð y, �ÞÞ dFð�Þ

� ��
ð3:10Þ

Clearly, if a¼ 1, b¼ 1 it represents backlogging; if a¼ 1, b¼ 0 it represents
lost sales and if a¼ 0, b¼ 0 we have an example of perishable goods. Now
defineMð yÞ ¼ Gð yÞ �

R1
0 �cvð y, �Þ dFð�Þ. Let yn be the optimal base stock for

period n. Then

JnðxÞ ¼ cð�xÞ þ Gnð ynÞ þ �

Z 1
0

Jn�1ðvð yn, �ÞÞ dFð�Þ

� �

¼ �cxþ
Xn
i¼1

�n�iMnð ynÞ ð3:11Þ

Veinott (1965b) showed that the above transformation enables one to
simplify the problem associated with finding the optimal base-stock inventory
levels for each period because they are the yn values that minimize
Mn( yn) which depends only on the parameters and expected cost when n
periods are remaining. This solution is also called the myopic solution since we
need to solve only for the current period. Veinott (1965b) presented general
conditions under which the myopic solution is optimal for the finite- and
infinite (�<1)-horizon discounted cost problem. The optimal myopic solution
depends on whether demand is backlogged or not. In the case of backlogging
the optimal inventory is given by

y* ¼ F�1
p� cþ �c

pþ h

� �
ð3:12Þ

3.2.1 Lead time
In a dynamic inventory model, the concept of lead time becomes

important. Karlin and Scarf (1958) showed that if the lead time from the
supplier is fixed L and all demands are backlogged then that problem could be
converted into an equivalent single-period problem with some adjustments.
The assumption of complete backlogging is critical here because the approach
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relies on keeping track of the system stock (rather than just the on-hand
inventory). The basic idea is that one keeps track of inventory on-hand
plus all orders that have been placed (but not received yet) minus any
backlogged demand. The effect of orders placed in period t is felt in
period Lþ t, so the approach is to consider the total demand in the
next Lþ 1 periods and bring the system stock to that level. Note the
critical fractile still remains the same as given in (3.12), what changes is
the cumulative probability density function F (which is now a convolution
of Lþ 1 demand distributions). This is easy to compute for stationary
and independent normal distributions since the resulting distribution is
also normal with �̂� ¼ ðLþ 1Þ� and �̂� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ 1
p

�. The reason that
backlogging assumption is important because the state space for the dynamic
program can be collapsed into a single state (that represents the system
stock) rather than having a vector of Lþ 1 variables which represent how
much delivery is expected in the next L periods in addition to the current
inventory level.

The case of stochastic lead time has been studied by several researchers.
The problem arises in this case because it is difficult to compute the
system stock as in the deterministic demand case because knowing when
an order was placed does not help in terms of identifying when the order
will arrive. Also it is statistically possible that orders that were placed
later are delivered before earlier orders. Kaplan (1970) was the first one to
show that under two simple assumptions, it is possible to replicate
results corresponding to the deterministic case. The two assumptions that
are required are: (1) later orders are not delivered before earlier orders;
(2) the lead-time distribution does not change due to outstanding
backorders. Nahmias (1979) showed that the above assumptions are
equivalent to a delivery process generated by a sequence {At} of independent
and identically distributed random variables such that if At¼ k then all
the orders placed k or more periods before would be delivered in the
current period. This transformation allows one to mimic the optimality
of the myopic policy. Further, for the average-cost analysis, it suffices to
assume identically distributed lead times and independence is not always
necessary.

The lost-sales model even with deterministic lead times is an open
problem in terms of determining the optimal policy. Morton (1971) presents
bounds for the optimal ordering policy as well as the discounted cost
function for the stationary problem. The heuristics presented are myopic
(or near myopic) in nature and are not necessarily base-stock policies.
Through a limited computational study, the author provides evidence that
such heuristics may be very close to optimal. More recently, van Donselaar,
de Kok and Rutten (1996) compare the performance of a base-stock policy
with another myopic heuristic and show empirically that their dynamic
myopic heuristic outperforms the stationary base-stock policy in a significant
manner.
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3.2.2 Setup costs
Scarf (1960) showed that under general conditions on the cost

function (such as K-convexity) of the one-period expected cost, the n-period
dynamic inventory problem has an optimal (s,S) policy. Iglehart (1963)
considers the discounted infinite-horizon problem and shows the optimality
of the (s,S) policy by giving bounds on sequences {sn} and {Sn} and
establishing their limiting behavior. He also extends this result to the case
with fixed lead time. Veinott (1966b) showed the above results for a different
set of conditions such as the negative of the one-period expected costs
are unimodal and that the absolute minima of the one-period costs are
rising over time. Zheng (1991) presents a simple proof for the optimality of
the (s,S) policy for the discounted and average infinite-horizon problems
by constructing an (s,S) or a variant solution to the optimality equation.
Although the (s,S) parameters are computable for the single-period problem,
they are more difficult to compute for the dynamic case. Veinott and
Wagner (1965) give an optimal algorithm for computing these parameters.
Ehrhardt (1979) presented a heuristic for computing these parameters using a
power approximation. This approximation has been shown to be very
accurate under a wide variety of settings. However, these approximations
suffer when the variance of the demand is very small (if setup cost is also
large). Zheng and Federgruen (1991) provide an efficient algorithm to
compute these values.

3.2.3 Capacity constraint
In most realistic environments, it is not possible for the firm to

produce (order) as much as required because of production or storage
capacity. This poses fundamental problems in the analysis. Wijngaard (1972)
introduces the notion of a modified base-stock policy where a firm tries to
produce as much as possible (if unable to reach the base stock). Federgruen
and Zipkin (1986a,b), Wijngaard (1972) addresse the optimality and
(non)optimality of this policy for finite- and infinite-horizon problems under
restrictive assumptions. In a series of two papers, Federgruen and Zipkin
(1986a,b) show that a modified base-stock policy is optimal for the discounted
multiple period and discounted and average cases in the infinite horizon under
general conditions such as when the expected single-period cost is convex and
a discrete-demand distribution. Although the optimality of such a policy was
established, it was very hard to compute the actual parameters efficiently. de
Kok (1989) notes that the modified base-stock policy can be computed using
the fact that the inventory position at the start of a period equals S�X, where
X is the waiting time in a D/G/1 queue. The author also provides a simple
algorithm to compute the first two moments of X and a heuristic for
computing S. Tayur (1993) introduced the parallel between the dam model
and the inventory dynamics equation and used the notion of a shortfall –
representing the cumulative amount of falling short of the optimal base-stock
level due to capacity constraint. This allows one to construct a sequence of
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uncapacitated infinite-horizon problems that converge to the capacitated
solution under consideration. Then the optimal base-stock level can be easily
computed. For capacitated inventory systems, infinitesimal perturbation
analysis has become an efficient approach to compute (through stimulation)
the optimal parameter values.

4 Alternative demand assumptions

In all the discussions thus far we assumed that the demand distributions
in the different periods were identical and known (hence a stationary
distribution). However, in several real environments the demand distributions
may be different in different periods. In this section, we highlight the key
developments in those areas.

4.1 Nonstationary demand

In the nonstationary demand case, the demand is assumed to be from
nonidentical distributions in each period. Karlin (1960a) studied the
nonstationary inventory problem with zero lead time and showed that the
time-specific base-stock policy is optimal. That is, based on the distributions
of demand there is an optimal base-stock level in each period. Further, he
showed that if the demand distributions are stochastically increasing in
different periods, then the optimal base-stock levels are also increasing.
Veinott (1965b) showed that if the optimal base-stock levels are such that in
each period one needed to place an order to get to the base-stock level then
a myopic policy is still optimal for the nonstationary case. Thus, a myopic
policy is optimal for the case when y*t � y*tþ1 for all t. Further, the stationary
distribution case is a special case where the identical base-stock levels
across the different periods imply that one would necessarily have to place an
order given that the initial inventory is less than the base-stock level, leading
to the optimality of the myopic solution. In general, when the myopic policy
is not optimal it is difficult to obtain the exact optimal parameters.
Morton (1978) provided a sequence of upper and lower bounds for the
optimal base-stock levels such that the nth bound requires the knowledge
about the first n demand distributions giving planning horizon results for
the infinite-horizon case. Lovejoy (1992) considers the nonstationary
inventory problem and provides conditions and stopping rules for utilizing
myopic policies under very general settings. Morton and Pentico (1995)
provide myopic solutions that may be " close to the optimal solution and
hence, term it as near-myopic solution and test their efficacy through a
detailed computational study. Gavirneni and Tayur (2001) provide a quick
method to compute the base-stock levels using Direct Derivative Estimation
(DDE). Bollapragada and Morton (1999) study the nonstationary inventory
problem with setup costs and provide a very effective myopic heuristic to
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the problem by approximating the future problem in each period by a
stationary problem and obtaining the solution for that problem (Table 2).

4.1.1 Cyclic demand schedule
Many firms encounter a demand pattern where the demand follows a cyclic

pattern in that the cycles repeat themselves after a while. For example, one
could look at the demand during the four quarters in traditional industries.
Karlin (1960a,b) discusses the optimality of the periodic base-stock policy
which implies that there are different base-stock levels for each of the periods,
under stationary costs and cyclic nonstationary demand for the discounted
infinite-horizon case, and also provides an optimal algorithm. Zipkin (1989)
extends the above results to the infinite-horizon average-cost case with both
nonstationary cyclic demand and nonstationary costs. More recently,
Kapuscinski and Tayur (1998) consider the capacitated version of the
problem and prove the optimality of the modified periodic base-stock policy for
dynamic multiperiod and infinite-horizon (discounted and average-cost) cases.
They also provide an algorithm to find the optimal base-stock levels using
infinitesimal perturbation analysis. Independently, Aviv and Federgruen
(1997) also proved the optimality of the modified periodic base-stock policy.
Scheller-Wolf and Tayur (2000) extend the above to include minimum-order
quantities and lead times.

4.2 Bayesian demand updates

In many cases, the demand distribution may not be completely known
but as more information is obtained (with demand realization) the estimate of

Table 2
Papers on single-product single-stage nonstationary and dependent demands

Year Reference Year Reference

1959 Scarf 1998 Graves, Kletter and Hetzel
1960a Scarf 1998 Kapuscinski and Tayur
1960a,b Karlin 1999 Bollapragada and Morton
1964 Iglehart 1999 Lariviere and Porteus
1965b Veinott 1999 Gavirneni and Tayur
1972 Hausman and Peterson 1999 Gavirneni, Kapuscinski and Tayur
1975 Johnson and Thompson 1999 Cheng and Sethi
1978 Morton 2000 Lee, So and Tang
1985 Azoury 2000 Scheller-Wolf and Tayur
1989 Zipkin 2001 Gavirneni and Tayur
1992 Lovejoy 2001 Gallego and Ozer
1994 Heath and Jackson 2001 Kaminsky and Swaminathan
1995 Morton and Pentico 2001 Toktay and Wein
1997 Sethi and Cheng 2001 Huang, Scheller-Wolf and Tayur
1997 Aviv and Federgruen 2002 Aviv
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the demand distribution can be refined. Scarf (1959, 1960a) introduces the
Bayesian demand updates where the distribution of the demand is supposed to
depend on one or more parameters and those parameters are refined using
Bayesian updates as more information related to the demand process is
obtained. In particular, he assumes that the demand distribution is
gamma with an unknown scale parameter and shows the optimality of the
base-stock policy. Karlin (1960b) and Iglehart (1964) extended the analysis to
the case where the demand distribution is of the range type between 0 and !
where ! is unknown. The fundamental assumption in this approach is that the
prior for the parameter and the demand distribution are from the same
conjugate family so that the posterior distribution has an easily workable
form. Azoury (1985) extends these results to other types of distributions such
as Weibull and Normal (with known and unknown mean and variance).
Further, she explains how the optimal base-stock levels can be determined
easily. Basically, a single-normalized base-stock level is computed in
advance and then the optimal base-stock level is obtained by scaling this
value. The scale factor depends on a function of the sufficient statistic of the
unknown parameter that is generated based on past demand. Recently,
Lariviere and Porteus (1999) extend the above observations to other
environments and provide conditions under which a firm would invest in
additional inventory to learn more about the demand as well as cases
where despite poor sales, the product is stocked in order to obtain
better information. Huang, Scheller-Wolf and Tayur (2001) use a Hidden
Markov Model (HMM) to update the state of the unknown demand of a
new product.

4.3 evolution

Another important reality that needs to be incorporated in inventory
models is the forecasting process utilized. Hausman and Peterson (1972)
develop a multiperiod model with terminal demand where the forecast errors
get refined in a lognormal process. In a capacitated environment they show
that optimal policy is of threshold-type and present heuristics to solve the
problem. More recently, Kaminsky and Swaminathan (2001) consider a
forecast generation process which depends on forecast bands (and the demand
is expected to be uniformly spread in the interval) that get refined over time. In
a terminal demand-capacitated setting, they show the optimality of the
threshold-type policy and provide very efficient algorithm for cases with and
without holding costs. Researchers have also studied the Martingale model for
forecast evolution along with production-inventory decisions. Heath and
Jackson (1994) and Graves, Kletter and Hetzel (1998) independently
introduce these models and develop heuristical methods to solve the problem.
Recently, Toktay and Wein (2001) study this problem and use heavy traffic
approximations to prove the optimality of the base-stock policy under those
assumptions. More recently, Aviv (2002) presents a supply chain model where
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different members observe subsets of the underlying demand information, and
adapt their forecasting and replenishment policies accordingly. For each
member, he identifies an associated demand evolution model, for which he
proposes an adaptive inventory replenishment policy that utilizes the Kalman
Filter technique. He provides a simple methodology for assessing the benefits
of various types of information-sharing agreements between members of the
supply chain.

4.4 Demand dependencies

Demand across the different periods could be related to each other in some
environments. Veinott (1965a,b) through his work on nonstationary demands
provides general conditions under which even a dependent demand
process may have myopic solutions. Johnson and Thompson (1975) utilize
those results to show that even when the demand is described by a ARMA
(autoregressive moving average) model with an additive shock, a myopic
policy remains optimal under mild conditions. Sobel (1988) provided general
conditions under which a myopic solution remains optimal.

Another way to represent the dependencies is to assume that the demand
gets generated from a Markov process, so that the state in the current period
affects the demand in the next period. Karlin and Fabens (1960) introduced a
Markovian demand model and postulated that a state-dependent (s,S)
policy would be optimal. However, they restrict themselves to stationary
(s,S) policy due to complexity. Sethi and Cheng (1997) prove the optimality of
the state-dependent (s,S) policy for Markovian demand for both finite- and
infinite-horizon problems. They can also extend the model to capture periods
with no orders as well as capacity and service constraint. Gavirneni and Tayur
(1999) consider a modified version of the Markovian process which may be
generated due to a fixed ordering schedule (‘Target Reverting’) at the
customer end. They prove the optimality of a modified base-stock policy and
provide computational results. Gallego and Ozer (2001) study a situation
where customers may place orders in advance (more common in a make to
order environment) which provides the firm with advance demand
information. They show that state-dependent (s,S) and base-stock policies
are optimal for stochastic inventory systems with and without fixed costs. The
state of the system reflects the knowledge of advance demand information.
They also determine conditions under which advance demand information has
no operational value.

Another reason for demand dependencies is that the firm may be receiving
orders from another firm that may be following some optimal policy such
as (s,S). Gavirneni, Kapuscinski and Tayur (1999) study the value of
this additional demand information in a capacitated multiperiod setting.
Lee, So and Tang (2000) study the value of information in a two-level supply
chain with nonstationary end demand and show that the value of information
could be very high, particularly in cases where the demand may be correlated
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over time. Demand is also affected by the pricing decisions used by firms.
Cheng and Sethi (1999) consider a general model where the customer demand
is generated by a Markov process whose state is dependent on the promotion
decisions. They assume a fixed cost for promotion and that the demand moves
to a stochastically higher state the next period. The firm tries to find the
optimal promotion schedule in terms of which periods to promote and what
inventory levels to stock. For a finite-horizon problem they show that there
exists a threshold level P such that if the initial inventory is greater than P
then it is optimal to promote, and also show that a base-stock policy is
optimal for the linear-cost case.

5 Generalizations

There have been several generalizations of the single-firm single-product
form that has been discussed so far. In this section, we will briefly explore
these generalizations.

5.1 Multiechelon

The natural extension of a single-firm model in a supply chain setting relates
to considering multiple echelons under a single firm. Clark and Scarf (1960)
study a serial system with each facility (representing an echelon) supplying the
downstream facility within a deterministic nonzero lead time. The echelon stock
is defined as the stock at that facility plus the stock at all the facilities
downstream. The holding and stock-out costs are assessed independently,
taking into account the echelon stock of each facility. Under the above
assumptions, they show that the problem can be decomposed into independent
problems each for one facility and that the base-stock policy still remains
optimal in that case where each facility tries to bring the inventory as close as
possible to the optimal echelon base-stock level. They also provide a
mechanism by which the optimal base stocks can be computed by sequentially
going from the last facility moving backwards (Table 3).

Federgruen and Zipkin (1984b) provide a simple method to streamline
the computations in the infinite-horizon case with normal demands. Chen
and Song (2001) consider a multistage serial system with Markov-
modulated demand in that the demand distribution in each period is
determined by the current state of an exogenous Markov chain. They show the
optimality of a state-dependent echelon base-stock policy for the long-run
average-costs case. They also provide an algorithm for determining the optimal
base-stock levels and extend their results to serial systems in which there is a
fixed ordering cost at the last stage and to assembly systems with linear ordering
costs. In a more recent work, Muharremoglu and Tsitsiklis (2001) employ a
novel approach based on decomposition of the problem into a series of
single-item single-customer problems that enables them to provide a simpler
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proof for the optimality of echelon base-stock policies. This approach enables
them to extend their results to several variants of the problem including
stochastic lead time and Markovian demand processes.

One variant of the serial system is the assembly system where more than
one facility may be involved in an upstream echelon to provide parts for the
downstream assembly operation. Schmidt and Nahmias (1985) study the case
with two echelons where the upstream echelon has two suppliers with different
deterministic lead times and a fixed assembly lead time. The optimal policy has
an interesting structure in that the assembly level has a base-stock policy
while the policy at the upstream echelon is such that it tries to balance the
echelon stock of the two components taking into account the difference in

Table 3
Papers on generalizations of the base case

Year Reference Year Reference

Multiple echelons
1960 Clark and Scarf 1962 Clark and Scarf
1981 Eppen and Schrage 1984b Federgruen and Zipkin
1985 Roundy 1985 Schmidt and Nahmias
1989 Rosling 1994, 1995 Glasserman and Tayur
1994, 1998 Chen and Zheng 1999 Chen
2000 Parker and Kapuscinski 2001 Chen and Song
2001 Muharremoglu and Tsitsiklis

Multiple products
1963 Hadley and Whitin 1969 Ignall and Veinott
1969 Ignall 1981 Silver
1984 Federgruen, Gronevelt

and Tijms
1985a,b Karmarkar, Kekre

and Kekre
1987 Karmarkar, Kekre and Kekre 1988 Atkins and Iyogun
1990 Gallego 1993 Karmarkar
1993 Lee and Billington 1996 Federgruen and Catalan
1996 Lambrecht et al. 1997 Lee and Tang
1998 Swaminathan and Tayur 1998 Eynan and Kropp
1998 Anupindi and Tayur 1999 Bollapragada and Rao
1999 Bassok, Anupindi and Akella 2001 Rajagopalan and

Swaminathan
2001 Bispo and Tayur 2002 Swaminathan and Lee
2002 Rao, Swaminathan and Zhang 2002 Van Mieghem and Rudi

Multiple suppliers
1964 Fukuda 1966a Veinott
1969 Wright 1993 Anupindi and Akella
1999 Swaminathan and

Shanthikumar
2000 Scheller-Wolf and Tayur

Process randomness
1958 Karlin 1990 Henig and Gerchak
1991 Bassok and Akella 1994 Ciarallo, Akella and Morton
1995 Lee and Yano
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lead times of the two suppliers. Rosling (1989) showed that under
certain initial conditions, an assembly system can be reduced to a serial
system with modified lead times so that results due to Clark and Scarf (1960)
may apply to the modified system. Another variant of the serial system is the
distribution system where one facility at an upstream level supplies to multiple
facilities downstream. The results of the serial system do not carry forward
easily to the distribution network. Eppen and Schrage (1981) analyze a
one warehouse and multiple retailer network and explore the trade-off
involved therein.

The addition of capacity restrictions on the above generalization leads to
several complications. Firstly, the simple base-stock policies may no longer be
optimal, and secondly, even under restricted set of base-stock policies
the computation of these parameters is challenging. Glasserman and Tayur
(1994, 1995) develop a solution for finding the optimal base-stock levels at
the different echelons under a modified base-stock policy and utilize a
simulation-based optimization procedure using infinitesimal perturbation
analysis to develop an efficient solution methodology for finding the opti-
mal parameter values. They also extend their approach to the assembly and
distribution networks under certain conditions. Parker and Kapuscinski (2000)
demonstrate that a modified echelon base-stock policy is optimal in a two-stage
system for a capacity-dominating condition. They show that this holds for both
stationary and nonstationary stochastic customer demand for finite and infinite
horizons under discounted and average-cost criteria. There have been numerous
attempts to develop a better grasp of the casewith setup costs at both stages even
for a serial system starting with Clark and Scarf (1962). Recently, Chen (1999)
utilized the nested policy ideas developed by Roundy (1985) for deterministic
systems, in a two-stage serial system with Poisson demand and setup costs to
develop 94% optimal policies for the problem.

5.2 Multiple products

Another dimension of extension of these models is along the number of
products. If all the products have independent demand and there are no
capacity or production restrictions then naturally the problem can be
decoupled into independent single-product problems. However, in reality, a
firm produces multiple products (which may be similar in functionality) and
may have a common capacity to utilize for those products. Hadley and Whitin
(1963) consider the capacitated newsvendor problem when there is a common
capacity constraint of the formX

i

aiyi � b

They solve the problem by relaxing the constraint and obtain an explicit
expression for the optimal quantities in terms of the Lagrangian multiplier l
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as follows. If the optimal base-stock levels are not feasible then

y*i ð�Þ ¼ F�1
pi � ci � ai�

pi þ hi

� �
ð5:1Þ

and l is chosen so that

X
i

aiy*i ð�Þ � b:

Recently, Bispo and Tayur (2001) study base-stock policies under various
scenarios of capacity sharing across products in a single stage, serial and
reentrant systems.

The notion of similarity among the different products and the fact that
they could be substituted for each others demand was explored by Ignall
and Veinott (1969). They showed that in fact the base-stock policies are
optimal for the problem with nested downward substitution (where product
1 can substitute for product 2, 3, . . . , n; product 2 can substitute for
product 3, 4, . . . , n and so on) in a multiple-period infinite-horizon setting.
Bassok, Anupindi and Akella (1999) provide an alternative proof for the same
result. The problem related to downward substitution as well as setup costs is
extremely hard to obtain theoretical insights on. Rao, Swaminathan and
Zhang (2002) provide a highly efficient algorithm for finding the optimal
production/substitution strategy for that problem using a combination of
dynamic programming and simulation-based optimization.

Another important concept with multiple products relates to postponing
the point of differentiation of the products in order to reduce inventory as a
result of risk pooling – storing inventory of semifinished products reduces the
risk associated with stocking that inventory. Lee and Billington (1993) and
Lee and Tang (1997) study postponement in the context of distribution
through the channel. Swaminathan and Tayur (1998) study the postponement
issue within the context of a capacitated final assembly facility and term the
semifinished products as vanilla boxes. For more details on research conducted
on postponement strategies, see Swaminathan and Lee (2003).

Another complexity with multiple products is studied in the Joint
Replenishment Planning (JRP) context, where there is a major setup cost at
each order (across products), and a minor setup cost that may be product
dependent. The stochastic version is particularly important as it is a very
common problem in practice. A reasonable ordering policy that has been
studied extensively are the can-order or (s, c,S) policies. In such a policy, when
any item i inventory drops below its reorder point si, a reorder is scheduled
and all other item j whose inventory is below their can-order limit cj are also
included in the order. Ignall (1969) showed that can-order policies are not
optimal in general. However, Silver (1981) and Federgruen, Groenevelt and
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Tijms (1984) have empirically shown that can-order policies perform well.
Atkins and Iyogun (1988) provide a lower bound for the joint replenishment
problem above and show that can-order policies are not very efficient when
the joint setup cost is high. They show that a heuristic based on a periodic
ordering can outperform can-order policies in a significant manner. Eynan and
Kropp (1998) propose yet another periodic heuristic and show that is close to
the optimal solution through a computational study.

Another important problem is the stochastic economic lot-sizing problem
(ELSP), where several items need to be produced in a common facility with
limited capacity, under significant uncertainty-regarding demands, production
times or combinations thereof. Gallego (1990) considers the problem of
scheduling the production of several items in a single facility that can
produce only one item at a time. He assumes that demands are random with
constant-expected rates, and allows backorders and charge holding and
backlogging costs at linear time-weighted rates. Items are produced at
continuous constant rate, and setup times and setup costs are item-dependent
constants. He proposes a real time-scheduling system that utilizes the expected
demand to create the initial schedules and adjusts them for the randomness.
Federgruen and Catalan (1996) propose cyclical base-stock policies for the
problem. Under this scheme, when the facility is assigned to a given item,
production continues until either a specific target-inventory level is reached or
a specific production batch has been completed; different items are produced
in a given sequence or rotation cycle, possibly with idle times inserted
between the completion of an item’s production batch and the setup for the
next item. Optimal policies within this class which minimize holding,
backlogging and setup costs are effectively determined and evaluated.
Bollapragada and Rao (1999) as well as Anupindi and Tayur (1998) are more
recent contributions to ELSP and cyclic schedule problems.

Earlier research related to manufacturing lead times, order release and
capacity releases is summarized in Karmarkar (1993). Among that
Karmarkar, Kekre and Kekre (1985a,b, 1987) in a series of papers studied
lot sizing in multi-item multimachine job shops and cellular environments.
Lambrecht, Chen and Vandaele (1996) introduce the notion of safety lead
times in queuing models of a make-to-order manufacturing environment.
They show that there is a convex relationship of expected waiting time,
variance of the waiting time and the quoted lead time as a function of the lot
size, and a concave relationship of the service level as a function of the lot
size. This allows them to accurately quantify the safety time and to compute
the associate service levels. Although sizing and capacity expansion are
very closely related they have not been studied extensively in integrated
models. In a recent work, Rajagopalan and Swaminathan (2001) study the
capacity expansion and lot sizing in a multiproduct environment with
deterministic known demand and present effective heuristics and bounds for
the problem. More recently, Van Mieghem and Rudi (2002) develop a
framework to study multiperiod multiproduct problems of stochastic capacity
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investment and inventory management. The optimal capacity and inventory
decisions balance overages with underage costs. The optimal balancing
conditions are interpreted as specifying multiple ‘critical fractiles’ of the
multivariate demand distribution; they also suggest appropriate measures for
and trade-offs between product service levels. They establish dynamic
optimality of inventory and capacity policies for the lost-sales case.

5.3 Multiple suppliers

Several firms have more than one supplier for any particular product in
order to hedge against the uncertainty in the delivery process as well as to
avoid being held captive by the supplier. Fukuda (1964), Veinott (1966a) and
Wright (1969) study the case where rush orders from a reliable supplier could
be obtained one period earlier (at an additional cost) than the normal lead
time in an emergency situation. They showed that there are two base-stock
levels – an emergency base-stock level and a normal base-stock level. If the
inventory level is lower than the emergency stock level then orders are placed
with the more reliable supplier to get to the emergency stock level. Then
additional orders are placed with the normal supplier to reach the normal
base-stock level. Anupindi and Akella (1993) study a different version of the
problem where the lead times and their unit costs are different. They show
that the optimal policy has two-parameter base-stock levels. If the inventory
is higher than the larger base-stock level then no orders are placed. If it is
in between the two base-stock levels then orders are placed only with the
less-expensive supplier and else orders are placed with both. In particular,
they note that orders are never placed with the more-expensive supplier
alone. Scheller-Wolf and Tayur (2000) extend these results into a more
general model. Swaminathan and Shanthikumar (1999) showed that the
above structure is driven by the continuity assumption in demand and need
not hold in general for discrete-demand distributions. There are several other
papers which deal with supply contracts, see Anupindi and Bassok (1998),
Lariviere (1998) and Corbett and Tang (1998), Tsay et al. (1998) for reviews
on this topic.

5.4 Randomness in process

Another important generalization of the traditional inventory models
relates to the randomness in production process or also called random
yield. Several industries particularly semiconductors face a critical problem
related to managing the yield of the process and simultaneously determining
the inventory levels. Karlin (1958) explores the notion of randomness in
supply by assuming a probability distribution for the receipt of harvest
from the producer. The decision is whether to order given a set of probability
of possible harvests. Bassok and Akella (1991) study the joint production
and ordering decisions in an environment where demand is random and
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amount received is a random fraction of that ordered. Henig and Gerchak
(1990) consider the case where the amount received is a fraction of amount
ordered and characterize the optimal policy. For the multiperiod case
they show the convexity of the cost function and show the existence of the
optimal order point. Ciarallo, Akella and Morton (1994) consider a
problem where the total capacity itself is random and show that there are
optimal order points in that case as well although the convexity of the cost
function is lost in multiperiod and infinite-horizon problems. They also
present the notion of extended myopic policies in the infinite-horizon case.
Lee and Yano (1995) present a comprehensive literature review on random
yield research.

5.5 Approximations

Given the difficulty of solving complex inventory problems exactly,
many approximate methods for solving these problems have been proposed.
One such approximation is the large-deviation approximation to study
capacitated systems, both in discrete-time and continuous-time models. The
common characteristics in such systems is that inventory is held in part to
compensate for the capacity restriction. The basic idea in this approximation
is that if the tail of the distribution of demand is exponentially bounded, then
the tail of the distribution of inventory shortfall is approximately exponential.
Further, the exponent in this approximation can be easily computed. This
approximation is useful because the performance of the inventory system with
respect to service level directly depends on the tail distribution. Glasserman
(1998) provides a detailed overview of this approach.

Another approximation that has been used by researchers is the one
related to approximately characterize the optimal policy for a multiechelon
inventory system with economies of scale. Chen and Zheng (1994, 1998)
discuss near-optimal policies (in a continuous setting) for multiechelon
inventory systems. Chen (1998) provides a detailed description of various
approximations that have been considered by researchers in this area.

Finally, approximations related to results under heavy-traffic assumptions
have been used in inventory models as well. These approximations are
useful when the load of the system is very high and utilization is close to 100%
[see Toktay & Wein, 2001].

6 Applications

Several applications in the past years have been developed within the
context of supply chain management. These applications can be clearly
classified into two categories – one that builds large-integrated models of a
multitiered supply chain primarily based on deterministic assumptions
about demand, supply and process, and the other based on decomposition of
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the large-scale supply chains and approximation of the behavior through the
development of detailed tactical supply chain models discussed in this
chapter at each of those nodes. We will focus on the latter (Table 4).

One of the first large-scale model framework that linked decision and
performance throughout the material–production–distribution supply chain
was developed by Cohen and Lee (1988). The model structure could be used
to predict the performance of a firm with respect to the cost of its products,
the level of service provided to its customers and the responsiveness and
flexibility of the production/distribution system. The analysis took into
account the nature of the product produced, the process technologies used to
manufacture the products, the structure of the facility network used to
manage the material flow and the competitive environment in which the firm
operates. It differed from earlier work in that a decentralized control was
assumed and combined the performance of the single nodes to create the
combined supply chain effect. A series of linked, approximate submodels and
a heuristic optimization procedure were developed. Each submodel in the
model framework used tractable stochastic models. A software package to
support the structure was also introduced. Another large-scale implementa-
tion was the development of Optimizer, a decision support for
IBM’s multiechelon inventory system for managing spare-parts inventory
[see Cohen, Kamesam, Kleindorfer, Lee & Tekerian, 1990]. The model and
analysis in this work relied heavily on decoupling the multiechelon inven-
tory system into several single-level inventory systems and determining the
optimal (or near-optimal) parameters for those single-echelon systems.
Starting from the echelon closest to the customer, the parameters are found
in an iterative manner, by coupling the demands at the higher echelons of
the supply chain with decisions at lower echelons regarding the inventory
parameter decisions, namely the (s,S) values.

Lee and Billington (1993) consider a model of the supply chain with a
periodic review policy and stochastic demand that has decentralized control.
The idea is similar, to analyze the performance of individual entities and then
create their combined effect. This model provided various insights for supply
chain planning at HP. Ettl, Feigin, Lin and Yao (2000) adopt a queuing

Table 4
Papers on applications

Year Reference

1988 Cohen and Lee
1990 Cohen, Kamesam, Kleindorfer, Lee and Tekerian
1993 Lee and Billington
1998 Swaminathan, Smith and Sadeh
2000 Ettl, Feigin, Lin and Yao
2000 Rao, Scheller-Wolf and Tayur
2000 Graves and Willems
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approximation to determine the service-level implications in a multitiered
network to find the optimal inventory levels to stock at different points in the
supply chain. In their approach, each of the sites follows a base-stock policy
and they assume that there is a nominal lead time for production and
transportation at each of the echelons. The actual lead times may be
greater due to shortages. They model each inventory buffer as an infinite-
server M/G/1 queue following a base-stock policy (as in Buzzacott and
Shanthikumar, 1993). They assume a Poisson arrival process for demand.
Using the above assumptions, they couple the service measures across the
supply chain with the base-stock levels chosen. Using a heuristic approach
they find the optimal base-stock levels. This model and approximation are
validated and refined by supply chain managers through detailed simulation
analysis based on an enhanced version of the supply chain library developed in
Swaminathan, Smith and Sadeh (1998). The above model and implementation
led to an estimated $750 million reduction in inventory at IBM and was
awarded the Franz Edelman Prize in 1999.

More recently, Rao, Scheller-Wolf and Tayur (2000) describe the
successful implementation of a dynamic supply chain model at Caterpillar.
They analyze alternative supply chain configurations for a new product
line incorporating expedited deliveries, partial backlogging of orders and sales
that were responsive to service provided. Utilizing a combination of models
from network flow theory, inventory management and simulation, they
analyze alternative choices for the supply chain configuration. Graves and
Willems (2000) develop a framework for strategic inventory placement in a
supply chain that is subject to demand or forecast uncertainty. They model the
supply chain as a network where each entity operates according to a base-
stock policy, faces bounded demand and has a guaranteed delivery lead
time between the echelons. They utilize the spanning-tree concept and
formulate the problem as a deterministic optimization problem to obtain the
safety stock. This model was utilized by product flow teams at Eastman
Kodak. A more detailed description of approximations for multistage multi-
item models appears in de Kok and Fransoo (2003), Chapter 12 of this
handbook.

7 Conclusions and future directions

In the Internet age as firms try to completely integrate their operations,
tactical planning models for supply chain integration are becoming
extremely relevant. In this chapter, we have provided an overview of several
streams of research on this broad topic that have been conducted by
researchers in the past. Clearly the above stream of research has had
tremendous impact on both academic research as well as on practice.
However, there are certain changes that are taking place with the advent of
the Internet which have opened rich topics for new research (see Swaminathan
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and Tayur, 2003 for details). Firstly, more and more firms are trying to
integrate their production decisions with their pricing decisions and this
opens up several topics of research which coordinate supply chain and
pricing decisions under cooperative and competitive settings. Cachon (2003)
explores some of the models developed therein. Secondly, the focus of
operations in many firms is changing from a single-entity optimization model
to a more collaborative decision-making process. Analysis needs to be con-
ducted on models which integrate information and supply chain decisions.
Chen (2003) explores such models in another chapter. Finally, there is a
growing need to decision-support systems that can operate in real time to
provide solutions for tactical supply chain problems.

Acknowledgements

The authors wish to thank Ton de Kok and Srinagesh Gavirneni for their
detailed comments on an earlier version of this chapter.

References

Anupindi, R., R. Akella (1993). Diversification under supply uncertainty. Management Science 39(8),

944–963.

Anupindi, R., Y. Bassok (1998). Supply contracts with quantity commitments and stochastic demand,

in: Tayur, Ganeshan, Magazine (eds.), Quantitative Models for Supply Chain Management, Kluwer

Publishing, Norwell, MA, pp. 197–232.

Anupindi, R., S. Tayur (1998). Managing stochastic multi product systems: model, measures and

analysis. Operations Research, S98–S111.

Arrow, K., T. Harris, J. Marschak (1951). Optimal inventory policy. Econometrica 19, 250–272.

Arrow, K., S. Karlin, H. Scarf (1958). Studies in the Mathematical Theory of Inventory and Production,

Stanford, CA, Stanford University Press.

Atkins, D., P. O. Iyogun (1988). Periodic versus ‘can-order’ policies for coordinated multi-item

inventory systems. Management Science 34(6), 791–796.

Aviv, Y. (2002). A time series framework for supply chain inventory management. To appear,

Operations Research.

Aviv, Y., A. Federgruen (1997). Stochastic inventory models with limited production capacity and

periodically varying parameters. Probability of Engineering Information Sciences 11, 107–135.

Azoury, K. (1985). Bayes solution to dynamic inventory models under unknown demand distribution.

Management Science 31, 1150–1160.

Bassok, Y., R. Akella (1991). Ordering and production decisions with supply quantity and demand

uncertainty. Management Science 37, 1556–1574.

Bassok, Y., R. Anupindi, R. Akella (1999). Single period multiproduct inventory models with

substitution. Operations Research 47(4), 632–642.

Bispo, C., S. Tayur (2001). Managing simple re-entrant flow lines: theoretical foundation and

experimental results. IIE Transactions 33(8), 609–623.

Bollapragada, S., T. E. Morton (1999). A simple heuristic for computing nonstationary (s,S) policies.

Operations Research 47(4), 576–584. July–August.

Bollapragada, R., U. S. Rao (1999). Single stage resource allocation and economic lot sizing.

Management Science 45(6), 889–904.

Ch. 8. Tactical Planning Models for Supply Chain Management 449



Buzzacott, J., J. G. Shanthikumar (1993). Stochastic Models of Manufacturing Systems, Englewood

Cliffs, NJ, Prentice Hall.

Cachon, G. (2002). Supply chain coordination: pricing tactics for coordinating the supply chain, to

appear, in: Graves, de Tok (eds.), Supply Chain Management – Handbook in OR/MS, North-

Holland, Amsterdam.

Chen, F. (1998). On (R, NQ) policies serial inventory systems, in: Tayur, Ganeshan, Magazine (eds.),

Quantitative Models for Supply Chain Management, Kluwer Publishing, Norwell, MA, pp. 71–110.

Chen, F. (1999). 94% Effective policies for two stage serial inventory system with stochastic demand.

Management Science 12, 1679–1696.

Chen, F. (2002). Information sharing and supply chain coordination, to appear, in: Graves, de Tok

(eds.), Supply Chain Management – Handbook in OR/MS, North-Holland, Amsterdam.

Chen, F., J. Song (2001). Optimal policies for multiechelon inventory problems with Markov-

modulated demand. Operations Research 49(2), 226–234.

Chen, F., Y. Zheng (1994). Lower bounds for multi-echelon stochastic inventory systems.Management

Science 40, 1426–1443.

Chen, F., Y. Zheng (1998). Near optimal echelon stock (R,Q) policies in multi-stage serial systems.

Operations Research 46(4), 592–602.

Cheng, F., S. P. Sethi (1999). A periodic review inventory model with demand influenced by promotion

decisions. Management Science 45, 1510–1523.

Ciarallo, F., R. Akella, T. E. Morton (1994). A periodic review production planning model with

uncertain capacity. Management Science 40, 320–332.

Clark, A., H. Scarf (1960). Optimal policies for a multi-echelon inventory problem. Management

Science 6, 475–490.

Clark, A., H. Scarf (1962). Approximate solutions to a simple multi-echelon inventory problem,

in: Arrow, Scarf (eds.), Studies in Applied Probability and Management Science, Stanford University

Press, Stanford, CA, pp. 88–110.

Cohen, M. A., H. L. Lee (1988). Strategic analysis of integrated production distribution systems.

Operations Research 34(4), 482–499.

Cohen, M. A., P. V. Kamesam, P. Kleindorfer, H. L. Lee, A. Tekerian (1990). Optimizer: IBM’s multi-

echelon inventory system for managing service logistics. Interfaces 20(1), 65–82.

Corbett, C.J., C.S. Tang (1998). Designing supply contracts: contract type and information

asymmetry, in: Tayur, Ganeshan, Magazine (eds.), Quantitative Models for Supply Chain

Management, Kluwer Publishing, Norwell, MA, pp. 269–298.

Debodt, M., S. C. Graves (1985). Continuous review policies for a multi-echelon inventory problem

with stochastic demand. Management Science 31, 1286–1299.

de Kok, T. (1989). A moment-iteration method for approximating the waiting time characteristics of

the GI/G/1 queue. Probability of Engineering and Information Sciences 3, 273–287.

de Kok, T., J. Fransoo (2002). Supply chain operations: comparing planning concepts, to appear, in:

Graves, de Tok (eds.), Supply Chain Management – Handbook in OR/MS, North-Holland,

Amsterdam.

Edgeworth, F. (1888). The mathematical theory of banking. Journal of Royal Statistics Society

51, 113–127.

Ehrhardt, R. (1979). The power approximation for computing (s,S) inventory policies. Management

Science 25, 777–786.

Ehrhardt, F. (1984). (s,S) policies for a dynamic inventory model with stochastic lead times. Operations

Research 32, 121–132.

Eppen, G., L. Schrage (1981). Centralized ordering policies in a multi-warehouse system with lead

times and random demand, in: L. B. Schwartz Multi-Level Production Inventory Control Systems:

Theory and Practice, Amsterdam, North Holland, pp. 51–58.

Ettl, M., G. Feigin, G. Lin, D. D. Yao (2000). A supply network model with base-stock control and

service requirements. Operations Research 48(2), 216–232.

Eynan, A., D. Kropp (1998). Periodic review and joint replenishment in stochastic demand

environments. IIE Transactions 30(11), 1025–1033.

450 J.M. Swaminathan and S.R. Tayur



Federgruen, A., Z. Catalan (1996). Stochastic economic lot scheduling problem: cyclical base stock

policies with idle times. Management Science 42(6), 783–796.

Federgruen, A., P. Zipkin (1984). An efficient algorithm for computing optimal (s,S) policies.

Operations Research 32, 818–832.

Federgruen, A., P. Zipkin (1984). Approximation of dynamic multi-location production inventory

problem. Management Science 30, 69–84.

Federgruen, A., P. Zipkin (1986). An inventory model with limited production capacity and uncertain

demands I: the average cost criterion. Mathematics of Operations Research 11, 193–207.

Federgruen, A., P. Zipkin (1986). An inventory model with limited production capacity and uncertain

demands II: the discounted cost criterion. Mathematics of Operations Research 11, 208–215.

Federgruen, A., H. Groenevelt, H. C. Tijms (1984). Coordinated replenishment in a multi-item

inventory system with compound Poisson demand. Management Science 30, 344–357.

Fukuda, Y. (1964). Optimal policies for inventory problems with negotiable lead time. Management

Science 10, 690–708.

Gallego, G. (1990). Scheduling the production of several items with random demands in a single

facility. Management Science 36, 1579–1592.

Gallego, G., O. Ozer (2001). Integrating replenishment decisions with advance demand information.

Management Science 47, 1344–1360.

Gavirneni, S., S. Tayur (1999). Managing a customer following a target reverting policy.

Manufacturing and Service Operations Management 1, 157–173.

Gavirneni, S., S. Tayur (2001). An efficient procedure for non-stationary inventory control. IIE

Transactions 33(2), 83–89.

Gavirneni, S., R. Kapuscinski, S. Tayur (1999). Value of information in capacitated supply chains.

Management Science 45, 16–24.

Glasserman, P. (1998). Service levels and tail probabilities in multistage capacitated production

inventory systems, in: Tayur, Ganeshan, Magazine (eds.), Quantitative Models for Supply Chain

Management, Kluwer Publishing, Norwell, MA, pp. 41–70.

Glasserman, P., S. Tayur (1994). The stability of a capacitated multi-echelon production inventory

system under a base stock policy. Operations Research 42, 913–925.

Glasserman, P., S. Tayur (1995). Sensitivity analysis for base stock levels in multi-echelon production

inventory system. Management Science 41, 263–281.

Graves, S., S. Willems (2000). Optimizing strategic safety stock placement in supply chains.

Manufacturing and Service Operations Management 2(1).

Graves, S., A. H. G. Rinnoy Kan, P. Zipkin (1993). Handbook in OR/MS on Logistics of Production

and Inventory, Vol. 4. Amsterdam, Netherlands, North-Holland.

Graves, S., D. B. Kletter, W. B. Hetzel (1998). A dynamic model for requirements planning with

application to supply chain optimization. Operations Research 46, S35–S49.

Hadley, G., T. Whitin (1963). Analysis of Inventory Systems, Englewood Cliffs, NJ, Prentice-Hall.

Hausman, W. H. (1969). Sequential decision problems: a model to exploit existing forecasters.

Management Science 16(2), B93–B110.

Hausman, W. H., R. Peterson (1972). Multiproduct production scheduling for style goods with

limited capacity, forecast revisions and terminal delivery. Management Science 18(7),

370–383.

Heath, D. C., P. L. Jackson (1994). Modeling the evolution of demand forecasts with application to

safety stock analysis in production/distribution systems. IIE Transactions 26(3), 17–30.

Henig, M., Y. Gerchak (1990). The structure of periodic review policies in the presence of random

yield. Operations Research 38, 634–643.

Heyman, D., M. Sobel (1984). Stochastic Models in Operations Research, Vol. II. New York,

McGraw-Hill.

Huang, P., A. Scheller-Wolf, S. Tayur (2001). Dynamic capacity partitioning during new product

introduction. GSIA Working Paper, Carnegie Mellon University.

Iglehart, D. (1963). Optimality of (s,S) policies in the infinite horizon dynamic inventory problem.

Management Science 9, 259–267.

Ch. 8. Tactical Planning Models for Supply Chain Management 451



Iglehart, D. (1964). The dynamic inventory model with unknown demand distribution. Management

Science 10, 429–440.

Ignall, E. (1969). Optimal continuous review policies for two product inventory systems with joint

setup costs. Management Science 15, 277–279.

Ignall, E., A. Veinott (1969). Optimality of myopic inventory policies for several substitute products.

Management Science 15, 284–304.

Johnson, G., H. Thompson (1975). Optimality of myopic inventory policies for certain dependent

demand process. Management Science 21, 103–1307.

Kaminsky, P., J. M. Swaminathan (2001). Utilizing forecast band refinement for capacitated

production planning. Manufacturing and Service Operations Management 3(1), 68–81.

Kaplan, R. (1970). A dynamic inventory model with stochastic lead times. Management Science 16,

491–507.

Kapuscinski, R., S. Tayur (1998). A capacitated production inventory model with periodic demand.

Operations Research.

Karlin, S. (1958). One-stage inventory models with uncertainty, in: K. Arrow, S. Karlin, H. Scarf

(eds.), Studies in the Mathematical Theory of Inventory and Production, Stanford, CA, Stanford

University Press.

Karlin, S. (1960). Dynamic inventory policy with varying stochastic demands. Management Science

6, 231–258.

Karlin, S. (1960). Optimal policy for dynamic inventory process with stochastic demands subject to

seasonal variations. Journal of Society of Industrial Applied Mathematics 8, 611–629.

Karlin, S., A. Fabens (1960). The (s,S) inventory model under Markovian demand process, in: Arrow,

Karlin, Suppes (eds.), Mathematical Methods in the Social Sciences, Stanford University Press,

Stanford, CA, pp. 159–175.

Karlin, S., H. Scarf (1958). Inventory models of the Aroow-Harris-Marschak type with time lag, in:

Arrow, Karlin, Scarf (eds.), Studies in the Mathematical Theory of Inventory and Production,

Stanford University Press, Stanford, CA.

Karmarkar, U.S. (1993). Manufacturing lead times, in: S. Graves, A.H.G. Rinnoy Kan, P.H. Zipkin

(eds.), Handbook in OR/MS on Logistics of Production and Inventory, pp. 287–321.

Karmarkar, U. S., S. Kekre, S. Kekre (1985). Lot sizing in multi-item multi-machine job shops.

IIE Transactions 17, 290–292.

Karmarkar, U. S., S. Kekre, S. Kekre (1985). Lot sizing and lead time performance in a manufacturing

cell. Interfaces 15, 1–9.

Karmarkar, U. S., S. Kekre, S. Kekre (1987). The dynamic lot sizing problem with startup and

reservation costs. Operations Research 35(3), 389–398.

Lambrecht, S. Chen, N.J. Vandaele (1996). A lot sizing model with queuing delays: the issue of safety

time. European Journal of Operational Research 89, 269–276.

Lariviere, M.A. (1998). Supply chain contracting and coordination with stochastic demand, in: Tayur,

Ganeshan, Magazine (eds.), Quantitative Models for Supply Chain Management, Kluwer

Publishing, Norwell, MA, pp. 233–268.

Lariviere, M. A., E. Porteus (1999). Stalking information: Bayesian inventory management with

unobserved lost sales. Management Science 45(3), 346–353.

Lee, H. L., C. Billington (1993). Materials management in decentralized supply chains. Operations

Research 41(5), 835–847.

Lee, H. L., C. Tang (1997). Modelling the costs and benefits of delayed product differentiation.

Management Science 43(1), 40–53.

Lee, H. L., R. So, C. S. Tang (2000). The value of information in a two level supply chain.Management

Science 46(5), 626–643.

Lee, H. L., C. A. Yano (1995). Lot sizing with random yields: a review. Operations Research 43(2),

311–334.

Lovejoy, W. (1992). Stopped myopic policies in some inventory models with generalized demand

processes. Management Science 38, 688–707.

452 J.M. Swaminathan and S.R. Tayur



Morton, T. (1971). The near-myopic nature of the lagged proportional cost inventory problem with

lost sales. Operations Research 19, 1708–1716.

Morton, T. (1978). The non-stationary infinite horizon inventory problem. Management Science 24,

1474–1482.

Morton, T., D. Pentico (1995). The finite horizon non-stationary stochastic inventory problem.

Management Science 41, 334–343.

Muharremoglu, A., J. Tsitsiklis (2001). Echelon base stock policies in uncapacitated serial inventory

systems. Working Paper, MIT.

Nahmias, S. (1979). Simple approximations for a variety of dynamic lead time lost sales inventory

models. Operations Research 27, 904–924.

Parker, R., R. Kapuscinski (2000). Optimal inventory policies for a capacitated two echelon system.

Working Paper, University of Michgan.

Porteus, E. (1971). On the optimality of generalized (s,S) policies. Management Science 17, 411–427.

Porteus, E. (1972). The optimality of generalized (s,S) policies under uniform demand densities.

Management Science 18, 644–646.

Porteus, E. (1991). In: Heyman, Sobel (eds.), Stochastic Inventory Theory, Stochastic Models –

Handbook in OR/MS, North-Holland, Amsterdam, pp. 605–652.

Rajagopalan, S., J. M. Swaminathan (2001). A coordinated production planning model with capacity

expansion and inventory management. Management Science 47(11), 1562–1580.

Rao, U. S., A. Scheller-Wolf, S. Tayur (2000). Development of a rapid response supply chain at

caterpillar. Operations Research 48(2), 189–204.

Rao, U.S., J.M. Swaminathan, J. Zhang (2002). Multi-product inventory planning with downward

substitution, stochastic demand and setup costs. To appear, IIE Transactions.

Rosling, K. (1989). Optimal inventory policies for assembly systems under random demands.

Operations Research 37, 565–579.

Roundy, R. (1985). 98% effective integer ratio lot sizing for one warehouse multi retailer systems.

Management Science 31, 1416–1430.

Scarf, H. (1959). Bayes solution of the statistical inventory problem. Annals of Mathematical Statistics

30, 490–508.

Scarf, H. (1960). The optimality of (s,S) policies in dynamic inventory problem, in: K. Arrow, S. Karlin,

P. Suppes (eds.), Mathematical Methods in the Social Sciences, Stanford, CA, Stanford University

Press.

Scarf, H. (1960). Some remarks on the Bayes solution to the inventory problem. Naval Research

Logistics Quarterly 7, 591–596.

Scheller-Wolf A., S. Tayur (2000). A Markovian dual source production-inventory system with order

bands. GSIA Working Paper, Carnegie Mellon University.

Schmidt, C., S. Nahmias (1985). Optimal policy for a two stage assembly system under random

demand. Operations Research 33, 1130–1145.

Sethi, S. P., F. Cheng (1997). Optimality of (s,S) policies in inventory models with Markovian demand.

Operations Research 45, 931–939.

Silver, E. (1981). Establishing reorder points in the (S,c,s) coordinated control system under compound

Poisson demand. International Journal of Production Research 9, 743–750.

Sobel M. (1988). Dynamic affine logistics models. Technical Report, SUNY, Stony Brook.

Swaminathan, J.M., H.L. Lee (2003). Design for postponement, to appear, in: Graves, de Kok (eds.),

Supply Chain Management – Handbook in OR/MS, North-Holland, Amsterdam.

Swaminathan, J. M., J. G. Shanthikumar (1999). Supplier diversification: the effect of discrete demand.

Operations Research Letters 24(5), 213–221.

Swaminathan, J. M., S. Tayur (1998). Managing broader product lines through delayed differentiation

using vanilla boxes. Management Science 44, S161–S172.

Swaminathan, J.M., S. Tayur (2003). Models for supply chains in e-business. Working Paper, The Kenan-

Flagler Business School, University of North Carolina, Chapel Hill, To appear, Management Science.

Swaminathan, J. M., S. F. Smith, N. Sadeh (1998). Modelling supply chain dynamics: a multi-agent

approach. Decision Sciences 29(3), 607–632.

Ch. 8. Tactical Planning Models for Supply Chain Management 453



Tayur, S. (1993). Computing the optimal policy in capacitated inventory models. Stochastic Models 9,

585–598.

Tayur, S., R. Ganeshan, M. Magazine (1998). Quantitative Models for Supply Chain Management,

Norwell, MA, Kluwer Academic Publishers.

Toktay, L. B., L. M. Wein (2001). Analysis of a forecasting production inventory system with

stationary demand. Management Science 47(9), 1268–1281.

Tsay, A.A., S. Nahmias, N. Agarwal (1998). Modeling supply chain contracts: a review, in: Tayur,

Ganeshan, Magazine (eds.), Quantitative Models for Supply Chain Management, Kluwer

Publishing, Norwell MA, pp. 299–336.

van Donselaar, K., T. de Kok, W. Rutten (1996). Two replenishment strategies for the lost sales

inventory model: a comparison. International Journal of Production Economics 46–47, 285–295.

Van Mieghem, J., N. Rudi (2002). Newsvendor networks: inventory management and capacity

investments with discretionary activities. To appear, Manufacturing and Service Operations

Management.

Veinott, A., Jr. (1965). Optimal policy for a multi-product dynamic non-stationary inventory problem.

Management Science 12, 206–222.

Veinott, A., Jr. (1965). Optimal policy in a dynamic single product non-stationary inventory model

with several demand classes. Operations Research 13, 776–778.

Veinott, A., Jr. (1966). The status of mathematical inventory theory.Management Science 12, 745–777.

Veinott, A., Jr. (1966). On the optimality of the (s,S) inventory policies: new conditions and a new

proof. SIAM Journal of Applied Mathematics 14, 1067–1083.

Veinott, A., Jr., Wagner, H. (1965). Computing optimal (s,S) inventory policies. Management Science

11, 525–552.

Wijngaard, J. (1972). An inventory problem with constrained order capacity. TH-Report 72-WSK-63,

Eindhoven University of Technology.

Wright, G. (1969). Optimal ordering policies for inventories with emergency ordering. Operations

Research Quarterly 20, 111–123.

Zheng, Y. (1991). A simple proof for optimality of (s,S) policies in infinite horizon inventory systems.

Journal of Applied Probability 28, 802–810.

Zheng, Y., A. Federgruen (1991). Finding optimal (s, S) policies is about as simple as evaluating a

single policy. Operations Research 39(4), 654–665.

Zipkin, P. (1989). Critical number policies for inventory models with periodic data. Management

Science 35, 71–80.

Zipkin, P. (2000). Foundations of Inventory Management, Boston, McGraw Hill.

454 J.M. Swaminathan and S.R. Tayur



PART III

Supply Chain Operations





Chapter 9

Planning Hierarchy, Modeling and Advanced
Planning Systems

Bernhard Fleischmann and Herbert Meyr
Lehrstuhl für Produktion und Logistik, Universität Augsburg, Universitätsstr. 16,

D-86135 Augsburg, Germany

Along a supply chain, various decisions have to be made continuously, from
the rather simple choice, which job to be processed next on a certainmachine, to
the serious question, whether to build a new factory or to close down an existing
one. Within this chapter ‘Supply chain planning’ is used as a generic term for the
whole range of those decisions on the design of the supply chain, on the mid-
term coordination and on the short-term scheduling of the processes in the
supply chain. This definition also applies to the traditional notion of Logistics.
However, in the scope of the recent development of supply chain management,
the focus is on the following two aspects of planning:

� Integral planning of the entire supply chain: The planning process should
consider the supply chain of an enterprise, at least from its suppliers up
to its customers, as a whole and take into account the interdependencies
of the various activities.

� True optimization of decisions: The planning process should be based on
a proper definition of alternatives, objectives and constraints and use
(exact or heuristic) optimization algorithms.

While the last aspect is quite familiar to Operations Researchers, it has
not been the common view in practice for a long time: The wide-spread
Enterprise Resource Planning (ERP) software and the included Material
Requirements Planning (MRP) logic, in spite of their name, do not provide
planning functions in the above sense [Drexl, Fleischmann, Günther, Stadtler,
& Tempelmeier, 1994].

The postulates of integral planning and of true optimization are scarcely
compatible. A practicable compromise between both postulates is the use of
Hierarchical Planning (HP) concepts allowing to decompose the overall task
into partial planning tasks and to still consider their interdependencies
and to coordinate their solution. Hierarchical Planning has also a long
tradition in Operations Research, starting with the work of Hax and Meal in
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1975, and many planning algorithms have been developed for the various
partial planning tasks.

What then is ‘Advanced Planning’? This notion has been introduced by
software providers for a new type of planning software, the Advanced Planning
Systems (APS), which are based on the above ideas. It is true that neither theHP
concept underlying the APS architecture nor the algorithms used in the single
modules are particularly advanced, but the real advance is the implementation
of these concepts in standard software, enabling the dissemination of
reasonable planning concepts and OR based algorithms in practice. This is
indeed a great progress as compared to the traditional ERP systems.Moreover,
the APS architecture is open to include new modules and new algorithms. This
is necessary, because there are various partial problems in supply chain
planning that still miss practicable solution algorithms. Thus, APS provide an
appropriate framework for putting OR developments into practice.

However, there seems to be some confusion in both science and practice what
APS are, which modules and solution methods they include, which purposes
they can be used for and how they should be used. Therefore, the aim of this
chapter is to analyze first the various supply chain planning tasks and their
hierarchical relationship and then the architecture and functionality of APS.

Fisher (1997) already has shown how important it is to identify different
types of supply chains in order to derive fitting management strategies. Thus,
planning systems, which try to implement these strategies operatively, also
have to be tailored to the particular requirements of the type of supply chain
under consideration. To support the processes of describing and analyzing
different types of supply chains, Section 1 first introduces a typology of supply
chains, which is illustrated by means of two contrasting examples: consumer
goods manufacturing and computer assembly. Section 2 then provides a
general framework for deriving the corresponding planning tasks of the
respective supply chain type identified. This framework again is applied to
the two examples. As it is shown in Fleischmann, Meyr, and Wagner (2002,
Chapter 4.3), planning concepts that fit these planning requirements can be
designed by means of HP. Therefore, at the end of Section 2, HP concepts,
including recent developments, are reviewed.

Section 3 shows that a common modular architecture, which is along the
lines of HP, is underlying all APS and discusses the functions of the typical
modules. Finally, Section 4 presents a snapshot (state: January 2003) of
five particular APS, reveals – as far as possible – the OR methods applied
within their modules and reviews case studies of actual APS implementations
which have been published in the literature.

1 Types of supply chains

Experience with Production Planning and Control systems has shown that
a single production planning concept like the MRP II–concept cannot cover
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the large variety of planning problems that arise in practice for different
production layouts and market requirements [Drexl et al., 1994]. Dif-
ferent types of production processes, e.g., job shop, batch flow, assembly
or continuous processes, imply particular requirements for planning.
Thus planning concepts have to be tailored to these special requirements
[Silver, Pyke, & Peterson, 1998, p. 36]. What is true for the (relatively small)
production area is even more valid for the supply chain as a whole.

But one can define certain types of supply chains having substantial
features in common and thus sharing similar planning tasks. In order to
identify such supply chain types (SC-types), a typology may be helpful that
lists and categorizes the most important attributes characterizing a given
supply chain. Examples for such typologies are given in Meyr, Rohde, and
Stadtler (2002b) and Silver et al. (1998, Chapter 3.5.3).

1.1 Supply chain attributes

We will now briefly introduce the typology of Meyr et al. (2002b). Since
typologies can never be comprehensive, we will concentrate on attributes
that are relevant for planning functions. These SC-types will in Section 2.2 be
used to demonstrate how the specific planning requirements of a certain
SC-type can be derived from the type’s properties.

Meyr et al. distinguish between two types of attributes, functional
and structural ones. Functional attributes can be assigned to each individual
member (partner, entity) of a supply chain, e.g., a manufacturer, carrier or
wholesaler. Structural attributes ought to describe the relations between all
members of a supply chain. All attributes are grouped into six categories.
Thereof structural attributes comprise the two categories ‘topography of an
SC’ and ‘integration and coordination.’ According to the supply chain
processes of each member, the functional attributes are classified into the
categories ‘procurement type,’ ‘production type,’ ‘distribution type’ and
‘sales type.’ An overview over the categories and attributes considered here is
given in Table 1.

Note that the SCOR model [Meyr et al., 2002b, Chapter 3.1] uses a quite
similar approach for supply chain analysis by differentiating (beside others)
between the processes source, make and deliver. As can be seen in Fig. 1, just
like functional attributes these processes have to be defined for each member
of an SC separately. However, whereas the SCOR-model is a well suited tool
for analyzing SCs and revealing redundancies and weaknesses, the typology
proposed in the following aims at identifying planning tasks common for
a specific type of SC, deriving requirements for planning and supporting
the design of planning concepts fitting these particular requirements
[Meyr et al., 2002b, Chapter 3.2].

The category procurement type contains all attributes that characterize the
inflow of goods (like raw materials or parts for a manufacturer) to the
respective member of the supply chain. For example, the attribute type of

Ch. 9. Planning Hierarchy, Modeling and Advanced Planning Systems 459



products procured may range from standard products easily available on the
market to highly specific products that can only be sourced from one or a few
suppliers. Further important attributes are e.g., the sourcing type indicating
the number of alternative suppliers actually being used, the supplier lead
time describing the time span between ordering and receiving incoming goods,
the number of different types of raw materials being purchased or the length
of the life cycle of materials.

The production type comprises the attributes that characterize the produc-
tion process itself (which may be of minor importance for service providers
like carriers). The organization of the production process (e.g., job shop
or flow shop) defines the flow of work in process (WIP). The repetition
of operations scales the frequency of producing the same items and may
range from mass production (continuous repetition) to making one-of-a-
kind products (no repetition). If none of these extremes applies, products
of the same kind are processed in groups, so-called batches or lots. The
effort in time and money spent in preparing machines to produce a new
lot is expressed by the changeover characteristics. A vast amount of
other attributes concerning the production type is conceivable and can be
found in literature, e.g., the type of bottlenecks in production (shifting,

Table 1
Overview of the categories and attributes of the SC-typology

Functional Structural
(for each member of the SC) (for the SC as a whole)

Procurement type: Topography of an SC:
– type of products procured – network structure
– sourcing type – location of the decoupling point(s)
– supplier lead time – major constraints
– number or raw materials
– materials’ life cycle

Production type: Integration and coordination:
– organization of the production process – legal position
– repetition of operations – distribution of power
– changeover characteristics
– type of bottlenecks
– working time flexibility

Distribution type:
– distribution structure

Sales type:
– products being sold
– products’ life cycle
– shelf lives
– bill of materials
– seasonal demand patterns

460 B. Fleischmann and H. Meyr



Fig. 1. Management processes of the SCOR model, version 5.0a [cf. Stephens, 2001, p. 11].
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stationary, unproblematic) or the flexibility to extend or reduce working time
(cf. Chapter 4).

The distribution type concerns outgoing material flows, i.e., the delivery of
products from one member of the SC to its next downstream neighbors. For
example, the distribution structure states the type and number of stages of this
member’s distribution system, e.g., direct delivery to its neighbors, indirectly
via central warehouses (two stages) or via central and regional (RW)
warehouses (three stages).

The sales type comprehends both the product and market characteristics
for the member of the SC considered. The products being sold may range from
standard products in a fixed configuration to highly specific products with an
open configuration. While the products’ life cycle spans the time a product
will be present on the market, the shelf life of a product limits the time an item
can be held in inventory until it has to be consumed. The bill of materials
(BOM) may vary between a pure assembly structure (many raw materials or
parts are put together to build one final item) and a purely divergent structure
where one starting substance or material is decomposed into several
successors, e.g., by a chemical process or simply by packaging in different
sizes and shapes. Moreover, the demand for products may be influenced to a
different degree by seasonal peaks.

Structural attributes of the SC as a whole are grouped into the two broad
categories ‘topography of a supply chain’ and ‘integration and coordination’.
The category topography of a supply chain contains all attributes describing
the characteristics of a supply chain as a whole. The network structure
indicates whether a serial, convergent, divergent flow of material is given or a
mixture of these types applies.

As will be shown later, the location of the decoupling points [Hoekstra &
Romme, 1991, Chapters 1.5 and 4.2] has a crucial impact on planning: The
(physical) processes of each member of the supply chain can be subdivided
into anticipative and reactive ones. While reactive processes are triggered by
an explicit order of a subsequent member of the supply chain (e.g., the final
customer), anticipative ones are triggered by forecasts instead of orders, i.e.,
they try to anticipate an order that has not yet been placed. A decoupling
point forms the interface between upstream anticipative processes that are
executed ‘to-stock’ and downstream reactive processes that are executed
‘to-order.’ The term ‘to-stock’ is due to the fact that a stocking point always
comes along with the decoupling point in order to hedge against forecast
errors. For example, an assemble-to-order decoupling point implies that
upstream processes like ordering of raw materials and manufacturing of parts
are executed to stock, that final products are assembled from stock only if the
respective order has arrived, and that downstream processes like delivery are
also executed to order. Note that there are supply chains that consist
exclusively of reactive processes (e.g., when making highly specialized one-of-
a-kind products) or of anticipative processes (e.g., vendors in a Vendor
Managed Inventory (VMI) setting [Meyr et al., 2002b]).
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Depending on the availability and usage of resources like equipment,
personnel and material one can identify capacity, labor and/or material as
being the major constraint(s) of a supply chain.

The last category focuses on integration and coordination aspects between
different members of a supply chain. If several organizational units of the
same company form a supply chain, an intra-organizational supply chain is
given. In an inter-organizational supply chain several legally separated
companies, i.e., companies in different legal positions, are members of the
supply chain. In this case, the distribution of power between these members is
of particular importance. In a material constrained supply chain, for example,
suppliers often play a dominant role.

As already mentioned, this typology is by far not comprehensive. Just a
few attributes were selected which will help to identify peculiarities of different
SC-types and their impact on planning.

1.2 Examples

In the following, two types of supply chains, ‘consumer goods manufacturing’
and ‘computer assembly’, respectively, will be shown in some detail. The
description will mainly be based on two case studies (Wagner & Meyr, 2002,
Kilger & Schneeweiss, 2002a) which – in our opinion – are representative for
these kinds of industries. For demonstration purposes it will be sufficient to
concentrate on functional attributes of only a single member (the manufacturer)
of each supply chain. Structural attributes will give some hints on each supply
chain as a whole and on relations to other members as well.

For introducing the functional attributes procurement, production,
distribution and sales a somewhat ‘natural’ sequence was upstream to
downstream, i.e., in direction of the material flow. However, because the
‘products sold to the final customer’ are the decisive part of any supply chain
it is now more convenient to start the two examples with the sales type
category first and to illustrate the further functional attributes – according to
the flow of information – in the opposite direction downstream to upstream.

1.2.1 Consumer goods manufacturing
Sales type. In the following, ‘consumer goods’ will denote standard products
with a low volume, weight and value per item (e.g., food, low tech electronics
like light bulbs or fluorescent lamps) that are sold to the final customer via
retailers in a grocery or electronics store, for example. Such products typically
have a rather long life cycle (one to several years), but may have different shelf
lives varying from a few days (e.g., fresh milk) to a few years (e.g., canned
food, electronics). A consumer goods manufacturer often produces a few
related product types, which are sold in many variants due to minor variations
in the production process (e.g., applying different colors) or in sizes and
shapes of packaging. In this sense, the BOM is divergent. Demand has to
be estimated and is quite unstable because of seasonal influences or price
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promotions, for example. However, due to the long product life cycle,
historical sales figures are available making reliable forecasts easier.
Because of the low product differentiation, in shortage situations sometimes
final items can be purchased from external suppliers and be sold under the
manufacturer’s own brand.

Distribution type. The distribution of consumer goods (cf. Fig. 2) needs quite a
lot of care since the variety of final items has to be distributed from one or a
few production sites to a bulk of downstream members of the supply chain
like wholesalers, retailers or department stores before being bought by the
final customers. Retailers want frequent deliveries in small quantities. Thus,
usually a three stage distribution system is installed where goods are tem-
porarily stored in fully assorted distribution centers (DCs) until they are
brought to intermediate RWs or stock-less transshipment points (TPs). From
there, goods are delivered in dynamic routes to the manufacturer’s customers
(see Section 3.2.5). Mostly, unlimited transportation capacity can be assumed
because third party carriers are employed.

Production type. Consumer goods usually are produced on one or a few
parallel production lines which are organized in a flow shop. Sometimes the
same products can alternatively be produced at several production sites.

Fig. 2. Overview of a consumer goods manufacturing SC.
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Because goods are made in high volume, production speed has to be very high
and thus always a high level of automation is predominant. As typical for flow
shops, WIP inventory is low and production lead times are short. Mostly,
there are only two to three stages of production (e.g., manufacturing
and packaging) with one of them being a well-known stationary bottleneck.
Changeovers between different product types often have to be done manually
causing significant setup times and costs. Not seldom setup times and costs
are sequence dependent, i.e., the amount of time and costs depends on the
product (type) produced before on the same line (e.g., changes from white to
black color are easier than changes from black to white). Not every product is
produced every day, but lot-sizes cover the demand of several days up to
months, causing finished product inventory. Due to the highly skilled
workers needed to operate the production lines, shift patterns have to be
determined on a mid-term time range. The capital intensive equipment entails
a high utilization.

Procurement type. Since the BOM is rather flat and simple, procurement
usually is unproblematic. A few standard raw materials with a low value are
sourced from a handful of suppliers. Often mid- and long-term contracts
ensure a stable relationship between manufacturer and suppliers. Supplier lead
times are quite short and reliable.

Topography of the SC. The supply chain as a whole consists of a network
of some raw material suppliers, one or a few production sites with DCs
being associated, several RWs or TPs and a bulk of downstream members
selling the goods to the final customers. For this reason, usually a network
structure of the mixture type is present. Decoupling points typically (except
for VMI settings) are located at the department stores of the retailers
(‘orders’ of the final customers) and at the DCs of the manufacturer (deliver to
orders of the retailers). The capacity of the production lines is mostly the
major constraint within the supply chain.

Integration and coordination. Thus intra-organizational relations between the
different planning units of the consumer goods manufacturer play an
important role and their coordination is difficult. Nevertheless, the inter-
organizational integration and information flows between consumer
goods manufacturers and retailers was paid attention to in recent years
by concepts like Efficient Consumer Response, Continuous Replenishment
and Vendor Managed Inventory. A main reason for this was the discussion
about the Bullwhip effect [Lee, Padmanabhan, & Whang, 1997] and the
insight that stocks can be reduced when improving the information
flow (especially concerning final customers’ demand) between these two
members of the SC.
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1.2.2 Computer assembly
A computer assembly supply chain (see Fig. 3 for an overview), on the

other hand, shows quite different characteristics.

Sales type. Computers have a typical assembly structure. An incoming order
of a computer manufacturer usually consists of several order lines for different
product families (like consumer and professional PCs or servers) and
for external units like printers, monitors etc. Whereas the computers are
produced by the manufacturer itself, the external units are purchased from
external suppliers, but delivered to the customers in ‘complete order’
shipments. A computer consists of the system unit (housing, system board,
processor, disk drive . . .) and accessories like keyboard, mouse, software,
manual, and so on. Altogether a complex BOMwith several stages is given. As
far as the manufacturer offers fixed configurations, this BOM is predefined,
i.e., the BOM cannot be customized by the customer. However, the
manufacturer usually is free to substitute some parts with equivalent ones in
case of shortage situations, e.g., comparable hard disks of several suppliers
may alternatively form the same final product. Product differentiation is
very low. Due to technological improvements and price war, the product life
cycle is very short (at the most a few months). For this reason and because of
seasonal influences (e.g., Christmas business), demand for final products is
hard to predict.

Fig. 3. Overview of a computer assembly SC [cf. Kilger & Schneeweiss, 2002a, Fig. 20.1].
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Distribution type. Typical customers of a computer manufacturer are system
integrators providing complete solutions for big corporate customers like
banks or insurance companies, small and medium business customers, and
department stores. Only some manufacturers also directly sell to private
customers. Often a two-stage distribution system is used where computers
and external units are merged in an intermediate distribution center.

Production type. The production process mainly comprises the stages
‘assembly of the system unit’, ‘loading of software’, ‘testing’, and ‘packing’.
If the manufacturer also assembles the system board, a further upstream
stage is necessary which may be located at another production site. Dependent
on the sizes of the production lots, both job shop (for small lots) and flow
shop (for larger lots) environments arise. Production speed is (even in job
shops) quite high so that short production lead times can be achieved (one to a
few days). Changeovers do not cause noticeable setup times or costs.
Altogether, there are no serious bottlenecks in production.

Procurement type. Since an assembly structure is given, incoming material
flows dominate the supply chain. Altogether, several hundreds to thousands of
components (electronic and mechanical parts, external units and accessories)
have to be purchased. However, the main part of value procured is
provided from a few suppliers (20–40) only. Quite often the same components
can be and are procured from several alternative suppliers (e.g., hard disks
and CD-ROMs). Nevertheless, some crucial components (e.g., processors) are
offered by just one or two suppliers. In this case the distribution of power is
shifted towards the supplier(s). Supplier lead times are quite inhomogeneous,
long, and unreliable. They vary from one week to several months.
For many components (like processors, hard disks etc.) the life cycle is
very short because of technological progress. Thus, there is a high risk of
obsolete stocks.

Topography of the SC. The supply chain is of a mixture type and consists of the
five (to six) stages suppliers, (system board manufacturer), computer
manufacturer, logistic service providers, resellers and final customers. For
fixed configurations an assemble-to-order decoupling point is the normal case.
In order to improve customer service, however, deliver-to-order may be
applied, thus shifting stocks from the component to the finished goods level.
As opposite to the consumer goods SC-type, the major constraints of a
computer assembly supply chain are materials. Thus more parties have an
influence on the performance of the supply chain.

The computer assembly scenario described above is specific for computers
sold in predefined, fixed configurations. The character of the supply chain
changes somewhat if open configurations are offered. In this case the customer
is able to customize his system with respect to his particular preferences. Thus
no static BOM exists, but a customer request has to be checked according to
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some (rather loose) configuration rules, and a customer-specific BOM has
to be generated. The decoupling point moves from assemble-to-order to
configure-to-order. Because of these configuration checks the order lead time
increases. Lot-sizes and the frequency of repetition decrease so that job shops
will be better utilized.

The most important attributes (according to our typology) of both
SC-types are summarized in Table 2 in order to stress their different
characteristics. Of course, a large variety of further SC-types occurs. For
example, the chemical industry is related to consumer goods production,
but has to handle more complex production processes (several stages
of production with restrictive interconnections, chemical batch processes in
reactors, stochastic output quantities and quality) and divergent BOMs due
to joint production. The automotive industry is again a type of supply chain
where assembly processes are dominant. But the distribution of power
is clearly shifted towards the automobile manufacturer. A major focus of
production is the balancing of the model mix, i.e., one tries to counterbalance
the different production speeds of various car variants at the successive
assembly stations by an appropriate mix of the variants. Most of the transport
activities are on the procurement side where the just-in-time-concept or
regional carriers are used to synchronize the incoming material flow. At least
in the high price segment, mass customization and (online) order promising
will be of increasing importance in the future.

2 Supply chain planning

Before deriving the particular planning requirements of the above two
supply chain examples from their SC-attributes, some general planning tasks –
to various extent occurring in any type of supply chain – are introduced and
the term ‘supply chain planning’ is specified in some more detail. Section 2.3
finally reviews the principles of Hierarchical Planning, which provide a
practicable and useful way to integrate these planning tasks by means of APS.

2.1 Planning tasks in the supply chain

Since the fundamental work of Anthony (1965), usually three levels of
managerial decision making are referred to (see e.g., Bitran & Tirupati, 1993,
Miller, 2001, Silver et al., 1998). They mainly differ with respect to the time
during which the decisions will have an impact on the future development of
a supply chain or company. According to this categorization and
the planning horizon they comprise, planning tasks are commonly assigned
to one of the three planning levels ‘long-term,’ ‘mid-term’ and ‘short-term
planning.’

Long-term planning prepares decisions whose implications on the supply
chain can be felt for several years. These decisions essentially determine the
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Table 2
Supply chain types consumer goods production and computer assembly

Category Attributes Consumer goods Computer assembly
fixed/configurable

Functional

Procurement type Products procured Standard Standard and specific
Sourcing type Multiple Multiple
Supplier lead time Short and reliable Long and unreliable
Number of raw materials Few Many
Materials’ life cycle Several years Few months

Production type Organization of the
production process

Flow shop Flow shop/job shop

Repetition of operations Frequent Frequent/no repetition
Changeover characteristics Sequence dependent setup

times and costs
Irrelevant

Bottlenecks in production Known bottlenecks/high influence Low influence
Working time flexibility Low Low

Distribution type Distribution structure Three stages Two stages

Sales type Products being sold Standard Standard/customized
Products’ life cycle Several years Few months
Shelf lives Perishable or stable Stable
Bill of materials Divergent Assembly
Seasonal demand patterns Highly seasonal Weakly seasonal

Structural

Topography of a SC Network structure Mixture Mixture
Location of the decoupling point(s) Deliver-to-order Assemble-/configure-to-order
Major constraints Capacity Material

Integration and coordination Legal position Intra-organizational Inter- and intra-organizational
Control over suppliers High Low
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physical structure of a supply chain and should directly reflect a company’s
business strategies. Mid-term planning has to effectively use and act within
the infrastructure set by the long-term ‘strategic’ planning. The validity of a
mid-term plan ranges from half a year to two years [Silver et al., 1998].
The planning horizon of short-term planning is restricted to a few weeks or
at most a few months. Short-term planning has to put into practice the
guidelines given by the upper two levels and to prepare detailed instructions
for immediate execution and control of the operations. According to
Fleischmann et al. (2002), mid- and short-term planning will also be
denominated ‘operational planning’ in the following.

The supply chain planning matrix (SCP-matrix [Fleischmann et al., 2002],
see Fig. 4) makes use of the supply chain processes procurement, production,
distribution and sales – already helpful in the supply chain typology of
Section 1.1 – to further classify the planning tasks typically emerging for each
member of a supply chain. The structure of the SCP-matrix will also be used
to characterize the role of APS in supply chain planning in Section 3. Some
typical planning tasks will now briefly be introduced. Note that this selection
is by far not comprehensive. For further investigation the reader is referred to
Miller (2001, Chapter 1.1).

Long term planning on the procurement side concerns questions like
‘What material should be purchased from which suppliers?’, ‘Are strategic
cooperations useful?’ or ‘What type of cooperation should be chosen?’.
Decisions about the location and sizes of plants, the organization of the
production processes and the capacity of the production system are further
typical long-term planning tasks. On the distribution side, the structure of
the distribution system and the locations of warehouses or transshipment
points have to be determined. Since a supply chain is mainly characterized by
the products it sells, the planning of the product program and strategic
sales planning concerning questions like ‘Which product to place on what
markets?’ need particular care.

On the mid-term planning level, decisions to be made concern

� rough quantities of material and components to be obtained from
(alternative) suppliers,

� workforce requirements and the degree of external purchasing of final
products,

� the assignment of production quantities and seasonal stock to different
plants and warehouses, and

� the use of different distribution channels,

for example. These decisions usually have to be based on mid-term sales
forecasts for product groups and sales regions. Furthermore, contracts with
suppliers (and customers) usually are thought over after one or two years. In
case of SCs consisting of multiple legally separated entities these contracts also
comprise agreed lead times between upstream and downstream members,
which have to be determined carefully.

470 B. Fleischmann and H. Meyr



Short-term procurement calculates the schedule and the quantities of
materials actually to be ordered from suppliers. Also the short-term
deployment of personnel has to be considered. On the production side,
appropriate lot-sizes have to be determined, the lots are scheduled on the
shop floor and the progress of production must be controlled in order to meet
due dates and to quickly react to unforeseen events like machine breakdowns.
Production output has to be assigned to warehouses and customers,
transportation means must be chosen and vehicle routes are to be determined.
Short-term sales planning deals with different aspects of demand fulfillment,
e.g., the promising of delivery dates and the allocation of make-to-stock
quantities to actual customer orders.

The SCP-matrix gives a general overview over the planning tasks arising in
any possible supply chain. However, according to the particular SC-type
considered, the importance of the single planning tasks is quite different.
Furthermore, the assignment of planning tasks to planning levels and supply
chain processes in Fig. 4 is somewhat fuzzy because the positioning may
also vary with respect to the SC-type considered. For example, Bertrand,
Wortmann, and Wijngaard (1990, Chapter 8.5.3.1) present a case study from
electronic component manufacturing where lot-sizing decisions already have
to be made in the medium term.

2.2 Examples

In the following we will demonstrate how the planning requirements of the
consumer goods and computer assembly SC-types can be derived from their

Fig. 4. Planning tasks according to the SCP-matrix [cf. Fleischmann et al., 2002, Fig. 4.3].
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respective attributes (see Table 3 for an overview). This presentation is
certainly not exhaustive, but concentrates on the most important tasks.

2.2.1 Consumer goods manufacturing
As soon as multiple sourcing from several suppliers is practiced, the share of

each supplier and the quantities procured have to be determined in the
medium term.

In a make-to-stock environment ‘lot-sizing,’ i.e., defining the sizes of
production lots, has to be done simply because orders are not available at time
of production (planning). Since there are significant setup times and costs in
consumer goods supply chains, this expense has to be balanced against the
inventory costs caused by lot-sizes exceeding (forecasted) demand of the near
future.

If setup costs or times are sequence dependent, the sizes and the sequence
of the lots have to be determined jointly, i.e., simultaneous lot-sizing and
scheduling is necessary. This has to be done with respect to the limited
availability of production lines which are the main bottlenecks in production.
The low working time flexibility prevents from a short-term extension of
capacity by means of overtime.

Because of this low flexibility and the limited capacity of production and
because of the seasonal demand pattern, an integrated mid-term planning
(master planning, MP) of production quantities, seasonal stock and
working time is necessary respecting all costs (and revenues) arising. Only
demand forecasts can drive this planning. They may be derived from historical
sales data which usually are available because of the long product life cycles.
As soon as several plants producing the same product are involved, the
allocation to plants has to be considered, too. The three-stage distribution
system allows to serve a single customer via several distribution paths
(DC, RW, TP). Therefore, the use of the distribution system and the resulting
transportation costs has to be included into MP, as well. But the main focus of
mid-term planning is to ensure feasibility with respect to the limited
production capacity available.

The location of the decoupling point [Hoekstra & Romme, 1991] (deliver-
to-order, i.e., make-to-stock) has the strongest impact on planning. Incoming
orders have to be served immediately from stock of final items. Except for
the deployment, i.e., the assignment of incoming orders to stock of final items
(and the subsequent delivery), all planning tasks are driven by demand
estimates. In order to hedge against inevitable forecast errors, safety stocks of
final items have to be introduced. Not only the quantity, but also the
allocation of this safety stock to the DCs and RWs of the distribution
system has to be planned.

Note that the degree of freedom for building up the different types of
stock (lot-size, seasonal, safety) is restricted by the shelf life of final items and
may be very tight in case of perishable goods.
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Table 3
Impact of the SC-type on planning

Attributes Impact on planning

Consumer goods Computer assembly

Supplier lead time Mid-term master planning is basis for
purchasing and order promising

Changeover characteristics Simultaneous lot-sizing and scheduling
Type of bottlenecks Explicit capacity planning Rough capacity planning
Working time flexibility Mid-term planning of working time

Distribution structure Choice of distribution channels
Allocation of safety stock

Products being sold Open config.: config. check
BOM generation

Shelf lives Perishable: limited inventory

Loc. of decoupling points Safety stock of final items
Deployment

Safety stock of components
Order promising
Allocation planning

Forecasts for final items Forecasts for components
Major constraints Main focus of master planning:

. . . feasibility w.r.t. capacity . . . synchronize materials
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2.2.2 Computer assembly
The long supplier lead times and the limited availability of material

enforce purchasing of material to be planned on a mid-term basis. In order to
receive supply of material as an output of mid-term (master) planning,
component demand is needed as an input. To obtain forecasts for
components, either directly or indirectly from sales forecasts for final items
or product groups, is a hard problem because of missing historical data, the
possibility of material or component substitution, and customized
BOMs. Thus a forecast accuracy of only 65% can be found in computer
assembly [Kilger & Schneeweiss, 2002a], while 90% are attainable in consumer
goods production [Fisher, 1997]. Mid-term master planning should also take
into account aggregate machine capacity, but bottlenecks in production do
not need to be paid as much attention as is necessary in consumer goods
supply chains.

If an assemble-to order decoupling point [Hoekstra & Romme, 1991] is
given, safety stocks have to be held for components instead of final items.
Safety stock planning (SSP) is a difficult task because of the long and
unreliable supplier lead times, the high risk of obsolete stocks due to short
material life cycles and the low forecast accuracy.

Since product differentiation is low and since all production/assembly
processes have to be executed during the order lead time, ‘order promising,’
i.e., the estimation of reliable (and preferably soon) customer delivery dates,
is of very high importance. Order promising is even more difficult if additional
configuration checks are necessary because of a configure-to-order decoupling
point (open configurations). Due to the long order lead times (as compared to
consumer goods supply chains), order promising less relies on actual, but
mainly on planned supply. Thus the mid-term master plan must build a basis
for order promising. Since order promising in computer assembly usually is an
online task, there is a high risk that – when processing a query for an order
with low revenue – later on a more lucrative order will arrive. In a material
constrained supply chain, the latter one cannot be confirmed as requested if
material has been assigned to the less preferable order very early. So there may
be a need to reserve planned stock for different order classes (ATP allocation
[Kilger & Schneeweiss, 2002b]).

In addition to order promising, further short-term matching of demand and
supply, i.e., of orders and stock of material or components on hand, is
necessary at every stage of the assembly structure (e.g., assembly of the
system unit, assembly of the computer, delivery of the complete order
including external units). This is a similar task as deployment in consumer
goods supply chains. It is only problematic if demand exceeds supply so that
shortages occur. In this case, one may try to accelerate the supply process
manually (e.g., by negotiating with some critical suppliers). If this fails, the
unlucky orders that have to be delayed (thus decreasing the delivery-on-time
performance) must be selected. This problem is also known as shortage gaming
or rationing game (see Chapter 4). Note that for intermediate products
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and fixed configurations the assignment to a respective customer order is of
preliminary character and could be changed in the short run (even if this is
not desirable).

These two contrary examples show that different types of SCs have
quite different requirements for (short- and mid-term operational) planning.
Thus, planning concepts have to be tailored to the particular requirements of
the SC-type under consideration. The next section will show that Hierarchical
Planning is valuable in designing such planning concepts and that APS call
for HP, as well. Presenting HP-concepts for the two SC-types ‘consumer
goods manufacturing’ and ‘computer assembly’ would go beyond the scope of
this chapter. However, the interested reader can be referred to Fleischmann
et al. (2002, Chapter 4.3), where HP-concepts for both SC-types are discussed.
Furthermore, in [Meyr, Rohde, Schneeweiss, & Wagner, 2002a, Chapter
17.2.2] a workflow of the APS-provider J.D. Edwards is sketched showing
how commercial APS modules can be used to implement such an HP-concept
of the consumer goods type.

2.3 Hierarchical planning

Thinking about the SCP-matrix, the idea could arise to tackle all planning
tasks with one comprehensive, overall planning model simultaneously.
Clearly such an approach will never work for reasons of mathematical
complexity. But independent of the power of solution procedures and OR
methods, such an approach would not be useful, anyway, for the following
reasons [cf. e.g., Meal, 1984]:

1. The longer the planning horizon is, the higher will be the uncertainty.
Thus operational planning models can approximate reality by far closer
than strategic models do. What-if-analyses and risk scenarios only play a
dominant role in strategic planning.

2. Planning horizons of various lengths also imply different frequencies of
planning. While strategic decisions have to be made only once or have to
be thought over very seldom, short-term operational planning iterates
weekly or even daily.
Mainly because of (1.) and (2.) rolling horizon planning [Silver et al.,

1998, Chapter 14.3] is very popular. Here the planning horizon is
split into several time buckets, but only the first time bucket is put
into practice. After this ‘frozen horizon’ is elapsed, a replanning is
done considering new and probably more reliable information. The
shorter the planning cycle is, the better decisions can be postponed
until they really have to be made. At an extreme, replanning is not
bound to a specific time structure, but is reacting to critical ‘events’
like machine breakdowns or significant changes of demand estimates.
The progress being made in communication technology in the last
few years supports this kind of event-driven planning. In this case,
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however, ‘frozen actions’ (rather than frozen periods) must be carefully
and consistently defined in order to prevent from serious nervousness
of planning. It is still an open question how to find the best trade-off
between information reliability and nervousness of planning, i.e., how to
define the best replanning frequency or share of frozen actions. Note
that the usefulness of rolling horizon planning – as compared to planning
concepts based on stochastic models – is discussed in Chapter 12.

3. Planning tasks on different planning levels need a different degree of
aggregation in terms of

� time (e.g., hourly, daily, weekly, monthly or even yearly time buckets),
� place (e.g., individual customer, zip code, country, sales region),
� products (e.g., final product, product family i.e., groups of final items

sharing the same setup behavior), and
� resources (e.g., individual machines, groups of alternative machines,

plant as a whole).

A strategic decision, comprising a time horizon of several years, cannot
be based on the same detailed information as an operational decision
does and – on the other hand – cannot produce such detailed
information.

4. Decisions are of different importance. Thus they are made by decision-
makers with more or less responsibility and influence. Generally one can
say, the longer the impact of a decision can be noticed, the higher the
decision maker is ranked within the company’s organizational hierarchy
and the more likely the decision is prepared and/or made by a central
instead of a decentral planning unit:

� Long-term strategic decisions are made by top management, but
often prepared by central, multi-functional (production, distribution)
planning units of middle management.

� However, top management is no longer involved in (at most informed
about) mid-term decisions coordinating several decentral planning
units of a supply chain. Here middle management is also responsible
for the various decisions to be made.

� ‘Routine’ decisions with short-term operational character like machine
scheduling are made decentrally, for example by the production
planning unit of a plant or even by machine control people.

Due to these reasons ‘planning modules’ have to be built which pool all
decisions that are within the responsibility of the same planning unit, share a
similar planning horizon (i.e., planning level according to Anthony’s
framework), and should be made simultaneously because of their strong
interdependence.

These planning modules have to be directly derived from (the SC-
type’s and) the company’s specific planning tasks. For example, the need
for simultaneous lot-sizing and scheduling that has been identified as a
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characteristic planning task of the consumer goods industry (cf. Section 2.2.1)
implies a short-term, decentral planning module ‘lot-sizing and scheduling’.

On the other hand, planning modules themselves interact. Information and
guidelines are exchanged between planning modules in all possible directions
(cf. Fig. 5):

Top down: Upper planning levels set limits to lower levels, e.g., strategic plan-
ning prepares a framework where operational decisions have to be made in.

Bottom up: Feedback information of a lower level drives decision making on
an upper level, e.g., setup times determined by short-term shop floor
scheduling are input data for mid-term capacity planning.

Downstream: Early (with respect to the material flow) supply chain processes
set a frame for subsequent ones, e.g., short-term production outcome limits
the amount of final products that can be delivered to customers in the short
run. However, this is not only valid for decisions made at the same level of
planning. Also mid- and long-term decisions of downstream members of an
SC are affected (or even caused) by short-term decisions of upstream
members.

Upstream: Demand information – quite often in terms of orders – which is
propagated upstream (i.e., contrary to the material flow of a supply chain)
drives earlier planning processes.

Hierarchical planning seeks to coordinate planning modules such that the
right degree of integration can be achieved (for a given SC-type). In HP at
least two levels of planning covered by several planning modules exist. One or
several planning modules of a lower level, the base level, are coordinated by a
single planning module of an upper level, the top level, by means of
instructions (see the discussion of Schneeweiss’ framework below). The other
way around – and opposite to simple successive planning – feedback
information of the lower level guides the planning and instructions of the
upper level (cf. gray area in Fig. 5).

Fig. 5. Interaction between planning modules [cf. Fleischmann et al., 2002].
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Further characteristics of HP are an increasing level of detail, decreasing
planning horizon, and increasing planning frequency the lower a planning
module is settled within this hierarchy. As can easily be seen, these
characteristics perfectly fit the requirements of supply chain planning stated in
(1.)–(4.) above.

Although HP has been known for several decades (see Chapter 12 and
Bitran & Tirupati (1993) for a comprehensive overview), most practical
applications concentrate on the production part of a supply chain (known
as ‘Hierarchical Production Planning,’ HPP). The progress being made
in information and communication technology encourages and enforces to
extend HP over all SC processes. First attempts are shown in Miller (2001)
and Stadtler and Kilger (2002). As we will see in the following, APS are well
suited to such an approach. Schneeweiss (1999) even goes one step ahead and
investigates all types of hierarchies arising in distributed decision making,
including mathematical decomposition methods, principal agent relationships
and negotiation processes. We will now briefly introduce the framework
of Schneeweiss, but restricted to the ideas helping to point out how HP can be
implemented by use of APS.

Schneeweiss differs several classes of hierarchies [Schneeweiss, 1999, p. 9].
Two of them are of particular interest in the context of this chapter:

Constructional hierarchies decompose a complex system into simplified
subsystems only for reasons of complexity, e.g., if no solution methods
exist to solve a monolithic model of the complex system in a single step.
The decision has to be made by a single decision-maker (having all,
i.e., symmetric information) at a single point in time.

Organizational hierarchies are characterized by an asymmetric information
status: either a single person decides on the top and the base level at two
different points in time (decision time hierarchy), e.g., a mid-term decision
is made first and some short-term decisions are – based on updated demand
information – made afterwards. Or several persons at different planning
levels having different status of information are (even at the same point
in time) involved in the decision process, e.g., a company’s central SC
planning unit and some representatives of the (decentral) plants or regional
sales offices have to agree about a mid-term decision.

The general framework of Fig. 6 shows the possible interrelations
between a top and a base level: The top level (1) makes some decision
implying an (in its opinion optimal) instruction IN* (6) that is given to the
base level (7). The base level may react (8) to this instruction, e.g., in case of
serious problems or expected suboptimalities, so that a replanning of the
top level is kicked off. After some further rounds a final decision IN** (9)
is implemented in real world causing some consequences to the object
system (10) that may influence the next decision of the top level (expost
feedback (11) because it can only be observed after the decision has been
implemented).

478 B. Fleischmann and H. Meyr



In order to shorten the factual planning cycle (1), (6), (7), (8) and to
integrate both planning levels more closely, the top level may try to anticipate
the base levels behavior by means of an anticipated base model (4). Thus the
top level (1) tries to estimate and simulate this planning cycle in advance
through its own top (2) and base models (4) and the anticipated instructions
(3) and reactions (5).

The type of anticipation may vary substantially [Schneeweiss, 1999, p. 42].
In a nonreactive anticipation an explicit reaction ((5), (8)) of the base level
is not taken into account; only a feedback influence (11) is possible, e.g., by
means of setup times having been observed in the past. Otherwise, the
factual reaction (8) of the base level may be anticipated exactly, approximately
or implicitly (reactive anticipation). Further discussion on anticipation issues
can be found in Chapter 12.

A further important characterization of HP is the degree to which the base
level’s objective function is represented within the top model. If the objective
function of the top model does not consider the base level’s objectives at all, a
top-down hierarchy is given. Tactical-operational hierarchies, however,
additively consider both the top and the base levels’ objectives when solving
the top model and determining the instruction IN*. For constructional
hierarchies it also may be useful that the top model exclusively optimizes the
base model’s objective function.

Finally we refer to the production control framework of Bertrand et al.
(1990) which also presents basic principles to meet the above requirements
(1.)–(4.). By distinguishing between self-controlling production units and a
(central) instance controlling the goods flow between these units entire

Fig. 6. Framework of Schneeweiss (1999).
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production networks can be modeled. Since additionally the coordination of
production and sales may be considered, the scope can be extended to the
planning of complete supply chains. The further distinction between detailed,
item-oriented control and aggregate, capacity-oriented control shows the
obvious similarities of this framework to HP concepts.

3 Advanced Planning Systems: General structure

More than 20 years ago companies have started to introduce Enterprise
Resource Planning (ERP) systems (e.g., Baan or SAP/R3) which integrate
data of all major business units like controlling, finance, human resources,
production or sales. Despite their name ERP systems are rather transactional
than planning systems, i.e., their main focus is to provide and exchange con-
sistent data for and between business units.

Production Planning and Control components of ERP systems support
planning only in a limited way [Drexl et al., 1994]. This lack of functionality,
the recent progress in communication and information technology (like
Internet technology, Gigabytes of main memory etc.) and the wide spread-
ing of ERP systems promoted the genesis of Advanced Planning Systems
(APS).

3.1 Common architecture

APS do not replace ERP systems. They can be seen as add-ons to plan
and optimize the supply chain. They often are part of a larger software
suite containing ERP or e-Business and SCP software of vendors like i2
Technologies, J.D. Edwards or SAP.

APS extract data from ERP systems, support decision making (through
preparing ‘optimized’ proposals which still have to be controlled, possibly
revised, and eventually released by human decision makers) and send the
decisions back to the ERP system for final execution. Even though a lot of
vendors are on the market, most APS have a common structure. As Fig. 7
[cf. Meyr, Wagner, & Rohde, 2002c] shows, they are comprised of several
software modules covering all segments of the SCP-matrix (Fig. 4) introduced
in Section 2.1. In the line of Meyr et al. (2002c), the names of the
software modules have been chosen independently of the respective software
suppliers. Section 4 will give some examples for actual modules of a few widely
known APS suppliers.

The software modules themselves contain planning methods such as OR
methods, forecasting procedures or simulation tools. However, not
all planning tasks of the SCP-matrix are supported by APS. Thus in the
following sections for each software module it will be shown in detail
which planning tasks are tackled, how the respective sections of the SCP-
matrix should be modeled and which potential solution methods are and
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should be available in APS. Here only a brief overview over the software
modules is given:

Strategic Network Planning (SNP) covers the quantitative part of strategic
planning. Questions of network design like plant location, dimension of
stocking or production capacities, and the choice of procurement and
distribution channels are answered from a quantitative view. Quite
often linear (LP) and mixed integer programming (MIP) methods
simulatively evaluate the optimal material flow within different prespecified
supply chain scenarios.

Demand Planning (DP) mainly cares about forecasting future demand in a
make-to-stock environment on both a mid-term aggregate and short-term
detailed basis. Conventional statistical forecasting methods as well as
additional features, e.g., to incorporate causal factors, are almost always
offered. Quite seldom, however, support for safety stock setting can be
found.

Master Planning (MP) coordinates the material flow of the supply chain as a
whole for a mid-term planning horizon, mostly by means of LP or MIP.
Additionally, rough capacity and material planning is possible with
respect to mid-term shortages and seasonalities. The information
about customer demand being necessary is usually received from the DP
module.

The Production Planning and Scheduling (PP&S) modules deal with lot-sizing,
machine assignment, scheduling and sequencing. These short-term
tasks are strictly dependent on the SC-type. Thus it is not surprising
that some vendors offer alternative modules especially designed to
satisfy the particular needs of a specific line of business. For the same
reason sometimes all of the above tasks are tackled by a single software
module.

Fig. 7. Software modules covering the SCP-matrix [cf. Meyr et al., 2002c].
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The same is true for Distribution and Transport Planning. Distribution
Planning concerns the mid-term tactical constraints within the distribu-
tion system, such as the regular transport links, the delivery areas
of warehouses, the allocation of customers to sources, and the use of service
providers. This module may even overlap with SNP in so far as it supports
the detailed design of the distribution network. Transport Planning deals
with short-term dispatching of the shipments in the distribution and – as far
as controlled by the receiver – also on the procurement side.

Demand Fulfillment and Available to Promise (ATP) takes care of the arriving
customer orders. It comprises the tasks of order promising, which includes
checking the availability of materials and due date setting, and of measures
in case of shortage.
Despite its importance short- and mid-term procurement is only seldom

supported by an APS module Purchasing & Material Requirements
Planning. The main tasks of this section, bill of materials explosion and
ordering of material, are often left open for the respective software
components of the ERP system or an additional e-Business solution (which
usually do not have the functionality that would actually be needed).
Because of the rather seldom occurrence and since material release and
coordination issues are also discussed in Chapter 12, this software module
will not further be investigated in the following.

Commonly, ERP and AP systems of different software suppliers can be
integrated by means of standardized interfaces. Since some data like
penalty costs or aggregate data are generated for planning purposes only,
APS need to carry an own data base, anyway [Shapiro, 1999].

Usually only some of the software modules of Fig. 7 will be installed in a
respective company. Due to their central and decentral character, however,
these modules may be settled at different locations. Thus further software
components – not especially shown in Fig. 7 – are offered to integrate software
modules and to collaborate over the Internet. These also contain an
alert management system which is able to communicate serious problems
within the supply chain.

As briefly indicated, alternative software modules are increasingly
launched, especially designed to satisfy the particular needs of some lines of
business. Thus APS implicitly orient on the particular planning tasks of a
respective SC-type as already claimed in Section 2.1. So the general structure
of APS is well suited to the SCP-matrix. As this also holds valid for HP, we
will now discuss how APS and HP coincide (in terms of the framework of
Schneeweiss, see Section 2.3).

Having identified a planning module and its respective planning tasks, a
planning model has to be built and an appropriate solution method has to
be found. In other words, a tool of the APS’s respective software module
has to be selected that solves the planning model (at least approximately).
Quite often however, the planning problem will be too complex with
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respect to the power of the solution methods being offered. In this case a
decomposition approach may be appropriate. Thus a constructional hierarchy
is given where one decision-maker (with symmetric information) at a single
point in time is only interested in a final solution to his respective planning
problem. The Dantzig–Wolfe scheme [Dantzig & Wolfe, 1961] is a
sophisticated example for such a type of hierarchical decomposition. Linear
Programming, the solution method used by Dantzig–Wolfe, is applied in most
Master Planning modules of APS.

On the other hand, several planning modules covering distinct functional
areas on different levels of the SCP-matrix have to be linked and coordinated
in a hierarchical manner. In this case, an organizational hierarchy is given
where usually several persons/planning units make decisions at different
points in time (decision time hierarchy, e.g., monthly mid-term and daily
short-term decisions) on basis of their – more or less – private knowledge
because of the different planning frequencies. The framework of Schneeweiss
and Fig. 6 will help to demonstrate in four scenarios how HP can be
implemented by means of APS:

1. Most HPP systems like the one of Hax and Meal (1975) employ a
nonreactive anticipation function with a simple top down criterion, i.e.,
a binding instruction of the top level (process (6) according to Fig. 6) is
sent to the base level and will directly be implemented. The base level
cannot kick off a replanning of the top level if serious problems are
identified in the short term. It rather has to solve these problems by itself
employing short-term fire fighting actions. The top level does not
explicitly consider the base level’s objectives. There is only ex post
feedback given back from the base to the top level in a rolling horizon
context, e.g., setup times having been observed during the last planning
period are input for the top level’s next regular planning round.

2. This planning cycle (1), (6), (7), (9), (10), (11) can be implemented with
APS, but is not typical for APS. If the base level uses a decision support
system, too, it is able to propagate the top level’s instruction and to
simulate its consequences as soon as the instruction arrives. When
serious problems are detected, an alert is generated which is given back
to the top level (8) by the alert management system of the APS. The top
level evaluates the alert and changes its own plan when necessary.

3. If this reactive process can be executed not only after a planning
activity of the top level, but after each planning activity of the base level,
a real event-driven planning supplements the traditional rolling horizon
time scheme.

4. However, (2.) and (3.) still use top down criteria not directly taking into
account the base level’s objectives. With (2.) an online reaction to the
top level’s decision is possible, but a lot of (physical) communication
has to be done by these two levels. In order to reduce this and to
accelerate the planning process, an explicit reactive anticipation can be
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installed, i.e., the top level uses the base level’s planning system (software
module) in order to simulate the behavior of the base level by itself ((2),
(3), (4), (5)). In this case, the top level is also able to evaluate to what
extent the base level’s objectives are met. Thus a tactical-operational
hierarchy can be installed. This bivalent use of the base level’s planning
system – as simulation tool on the top level and as operational tool on
the base level – has also been suggested in Miller (2001) and can be
supported by APS. Because of the otherwise high expense in time
and the additional effort to be made the scenarios (2.) and (3.) usually
are preferred.

3.2 Typical modules

In this section, the single modules of an APS, as shown in Fig. 7, are
considered in more detail. For every module, the tasks and their links to
other modules are discussed, which may depend on the SC-type. Models
and solution methods available for the respective tasks are briefly reviewed.
This presentation is mainly restricted to those models and methods
occurring in some APS, but also includes some important models that are
recommended, but not implemented in APS so far.

3.2.1 Strategic network planning
The task of SNP is to decide on the major facility locations in the

supply chain, i.e., the plants, suppliers and distribution centers (see also Fig. 8).

Fig. 8. Planning tasks of SNP modules.
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These locational decisions require simultaneous decisions on the flows
between the facilities and to the customers, i.e., the quantities to be supplied,
produced and shipped. Possible objectives are to minimize the variable
flow costs and fixed facility costs for satisfying expected market demands or to
maximize the profit or the net present value. However, besides these
quantitative financial values, there are important qualitative ‘locational
factors’ which influence the decisions, such as the political stability, the
infrastructure and the economic policies of the governments and regional
authorities.

The basic model for this type of problems is a network flow problem where
the nodes represent existing and potential facilities with associated binary
decision variables. The requirements for refinements of this model depend on
the planning situation. The most comprehensive problem is the design of a
global supply network, a highly important issue in the fast changing global
economy. In that planning situation, the adequate consideration of the
international financial transactions is essential, whereas details of the physical
flows are less important. However, in the design of the national part of a
supply chain, e.g., a distribution network, the focus may be on the flows and
operations implied by the locational decisions. In the following we discuss
extensions of the basic model suggested in the literature. A recent survey of
models can be found in Vidal and Goetschalckx (1997) and Goetschalckx
(2002).

Several products. The distinction of groups of products and materials is very
important in most SNP situations, because the pure decision on a
plant location makes little sense without the decision on what to produce
there. This has a great impact on the production costs, which usually include
fixed costs for the allocation of a product to a certain plant. In addition, the
BOM allows to consider the dependencies between the suppliers and
plants and defines the flows in a multi-stage production network. Note that
the decision on the product/plant allocation requires additional binary
variables [see Arntzen, Brown, Harrison, & Trafton, 1995; Cohen &
Moon, 1991].

Financial variables. In a global network, costs and revenues are affected by
duties, exchange rates, national taxes and, within a multi-national company,
by the transfer prices. The objective function should be based on the profit
after tax in every country, which may also involve the depreciation due to the
investment decisions and additional investment incentives [see Canel &
Khumawala, 1997, Popp, 1983, Vidal & Goetschalckx, 2001].

Several periods. The subdivision of the strategic planning horizon into
several periods, typically years, is very important for three reasons: First, it
permits to model the development from the present supply network into the
future one, i.e., every locational decision is assigned to a certain period.

Ch. 9. Planning Hierarchy, Modeling and Advanced Planning Systems 485



Second, the implied depreciation expands over several periods depending on
the year of the investment. Surprisingly, this effect is not considered in
recent supply network models, but clearly elaborated by Popp (1983). Third, a
multi-period model allows to consider an important strategic objective
function, the net present value of the cash flow plus the final value of the
facilities. However, the consideration of inventory carried from period to
period, as it is usual in MP, has no importance in multi-period SNP, contrary
to the suggestion of Arntzen et al. (1995) and Goetschalckx (2002); because,
the end-of-period inventory in a multi-period model is a seasonal inventory
protecting against temporary under-capacity, and hence its development
over yearly periods is not a strategic issue.

Lead time aspects. Lead times in a supply chain, which are composed of the
duration of the processes in the various arcs of the network, are important
factors for the evaluation of a supply chain. Arntzen et al. (1995) include
the weighted average operation time, in particular the shipment times, into
the objective function. Vidal and Goetschalckx (2000, 2001) express the
inventory in transit, the cycle stock due to transportation, and the safety
stock as functions of the shipment times and frequencies and consider the
corresponding holding cost in the objective function.

Dealing with uncertainties. The development of market demand, prices,
exchange rates and cost factors in a long-term planning horizon is highly
uncertain. But the inclusion of these aspects in a stochastic optimization
model also requires rather uncertain assumptions on the probability
distribution of those values. The usefulness of an ‘optimal solution’ based
on such assumptions can be doubted. Instead, the use of several scenarios
helps to evaluate a certain network configuration with respect to robustness
and flexibility. However, stochastic variation of operational factors such as
lead times can be taken into account by including the resulting costs, in
particular for safety stocks, in the objective function. For instance, the above
mentioned safety stock calculation [Vidal & Goetschalckx, 2000] is based on
deterministic (aggregate) flows and stochastic travel times. The necessary
safety stock is then obtained by multiplying the flow variable with a safety
stock factor, which depends on the travel time distribution and is a
characteristic of the transport mode. Another way of taking short-term
stochastic variability into account is chance constraint modeling. Vidal and
Goetschalckx (2000) restrict the selection of suppliers by the condition that,
for every product in every plant, temporal availability of all components has a
minimum probability, where each supplier has a known probability for
delivering on time.

Economies of scale. A major source of economies of scale is expressed by the
fixed costs per facility and per product/facility combination, as explained
above. More detailed modeling of concave cost curves for production,
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handling and transport might be of interest, if the focus is on operational
details, in particular in the design of national distribution systems [see Chap. 2
and Fleischmann, 1998a]. But for global SNP, this will mostly be of little
importance, in particular transportation is modeled in a highly aggregated
form, where the end nodes of the transport flows just represent a country or a
regional market.

All these extensions can be easily modeled in MIP form. The number of
binary variables equals the number of periods times the number of potential
product/plant combinations. Nonlinear cost curves are usually piecewise
linearized, which requires additional binary variables. Primary solution
methods are the standard MIP techniques, based on Branch and Bound, as
implemented in MIP software. However, only models with a limited number
of binary variables can be solved to optimality in reasonable computation
time by these methods. For more complicated models, either more specific
optimization techniques, such as Benders decomposition and Lagrangian
relaxation [see Nemhauser & Wolsey, 1988], or heuristics, such as iterative LP
rounding schemes or local search, are required.

Most APS provide an SNP module with an LP/MIP solver. The MIP
model is not formulated directly by the user, but by means of a problem-
oriented modeling interface, which makes modeling easy even for nonexperts,
but, on the other hand, reduces the flexibility of modeling. Thus, it depends on
the particular interface, whether the above discussed SNP features can be
implemented in the system. As to solution methods, APS provide standard
MIP solvers and problem-oriented heuristics, but rarely special optimization
techniques for facility location. But the notion of ‘optimal facilities’, stressed
by many authors, is, at least for global SNP, misleading. In a decision problem
with many, partly qualitative, criteria and highly uncertain data, there is no
optimal solution. The task of an SNP software is rather to evaluate given
network configurations with financial criteria, a valuable information for the
decision maker. This evaluation, too, requires the optimization of the global
operations, and the power of SNP software is its ability to provide fast
evaluations by global flow optimization. Arntzen et al. (1995), in their detailed
report on the use of an SNP model, state that the model is ‘typically executed
several hundred times during a major study.’

3.2.2 Demand planning
The central role of decoupling points for planning has already been

emphasized in Section 2.1. All processes downstream of a decoupling point
are based on orders whereas all processes upstream are based on forecasts.
In order to hedge against inevitable forecast errors, safety stocks have to be
built at the decoupling point. The forecast error is one key parameter when
determining the optimal safety stock level. This close relationship
between forecasting and SSP justifies that methods for both tasks (see
also Fig. 9) are put into a single module ‘Demand Planning’ (DP). The
DP framework of Wagner (2002) supplements these two planning tasks by a
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third one called ‘Simulation/What-if-Analysis.’ These methods are valuable
when planning to actively influence and guide customer demand instead of
simply estimating it.

In the following we will concentrate on forecasting since this is the
major planning task being tackled by APS. Note that DP is closely related
to Demand Fulfillment and ATP (see Section 3.2.6). It is there that the
transformation from forecasted ATP quantities to real customer orders
takes place.

Forecasting. The task of forecasting is to predict some unknown future events.
The question ‘What to predict?’ depends upon the planning tasks the forecast
ought to give input to. For example, when thinking about product design,
yearly sales forecasts of product lines for the company as a whole (measured
in monetary units) may be appropriate. Concerning APS, long-term
SNP requires estimated sales quantities per product line, year and market
as an input for the scenario-based design of SCs (see Section 3.2.1). For mid-
term MP, however, monthly estimates per product type and sales region are
the desired level of detail. In deliver-to-order SCs, furthermore weekly or daily
sales forecasts for final items per postal area are needed for short-term
production and distribution planning. Additionally, one has to consider
whether final products, parts or raw materials need to be forecasted. As we
have seen in Section 2.2, this mainly depends on the locations of the
decoupling points and the type of SC considered.

In order to support these tasks, hierarchies have to be defined which at least
are comprised of a product (line, type, item), geographic (market, region,

Fig. 9. Planning tasks of DP modules.
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postal area), and time (year, month, week) dimension. But also alternative
aggregations may be useful, basing, for example, on the company or sales
organization [Miller, 2001, Chapter 4.6].

There are several ways to forecast such a hierarchy. For instance, each level
of a hierarchy can be estimated independently of each other with respect to
past observations on the respective level. In this case, however, forecasts for
different levels may not be consistent – even if made at the same point in time.
In order to avoid this phenomenon, bottom-up, top-down or middle-out
approaches exist [Miller, 2001, Chapter 6.4] which guarantee the consistency
within a hierarchy. To check and improve forecasting, sometimes several of
these approaches are separately applied. If results differ too much, some sort
of agreement (for example in a collaborative way or by using weights) has to
be made [see e.g., Vollmann, Berry, & Whybark, 1997, Chapter 8, Miller,
2001, Chapter 6.4].

Furthermore, the product structure may help to generate forecasts. If a
steady BOM exists, it can be used to directly derive component forecasts from
forecasts for final products. Even if a steady BOM is missing, ‘mappings’ may
be defined and ‘attach rates’ may be estimated that substitute this linkage
[Kilger & Schneeweiss, 2002a].

Independent forecasts for a single level can be made on various ways. We
will give a brief (and of course incomplete) review of these models and
methods. For this purpose, we use a framework (see Fig. 10) of Wagner (2002)
and Silver et al. (1998, Fig. 4.1) showing the successive steps that should be
executed when establishing a forecast:

1. Statistical1 (quantitative) forecasting: Time series models only use past
observations of the phenomenon (in this case ‘demand’) that is to be
predicted. Moving average methods and exponential smoothing try to
estimate systematic pattern of demand (like a steady level, trend or
seasonality) from a history of observations. While these methods
assume statistical independency of demand observations within different
time periods, Box-Jenkins and ARIMA models [Hanke & Reitsch, 1995,
Chapter 10] are more general to the debit of a higher complexity and
experienced users being required.
Causal (deterministic, explanatory) models use data from other

sources than the history of the time series predicted. They search
for systematic dependencies between one or several leading factors
(so-called ‘independent variables’ like the temperature or promotions)
and a dependent variable to be forecasted (e.g., demand). With respect
to the number of leading factors considered, simple and multiple
regression are distinguished.
Literature for quantitative forecasting, for example, can be found in

1 Note that the term ‘statistical forecasting’ is not uniquely used in the literature. While Hanke and

Reitsch (1995) exclude causal models, Wagner (2002) and Silver et al. (1998, Chapter 4) use statistical

forecasting as a synonym for quantitative forecasting methods in general.
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Hanke and Reitsch (1995), Makridakis, Wheelwright, and Hyndman
(1998), and Nahmias (2001, Chapter 2).

2. Judgment: Statistical forecasting as a stand-alone method often is not
sufficient because exceptional actions like promotions and price
discounts take place. These are only known to the planner and have
to be included into the forecasting process in a structured way [Wagner,
2002, Chapter 7.3]. One approach to do this is known as ‘Bayesian
forecasting’ [see Silver et al., 1998, Chapter 4.8.1, and Pole, West, &
Harrison, 1994, for further references].
Judgment is especially important for long-term forecasting where

further aspects like technological progress or global economical and
political trends have to be considered, too. For this purpose and when
historical data are missing at all, scenario writing and similar qualitative
forecast methods, which exclusively base upon human knowledge
(e.g., the Delphi-method), may be appropriate [Hanke & Reitsch, 1995,
Chapter 11].

3. Collaboration: These latter methods profit from human knowledge of
different sources which are put together in an, if possible, unbiased
way. Collaboration processes – not only in forecasting, but also in
general – get increasing importance due to new communication
technology and the general availability of the Internet. Focusing on
forecasting and APS, one can distinguish between intra- and inter-
company collaboration.
‘A small example ought to show the need for intra-company

collaboration. Usually – due to their close contact to the final customer –
regional sales offices have the best information of what the customer
really wants. On the other hand, price discounts and promotions are
coordinated by central headquarter sales. A good forecast has to

Fig. 10. Methods for demand planning [cf. Wagner, 2002].
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consider both sources of information what requires an active
collaboration between both parties.

One can also profit from bringing together different functional units of
a company like sales, production and procurement. However, in this case
it should carefully be thought about the question ‘Which piece of
information can be contributed best by a respective unit?’ When focusing
on forecasting, such a team has to decide about input data of planning
processes and not about results of planning. For example, to support MP
(see Section 3.2.3) such a team has to estimate future demand and
potential limits on future production capacity or material supply. The
actual production quantities and stock levels to be aspired to are output
of the MP process and nevertheless can be checked by a collaborative
team, too. This check, however, is not a task of forecasting and DP,
anymore. Quite often, and mainly in Sales and Operations Planning
[Miller, 2001, Chapter 6.5], the planning tasks DP and MP are not neatly
separated from each other. This leads to such confusing and misleading
terms like ‘constrained demand forecast’ often met in practice.

The discussion about the bullwhip effect and the benefits of sharing
information [Lee et al., 1997] also supported inter-organizational
collaboration between legally separated companies. Forecasting probably
is the most promising and in practice implemented collaboration function
because demand forecasts are less critical to exchange than resource
utilization or cost data, for instance. Nevertheless, since an upstream
partner typically supplies competitive customers as well, confidentiality of
demand forecasts should be ensured as far as possible. Since there never
can be a 100% guarantee of information privacy, long-term relations and
trust have to be the basic prerequisites for supply chain management and
any inter-company collaboration. The best-known example for colla-
borative forecasting is the integration of manufacturers and retailers
according to the standardized processes of the CPFR initiative [CPFR,
2003]. These processes are also supported by some APS.

Concluding the discussion on forecasting, one can say that time-series and
causal models are mainly applied to short- and mid-term planning tasks while
qualitative methods are appropriate for long-term planning. For more detailed
information, the interested reader is referred to Hanke and Reitsch (1995
Tables 4.6 and 11.3). APS usually provide most of the methods mentioned.

What-if-analysis/simulation. Forecasting tries to predict phenomena, but not to
actively influence them. Causal models, for example, can be used to estimate
the impact certain actions – like promotions, discounts or new products’
introduction – have on a product’s customer demand. Also the impact on sales
of other, correlated products may be predicted. The mid-term planning tasks
‘what product and when to promote’, ‘what a price level to choose’ or ‘when to
introduce a new product’ are decision problems that go one step ahead.
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Analogously to SNP, scenario techniques, what-if-analyses, and simulation
may be applied to answer these questions and to decide how to actively
influence demand. Again, Master Planning models and methods may help to
evaluate such scenarios and to predict the impact of such actions not only on
sales (the input of Master Planning), but also on stock levels and production
or transportation quantities (the results of Master Planning).

Safety stocks. The relationship between DP and SSP has already been
stressed above. Long-term planning tasks in SSP comprise the questions
‘where to put stocking points within an SC’ and especially ‘where to place
decoupling points’. In Master Planning aggregate safety stocks of
product types are required as lower bounds on end-of-period inventories
(see Section 3.2.3). Thus the sizes of these stock levels have to be determined in
advance with respect to the structure of the SC, the reliability of the
forecasting system (forecast errors), the lead times between stocking points,
the inventory management system going to be used (review and reorder
policies), and the desired customer satisfaction. This planning task also arises
in short-term planning for individual items. Note that consistency between
mid- and short-term safety stocks has to be ensured, for example by using a
bottom-up approach.

APS often do not employ standard order-point or order-up-to-level policies
as supposed in the literature [see e.g., Silver et al., 1998, Chapter 7.4] which
automatically consider short-term refilling of safety stocks since such policies
do not respect limited production capacities. In this case, both safety stock
review and refilling policies have to be determined.

Unfortunately, there is only poor methodical support for the above planning
tasks (in the literature and in APS as well) because common safety stockmodels
do not respect limited capacities and quite often make critical assumptions with
regard to some of the requirements mentioned. The current state of strategic
SSP is reviewed in Chapter 3 and in Minner (2000), short- and mid-term safety
stock setting is dealt with in Chapters 8, 10, 11 and 12.

3.2.3 Master planning
Master planning (MP) has to synchronize the flow of materials in the

complete supply chain on a mid-term time horizon [see Section 3.1 and
Rohde & Wagner, 2002]. It has to act within the limitations strategic
planning sets (e.g., a given network structure, technical properties of
machines, etc.) and to effectively utilize the infrastructure that has been
established by strategic planning. Thus maximization of net revenues or
minimization of total SC costs are typical objectives of MP. On the other
hand, MP has to create targets for short-term operational planning that
allow a well-integrated coordination of decentral, locally operating planning
units (like procurement, production, distribution). Along the lines of Anthony
(1965), MP also is denoted as ‘Tactical Planning’ [Miller, 2001, Section 1.1.2]
or ‘Tactical Optimization Modeling’ [Shapiro, 1999].
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According to the nature of mid-term planning (see Section 2.1) and the
objective to optimize the SC as a whole, a high level of aggregation is
necessary in MP. Regarding the entities of an SC, only key suppliers, aggre-
gate plants (or at most bottleneck production segments or bottleneck produc-
tion lines), DCs (TPs), and sales regions are modeled. The planning horizon
comprises at least one seasonal cycle, typically one year. This time span
usually is subdivided into weekly, monthly or even quarterly time buckets.
Products are also aggregated into product groups. For such a mid-term plan-
ning problem, Hax and Meal (1975) propose product types, i.e., families of
products which share similar (seasonal) demand pattern, inventory holding
costs and production rates.

In order to give an idea of the problems being tackled (see also Fig. 11), a
small ‘basic model’ will be formulated as an LP (see also Table 4; for a
more general, yet still simplemodel the reader is referred to Chapter 12). Here p,
w, and s denote some production plants, warehouses and sales regions in a two-
stage distribution system. t denotes monthly time buckets within a planning
horizon of one year. The production quantities xpwt of a single product type
in plant p that are pushed to warehouse w in period t are to be determined.
Further decision variables are the endof period stocks Iwt and the transportation
(from warehouse w to sales region s) and sales quantities ywst in months t.

Max
X
w,s,t

rstywst �
X
p,w,t

cppwxpwt �
X
w,t

chwIwt �
X
w,s,t

cdw,sywst ð3:1Þ

subject to

Fig. 11. Planning tasks of MP modules.
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Iwt ¼ Iw,t�1 þ
X
p

xpwt �
X
s

ywst 8w, t ð3:2Þ

ap
X
w

xpwt � Kpt 8p, t ð3:3Þ

Minst �
X
w

ywst �Maxst 8s, t ð3:4Þ

xpwt, ywst, Iwt � 0 8p,w, s, t ð3:5Þ

The objective is to maximize the total profit of the SC (3.1). The
inventory holding constraints (3.2) balance the inflow and outflow of the
warehouses and ensure a correct booking of stocks. Limited capacity of
the production plants is considered by (3.3). Finally, lower and upper bounds
for sales quantities being forecasted by the sales regions give the freedom to
put emphasis to the markets with the highest revenues (3.4). Note that, if
Minst ¼ Maxst for all s and t, a predefined demand (forecast) has to be met
and cost minimization is pursued instead of profit maximization.

This model can also be reformulated as a simple network flow model.
However, this pleasant property gets lost as soon as the basic model is
extended and more realistic features are introduced. Quite easy extensions
which retain the character of a linear program (with continuous variables) are
the following:

Indices: Several types of (final) products, intermediates or raw materials can
be introduced by means of further indices. Also additional stages of the
production and distribution system and different suppliers/supply locations
can easily be formulated. If a higher level of detail is necessary, a plant’s
production segments or (parallel) production lines may be distinguished,
different modes of transport can be introduced, and even alternative modes
of production can be considered.

Table 4
Data of the basic model

rst per unit revenue in sales region s (varying over time)
cppw aggregate production (plant p) and transportation costs (to warehouse w)

chw inventory holding costs (per unit and month)

cdws distribution costs (from warehouse w to sales region s)

Iw0 initial inventory of warehouse w

ap time needed to produce one unit of the product group

Kpt capacity of plant p in month t (hours)

Minst, Maxst minimum and maximum sales quantities (regional forecasts per month)
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Decisions: Besides production, inventory (especially seasonal stock), transport
and sales quantities already included in the base model, backlog, supply
quantities, and stock of raw materials or parts can be determined. Further
important decisions concerning hiring and firing, external purchasing of
final products, and overtime can be made.

Constraints: Similarly to (3.3) and (3.4) capacity limitations of supply,
resources and transport can be modeled. Minimum purchase quantities
(due to mid-term contracts), minimum inventory levels (safety and lot-size
stock), and maximum inventory levels (shelf life restrictions or limited
stocking space) can be respected. When formulating a linear program, lead
times usually are (but need not to be [Hackman & Leachman, 1989])
considered as multiples of uniform time buckets.

Unfortunately, often further properties have to be modeled which enforce
the use of binary and integer variables or nonlinear constraints and thus
usually necessitate heuristic solution techniques: Although lot-sizing should
be tackled in short-term planning, sometimes setup times or costs, minimum
lot-sizes or batch production quantities have already to be respected in mid-
term planning (see Vercellis, 1999, Wagner & Meyr, 2002). Also assigning
product types to plants usually entails fixed costs for switching the plant to the
new products [see e.g., Hax & Meal, 1975]. If production capacity can only be
extended by additional full shifts, integer variables are required. On the
distribution side, the need for full truck loads [Özdamar & Yazgac, 1999]
or single sourcing make things difficult.

The peculiarities of global SCs – already introduced in Section 3.2.1 in a
strategic context – may also have a strong impact on mid-term decisions
like production or transport quantities. Mohamed (1999) demonstrates this
for the example of varying exchange rates. A further planning task that has
a mid-term character is the determination of transfer prices [Vidal &
Goetschalckx, 2001].

The importance of the above features for MP again depends on the SC-type
considered. In a material constrained SC like computer assembly, the emphasis
is put on the supply side [Kilger & Schneeweiss, 2002a] and plant or transport
capacities need not to bemodeled in detail. In consumer goods industries on the
other hand, production lines are the main bottlenecks and have to be modeled
very carefully [see Vercellis, 1999, Wagner & Meyr, 2002].

However, the ‘art of modeling’ lies in the linkage to the short-term
planning processes. The outcome of MP should synchronize different decentral
planning units, but also leave them a sufficient degree of freedom in order to
hedge against the significant uncertainty due to the long planning horizon. If
possible, decisions should be postponed until the point in time they really have
to be made [de Kok, 1990, Zijm, 1992]. For example, lower bounds for seasonal
inventories rather than absolute production quantities are targets for short-
term production planning [Fleischmann, 1998b]. So the decentral plants are still
able to quickly react to short-term fluctuations of demand.
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In practice, MP is very often done by simple spreadsheet calculations
without considering capacity limitations. However, also practitioners become
more and more aware of the need for a simultaneous consideration of all
major constraints of a SC. Thus it is not surprising that most of the major
suppliers of APS offer MP modules that base on mathematical optimization
methods like LP or MIP. Even if commercial optimizers like CPLEX [ILOG,
2003] have become very powerful in the meantime, (constructional)
hierarchies in MP still do exist and problem decomposition is scarcely
supported. It remains a challenge to choose the right degree of aggregation
and to establish proper links between different planning units.

No clear demarcation between MP and short-term operational or strategic
planning can be found in the literature. Thus, for the following brief review,
we use the loose definition that MP comprises a supply network, i.e., more
than a single production plant, and that a decision being made in MP must
have a mid-term character. Note that often further plant-wide, mid-term
aggregate production plans are used [Silver et al., 1998, Chapter 14] which will
be dealt with in Section 3.2.4.

Whereas the term ‘Master Planning’ is rather seldom used in the literature,
the planning task MP has been well-known in the context of hierarchical
planning for a long time. Even the early papers of Hax and Meal (1975),
Glover, Jones, Karney, Klingman, and Mote (1979), and Liberatore and
Miller (1985) engage a tactical planning level that constitutes combined
production and distribution planning on a mid-term, aggregate basis. Miller
(2001) gives an excellent overview over these papers and the respective
planning tasks.

Examples for MP can not only be found in hierarchical planning, but also
in the literature about (mid-term) integrated production and distribution
planning. For instance, Özdamar and Yazgac (1999) describe a practical case
of detergents’ production and distribution in Turkey. Wagner and Meyr
(2002) and Vercellis (1999) present two similar case studies of the consumer
goods industry where rough lot-sizing decisions also have to be made on a
mid-term level. In Barbarosoglu and Özgür (1999) the close relationship
between organizational structure and mathematical solution methods is
stressed using integrated production and distribution as an example. Zuo,
Kuo, and McRoberts (1991) show that MP is not only relevant in industrial
SCs, but also necessary in agricultural systems. Mohamed (1999) and Vidal
and Goetschalckx (2001) apply MP in global SCs.

Although Thomas and Griffin’s review about coordinated SCM [Thomas &
Griffin, 1996] contains a section about operational planning, concerning the
separate links ‘buyer–vendor coordination’, ‘production and distribution
coordination’ and ‘inventory–distribution coordination’, MP in this sense is
not explicitly considered. Shapiro (1999, 2001, p. 45) claims for a ‘Tactical
Optimization Modeling’ system equaling MP, but also states that such models
and methods are not used in practice. The case study [Wagner & Meyr, 2002]
pointed out in Section 4.6, for example, disproves this opinion. A quite
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comprehensive description of MP and its implementation within APS is
given by Rohde and Wagner (2002).

3.2.4 Production planning and scheduling
As opposite to MP, the Production Planning and Scheduling (PP&S)

modules mainly concentrate on a single plant. The overall objective is to
establish a detailed, daily or even minutely schedule for each resource of the
plant. However, this usually cannot be achieved in a single step. Thus
traditionally at least two levels of planning are distinguished, aggregate
production planning and detailed scheduling.

Aggregate production planning essentially is very similar to MP. Also mid-
term planning is aimed at. However, not a whole SC, but only the production
processes of a single plant are considered. In return, a higher degree of detail
is possible regarding products, production processes and time. Here also
time buckets are used, but the sizes of the buckets may be smaller. The
planning tasks (see also Fig. 12) tackled are, for example, the allocation of
production quantities (of product groups) to production segments or resource
groups, production smoothing (by means of overtime, subcontracting,
seasonal inventory, back-logging or external purchasing), and aggregate lot-
sizing for groups of final items. Because of the close relationship to
MP, essentially the same solution methods can be applied. Very often LP
and MIP are proposed. Thomas and McClain (1993) give an excellent
overview over aggregate PP and examples for LP/MIP formulations
being applied. Further literature concerning aggregate PP can be found in
Silver et al. (1998, Chapter 14) and Vollmann et al. (1997, Chapters 6, 7, 14,

Fig. 12. Planning tasks of PP&S modules.
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15), for example. Note that aggregate PP itself can comprise several planning
levels with varying degree of detail.

Short-term scheduling, on the other extreme, deals with the final assignment
of already defined ‘jobs’ (production lots of final items) to machines, and
sequencing and scheduling of these jobs on the respective machines. At this
detailed level usually nomonetary objectives are pursued anymore, but meeting
due dates or achieving a high utilization of resources are aimed at. Time buckets
are no more precise enough, thus time-continuous schedules are made. There is
a rich literature on (production) scheduling, see e.g., Blazewicz, Ecker, Pesch,
Schmidt, and Weglarz (2001), Brucker, 1995, Lawler, Lenstra, Rinnooy Kan,
and Shmoys (1993), Morton and Pentico, 1993, Silver et al. (1998, Chapter 17),
Vollman et al. (1997, Chapter 13) to name only a few. Note that quick and
reliable online rescheduling [Morton & Pentico, 1993, Chapter 1.3.6, Smith,
1995] of already existing plans (due to short-term breakdowns of machines, for
example) becomes more and more important as PP&S and ‘Capable To
Promise’ (CTP, see Section 3.2.6) modules of APS are increasingly used.

Important planning tasks like disaggregation, BOM explosion or detailed
lot-sizing for individual final items and components, which have to be done in
between the Production Planning and the Scheduling level, have not
been mentioned so far. Indeed, there is much literature on how to link these
levels. Overviews of production planning and control concepts are for exam-
ple given by Zäpfel and Missbauer (1993) or Zijm (2000). Frameworks for
PP&S are – among others – proposed in Drexl et al. (1994), Orlicky (1975),
Silver et al. (1998, Chapter 13), Vollman et al. (1997, Chapter 1) and in a
broader, SC-wide context by Miller (2001) and Shapiro (1999). Some of them
will briefly be reviewed.

The probably best known concepts for production planning and control
are theMRP concept [Orlicky, 1975] and its extension manufacturing resources
planning (MRP-II) [Wight, 1981]. MRP mainly consists of the processes
master production scheduling (generating a bucket-oriented production plan
for final items) and BOM explosion (computing internal demand for parts and
raw materials with respect to predefined lead times). Since capacities are not
considered in MRP, it has been extended to MRP-II. Here further aggregate
planning functions (business planning and aggregate production planning),
capacity checks (resource requirements planning, rough cut capacity planning,
and capacity requirements planning) and short-term scheduling have been
added together with closed loop feedback mechanisms. However, capacity and
material (see Chapter 12) violations can only be detected, but not be resolved
automatically. So actually no finite capacity loading is given and a real
integration of these planning functions thus cannot be achieved. Voss and
Woodruff (2000, 2003) illustrate the relationship between MRP and MRP-II
and the latter mentioned deficiencies of MRP-II by formulating mathematical
optimization models.

Aggregate PP and detailed scheduling also are part of all HPP
implementations. Already the early concept of Hax and Meal contained a
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seasonal planning model and family/item scheduling subsystems, hierarchi-
cally integrated and respecting limited capacities. There are a lot of case
studies applying such (plant-wide) HPP models in different types of industries,
for example by Günther (1986) (washing powder), Stadtler (1986) (food
manufacturing), Fleischmann (1998b) (luminescent lamps) and Negenman
(2000) (motivated by consumer electronics industry). Miller (2001, Chapter 3)
focuses exclusively on HPP and scheduling at the plant level.

The deficiencies of MRP(-II) inspired Drexl et al. (1994) to propose
a hierarchical planning framework that is capacity oriented at all levels
of planning, especially respecting the peculiarities and particular
planning requirements of different production segments within a plant.
These production segments differ due to their organizational structure. The
concept is comprised of the stages ‘SC-wide MP,’ ‘plant-specific capacitated
master production scheduling’ (MPS), ‘detailed lot-sizing and resources
allocation’ (DLRA) and ‘segment specific shop floor scheduling and control’
(SFSC). MPS has to coordinate all production segments of a plant with
respect to limited capacity. Short-term planning has to consider both the
targets set by MPS and the particular requirements of each production
segment. For instance, for a production segment making one-of-a-kind
products, methods of resource constrained project scheduling are proposed
[see e.g., Kolisch, 1995]. For a job shop, the two separate planning
levels DLRA and SFSC, applying methods of multi-stage capacitated lot-
sizing [see e.g., Tempelmeier & Derstroff, 1996] and job shop scheduling, have
to be hierarchically integrated. In a production segment consisting of parallel
flow lines, however, lot-sizing and scheduling have to be done simultaneously
in a single step of planning [see e.g., Drexl & Kimms, 1997, Meyr, 2000], in
order to adapt lot-sizes to the tight line capacities and to consider sequence
dependent setups.

The framework of Zijm (2000) stresses aspects of technological planning
and the importance of safety stocks. Zijm also emphasizes the need to respect
the peculiarities of different product/market and organizational structures.
PP&S appear in the three modules ‘demand management and aggregate
capacity planning,’ ‘job planning and resource group loading,’ and ‘shop floor
scheduling and shop floor control’.

APS usually designate one to two modules to the tasks PP&S. If only a
single module is available, this often is intended for scheduling. The aggregate
PP then has to be supported by a further MP module. As we have seen, this
can easily be done because the solution methods LP and MIP – commonly
implemented in MP modules – can be applied to aggregate PP, too.

3.2.5 Distribution and transport planning
This section considers the planning of the external transport in a supply

chain. Transport planning mainly occurs as part of the distribution function.
The transports of materials from an external supplier or from an own remote
factory to a production site are usually controlled by the supplier in the scope
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of his distribution task. But there are important exceptions, where the receiver
controls the supply transports, e.g., in the automotive industry. In this case
transport planning occurs in the procurement function. These two cases will be
distinguished in the following.

In an APS, distribution and transport planning is positioned below the
MP level and is therefore provided with information and restrictions
from SNP, such as the locations in the distribution or procurement network
and the potential paths and transport modes, and from MP, such as aggregate
quantities to be shipped on every transport link and the increase or decrease
of seasonal stocks in the warehouses. In addition, this module uses
information from DP, such as the customers to be delivered, the demand
forecast and necessary safety stock at every DC. If the APS has separate
modules for distribution planning and for transport planning, the latter
concerns the short-term (usually daily) dispatch of the transports, whereas the
distribution planning module deals with longer-term decisions, which
may even overlap with SNP decisions, e.g., the detailed structure of the
distribution network.

The appropriate structure of a transport system mainly depends on the
size of the shipments. Large shipments can go directly from the source to the
destination in full transport units, such as truck loads or containers, whereas
small shipments have to be consolidated in a network. In a typical distribution
network [see Fleischmann, 1998a, p. 56 ff.], the products from different
factories are first brought together to one or several distribution centers,
then the transports are bundled over long distances up to RWs or TPs, where
the deliveries of small orders to the customers start from. In a typical
procurement network the materials from all suppliers in one region are first
collected, consolidated at a TP and then shipped to the factory. Another
concept uses a warehouse close to the factory, which has to be replenished
by the suppliers, as starting point for JIT supply.

Transports as well as TPs and warehouses are often operated by logistics
service providers (LSPs), who can bundle the flows of various supply chains.

Short-term planning tasks. Short-term transport planning is usually carried out
daily with a horizon of a few days. This task, also called deployment, has to
make the following decisions (see also Fig. 13):

The quantities to be shipped have to be determined in a distribution system
for the replenishment of every DC and every product, in a procurement system
for the supply of every material item. For the distribution transports to
customers the shipment quantity is fixed by the customer orders, except for
the case of a customer that is supplied in a VMI concept. The latter case
can be treated in exactly the same way as the replenishment of a DC. The
shipment quantities can be influenced by the mid-term decisions on shipment
frequencies, as discussed below.

The paths, along which the transports are performed, have to be selected, in
a distribution system among direct delivery from factory, from DC or
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shipment via TP, in a procurement system among direct supply, supply via
regional TP or from a warehouse. In case of multiple sources for the same
product or material, shipments have to be allocated to sources, considering
aggregate allocations fromMP. All these decisions usually follow simple rules,
mainly single source allocations depending on product and shipment size,
which are fixed by longer-term planning (see below). Only in case of shortage,
deviations from these rules are considered.

For products made to stock, planning deliveries to customers requires
matching the current customer orders with the available stock. This is part of
the ATP function considered in Section 3.2.6.

The task of vehicle loading is to adjust the sum of the shipment quantities
of the various items on the same transport link to a full vehicle load or a
multiple thereof. It is relevant for warehouse replenishment in distribution
and for the supply of materials, if the vehicle, as usual in these cases, is used
exclusively for the concerned supply chain.

The task of vehicle routing occurs mainly for the tours delivering smaller
orders from TP to customers and for the tours collecting materials from
suppliers for TP consolidation. However, such tours are mostly operated by
an LSP, who uses the vehicles simultaneously for flows outside the supply
chain under consideration, in order to increase the efficiency of the trans-
port processes. Therefore, vehicle routing must be the task of the LSP,
whereas the integration of vehicle routing in an APS, though offered by
several APS providers, makes little sense in most cases. In view of this fact and
the rich literature on vehicle routing (see Chapters 4 and 13), it will not be
considered in the following.

Fig. 13. Planning tasks of Distribution and Transport Planning modules.
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Mid-term planning tasks. For regular transports on the same relation, the
frequency of the shipments is a key cost factor. It is a mid-term decision
variable for the warehouse replenishment on the distribution side and for
the supply of materials on the procurement side, setting a target value for the
short-term decisions on shipment quantities.

The short-term planning of the shipment paths can be guided by the fol-
lowing mid-term decisions, some of which could even be made on the SNP
level:

Delivery areas (or collection areas) of TPs in distribution (or procurement,
respectively) and of DCs are to be formed by single-source allocation of
locations (e.g., postal codes) to TPs and of TPs to DCs.

Rules for the distribution mode are usually based on limits for the shipment
quantity, e.g., up to 30 kg by a parcel service, up to 1000 kg from DC via TP,
up to 3000 kg directly from DC and larger orders directly from factory
[Fleischmann, 2002, p. 199].

The assignment of material items to the supply concepts – directly, via
regionalTPor viaLSPwarehouse – is closely relatedwith the supply frequencies.

Models and methods

Shipment frequencies: Planning the frequency of regular transports from a
source to a destination, say from a factory to a DC or from a supplier to a
factory, is a lot-sizing problem involving the cost of transport and the cycle
stock at both locations. Note that the average stock in transit is independent
on the frequency [see Fleischmann, 2002, p. 201 f.]. The following single link
model is a basic model:

Several products i are supplied at the source and needed at the destination
with the same steady rate di and have holding cost hi at both locations. The
cost per shipment with a vehicle of fixed capacity Q is F. Then it is optimal
to ship every t time units all products together with quantities qi¼ dit
[Fleischmann, 1999]. The optimal cycle time t* is given by the slightly
modified EOQ formula [cf. Blumenfeld, Burns, & Daganzo, 1991]:

t* ¼ min
QP
i di

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FP
i hidi

s( )
:

In general, production of several products at the source does not take place
steadily, but in consecutive lots of different products, and there are several
destinations. Synchronization of production lots and shipment quantities
reduces the cycle stock [Blumenfeld et al., 1991], but may become very difficult
or impractical for a large number of items. However, if transportation
planning is done independently from production planning, it decomposes into
the above single link cases.
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A more complicated interdependence between frequencies, transport cost
and cycle stock exists in the case, where the transports are performed in tours,
in particular for the collection of materials from suppliers by a regional LSP
and for deliveries to several VMI customers: The frequencies, which may be
different for every supplier, influence not only the cycle stock, but also the
locations to be visited at a certain day and hence the cost of routing. Models
for combined vehicle routing and inventory planning have been developed
only recently (see the review of Baita, Ukovich, Pesenti, & Favaretto, 1998).

However, in current APS, the mid-term optimization of shipment
frequencies is not supported, but frequencies are input to the short-term
transportation modules.

TP and DC areas can be planned by means of single-source network flow
models or general MIP models, which are provided by most distribution
planning modules in APS. But these modules mostly assume linear
transportation costs, although economies of scale are particularly important
for the shipments via TP. Single source models with nonlinear costs are
considered by Simchi-Levi (Chapter 2). This type of models can also be
used to set the quantity limits for the distribution mode by parametric
variation. Experience shows that the quantity limits have a rather low cost
sensitivity [Fleischmann, 1998a].

Shipment quantities: The short-term decision on the shipment quantity of a
certain product to a certain DC (or from a certain supplier) is based on the
transport frequency, which implies the transport cycle, the forecast for the
next transport cycle, the safety stock, and the current stock at the destination.
For the distribution side, the recent inventory control theory provides
optimal replenishment policies in a so-called ‘one-warehouse multi-retailer
system’ (see Chapter 10), which can be interpreted for the manufacturer’s
supply chain, as one-factory multi-DC system. However, these are single-
product models, whereas production mostly is done for several products
consecutively in cycles. Therefore, periodic review models, with the review
period equal to the production cycle, have to be used at the factory level.

In APS, only simpler rules are used. In a pull policy, the general form is

shipment quantity ¼ demand forecast at the destination for the

transport cycle

þ safety stock at the destination

� available stock at the destination:

The quantity can be modified by a vehicle loading procedure, as explained
below. If the stock at the source is not sufficient for all destinations, it is
allocated to the destinations using a ‘Fair Share’ rule, which takes into
account the stock situation at every destination. In a push policy, every
production lot being produced at the factory is immediately distributed to the
DCs according to the fair shares. The critical determination of the safety
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stocks and of the fair shares, however, is not yet supported sufficiently in APS
(see Chapters 10–12 for further details).

Vehicle loading has to consider all products i to be shipped from a certain
source to all destinations k and comprises the following steps:

� round up or down the target quantity of every product and every
destination to whole transport units.

� adjust the size of the joint shipment, i.e., the sum of the single product
quantities, for every destination possibly to a full vehicle capacity Q (or a
multiple thereof ).

Both steps are constrained by minimum quantities qmin
ik and the available stock

si at the source. The problem can be expressed by an LP with the integer
variables

qik ¼ number of transport units of product i to destination k
as follows:

Max
X
i,k

qik ð3:6Þ

subject to

X
i

qik �
X
i

qmin
ik =Q

& ’
Q 8k ð3:7Þ

X
k

qik � si 8i ð3:8Þ

qik � qmin
ik , integer 8i, k: ð3:9Þ

The objective function can be extended by adding a goal programming term
representing the deviation of qik from the target quantity. However, simple
rounding heuristics are used in APS.

3.2.6 Demand fulfillment and available to promise
Demand fulfillment deals with the arriving customer orders. It has to decide

on the acceptance of orders and to set the delivery dates that are promised to
the customers. This task of order promising requires, as a first step, to check
the availability of materials, finished products and capacity, the ATP check. In
a proper sense, ATP considers only available stock and released orders for
production and/or purchasing, whereas the check for potential further supply
gives the quantities capable to promise (CTP). But often, ATP is used as the
general term. If the ATP quantities are not sufficient for the current customer
orders, a shortage planning for the open orders or even a repromising of
promised orders is necessary.
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Order promising is a very critical task, as it has a strong impact on the
customer service: Setting promised dates too late generates unnecessarily long
order lead times, and setting them too early makes them unrealistic and
generates a poor delivery reliability.

Before discussing the tasks (see also Fig. 14) in more detail, we first have to
make a distinction w.r.t. the decoupling point [Hoekstra & Romme, 1991],
because this is the point in the supply chain where the available stock is kept
(see Section 1.1).

In a deliver-to-order (make-to-stock) system, the customers expect an
immediate fulfillment of the orders, i.e., an order lead time equal to the delivery
lead time, typically between 24 and 72 hr. In this case, ATP is concerned with
finished product stocks, the order promising is rather a yes-or-no decision and
the most important step is the shortage planning, i.e., the allocation of tight
stocks to the current orders. This step overlaps with the deployment task of
short-term transport (see Section 3.2.5) as the quantities allocated from certain
stock locations to the customer orders are just the shipment quantities.

In an assemble-to-order system ATP is concerned with stock of components,
and the normal order lead time comprises the lead time for assembly and
delivery, typically 5–15 working days, whereas the lead times for supply of the
components may be much longer. Then, there is a danger for a pure ATP
consideration without CTP: In case of a short component stock, all orders
which are not covered by the ATP quantity are shifted to the day after the
supply lead time, i.e., to the earliest time when a new supply order will arrive.
This may be quite unrealistic, if the assembly capacity (or the supply capacity)
is not sufficient to handle so many orders the same day. Hence, both ATP and
CTP are important in that case.

Fig. 14. Planning tasks of Demand Fulfillment and ATP modules.
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In a make-to-order situation, with a more complex ‘make’ process, the focus
of order promising is on the availability of capacity rather than of materials.
In this case, order promising has to be integrated into the PP&S function. It
will not be considered in the following.

Tasks. The ATP calculation has to provide information for a quick
availability check, i.e., the quantities available of a certain product or
component at a certain time. For times within the supply lead time, it can be
based on available stock and released orders, but for a longer horizon, addi-
tional information is required. In APS, usually the master plan is used for that
purpose [Kilger & Schneeweiss, 2002b]. As it reflects capacity restrictions, it
ensures feasible CTP quantities. However, if the master plan does not exhaust
the available capacity and if the current demand is higher than expected, this
may lead to CTP quantities which are more restrictive than necessary. A
calculation against the available capacity would be preferable. Kilger and
Schneeweiss (2002b), instead, suggest a frequent, normally weekly, adjustment
of the master plan to the current demand, together with an ATP update.

The order promising uses the ATP information in order to decide on current
orders, whether they can be confirmed for the customer’s requested date or
have to be delayed or refused. An important factor for that task is the
response time that is allowed after the arrival of an order: In many cases, the
answer is expected immediately, for instance for telephone sales and, of
course, for the rapidly growing Internet sales. As a consequence, the order
promising process has to be performed separately for every single order
arrival, without knowledge of future orders. Then, naive use of the ATP
quantities would lead to a first-come-first-served priority, which is usually
undesired. In order to consider specific priorities for different customer
classes, shares for every class have to be defined and rules for using up these
shares are required. If a longer response time is feasible, arriving orders can be
collected and promised in intervals, e.g., once a day. In this case, a bundle of
orders is confirmed simultaneously, or, in case of shortage, is subject to
allocation of ATP quantities, as explained below.

The shortage planning for a single order consists in searching for
alternatives, if the ATP quantity for the desired date is not sufficient.
Potential alternatives are ATP quantities

� of an earlier date, causing inventory,
� of a later date, causing delay,
� at an alternative source, causing extra cost,
� of a substitute product, if accepted by the customer, usually by down-
grading a more expensive product.

The most undesired alternative

� reducing the customer order, delaying or refusing it

cannot be completely avoided in general.
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If orders are bundled for order promising, the allocation of those
alternatives should be done simultaneously to the set of orders. This same task
occurs, if there are changes in the expected supplies or in the master plan,
which reduce some ATP quantities to negative values. Then, the already
promised orders cannot all be delivered on time, hence all orders or a subset of
orders have to be subject to a reallocation of the reduced ATP quantities,
leading to repromising some orders. Also, a similar allocation task occurs in
the assemble-to-order case: As some time passes between order promising and
the start of the corresponding production order, an additional short-term
allocation of available component stock to orders, before the daily release of
production orders, is recommended, called Demand Supply Matching [Kilger
& Schneeweiss, 2002a]. The various planning tasks of Demand Fulfillment are
further discussed in Fleischmann and Meyr (2003). In this paper also LP and
MIP models for order promising and order repromising are proposed.

Models and methods. The ATP quantities of a certain item ATPt are calculated
for a planning horizon consisting of the periods t ¼ 1,. . .,T (weeks or days)
from the data

I0 initial inventory on hand
St projected supply in period t (released supply orders and master plan)
Ct promised customer orders for period t,

where all quantities and times refer to the decoupling point level. The
projected stock on hand is

It ¼ It�1 þ St � Ct ðt ¼ 1, . . . ,TÞ,

where It<0 for some t indicates a shortage requiring shortage planning as
explained below. If It � 0 (t ¼ 1, . . . , T), the ATP quantities can be calculated
backwards as follows:

I *T ¼ IT

I *t�1 ¼ minfIt�1, I
*

t g

ATPt ¼ I *t � I *t�1

)
t ¼ T , . . . ,1:

Note that ATPt is the maximum amount that can be subtracted from St

without causing a negative stock on hand in the future and that ATPt¼ 0 if
Ct�St. Alternatively, one may use the cumulative ATP defined as

CATPt ¼
Xt
s¼1

ATPs,
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which shows the total amount available for order promising for period t, but
which does not show a potential time lag between supply and consumption.
Unfortunately, the ATP calculation is neglected in most textbooks and
incorrect in others.

For the order promising, the traditional ATP logic in ERP systems uses
these ATP quantities on a first-come-first-served basis for the arriving orders
whereas APS provide more sophisticated rules: First, every ATPt or a sum
over some time interval can be decomposed into shares for customer groups
differing by sales channel, sales volume, region, etc. Kilger and Schneeweiss
(2002b) suggest a hierarchical system of customer groups and a top-down
allocation of shares following certain rules. In addition, rules for using up
these shares may allow some high prioritized customer group to access shares
of lower prioritized groups, if the own share is exhausted, but not vice versa
[Fischer, 2001]. Setting these shares must be based on forecasts for the groups.

Also, for the shortage planning for a single order, APS use simple rules,
which check the above mentioned alternatives in a certain sequence [see Kilger
& Schneeweiss, 2002b, p. 172 f.]. For the shortage allocation to a set of orders,
the rules for the customer group shares are used again. In the latter case,
allocations proportional to the order sizes should be avoided, because they
generate the ‘rationing game’ effect, known as one of the causes of the
bullwhip effect [Lee et al., 1997].

Both the order promising and shortage planning for a set of orders can be
modeled and optimized by LP [Fischer, 2001; Fleischmann & Meyr, 2003]:
Given the open orders i with quantities qi and desired dates di and the ATP
alternatives j with available quantities aj and dates tj, the variables are

xij the amount of order i covered by alternative j.

One alternative, say j0, stands for reducing or cancelling orders, with a
sufficiently large availability. The model is of the network flow type

Min
X
ij

cijxij ð3:10Þ

subject toX
i

xij � aj 8j ð3:11Þ

X
j

xij ¼ qi 8i ð3:12Þ

xij � 0 8i, j ð3:13Þ

where the major difficulty consists in the definition of the objective
coefficients cij: They may be composed of the costs caused by the alternative
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j, a penalty cost for the deviation di�tj depending on the priority of order i and
lost sales for j¼ j0. It is also possible to distinguish between customers accepting
delays and quantity reductions and those who do not. Orders i of the latter can
only be allocated to alternatives j such that tj� di and to j0 only completely. This
condition requires one binary variable for every such order. Forbidding the
split of an order i requires one binary variable for every combination (i, j) for
such orders i. In the assemble-to-order case, for demand supply matching with
component commonality, the model has to be extended, using the BOM
structure, so as to include simultaneously all components and open orders.

Models of that type are available in some APS for the deployment
function, where the alternatives are primarily thought as different source
locations.

4 Advanced planning systems: Particular systems

In this section the peculiarities of the advanced planning solutions of some
selected suppliers are shown with respect to the general structure of APS intro-
duced in Section 3.1. Furthermore, mathematical methods applied in the res-
pective software modules are described – as far as this is possible. Finally, (the
few) case reports that can be found in the literature up to now are reviewed.

One has to keep in mind that this section only can give a snapshot of the
situation up to January 2003. We are aware of the fact that descriptions of
APS (Sections 4.1 to 4.5) may be outdated before these pages are printed. The
names of software modules and their placement within the overall product
range of an APS-vendor change quite often (sometimes semi-annually).
However, we think that this section contains valuable information for
validating the general structure of APS (because even an aged illustration is
better than none). Reasons for such a rapid change of APS are, for example,
acquisitions of further APS modules, mergers of software companies, new
marketing strategies or the extension of the product spectrum in order to
supply tools for collaboration, e-Business etc. In the following, however, we
will exclusively concentrate on ‘advanced planning’ modules supporting the
planning tasks introduced so far.

Sections 4.1, 4.2, 4.3, 4.4 and 4.5 are based on firsthand product
descriptions of the software suppliers (e.g., Internet publications up to
January 2003), on secondhand reports given by users or published in the
literature [e.g., Stadtler & Kilger, 2002] and on the authors’ own experience
with some of the software modules. Please note that the APS and software
modules presented are only a small selection of the overall offering – chosen
according to the level of information that was accessible to the authors.

When reading APS brochures be aware of the fact that the word
‘optimization’ very often is misused for marketing purposes because neither a
formal mathematical model nor a planning objective are defined. But even if
real optimization takes place, software vendors show only slight interest to
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reveal their planning and optimization methods although this would be
desirable from a customer’s point of view. Therefore, statements about
mathematical methods applied in the following often cannot go into detail and
further investigation is troublesome.

4.1 Baan

Baan (2003) originally is a supplier of ERP systems who also offers in the
meantime an APS called iBaan for Supply Chain Management. Its software
modules are shown in Fig. 15. The modules in bold letters came along by the
merger with CAPS Logistics [CAPS, 2003]. Since then, iBaan for SCM has a
clear emphasis on transport and distribution processes.

SC Designer and Coordinator both apply LP and MIP methods
(CPLEX, ILOG, 2003) and further proprietary algorithms tackling the
respective long- and mid-term planning problems. Two software modules,
Coordinator and SC Planner, can be used for master planning. While
Coordinator has a close integration to the SC Designer and is recommended as
a tool for tactical planning, the SC Planner is said to address shorter-term,
operational planning issues and order fulfillment. TransPro supports freight
consolidation, mode/carrier selection and pooling. It is one of the rare tools
that allows a comparison of the alternatives ‘private/dedicated fleets’ and
‘third-party carriers’.

The RoutePro suite is comprised of several components covering strategic
(RoutePro Designer) to operational (RoutePro Dispatcher) routing decisions,
thus suitable for companies with private or dedicated fleets. All modules
acquired from CAPS Logistics are based on the iBaan Logistics Toolkit, a
development environment for building customized optimization models of
supply chains using a layered architecture [Ratliff & Nulty, 1997].

Fig. 15. iBaan for Supply Chain Management.
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4.2 i2 Technologies

i2 Technologies (2003a) is market leader in the Advanced Planning segment
and propagates the vision to ‘. . . add $ 75 Billion of value, in growth and
savings, for our customers by the year 2005’ (with $ 29.9 Billion being
achieved until June 2001 [Miller-Williams, Inc. and i2 Technologies, 2000,
Miller-Williams, Inc., 2003]). In Fig. 16 the most important advanced
planning components of i2 Technologies are shown. They are assigned to the
categories i2 Supplier Relationship Management, i2 Supply Chain Management
and i2 Demand Chain Management which again are part of i2’s overall
software suite Five.Two [i2 Technologies, 2003c]. So the advanced planning
components are only a small subset of i2’s total product range and not
promoted as a stand-alone product as Fig. 16 might imply.

Supply Chain Strategist uses ‘mathematical optimization methods’ (without
saying which ones) to propose a network design whose behavior under
probabilistic conditions can be validated subsequently via simulation using
Supply Chain Strategist Simulator (the former IBM tool Supply Chain
Analyzer).

Supply Chain Planner (also sometimes called ‘Master Planner’) tries to
generate master plans, feasible with respect to limited material and
capacity. With i2’s meta-heuristic Strategy Driven Planning different types of
‘problems’ a current plan may have (like lateness, negative inventories etc.) can
be defined. Furthermore ‘strategies’, meant for locally resolving a single
problem, have to be determined (mostly simple rules like ‘moving a lot
backward’, but complex algorithms like LP, genetic algorithms or further
optimization heuristics could also be incorporated). Each strategy tries to
pursue a particular objective, e.g., minimization of lateness, of cost, of the
number of problems identified or just feasibility with respect to the respective
problem being tackled. For a given plan, a list of problems is gathered and

Fig. 16. i2 Technologies: Five.Two [see also Meyr et al., 2002a, Fig. 17.1].
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the user is free to apply these strategies to selected problems manually or to
define a sequence in which strategies are automatically worked off.

In order to include revenue or cost aspects in a more detailed manner, the
Profit Optimizer extension can be applied to a Supply Chain Planner
model using hierarchical optimization in combination with LP (CPLEX).
Allocation Planner disaggregates the results of master planning into more
detailed shares for order promising. For this, it applies allocation rules as
described in Kilger and Schneeweiss (2002b, Chapter 9.2.2).

The Factory Planner can be used to match supply and demand with
respect to material and capacity constraints and to build a production
schedule. In a first step, Factory Planner neglects capacity and calculates a
(probably infeasible) plan by simply scheduling backward from the requested
due dates, checking availability of material and again scheduling forward
from the date where material becomes available. In a second step, capacity
violations are detected which can be resolved manually by the planner or
automatically by use of i2’s proprietary Constraint Anchored Optimization
(CAO). CAO performs a rule-based optimization by iteratively prioritizing
(and eliminating) capacity violations according to their impact on further
resources. Changes of the plan are propagated to all resources affected. The
rules to resolve capacity problems aim at short-term objectives like maximal
utilization or minimal WIP. If unresolved problems remain, the planner is
forced to add capacity (e.g., by additional shifts) or to accelerate material
supply (e.g., by negotiation with suppliers). In a final scheduling step, the
plan – up to now only defined within buckets of time – can further be refined
into a time-continuous plan using the priority rules that are well-known from
the job shop scheduling literature.

Additionally to the scheduling tool integrated in the Factory Planner, a
stand-alone solution called Optimal Scheduler is offered which is based
on genetic algorithms. Demand Fulfillment supports order promising by rule-
based consumption of ATP and CTP quantities [see Kilger & Schneeweiss,
2002b, Chapter 9.3].

Themodules Supply Chain Strategist andTransportationModeler,Optimizer
and Manager go back to the merger of i2 with InterTrans in 1998.
Transportation Modeler and Optimizer use proprietary heuristics and MIP
solvers.

4.3 J.D. Edwards

J.D. Edwards (2003), another major supplier of ERP-systems, in 1999
acquisited the APS of Numetrix, Ltd. This system, complemented by an order
promising module, is now offered as J.D. Edwards 5 Supply Chain Planning
(cf. Fig. 17). Originally designed for continuous production processes, it now
addresses discrete parts production, too, in particular by an additional
production scheduling module.
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Strategic Network Optimization (SNO, the former Linx and Enterprise
Planning) engages LP and MIP (CPLEX) in combination with special
purpose heuristics to determine a network structure and to check its cost
simulatively. The special purpose heuristics tackle problem features that require
binary variables like the opening or closing of facilities (capital asset
management) andminimum or batch lot-sizes. They perform quite good if only
one of these features is given, but may cause problems if several have to be
combined. The most striking feature of SNO is its visualization. A supply chain
model can completely be built graphically (and not only be depicted graphically;
cf. e.g., Günther, Blömer, & Grunow (1998), Wagner &Meyr (2002)). So SNO
is easy to use even for practitioners without OR background. Of course, such an
approach cannot offer the same flexibility as modeling languages like AMPL
[Fourer, Gay, & Kernighan, 1993] or ILOG OPL Studio [ILOG, 2003] do.
Since no APS with an interface to such modeling languages is known to the
authors, this is not a particular problem of SNO. All major planning tasks of
Master Planning can be modeled with SNO. Thus, it is not surprising that SNO
is very often used for this purpose, too.

However, because of its multi-user architecture and its communication
and alert management features, Production and Distribution Planning (P&DP)
is recommended for master (and distribution) planning. Four solvers
support these planning tasks: Linear Programming can be extended by
rounding heuristics in order to ensure full truck loads. Furthermore, SC-wide
demand/supply matching and assignment of customer orders are supported
by a rule-based heuristic (‘connect’) which is also able to respect single sourcing.
An additional heuristic supplements a DRP-like upstream propagation of
demand with a subsequent downstream propagation of inventory on hand,
following fair share rules. In this case, only networks without cycles can
be considered.

Fig. 17. J.D. Edwards 5 Supply Chain Planning [see also Meyr et al., 2002a, Fig. 17.2].
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Production Scheduling Process (PSP) is applied for short-term planning
of continuous (parallel) production lines. It was originally designed for a
one- to two-stage production system, but has been extended to several stages
of production in the meantime. The solution algorithm is related to
neighborhood search with descent algorithms. Basic operations like ‘moving
lots’ or ‘increasing inventory’ can be applied manually or are put together to
predefined algorithms [Kolisch, Brandenburg, & Krüger, 2000]. The (penalty)
costs of these operations are evaluated and a plan is changed if a cost
improvement has been achieved. With help of the scripting language TCL
[Ousterhout, 1994], quite flexible algorithms can be formed respecting
peculiarities of practical problems.

4.4 Manugistics

The software suite Supply Chain Management (cf. Fig. 18) is part of
the NetWORKS software of Manugistics [Manugistics, 2003], besides i2
the second traditional vendor of APS not offering an ERP solution.
Only rare information is available about the Manugistics components
and methods.

Strategy also relies on LP and MIP techniques. Sequencing essentially
uses a two phase approach for scheduling jobs on resources. First, an
initial solution is quickly created which is subsequently reoptimized
and improved. Dependent on the objectives defined by the planner (like
minimization of cycle times or maximization of utilization), in both steps
specialized algorithms are automatically chosen from a predefined set of
heuristic methods.

Early in 2001 Manugistics acquired STG Holding, a successor of
Creative Output which was a production planning software company
founded by Eli Goldratt. Out of this acquisition the two software modules

Fig. 18. Manugistics: NetWORKS-Supply Chain Management.

514 B. Fleischmann and H. Meyr



Production Planning and Production Scheduling resulted, at the time of
STG known as Advanced Planner Opt2l and ST Point Planner and
Scheduler. Both build on the Optimized Production Technology system (OPT,
[Silver et al., 1998, Chapter 16.2]), which has its origins in the Theory of
Constraints and the Drum-Buffer-Rope scheduling concept [see e.g., Fogarty,
Blackstone, &Hoffmann, 1991, Chapter 19]. These principles have become very
popular – first in the mid of the 1980s and again in the context of APS – by two
books of Goldratt (and Cox and Fox, respectively) called ‘The Goal’ [Goldratt
& Cox, 1986] and ‘The Race’ [Goldratt & Fox, 1986]. So all in all three different
modules for short-term production planning and scheduling are offered by
Manugistics in the meantime.

The Demand module is based on FORSYS [Lewandowski, 1982]
and applies the Lewandowski method (OPS) in order to automatically
determine optimal parameter settings for forecasting [Lewandowski, 1969].

4.5 SAP

The SAP Advanced Planner and Optimizer (APO) is part of the mySAP
Supply Chain Management suite. SAP AG (2003), a major supplier of ERP
software, offers its advanced planning solution since 1998. Because of this late
entry into the APS market, there is a high chance to incorporate state of
the art optimization methods. The wide spreading of the ERP-software SAP/
R3 probably will support the acceptance of the APO. However, development
is still ongoing. An overview of the APO software modules (release 3.1) is
given in Fig. 19.

Network Design contains both continuous and discrete models for facility
location. Voronoi diagrams and Weber problems are used to analyze an
existing distribution system and to propose candidate locations for the
opening of new facilities. These can further be investigated by discrete MIP
models [Kalcsics, Melo, Nickel, & Schmid-Lutz, 2000]. As solver, again, the
CPLEX optimization library is used.

The Supply Network Planning (SNP) module supports Master Planning
mainly by means of linear and mixed integer programming (Branch & Bound,
CPLEX). Additionally, constraint based programming (also from ILOG, 2003)
can be applied to further reduce the solution space. Also a heuristic is offered
which generates master plans in a DRP/MRP like manner: customer demand is
propagated upstream in order to calculate net demand of intermediate products
at different locations. Thus, an infinite plan is built, limited capacity is checked,
and capacity and net demand have to be balanced manually according to
priority rules for different types of demand (orders, forecast, safety stock
refilling etc.). Furthermore, the setting of mid-term safety stocks based on lead
times, forecasting accuracy and aspired service level is supported.

For large models, such basic optimization methods can be embedded in
meta-heuristics which (to the debit of solution quality) reduce the complexity
by means of aggregation (of periods, products or priorities assigned to
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‘subproblems’) and decomposition (sequential solving per time window,
product or priority group). Capable to match, the demand/supply matching
engine of SNP is said to apply constraint propagation techniques and goal
programming.

For the Deployment of production quantities to DC’s, simple push and pull
rules are used. In case of shortages, fair share rules like ‘delivery of stock
proportional to the requests of the DCs’ are implemented. Additionally to the
Transport Load Builder (TLB) a further, rather short-term Transport Planning
& Vehicle Scheduling module has been launched which is driven by ILOG
components and applies a proprietary genetic algorithm and further heuristics
[Meyr et al., 2002a].

Production Planning and Detailed Scheduling (PP/DS) also uses a set of
basic solution methods like genetic algorithms, constraint propagation
(ILOG) and a campaign optimizer (ILOG) which can be embedded into
meta-heuristics in order to solve complex problem instances. In a multi-stage
production system, the ‘bottleneck heuristic’, for example, may schedule a
known bottleneck resource with help of the campaign optimizer first, and then
propagate the results to upstream and downstream resources. Another meta-
heuristic performs multi-criterion optimization by means of multi-agent
strategies where several agents are coordinated, each focusing on a separate
objective and each maybe using an individual optimization strategy.

The Purchasing Workbench tackles supplier selection and purchase order
sizing by a two-phase descent heuristic based on local search [Tempelmeier,
2000].

4.6 Case studies

There is a vast amount of ‘success stories’ (comprising 1–2 pages) available in
the Internet which promote successful installations and practical applications

Fig. 19. SAP: Advanced Planner and Optimizer [see also Meyr et al., 2002a, Fig. 17.3].
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of software modules of APS. They euphoricly describe the benefits of APS
implementations. Very often DP modules (including collaborative planning)
are mentioned, but the type of software module preferably sold depends on the
respective APS vendor. However, detailed descriptions how APS are used in
practice and how to model with APS are missing.

The following examples that can be found in the literature give at least a
little more information than the Internet. In Hoffman (2000), two projects
between SynQuest (yet another APS vendor [SynQuest Inc., 2003]) and Ford
are presented concerning the Automotive industry. In the first one, SynQuest’s
Strategic Network Design tool, the Supply Chain Designer, has been applied to
design the inbound network of Ford’s North American assembly plants. The
network comprises 21 assembly plants, 1500 suppliers and 4600 different
inbound vehicle parts and components. Original data have been aggregated so
that 194 supplier regions remained. Forty-five candidates for cross docking
points had to be considered. Forty to fifty different scenarios have been tested
which brought up 15 cross docking points to be the best configuration. This
solution is reported to contribute ‘significant savings’ as compared to the
configuration proposed originally. Secondly, SynQuest and Ford together
developed a tool for the short- to mid-term planning of inbound logistics
called Inbound Planning Engine. It is used to route and schedule incoming
trucks at the receiving docks of the plants. By doing this, the frequencies of
part deliveries to assembly plants could be increased significantly without
incurring higher overall costs.

In Tappe and Mussäus (1999) and Rodens-Friedrich and Friedrich (2002) a
continuous replenishment and VMI project between the consumer goods
manufacturer Reckitt & Colman and the drugstores’ chain dm in Germany is
described. Two APS modules of Manugistics support DP and ordering
processes, but this is rather done by collaborative planning than by use of
mathematical (forecasting) methods. So benefits are an increased flexibility
and lower stocks due to a shortened planning and ordering time, and
decreased replenishment cycles.

Only seldom, the modeling with help of APS is presented. Zoryk-Schalla
(2001) presents an implementation of the i2 modules Demand Planner, Master
Planner and Factory Planner in an European multi-site aluminium
manufacturing company. Zoryk-Schalla also emphasizes the hierarchical
nature of the i2 system and points out how hierarchical anticipation
[Schneeweiss, 1999] could be brought into APS [Zoryk-Schalla, 2001,
Chapter 4].

Henrich (2002) demonstrates how J.D. Edwards’ Strategic Network
Optimization (SNO) supports the global supply chain planning of the
German car manufacturer BMW. SNO is used to simulate and optimize the
material flow within BMW’s world-wide supply chain when deciding about
the assignment of new car models to assembly plants. For this strategic
planning task, a planning horizon of 12 years, subdivided into yearly buckets,
is considered. The aggregate global supply chain consists of 16 suppliers,

Ch. 9. Planning Hierarchy, Modeling and Advanced Planning Systems 517



9 assembly plants, 7 customer markets and 42 products. Several scenarios,
varying with respect to likely demand figures, future currency exchange rates
and potential capacity extensions, are evaluated. The resulting LP models
(about 350,000 continuous variables and 230,000 constraints) maximize
revenues minus sourcing, production and transportation costs with respect to
supplier, plant and transport capacities, customs regulations and currency
conversion. If investments were necessary for a certain test scenario, the
investment profitability is checked after solving the LP by comparing
investment costs with the cash flows of the optimal LP solution.

Most of the other case studies concerning modeling (as known to the
authors) are given in Stadtler and Kilger (2002). Richter and Stockrahm (2002)
describe modeling with SAP APO’s PP/DS by means of a practical case in the
process industry. Production of synthetic granulate has to be scheduled on a
four-step-hybrid flow shop. There are significant sequence-dependent setup
times and setup costs. Transport containers and personnel have to be explicitly
considered because they are potential bottlenecks. The product spectrum
altogether is comprised of 2000 different products and rapidly changing. About
240 jobs are active in the plan. The introduction led to reduced planning times
(from several days to one hour), a shorter fixed horizon (one week to two days),
a decreased makespan and reduced buffer times.

In Schneeweiss and Wetterauer (2002), a practical application of i2 soft-
ware in the semiconductor industry is shown. The overall project tackles the
planning tasks demand planning, long-term production and distribution
planning, mid-term master planning and short-term production scheduling.
For the first task, i2’s Demand Planner and for the latter tasks i2’s Supply
Chain Planner are used. The case study tests whether an alternative modeling
of the short-term production scheduling with Factory Planner was useful.

Kilger and Schneeweiss (2002a) and Kilger and Stahuber (2002) present an
implementation of several i2 modules at a large international computer
manufacturer (see SC-type computer assembly in Sections 1.2.2 and 2.2.2).
The planning tasks demand planning, master planning, demand supply
matching and demand fulfillment are supported by the software modules
Demand Planner, Supply Chain Planner, Factory Planner and Demand
Fulfillment. As it is also the case for Zoryk-Schalla (2001), the scope of these
papers is rather the collaboration and integration of the modules than the
detailed modeling with one particular software module. The overall project
was not finished at the time the paper was written, but the expected benefits of
the APS introduction are an increase of forecast accuracy, on time delivery,
and inventory turns by 10 to 20%.

In Wagner and Meyr (2002), the implementation of some J.D. Edwards’
APS modules at the food and beverages department of a large European
consumer goods manufacturer is considered (see Sections 1.2.1 and 2.2.1).
The modules SNO and PSP have been introduced to support the processes
long-term production and distribution planning, master planning (both SNO)
and short-term production scheduling (PSP). For DP, the Manugistics module
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DP/EE (now NetWORKS Demand) has successfully been in use for
several years and needed not to be replaced. The focus of the paper is the
(graphical) modeling of the master planning process by means of SNO. The
supply chain model comprises three plants (producing up to 20 final items per
plant), three DCs, two stages of production that may be potential bottlenecks,
and four different product types. Because of minimum lot-sizes, each
production line has to be considered separately. The planning horizon of half
a year is subdivided into 26 weekly buckets. Decisions to be made are the
weekly transportation quantities, material requirements and inventory levels
at the DCs, the assignment of products to production lines, and the necessary
overtime. The planning objective is the minimization of all relevant costs.
Reduced planning time (30% decrease), inventory levels, overtime, and less
emergency transports are reported to be the major benefits of this APS
implementation.
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Chapter 10

Supply Chain Operations: Serial and Distribution
Inventory Systems

Sven Axsäter
Lund University, Sweden

1 Introduction

1.1 Multi-echelon inventory systems

Multi-echelon inventory systems are common in supply chains, in both
distribution and production. In distribution we meet such systems when
products are distributed over large geographical areas. To provide good
service, local stocking points close to the customers in different areas are
needed. These local sites may be replenished from a central warehouse close to
the production facility. In production, stocks of raw materials, components
and finished products are coupled to each other in a similar way.

The management of multi-echelon inventory systems is a crucial part of
supply chain operations. The overall goal is, in general, to minimize the costs
for ordering, for capital tied up in the supply chain, and for not providing an
adequate customer service. This chapter deals with various techniques that
can be used for that purpose. Such techniques are not only useful in operative
supply chain management. They are also needed when evaluating the
effectiveness of alternative supply chain structures.

The possibilities for efficient control of multi-echelon inventory systems
have increased substantially during the last two decades. One reason is the
progress in research, which has resulted in new techniques that are both more
general and more efficient. Another reason is the development of new
information technologies, which have dramatically increased the technical
possibilities for supply chain coordination. See also Chapters 9 and 12.
A supply chain is not always part of a single company. Therefore, it may be
necessary for different companies to work together in order to improve the
material flow.

A.G. de Kok and S.C. Graves, Eds., Handbooks in OR & MS, Vol. 11
� 2003 Elsevier B.V. All rights reserved.
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1.2 Different system structures

The main focus of this chapter is on divergent or distribution inventory
systems with stochastic demand. Such systems are most common in
distribution. Figure 1 illustrates a two-level distribution system with a central
warehouse and a number of retailers. The system in Fig. 1 may also occur in
production. The central warehouse can then correspond to the stock of a
subassembly, which is used when producing a number of different final
products. The retailer stocks in Fig. 1 correspond to the stocks of these final
products.

In a divergent system each installation has at most one predecessor. In the
opposite case where each installation has at most one successor we have an
assembly system. Such systems, which are dealt with in Chapter 11, are
common in production. A serial system (Fig. 2) is obviously a special case
both of a distribution system and of an assembly system.

In practice we also quite often meet general systems, where some
installations have multiple predecessors as well as multiple successors.
Such systems are very difficult to handle by scientific methods. See also
Chapter 12.

1.3 Objective

The purpose of this chapter is to present and discuss models and techniques
for analysis of serial and distribution inventory systems with stochastic
demand. The main focus is on policy evaluation, but we will also discuss

Fig. 1. Two-level distribution inventory system.

Fig. 2. A serial system.
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optimization of reorder points and compare different common ordering
systems. Throughout the chapter batch quantities are assumed to be given.
They may, for example have been predetermined in a deterministic model.
Results for single-echelon models indicate that this gives a very good
approximation. See Zheng (1992) and Axsäter (1996). Efficient techniques for
deterministic lot sizing are presented in Roundy (1985, 1986) and Muckstadt
and Roundy (1993). Furthermore, we assume that there is a single decision
maker who wants to optimize the whole supply chain.

This is not the first review dealing with serial and distribution inventory
systems. The reader is also referred to related reviews by Axsäter (1993b)
Federgruen (1993), Diks, de Kok and Lagodimos (1996), and Van Houtum,
Inderfurh and Zijm (1996). The topic is also treated in some recent textbooks.
See Sherbrooke (1992b), Silver, Pyke and Peterson (1998), Axsäter (2000a)
and Zipkin (2000). Other approaches for placing and setting safety stocks are
treated in Chapters 3, 8, and 12.

1.4 Consumable and repairable items

In this chapter we will deal with consumable items. It is interesting to note,
however, that we can handle repairable items in much the same way. Some of
the early important work in the area (e.g., Sherbrooke, 1968) was focused on
systems with repairable items, which are especially common in many military
applications.

To understand the relationship between consumable and repairable
items consider again the distribution inventory system in Fig. 1. Assume that
the stocks contain spare items, which can replace items that fail. When an item
fails it is replaced by another item at a local site (retailer). If the item cannot be
replaced immediately it is backordered. At the same time the local site is
replenishing a new item from the central site. The failed unit is sent to the
central site for repair. It is then stocked at the central site. Consider also a
corresponding system with consumable items, where all installations apply
one-for-one ordering policies. It turns out that the two systems are equivalent if
the transportation time from a local site to the central site plus the repair time is
the same as the warehouse lead-time in the system with consumable items. For
a more extensive treatment of repairable items we refer to Nahmias (1981) and
Sherbrooke (1992b).

1.5 Overview of chapter

In Section 2 we compare and discuss different ordering policies that are
common in connection with multi-echelon inventory control. After that we
consider evaluation and optimization of serial inventory systems in Section 3.
Models for evaluation and optimization of order-up-to-S policies in
distribution systems are treated in Section 4. Thereafter, in Section 5, we
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discuss general batch-ordering policies in distribution systems. In conclusion,
we give some remarks in Section 6.

2 Different ordering policies

We shall first discuss advantages and disadvantages with continuous and
periodic review in Section 2.1. In Section 2.2 we comment on what is known
about the structure of optimal policies. Installation stock and echelon stock
reorder point policies are compared in Section 2.3, and finally we discuss
Material Requirements Planning and KANBAN policies in Section 2.4. See
also the discussion of ordering policies in Chapter 12.

2.1 Continuous or periodic review

If the inventory system is monitored continuously and control actions can
be taken at any time we have a continuous review inventory system. Another
alternative is to check the status of the inventory system periodically and limit
control actions to these discrete inspections. This is denoted as periodic
review. A continuous review system is, in general, slightly more efficient but
also more expensive to operate than a periodic review system. In case of low
demand, there are relatively few orders and a continuous review system is
economically feasible and often suitable to use. For items with high demand it
is generally more practical with periodic review. It is evident that a periodic
review system with a very short review period will essentially duplicate the
corresponding continuous review system.

When dealing with multi-echelon inventory models it is, in general, possible
to transform a continuous review model to a corresponding periodic review
model and the other way around. In this chapter we shall deal with both types
of models. Our choice of continuous or periodic review will generally reflect
what is most common in the literature for each type of model.

We have pointed out that periodic review systems are less expensive to
operate than continuous review systems. However, it should also be men-
tioned that periodic review may be advantageous in certain situations also for
other reasons. For example, a periodic review system can be suitable if we
want to coordinate orders for different items in order to get a smooth capacity
utilization. We can then choose the review times such that orders for items
produced in the same machine are not triggered at the same times. Further-
more, while using the simplest type of ordering system, a so-called base stock
or order-up-to-S policy, a continuous review system will lead to replenish-
ments that are identical to the customer demands. By using a periodic review
system with a relatively long review period we can force the system to order in
‘batches’ while still avoiding to use a more complex batch-ordering policy. In
case of continuous review it is often natural to apply a first come-first served
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policy at upstream sites. When implementing other allocation rules a periodic
review setting may be easier to handle.

2.2 Optimal policies

Assume we have specified some performance criterion (e.g., minimization
of holding and backorder costs) for a multi-echelon inventory system with
stochastic demand. What does the optimal policy look like? For a single-
echelon system we know that a so-called (s,S) policy is optimal under very
general conditions, i.e., when the inventory position (inventory on hand, plus
outstanding orders, and minus backorders) declines to or below s, we order
up to S. There exist some corresponding optimality results for serial multi-
echelon inventory systems, see Clark and Scarf (1960), Chen (2000) and
Muharremoglu and Tsitsiklis (2001). In general, however, we can expect an
optimal control policy to be quite complex. An optimal decision to send
a batch from one site to another may depend on the inventory status at all
sites. To simplify, it is therefore common to restrict the structure of the
control policy. It is, for example, common to let all installations apply simple
reorder point policies. An optimization usually means that we are trying to
coordinate such simple decision rules in the best possible way. In this chapter
we shall assume that such an optimization can be carried out in a centralized
decision model. When the installations in a supply chain belong to different
companies we may want the decisions to be taken by local decentralized units,
while we still get an overall performance that is close to optimum. Such
problems are dealt with, in Chapters 6 and 7.

2.3 Installation stock policies versus echelon stock policies

A very common control policy in connection with single-echelon inventory
control is a so-called (R,Q) policy, where R is the reorder point and Q is the
batch quantity. When the inventory position declines to or below R we order a
number of batches of size Q (normally one batch) so that the resulting
inventory position is strictly larger than R and less or equal to RþQ. In case
of continuous review and continuous or unit demand we will always hit the
reorder point exactly when ordering, and this policy is then equivalent to an
(s,S) policy with s¼R and S¼RþQ. A base stock policy, or order-up-to-S
policy, or S policy, means that we always order up to the inventory position S.
In case of discrete integral demand such a policy is a special case both of an
(R,Q) policy (R¼S�1,Q¼ 1), and of an (s,S) policy (s¼S�1). This policy is
also often denoted (S�1,S) policy.

(R,Q) policies are common in connection with multi-echelon inventory
control meaning that each installation applies such a policy. The
reorder points and the batch quantities are typically different for the
installations, though. When dealing with multi-echelon inventory systems
the policy is usually denoted as an installation stock (R,Q) policy, and R is
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the installation stock reorder point. The reason is that we want to
distinguish the policy from a related type of policy, a so-called echelon stock
(R,Q) policy.

The echelon inventory position of an installation is the installation
inventory position plus the sum of the installation inventory positions of all
downstream installations. Consider again Figs. 1 and 2. For installations that
have no downstream installations (the retailers in Fig. 1 and installation 1 in
Fig. 2), the echelon inventory position is equivalent to the installation
inventory position. The echelon inventory position of the warehouse in Fig. 1
is the sum of the warehouse installation stock position and all retailer
installation stock positions. Similarly, the echelon stock inventory position of
installation n in Fig. 2 is the sum of the installation stock inventory positions
for installations 1, 2, . . ., n.

An echelon stock (R,Q) policy works exactly as an installation stock (R,Q)
policy except that we consider the echelon stock inventory position instead of
the installation inventory position. Normally the echelon stock inventory
position is larger than the corresponding installation stock inventory position.
This implies that an echelon stock reorder point is generally larger than an
installation stock reorder point. The basic idea of an echelon stock reorder
point policy is that the need to replenish at an installation is reflected by not
only the local stock at the installation. If the downstream installations have
low stocks levels, they will order in the near future and we need more stock at
the considered installation.

While dealing with multi-echelon reorder point policies we assume that an
order is always triggered at an installation when the inventory position
declines to or below the reorder point. This is the case even if the upstream
installation does not have stock on hand. The order is then backordered at the
upstream installation. In the literature we sometimes see another equivalent
convention, whereby orders are delayed until they can be satisfied by the
upstream installation. This will affect the inventory position but not system
control.

We shall now compare installation and echelon stock policies in more
detail. Consider the serial inventory system in Fig. 2. Installation 1 faces
customer demand. We shall analyze the relationship between installation
stock (R,Q) policies and echelon stock (R,Q) policies. Assume that the batch
quantities are given,

Qn ¼ batch quantity at installation n:

We assume that the batch quantity at installation n is an integer multiple of
the batch quantity at installation n–1,

Qn ¼ jnQn�1, ð2:1Þ

530 S. Axsäter



where jn is a positive integer. This assumption, which is common in the
literature, is especially natural if the rationing policy at the installations is to
satisfy all or nothing of an order. The installation stock at an installation
should then always be an integral number of the lot size at the next
downstream installation.

Let us now introduce some additional notation:

IPi
n installation inventory position at installation n,

IPe
n IPi

n þ IPi
n�1 þ . . . þ IPi

1¼ echelon stock inventory position at
installation n,

Ri
n installation stock reorder point at installation n,

Re
n echelon stock reorder point at installation n.

We shall assume that the system starts with initial inventory positions IPi0
n and

IPe0
n satisfying

Ri
n < IPi0

n � Ri
n þQn, Re

n < IPe0
n � Re

n þQn: ð2:2Þ

It is easy to see that these conditions are always satisfied as soon as each
installation has ordered at least once.

Let us now make some initial observations. Assume continuous review or
periodic review with the same period for all sites. Consider first the installation
stock policy. An order by installation n>0 is always triggered by an order
from installation n�1. Consequently, if installation n orders, also installations
n�1, n�2, . . . , 1 must order at the same time. We say that the policy is nested.
Consider then the echelon stock policy. Assume that installation n�1 orders.
This means that the installation inventory position of installation n�1 will
increase with the amount ordered, but at the same time the installation
inventory position of installation n will decrease with the same amount. This
means that the echelon inventory position of installation n is unchanged. The
echelon inventory position will only decrease due to the final demand at
installation 1. We can conclude that the echelon stock policy is not necessarily
nested.

Let us now, for simplicity, consider continuous review and unit demand.
The results that we shall derive are, however, valid also for periodic review
and any type of demand. See Axsäter and Rosling (1993). We shall assume
that the installation stock reorder points are chosen such that IPo

n � Ri
n is an

integer multiple of Qn�1. All demands at installation n are for Qn�1, and all
replenishments are multiples of Qn�1 due to (2.1). Therefore this assumption
simply means that we will hit the reorder point exactly when ordering. An
alternative reorder point Ri

n þ y, where 1 � y<Qn�1, will trigger orders at
same times and inventory positions. The only difference is that the inventory
position will be y units below the reorder point when ordering, because the
reorder point is y units higher. Therefore the assumption does not mean any
lack of generality.
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Let us assume that an installation stock reorder point policy is given. We
shall prove

Proposition 1. A given installation stock reorder point policy can be replaced by
an equivalent echelon stock reorder point policy.

Proof. Consider installation n. Recall that the installation stock policy is
nested. Furthermore, due to our convention that IPi0

n � Ri
n is an integer

multiple of Qn�1, we hit the reorder point exactly when an order is triggered.
Assume that installation n orders. Just after the order we must have the
following echelon stock inventory position

IPe
n ¼

Xn
k¼1

ðRi
k þQkÞ: ð2:3Þ

Just before the order at installation n the echelon inventory position is Qn

units lower. It is then clear that we can replace the installation stock policy at
installation n by an echelon stock policy where

Re
n ¼ Ri

n þ
Xn�1
k¼1

ðRi
k þQkÞ: ð2:4Þ

This is true for any installation and completes the proof.

We shall illustrate how Proposition 1 can be applied by a simple example.

Example 1. Consider N¼ 2 installations and the batch quantities Q1¼ 10, and
Q2¼ 20. Note that (2.1) is satisfied. Assume that the installation stock reorder
points are Ri

1 ¼ 22, and Ri
2 ¼ 35, and that the initial installation stock

inventory positions are IPi0
1 ¼ 27, and IPi0

2 ¼ 50. We note that IPi0
2 � Ri

2 ¼

50� 35 ¼ 15 is not a multiple of Q1. According to our convention we there-
fore change to Ri

2 ¼ 30, which will give exactly the same control. We can then
apply (2.4) to obtain the equivalent echelon stock policy: Re

1 ¼ Ri
1 ¼ 22,

and Re
2 ¼ Ri

2 þ Ri
1 þQ1 ¼ 30þ 22þ 10 ¼ 62. Using that IPe0

1 ¼ 27, and
IPe0

2 ¼ 50þ 27 ¼ 77, it is easy to verify that the obtained echelon stock
reorder point policy will trigger the same orders as the installation stock
policy. Recall that the control does not change if we increase Ri

2 slightly, for
example from 30 to 35. However, if we change Re

2 from 62 to 67 the orders at
installation 2 will occur earlier and the policy is no longer nested.

Note that Proposition 1 concerns only the inventory positions. Conse-
quently, the result is not affected by the lead-times. Furthermore the result is
true for any type of demand, deterministic or stochastic.

Example 1 illustrates that there exist nonnested echelon stock reorder point
policies. Such policies can evidently not be replaced by equivalent installation
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stock policies. However, it is possible to prove: (Again we prove the result for
continuous review and unit demand, although the result is valid in a more
general setting.)

Proposition 2. A nested echelon stock reorder point policy can be replaced by an
equivalent installation stock reorder point policy.

Proof. Let a nested echelon stock policy be given. Note first that if we
use Ri

1 ¼ Re
1 orders at installation 1 will be triggered at the same times

as with the echelon stock policy. Consider an order at installation n>1
with the echelon stock policy. Due to the nestedness we have just after the
order:

IPi
n ¼ IPe

n � IPe
n�1 ¼ Re

n þQn � Re
n�1 �Qn�1: ð2:5Þ

Consequently, an installation stock policy with reorder points

Ri
1 ¼ Re

1, Ri
n ¼ Re

n � Re
n�1 �Qn�1 n > 1, ð2:6Þ

will trigger orders at the same times as the echelon stock policy. This com-
pletes the proof.

Let us now make some observations. Propositions 1–2 simply mean that the
class of installation stock (R,Q) policies is a subset of the larger class of
echelon stock (R,Q) policies. Consequently, given a certain performance
criterion, an optimization over the class of echelon stock reorder point
policies will always give a result that is at least as good as what can be
obtained by an optimization over all installation stock reorder point policies.
To illustrate that the difference can be significant let us consider a simple
example from Axsäter (2000a).

Example 2 We consider a serial system (Fig. 2) with N¼ 2 installations and
batch quantities Q1¼ 50 and Q2 ¼ 100. The final demand at installation 1 is
constant and continuous, 50 units per unit time. No backorders are allowed at
installation 1, and the holding costs at installation 1 are higher than the
holding costs at installation 2. The lead-time at installation 1 (excluding
possible delays at installation 2) is one time unit and at installation 2 it is
0.5 time units.

It is obvious that the optimal control of the system is illustrated in Fig. 3.
The delivery of a batch to installation 2 takes place just-in-time. Immediately
after the delivery 50 units are sent to installation 1. But this can never be
achieved by an installation stock (R,Q) policy because it is nested. Installation
2 can only order when installation 1 orders, i.e., at times 0, 1, 2, . . . , but we
would like to have the orders at installation 2 triggered at times 0.5, 2.5, . . . ,
because the lead-time is 0.5. There are then two possibilities if we are using an
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installation stock policy. Either we order too early or too late at installation 2.
If we order too late we need to raise the reorder point at installation 1 to avoid
backorders. Any way this will lead to additional costs. (See Axsäter and
Juntti, 1996.) The optimal control can be obtained by an echelon stock policy
with Re

1 ¼ 50 and Re
2 ¼ 75: Just before time 0.5 the installation inventory

position is zero at installation 2 and 75 at installation 1, since one batch is on
its way to installation 1.

If all Qn¼ 1, the considered (R,Q) policy degenerates to an S policy. But an
echelon stock S policy, as well as an installation stock S policy, is always
nested. As a consequence of Propositions 1 and 2, echelon stock S policies and
installation stock S policies that satisfy the condition

Se
n ¼

Xn
j¼1

Si
j ð2:7Þ

are equivalent. It can be shown that this equivalence carries over to gene-
ral multi-echelon inventory systems, for example to the distribution system
in Fig. 1.

Propositions 1 and 2 are true also for assembly systems but not for
distribution systems. For distribution systems the best echelon stock reorder
point policy may outperform the best installation stock reorder point policy,
but it may also be the other way around. See Axsäter and Juntti (1996) and
Axsäter (1997a) for details.

2.4 Other ordering policies

Reorder point policies based on the installation or echelon stock are most
common when dealing with a relatively stationary stochastic demand. In
production contexts where demand is lumpy, it is also common to use
Material Requirements Planning (MRP). When this type of ordering system is

Fig. 3. Inventory development in the optimal solution.
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used in distribution it is often denoted Distribution Requirements Planning
(DRP). MRP is normally used in a periodic review setting. Let us first
summarize the standard MRP procedure.

The planning is carried out in a rolling horizon setting and is based on the
following parameters:

T planning horizon, in periods,
Ln constant lead-time of installation n, in periods,
SSn safety stock at installation n,
Qn order quantity at installation n,
Dn,t external requirements at installation n in period t.

The external requirements are forecasts that normally differ from the
real stochastic demands. The real demand in a period will affect the
initial inventory situation in the next period. We get the production plan by a
level-by-level approach where we start with the installations, which are only
facing demand by the final customers. We say that these installations belong to
Level 0. A so-calledMaster Production Schedule gives the requirements at Level
0. A production order in a period is triggered if the installation stock minus the
lead-time requirements is not covering the safety stock. Using this we obtain a
schedule for all orders over the planning horizon, although only orders in
the present period are implemented at this stage. Next we consider Level 1, i.e.,
installations facing direct requirements from Level 0. These installations may
also face external demand. An order at Level 0 means a corresponding
requirement at Level 1 a lead-time earlier. After planning the production at
Level 1 we can go on with the remaining levels in the same way.

Material Requirements Planning is a quite general ordering system. Axsäter
and Rosling (1994) note the following dominance result for a general system
(see Section 1.2):

Proposition 3. For general inventory systems any installation stock (Ri
n, Qn)

policy is duplicated by an MRP system with Ln¼ 0 and SSn ¼ Ri
n þ 1.

To see that Proposition 3 is true note that when Ln¼ 0 there are no lead-
time requirements, and an order is triggered in a period if the installation
inventory position is less than the safety stock, i.e., if IPi

n < SSn ¼ Ri
n þ 1, or

equivalently, if IPi
n � Ri

n.
Although simple, Proposition 3 has some interesting implications, for

example concerning the concepts of ‘Push’ and ‘Pull’ policies. An installation
stock reorder point policy is generally regarded as a ‘Pull’ policy and
MRP as a ‘Push’ policy. It is quite often suggested that ‘Pull’ policies are
advantageous compared to ‘Push’ policies when dealing with multi-echelon
systems. The parameter setting in Proposition 3 is not ‘normal’. For example,
a system lead-time is, in general, chosen to be close to the average experienced
lead-time. Still the considered parameters are feasible and possible, and with
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these parameters the ‘Push’ policy will behave exactly as the ‘Pull’ policy. The
conclusion must be that the concepts of ‘Push’ and ‘Pull’ are misleading and
not sufficiently precise when comparing ordering policies.

It is also possible to show the following result concerning echelon stock
reorder point policies and MRP.

Proposition 4. For serial and assembly systems any echelon stock reorder point
policy can be replaced by an equivalent MRP system.

The proof of Proposition 5 and the corresponding choice of parameters in
the MRP system are much more complex in this case and we refer to Axsäter
and Rosling (1994) for details.

An ordering policy that is very similar to an installation stock (R, Q)
policy is a so-called KANBAN policy. When using a KANBAN policy at an
installation we have N containers, each containing Q units and with a card,
the KANBAN, at the bottom. When the container is empty the card is used
for ordering a new container from the upstream installation. A KANBAN
policy is therefore very similar to an installation stock policy with R¼
(N�1)Q. However, if there are already N orders outstanding, i.e., no stock on
hand, there are no KANBANs available and no more orders can be triggered.
A KANBAN policy can consequently be interpreted as an installation stock
reorder point policy with a constraint on the number of outstanding orders.
Such a constraint may sometimes be an advantage since it limits work-in-
process. See Veatch and Wein (1994), and Spearman, Woodruff and Hopp
(1990). Different multi-stage ordering policies with KANBAN type
constraints are compared by Axsäter and Rosling (1999).

As we have pointed out in Section 2.3 echelon stock reorder point policies
may sometimes outperform installation stock reorder point policies for
distribution systems (Fig. 1), but it may also be the other way around. A
conclusion may be that using an echelon stock policy is not the best way to
include information concerning the inventory situations at the retailers.
Policies that use this information in a different way have been evaluated by
Marklund (2002) and Cachon and Fisher (2000).

3 Serial systems

In Section 3.1 we consider an infinite horizon version of the well-known
Clark-Scarf model. Thereafter the generalization to batch-ordering policies is
discussed in Section 3.2.

3.1 The Clark-Scarf model

A well-known early result in multi-echelon inventory theory is the
decomposition technique by Clark and Scarf (1960). This was also the origin
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of the echelon-inventory measure. We shall describe this technique for a two-
level serial system (N¼ 2 in Fig. 2). Installation 1, which faces external
demand, replenishes from installation 2, and installation 2 replenishes from an
outside supplier with infinite supply. We shall show, that under certain
conditions, we can derive optimal echelon-stock order-up-to-levels sequen-
tially. We start with installation 1. Given the optimal base-stock policy for
installation 1, we can optimize the policy for installation 2 in a similar way.
Clark and Scarf (1960) considered a finite time horizon. We shall, however,
instead assume an infinite horizon as in Federgruen and Zipkin (1984b).

Consider a periodic review system where both installations use echelon
stock order-up-to-S policies. We assume that the lead-times (transportation
times) are integral numbers of periods. The continuous period demand at
installation 1 is assumed to be independent across periods. Demand that
cannot be met directly from stock is backordered.

It is assumed that all events take place at the beginning of a period in the
following order:

1. Installation 2 orders.
2. The period delivery from the outside supplier arrives at installation 2.
3. Installation 1 orders from installation 2.
4. The period delivery from installation 2 arrives at installation 1.
5. The stochastic period demand takes place at installation 1.
6. Evaluation of holding and shortage costs.

Let us introduce the following notation:

Lj lead-time (transportation time) for replenishments at installation j,
D(n) stochastic demand at installation 1 over n periods,
f nðvÞ probability density function for the demand at installation 1 over n

periods,
FnðvÞ cumulative distribution function for the demand at installation 1 over

n periods,
� average period demand at installation 1,
ILe

j stochastic echelon stock inventory level at installation j,
ILi

j stochastic installation stock inventory level at installation j,
ej echelon holding cost per unit and period at installation j, ej � 0,
hj holding cost per unit and period at installation j, h1¼ e1þ e2, h2¼ e2,
b1 backorder cost per unit and period,
Se
j echelon stock order-up-to position at installation j.

(Recall that ILi
1 ¼ ILe

1, i.e., for installation 1 there is no difference between
installation and echelon stock. Similarly Se

1 ¼ Si
1 ¼ installation stock order-

up-to position at installation 1.)
Our purpose is to minimize the total expected holding and backorder

costs. We consider the holding costs for stock on hand at the installations,
i.e., h1EðIL

i
1Þ
þ
þ h2EðIL

i
2Þ
þ. (We use the notation xþ ¼ max (x, 0), x�¼

max (�x, 0), and xþ�x�¼ x). An alternative is to use the echelon holding
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costs: e1EðIL
e
1Þ
þ
þ e2EðIL

e
2Þ
þ
¼ e1EðIL

i
1Þ
þ
þ e2ðEðIL

i
2Þ
þ
þ EðILi

1Þ
þ
þ �L1Þ ¼

h1EðIL
i
1Þ
þ
þ h2ðEðIL

i
2Þ
þ
þ �L1Þ. The constant difference, h2�L1, is the

holding costs for units in transportation from installation 2 to installation 1.
(Note that e1¼ h1�h2 can be interpreted as the holding cost on the value
added when going from installation 2 to installation 1.)

The echelon stock inventory position at installation 2 after ordering in
an arbitrary period, t, is always Se

2. Since the outside supplier has
infinite supply, all that is ordered is also immediately sent to installation 2.
Consider now the echelon stock inventory level at installation 2 in period
tþL2 just after the delivery, ILe

2. Using a standard argument we can
express ILe

2 as ILe
2 ¼ Se

2 �DðL2Þ, i.e., Se
2 minus the demand during the

L periods t, tþ 1, . . . , tþL2�1. The inventory position of installation 1 is
raised to Se

1 when ordering. It is possible, though, that a part of the order has
to be backordered at installation 2 due to insufficient supply. Let us denote

Ŝ1 realized inventory position after ordering.

We obtain the installation stock inventory level at installation 2 just after the
order from installation 1 as ILi

2 ¼ ILe
2 � Se

1 ¼ Se
2 �DðL2Þ � Se

1. This is then the
installation inventory level at installation 2 during the whole period.

Next we consider installation 1. After ordering in period tþL2, the inventory
position is Se

1, and the installation stock backorder level at installation 2 is
ðILi

2Þ
�
¼ ðSe

2 �DðL2Þ � Se
1Þ
�. The difference, i.e., what is on its way to or has

already arrived at installation 1, is the realized inventory position

ŜS1 ¼ Se
1 � ðS

e
2 �DðL2Þ � Se

1Þ
�
¼ min ðSe

1,S
e
2 �DðL2ÞÞ: ð3:1Þ

The average holding costs per period at installation 2 can be expressed as

C2ðS
e
1,S

e
2Þ ¼ h2EðS

e
2 �DðL2Þ � Se

1Þ
þ

¼ h2ðS
e
2 � �

0
2 � Se

1Þ þ h2EðS
e
2 �DðL2Þ � Se

1Þ
�

¼ h2ðS
e
2 � �

0
2Þ � h2EðŜS1Þ, ð3:2Þ

where �02¼L2�. The inventory level at installation 1 after the demand in
period tþL1þL2, ILi

1(tþL1þL2) is obtained as ŜS1 minus the demands
in periods tþL2, tþL2þ 1, . . . , tþL2þL1, i.e., the demand during L1þ 1
periods, D(L1þ 1). Let �001¼ (L1þ 1)�. Note that ŜS1 is independent of this
demand. The average period costs at installation 1 are now obtained as

C1ðS
e
1,S

e
2Þ ¼ h1EðŜS1 �DðL1 þ 1ÞÞþ þ b1EðŜS1 �DðL1 þ 1ÞÞ�

¼ h1ðEðŜS1Þ � �
00
1Þ þ ðh1 þ b1ÞEðŜS1 �DðL1 þ 1ÞÞ�: ð3:3Þ
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Let us now reallocate the costs slightly. We move the last term in
(3.2), �h2EðŜS1Þ to stage 1 since it depends exclusively on ŜS1, and obtain

~CC2ðS
e
2Þ ¼ h2ðS

e
2 � �

0
2Þ, ð3:4Þ

and

~CC1ðS
e
1,S

e
2Þ ¼ e1EðŜS1Þ � h1�

00
1 þ ðh1 þ b1ÞEðŜS1 �DðL1 þ 1ÞÞ�: ð3:5Þ

This reallocation does not, of course, affect the total costs. Note now that
(3.4) is independent of Se

1. The costs (3.5) at level 1 depend on Se
2 through ŜS1,

which is a stochastic variable, but it turns out that the optimal Se
1 is

independent of Se
2. To see this interesting fact, let us for a moment forget

that the realized inventory position ŜS1 is stochastic and depends on Se
1 and Se

2.
We simply assume that we can choose any value of ŜS1. This means that we
replace (3.5) by

ĈC1ðŜS1Þ ¼ e1ŜS1 � h1�
00
1 þ ðh1 þ b1ÞEððŜS1 �DðL1 þ 1ÞÞ�

¼ e1ŜS1 � h1�
00
1 þ ðh1 þ b1Þ

Z 1
ŜS1

ðu� ŜS1Þf
L1þ1ðuÞ du: ð3:6Þ

It is easy to verify that (3.6) is convex and that we can determine the best ŜS1

from the first order newsboy type condition

FL1þ1ðŜS*1 Þ ¼
h2 þ b1

h1 þ b1
: ð3:7Þ

Consider now (3.1). If Se
2 �DðL2Þ � ŜS*1 we obtain the optimal solution if

we have Se
1 ¼ ŜS*1 . But if Se

2 �DðL2Þ < ŜS*1 the best possible value of ŜS1 is
ŜS1¼Se

2 �DðL2Þ due to the convexity of (3.6). Still Se
1 ¼ ŜS*1 gives the optimal

solution. We can consequently conclude that Se*
1 ¼ ŜS*1 is the optimal order-

up-to-level at installation 1, and that this solution is easy to obtain from (3.7).
Since this is true for any Se

2, it is true for any policy at installation 2, also for a
batch-ordering policy.

Note that if e1¼ 0, or equivalently, if h1¼ h2, (3.7) implies that Se*
1 ¼

ŜS*1 !1. This means that installation 2 will never carry any stock. This is
because in a serial system the whole consumption takes place at installation 1.
Consequently, if there is no difference in holding costs, we can just as well
move all stock to installation 1 as soon as possible. In a distribution
system this is no longer the case. It can be advantageous to keep stock at an
upstream installation because it is then still possible to allocate the stock to
alternative lower level sites.
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We shall now determine the optimal Se
2. We consider the total costs

assuming that we use the optimal Se*
1 , but since these costs only depend on Se

2

we denote the costs ĈC2ðS
e
2Þ. We obtain the costs from (3.1), (3.4), and (3.6).

Since ŜS1¼Se*
1 if D(L2) � Se

2 � Se*
1 , and ŜS1 ¼ Se

2 �DðL2Þ otherwise, we get

ĈC2ðS
e
2Þ ¼ h2ðS

e
2 � �

0
2Þ þ ĈC1ðS

e*
1 Þ þ

Z 1
Se
2
�Se*

1

ĈC1ðS
e
2 � uÞ � ĈC1ðS

e*
1 Þ

h i
f L2ðuÞdu:

ð3:8Þ

The last term in (3.8) can be interpreted as the shortage costs at installation
2 induced by its inability to deliver on time to installation 1. It is easy to verify
that ĈC2ðS

e
2Þ is convex, which means that we only have to look for a local

minimum when determining Se*
2 . Since there are no ordering costs the

obtained policy is optimal.
The described technique is easy to generalize to more than two echelons.

The additional costs at installation 2 due to insufficient supply are then used
as the shortage costs at installation 3, etc. Note that the considered approach
means that, starting with the most downstream installation, we can optimize
one order-up-to inventory position at a time, i.e., each optimization is for a
single variable.

Clark and Scarf introduced the echelon stock concept in their original
model. We have also assumed echelon stock policies since this simplifies the
derivation. Otherwise this is not important, though. As shown in Section 2.3
we can replace echelon stock S policies by equivalent installation stock
S policies. The corresponding optimal installation stock inventory
positions are Si*

2 ¼ Se*
2 � Se*

1 , and Si*
1 ¼ Se*

1 . However, if we start with initial
echelon stock inventory positions that are above the optimal order-up-to
positions, the echelon stock policy is still optimal while the installation stock
policy may fail.

For two levels and normally distributed demand the exact solution is
relatively easy to obtain, see Federgruen and Zipkin (1984a,b). However, in a
general case the computations can be very time consuming. Van Houtum and
Zijm (1991) have developed approximate techniques. One approximation is
exact for demand distributions of mixed Erlang type. Another approximation
uses a two-moment fit suggested in Seidel and de Kok (1990). A different type
of approximation based on separate single-stage problems has been suggested
by Shang and Song (2001). It is easy to generalize to a batch-ordering policy at
the most upstream installation (installation 2 in our case). See Section 5.1. It
can also be shown that the Clark-Scarf approach can be used for assembly
systems. Rosling (1989) has demonstrated that an assembly system can be
replaced by an equivalent serial system when carrying out the computations.
Chen and Song (2001) have generalized the Clark-Scarf model to demand
processes where the demands in different time periods may be correlated.
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Svoronos and Zipkin (1991) have demonstrated how exogenous stochastic
lead-times can be handled.

3.2 Batch-ordering policies

If all installations order in batches, i.e., not only the most upstream
installation, the considered model becomes more complex. Still it is possible to
handle also batch-ordering policies very efficiently for serial systems.

Assume that all orders at an installation have to be multiples of a given
batch quantity. Chen (2000) has shown that under quite general conditions it
is then optimal to apply a multi-stage echelon stock (R,Q) policy when the
objective is to minimize holding and backorder costs. Recall from Section 2.3
that the class of echelon stock (R,Q) policies contains the class of installation
stock (R,Q) policies as a subset. The best installation stock (R,Q) policy is, in
general, not optimal.

Chen and Zheng (1994) have shown how echelon stock (R,Q) policies can
be evaluated efficiently. They provide a recursive procedure for determination
of the exact probability distributions of the echelon stock inventory levels.
This procedure starts at the most upstream installation and proceeds down-
stream, i.e., not in the same direction as when applying the Clark-Scarf
technique. Other approaches for exact policy evaluation in serial systems with
batch-ordering have been presented in Axsäter (1993a,b).

For given batch quantities an optimization of the echelon stock reorder
points can be carried out sequentially like the optimization of the order-up-to
levels in Section 3.1, see Chen (2000).

4 Order-up-to-S policies in distribution systems

In Section 4.1 we show how the Clark-Scarf approach can be used also for
approximate optimization of distribution inventory systems. In Sections 4.2,
4.3 and 4.4 we consider models with continuous review and Poisson demand.
The classical METRIC approximation is presented in Section 4.2, and two
exact techniques in Sections 4.3 and 4.4.

4.1 The Clark-Scarf approach for distribution systems

We shall now consider the distribution system in Fig. 1 and demonstrate
how the approach in Section 3.1 can be used as an approximation by using a
so-called ‘balance’ assumption. This technique was sketched in the original
paper by Clark and Scarf (1960). Eppen and Schrage (1981) used the approach
in a model with identical retailers and normally distributed demand where the
central warehouse was not allowed to carry any stock. Federgruen and Zipkin
(1984a,c) extended the Eppen and Schrage model in a number of ways
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including non-identical retailers and stock at the warehouse. See also
Federgruen (1993) and Diks and de Kok (1998).

Let us introduce the following notation:

N number of retailers,
L0 lead-time (integral number of periods) for an order

generated by the warehouse,
Lj transportation time (integral number of periods) for a delivery from

the warehouse to retailer j,
Dj(n) stochastic demand at installation j over n periods,
f nj ðvÞ probability density function for the demand at retailer j over n periods,
Fn
j ðvÞ cumulative distribution function for the demand at retailer j over n

periods,
f n0 ðvÞ probability density function for the total system demand over n periods

(the convolution of f nj ðvÞ for j ¼ 1, 2, . . ., N),
�j average demand per period at retailer j,
ej echelon holding cost per unit and period at installation j, ej� 0,
hj holding cost per unit and period at installation j, i.e., h0¼ e0, and

hj¼ e0þ ej for j>0,
bj backorder cost per unit and period at retailer j.
Se
j echelon stock order-up-to position at installation j.

A major difference compared to Section 3.1 is that we now have a number of
parallel installations at the downstream level. We still assume periodic review
and that all events take place in the same order as in Section 3.1. Again we
consider an arbitrary period t. The echelon stock level at the warehouse at time
tþL0 just after the delivery from thewarehouse is obtained asSe

0 minus the total
system demand during L0 periods, D0(L0). Since we have N parallel retailers it
is now more complicated to allocate stock to the retailers. Assume that

Ŝj realized inventory position at retailer j after ordering in period tþL0.

We consider the costs at retailer j in period tþL0þLj. Using the same cost
allocation technique as in Section 3.1, we obtain the costs at the warehouse
and at retailer j in complete analogy with (3.4) and (3.6).

~CC0ðS
e
0Þ ¼ h0ðS

e
0 � �

0
0Þ, ð4:1Þ

and

ĈCjðŜSjÞ ¼ ejŜSj � hj�
00
j þ ðhj þ bjÞEðŜSj �DjðLj þ 1ÞÞ�: ð4:2Þ

In (4.1) �00 ¼ L0

PN
j¼1 �j, and in (4.2) �00j ¼ ðLj þ 1Þ�j. We can also deter-

mine the value of ŜSj that minimizes (4.2) in analogy with (3.7)

F
Ljþ1
j ðŜS*j Þ ¼

h0 þ bj

hj þ bj
: ð4:3Þ
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It may now seem reasonable to allocate ŜS*j to each retailer provided that the
sum of all ŜS*j does not exceed the echelon stock inventory level at the
warehouse. This is also what we will do, but it is important to understand that
this is just an approximation.

Assume, for example, that we have only two identical retailers and that we
in a certain period are able to allocate ŜS*1 ¼ ŜS*2 to each of them. After this
allocation we get a large period demand at retailer 2 and no demand at all at
retailer 1. This means that we would like to allocate up to ŜS*2 at retailer 2 in the
next period. But this may not be possible due to insufficient supply at the
warehouse. In that case we will get unequal inventory positions at the two
retailers. However, it is rather obvious that it would be better to distribute the
inventory positions equally. This might have been possible if we had saved
some more stock at the warehouse in the preceding period, i.e., if we had not
allocated ŜS*1 ¼ ŜS*2 to both retailers. Due to this ‘balance’ problem the decision
rule that was optimal in the serial case is now only approximate.

The considered approximation is often denoted the ‘balance’ approxima-
tion since it means that we disregard the possibility of unbalanced retailer
inventory positions. Another interpretation is that we allow also negative
allocations from the warehouse to the retailers. An implication is that in a
two-echelon system, given this approximation and if the holding costs are the
same, then there is no reason to keep stock at the warehouse.

Let us now accept the ‘balance’ approximation and also take into account
that we cannot always allocate ŜS*j to each retailer. Assume that the available
amount is v � Se*

r ¼
PN

j¼1 ŜS*j . Given that negative allocations are possible it is
‘optimal’ to solve the following myopic allocation problem:

ĈCrðvÞ ¼ minPN

j¼1
ŜSj�v

XN
j¼1

ĈCjðŜSjÞ, ð4:4Þ

and ĈCrðvÞ provides the corresponding retailer costs. If we relax the constraintPN
j¼1 ŜSj � v by a Lagrange multiplier l � 0, the solution of (4.4) can be

obtained from

FLjþ1
j ðŜS*j Þ ¼

h0 þ bj � �

hj þ bj
, ð4:5Þ

which is a slight variation of (4.3).
Finally we obtain Se*

0 by minimizing (Compare to (3.8).)

ĈC0ðS
e
0Þ ¼ h0ðS

e
0 � �

0
0Þ þ ĈCrðS

e*
r Þ þ

Z 1
Se
0
�Se*

r

ĈCrðS
e
0 � uÞ � ĈCrðS

e*
r Þ

h i
f L0

0 ðuÞdu:

ð4:6Þ
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The ‘balance’ assumption means that we assume that the warehouse
stock can be used more efficiently than what is possible in reality. Therefore
ĈC0ðS

e*
0 Þ is a lower bound for the real costs, and Se*

0 is lower than the optimal
Se
0. When implementing the solution we cannot allocate negative quantities to

the retailers. Therefore the actual allocations are determined by solving a
modified version of the myopic allocation problem (4.4). Let xj denote the
inventory position at retailer j just before the allocation.

ĈC0rðvÞ ¼ minPN

j¼1
ŜSj�v

ŜSj�xj

XN
j¼1

ĈCjðŜSjÞ: ð4:7Þ

Note that ĈC0rðvÞ � ĈCrðvÞ.
The ‘balance’ assumption has been used extensively in the inventory

literature and has been shown to produce solutions of very good quality in
many different situations, see for example Eppen and Schrage (1981),
Federgruen and Zipkin (1984a,b,c), de Kok (1996), van der Federgruen
(1993), Van Houtum, Inderfur and Zijm (1996), Verrijdt and de Heijden, Diks
and de Kok (1997), Diks and de Kok (1998, 1999) and references therein. Still
the ‘balance’ assumption may be less appropriate in situations with large
differences between the retailers in terms of service requirements and demand
characteristics. Other allocation approaches that are not based on the
‘balance’ assumption have been suggested by e.g., Erkip (1984), Jackson
(1988), Jackson and Muckstadt (1989), McGavin, Schwarz and Ward (1993),
Graves (1996) and Axsäter, Marklund and Silver (2002).

4.2 The METRIC approach

We shall now turn to another early and very well known technique
of modeling a distribution inventory system with stochastic demand. Also
this technique is approximate. In contrast to Section 4.1 we consider
continuous review and independent discrete Poisson demand processes at
the retailers. Due to the one-for-one ordering policies the demand at
the warehouse is also Poisson. Warehouse backorders are filled on a first
come-first serve basis. We shall choose to express the solution in
terms of installation stock order-up-to S policies, or equivalently (S�1, S)
policies, which is more common in connection with continuous review and
Poisson demand. Our assumptions of Poisson demand, continuous review,
and one-for-one replenishments are often reasonable for items with relatively
low demand and high holding costs. Such items are, for example, common
among spare parts. The original contribution was presented by Sherbrooke
(1968).
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We introduce the following additional notation:

lj Poisson demand intensity at retailer j,
l0

PN
j¼1 lj ¼Poisson demand intensity at the warehouse,

Si
j installation stock order-up-to position at installation j,

ILi
j stochastic installation stock inventory level at installation j in steady

state,
W0 stochastic delay at the warehouse due to stock-outs in steady state.

When applying the METRIC approximation we start with the warehouse.
It is easy to determine the distribution of the warehouse inventory
level exactly. The inventory position is always Si

0. We use the standard
approach and consider an arbitrary time, t. At time tþL0, all that is
included in the inventory position at time t has reached the warehouse, and
we can express the inventory level as Si

0 minus the demand in the interval
(t, tþL0]

ILi
0ðtþ L0Þ ¼ Si

0 �D0ðL0Þ: ð4:8Þ

The demand in (t, tþL0] has a Poisson distribution with mean l0L0, so we
obtain the exact steady state distribution as

PðILi
0 ¼ kÞ ¼ PðD0ðL0Þ ¼ Si

0 � kÞ ¼
ð�0L0Þ

Si
0
�k

ðSi
0 � kÞ!

e��0L0 , k � Si
0:

ð4:9Þ

The average inventory on hand can now be determined as

EðILi
0Þ
þ
¼
XSi

0

k¼1

k � PðILi
0 ¼ kÞ, ð4:10Þ

and the average number of backorders as

EðILi
0Þ
�
¼ EðILi

0Þ
þ
� EðILi

0Þ ¼ EðILi
0Þ
þ
� ðSi

0 � �0L0Þ: ð4:11Þ

The warehouse can be interpreted as an M/D/1 queuing system, where the
backorders are the waiting customers. This means that we can get the average
delay at the warehouse according to Little’s formula

EðW0Þ ¼ EðILi
0Þ
�=�0: ð4:12Þ
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Because of the Poisson demand at the warehouse, and the first come-first
served assumption, the average delay is the same for all retailers.

Next we consider retailer j. The retailer lead-time is stochastic due to the
delays at the warehouse. However, we know the average lead-time Lj, i.e., the
transportation time plus the average delay at the warehouse

Lj ¼ Lj þ EðW0Þ: ð4:13Þ

The METRIC approximation simply means that the real stochastic lead-
time is replaced by its mean as given by (4.13). Given this approximation, we
have known constant lead-times for the retailers and can determine the
distribution of the retailer inventory levels precisely as we did for the
warehouse in (4.9).

PðILi
j ¼ kÞ ¼ PðDjðLjÞ ¼ Si

j � kÞ ¼
ð�jLjÞ

Si
j�k

ðSi
j � kÞ!

e��jLj , k � Si
j : ð4:14Þ

Thus the approximation enables us to decompose the problem so that all
installations can be handled as single-echelon systems. Given (4.14) it is easy
to determine the average stock on hand EðILi

jÞ
þ and the average number of

backorders EðILi
jÞ
� for each retailer in complete analogy with (4.10) and

(4.11). Consequently, we can also obtain the average holding and shortage
costs. Let

C0ðS
i
0Þ ¼ h0EðIL

i
0Þ
þ average holding costs per time unit at

the warehouse,
CjðS

i
0,S

i
jÞ ¼ hjEðIL

i
jÞ
þ
þ bjEðIL

i
jÞ
� average holding and backorder costs per

time unit at retailer,
C¼C0ðS

i
0Þ þ

PN
j¼1 CjðS

i
0,S

i
jÞ average system costs per time unit.

The holding costs at the warehouse are not affected by the retailer inven-
tory positions, and the costs at retailer j depend only on Si

0 and Si
j .

It can be shown that the optimal order-up-to-levels must be nonnegative.
Furthermore it is easy to show that CjðS

i
0,S

i
jÞ is convex in Si

j . It is also easy to
find lower and upper bounds for the optimal Si

j . A lower bound, Sil
j , can be

found by optimizing Si
j for the shortest possible deterministic lead-time, L,

and an upper bound, Siu
j , by optimizing Si

j for the longest possible lead-time,
L0þLj.

Together this means that, for a given Si
0, we can find the corresponding

optimal Si*
j ðS

i
0Þby a simple local search where, starting with Si

j ¼Sil
j , we

successively increase Si
j by one unit at a time until we find a local minimum

of CjðS
i
0,S

i
jÞ. Note that this optimization can be done separately for

each retailer. The optimization of C with respect to Si
0 is not that simple,
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though, since

CðSi
0Þ ¼ C0ðS

i
0Þ þ

XN
j¼1

CjðS
i
0,S

i*
j ðS

i
0ÞÞ, ð4:15Þ

is not necessarily convex in Si
0. We can, however, find a lower bound,

Sil
0 , by optimizing with respect to Si

0 for Si
j ¼ Siu

j , and similarly, an upper
bound, Siu

0 , by optimizing Si
0 for Si

j ¼ Sil
j . To find the optimal Si

0 we
then finally need to evaluate the costs (4.15) for all values of Si

0 within
these bounds.

The METRIC approximation has many advantages. First of all it is simple
and computationally efficient. It is also easy to generalize to more than two
echelons and to compound Poisson demand. At this stage it seems to be the
multi-echelon technique that has been applied most widely in practice. There
are especially many military applications involving high-value repairable
items. The original METRIC approach has also stimulated the development
of extensions in various directions. METRIC related approaches to batch-
ordering policies are treated in Section 5.2.

Another extension by Muckstadt (1973), MOD-METRIC, concerns
hierarchical or indentured parts structures. Consider, for example, an
assembly together with a number of modules that are used when repairing the
assembly. It is assumed that the assembly is repaired by exchanging exactly
one of the modules. Using the MOD-METRIC technique we can include
waiting times for modules in the repair time for the assembly. This means that
we can analyze how different inventory policies for the assembly and the
modules will affect the availability for the assembly.

There are also several papers dealing with lateral transshipments in
inventory systems, which have been inspired by the METRIC framework [See
e.g., Lee (1987), Axsäter (1990b), Sherbrooke (1992a), Alfredsson and Verrijdt
(1999) and Grahovac and Chakravarty (2001)].

4.3 Disaggregation of warehouse backorders

We shall in this and the following section consider the same problem as in
Section 4.2 and demonstrate two ways to get the exact solution. We are still
assuming a first come-first serve policy at the warehouse, so an optimal policy
is only optimal under this constraint. The first derivation of exact steady state
distributions was carried out by Simon (1971). Our derivation in this section is
essentially according to Graves (1985).

From (4.9) we have for k>0

PððILi
0Þ
�
¼ kÞ ¼ PðILi

0 ¼ �kÞ ¼ PðD0ðL0Þ ¼ Si
0 þ kÞ

¼
ð�0L0Þ

Si
0
þk

ðSi
0 þ kÞ!

e��0L0 : ð4:16Þ
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Let

Bj number of backorders from retailer j at the warehouse in steady state,
stochastic variable.

It is clear that
PN

j¼1 Bj ¼ ðIL
i
0Þ
�. When a new backorder occurs, the

probability that it emanates from retailer j is always lj/l0 due to the Poisson
demand. Consequently, the conditional distribution of Bj for a given ðILi

0Þ
� is

binomial and we are able to disaggregate the warehouse backorders in the
following way:

PðBj ¼ nÞ ¼
X1
k¼n

PððILi
0Þ
�
¼ kÞ

k

n

� �
�j
�0

� �n �0 � �j
�0

� �k�n

, n > 0,

PðBj ¼ 0Þ ¼ 1�
X1
n¼1

PðBj ¼ nÞ: ð4:17Þ

For the retailers we can now use an approach that is very similar to the
standard approach for single-echelon inventory systems. Consider retailer j at
some arbitrary time t when the system is in steady state. Si

j � Bj units are on
their way to, or already at retailer j. At time tþLj all these units have reached
retailer j, while ordered units backordered at the warehouse at time t and all
orders that have been triggered after time t have still not reached the retailer.
Consequently, we have

ILi
jðtþ LjÞ ¼ Si

j � Bj �DjðLjÞ, ð4:18Þ

or in other words, to get the inventory level at time tþLj we subtract the
demand at retailer j in the interval (t, tþLj] from the amount on route to, or
already at, retailer j at time t. Note that the demand Dj (Lj) is independent of
Bj. We obtain the exact distribution of the inventory level at retailer j as

PðILi
j ¼ nÞ ¼ PðBj þDjðLjÞ ¼ Si

j � nÞ

¼
XSi
j�n

k¼0

PðBj ¼ kÞ
ð�jLjÞ

Si
j�n�k

ðSi
j � n� kÞ!

e��jLj , n � Si
j : ð4:19Þ

Given the distributions of the inventory levels we can evaluate the costs and
optimize the policy like in Section 4.2.

Graves (1985) also suggests an approximate procedure that is more accu-
rate than the METRIC approximation. He determines the mean and variance
of the number of outstanding orders at a retailer. Using these two parameters
he fits a negative binomial distribution. A related periodic review technique is
presented in Graves (1996).
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4.4 A recursive procedure

We shall now describe an alternative procedure, which also provides an
exact solution of the problem considered in the two previous sections. It is a
special case of a more general technique for installation stock (R,Q) policies
and independent compound Poisson processes at the retailers, see Axsäter
(2000b).

Consider retailer j and the stochastic lead-time for an ordered unit. Let

J demand at retailer j during the retailer lead-time, stochastic variable.

The stochastic lead-time for an ordered unit is independent of the stochastic
demand after the order is triggered. Furthermore, orders cannot cross in time
due to the first come-first served assumption. This means that we can use the
relationship

PðILi
j ¼ nÞ ¼ PðJ ¼ Si

j � nÞ: ð4:20Þ

Consequently, it only remains to determine the distribution of J.
Recall that each system demand triggers a retailer order for a unit that, in

turn, triggers a warehouse order for a unit. Consider a warehouse order for a
unit at some time t. Because of the first come-first served assumption, the
ordered unit will fill the Si

0-th retailer order for a unit at the warehouse after
the order. (If Si

0 ¼ 0 the ordered unit will fill the retailer order that triggered
the warehouse order.) This means that the considered ordered unit will be
assigned to the retailer order triggered by the Si

0-th system demand after the
warehouse order. Assume, for example, that Si

0¼ 2 and consider a warehouse
order. In addition to the ordered unit, there is then one more previously
ordered unit that has not yet been assigned to a retailer. This other unit is
either in transportation to the warehouse or in stock at the warehouse. The
next system demand will trigger an order for this other unit. The second
system demand will trigger a retailer order for the considered unit that has just
been ordered by the warehouse. We are interested in the lead-time demand for
an order from retailer j. Therefore we consider a situation where the Si

0-th
system demand occurs at retailer j. This system demand triggers the retailer
order that we are studying.

The Si
0-th system demand after time t, when the warehouse order is

triggered, can occur either before or after the ordered unit has reached the
warehouse. If the ordered unit has reached the warehouse the retailer lead-
time is Lj, otherwise it is longer. Let

uðSi
0, kÞ P(Si

0-th system demand occurs before the order has reached the
warehouse and J � k),

v(Si
0; k) P(Si

0-th system demand occurs after the order has reached the
warehouse and J � k).
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We can express the distribution function for J as

PðJ � kÞ ¼ uðSi
0, kÞ þ vðSi

0, kÞ ð4:21Þ

Let us now derive the probabilities u(Si
0, k) and v(Si

0, k). It is easy to
determine the probability v(Si

0, k). The corresponding event occurs if there are
first at most Si

0 � 1 system demands during the time L0, and later at most k
demands at retailer j during the time Lj. These probabilities are independent.
Consequently,

vðSi
0, kÞ ¼

XSi
0
�1

n¼0

ð�0L0Þ
n

n!
e��0L0

0
@

1
A Xk

n¼0

ð�jLjÞ
n

n!
e��jLj

 !
: ð4:22Þ

Next we show how to derive u(Si
0, k) recursively. We shall divide the event

that the Si
0-th demand arrives before the time tþL0 and J � k into three

disjoint subevents. In all three cases the unit ordered by retailer j will arrive at
the retailer at time tþL0þLj, i.e., it will not stop at the warehouse. One
possibility is that there are exactly Si

0 system demands during L0, and at most
k demands at retailer j during the time Lj. This probability is given by the
first term in (4.23) below. The second possibility is that there are at least
Si
0 þ 1 system demands during L0, that the (Si

0 þ 1)-th system demand is
also at retailer j, and that there are at most k�1 additional demands at
retailer j before the time tþL0þLj. The probability for this event is
(lj/l0)u(Si

0 þ 1, k�1). The third possibility is that there are at least Si
0 þ 1

system demands during L0, the (S
i
0 þ 1)-th system demand is not at retailer j,

and that there are at most k additional demands at retailer j before time
tþL0þLj. This probability is obtained as ((l0�lj)/l0)u(Si

0 þ 1, k).
Consequently, we have for k>0

uðSi
0, kÞ ¼

ð�0L0Þ
Si
0

Si
0!

e��0L0

 ! Xk
n¼0

ð�jLjÞ
n

n!
e��jLj

 !

þ
�j
�0

uðSi
0 þ 1, k� 1Þ þ

�0 � �j
�0

uðSi
0 þ 1, kÞ: ð4:23Þ

For k¼ 0 (4.23) degenerates to

uðSi
0, 0Þ ¼

ð�0L0Þ
Si
0

Si
0!

e��0L0

 !
e��jLj þ

�0 � �j
�0

uðSi
0 þ 1, 0Þ: ð4:24Þ

550 S. Axsäter



Note that uðSi
0, kÞ ! 0 as Si

0!1 for any value of k. We can therefore first
set u(S0 þ 1, k)¼ 0 for some large S0 and all values of k. Thereafter we can first
apply (4.24) for k¼ 0, and then (4.23) for k>0, recursively for Si

0¼S0,
S0�1,. . ., 0. Since the coefficients lj/l0 and (l0�lj)/l0 in (4.23) and (4.24) are
both strictly smaller than 1, the suggested numerical procedure is always
stable.

Given u(Si
0, k) and v(Si

0, k), we can determine the distribution of the
inventory level from (4.20) and (4.21). We can then optimize the policy as in
Section 4.2.

The general idea in the described procedure is to keep track of each supply
unit as it moves through the system. A related iterative procedure for the costs
in case of Poisson demand and (S�1,S) policies is given in Axsäter (1990a).
Forsberg (1995) and Axsäter and Zhang (1996) generalize this procedure to
compound Poisson demand. Axsäter (1993c) deals with a corresponding
periodic review model.

5 Batch-ordering in distribution systems

Some basic results for batch-ordering reorder point policies in distribution
systems are presented in Section 5.1. Thereafter we discuss in Sections 5.2, 5.3
and 5.4 how different approaches for one-for-one ordering policies can be
extended to batch-ordering policies.

5.1 Basic facts

In Section 4 we have described different techniques for evaluation and
optimization of order-up-to-S policies in distribution inventory systems.
Batch-ordering policies are, in general, much more difficult to evaluate. There
are some exceptions, though. One exception is batch-ordering in serial
systems, see Section 3.2. Another is when we only have batches at the most
upstream level. Consider again the distribution system in Fig. 1. Assume that
all retailers apply S-policies. This means that their inventory positions are kept
constant, and there is no difference between an echelon stock (R,Q) policy and
an installation stock (R,Q) policy at the warehouse. Although we shall
consider installation stock policies, the following is therefore also true for
echelon stock policies.

Consider first the case when also the warehouse applies an installation
stock S policy. Let

CðSi
0,S

i
1, . . . ,S

i
NÞ total system costs per time unit for a given installation

stock S policy.

Assume that these costs can be evaluated for different policies using the
techniques in Section 4. Consider then instead an (Ri

0,Q0) policy at the
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warehouse. For discrete integral demand this means that the warehouse
inventory position is uniform on [Ri

0 þ 1,Ri
0 þ 2, . . . ,Ri

0 þQ0] and we obtain
the total costs for the (Ri

0,Q0) policy at the warehouse by simply averaging
over these inventory positions.

CðRi
0,Q0,S

i
1, . . . ,S

i
NÞ ¼

1

Q0

XRi
0
þQ0

k¼Ri
0
þ1

Cðk,Si
1, . . . ,S

i
NÞ: ð5:1Þ

Furthermore, as we have discussed in Section 2.1 we can also force the
system to order in ‘batches’ while still using a simple S policy if we use
periodic review with a suitably long review period. A longer review period will
mean that we need more safety stock though.

Although multi-echelon inventory systems with general batch-ordering
policies are difficult to analyze, there are some important properties of single-
echelon inventory systems that carry over to the multi-echelon case. One such
property concerns the uniform distribution of the inventory position when
using (R,Q) policies. Consider a distribution system with discrete demand
where all installations apply installation stock (R,Q) policies. Let q be the
largest common factor of all batch quantities Q0, Q1,. . ., QN. It is evident that
all replenishments and all demands at the warehouse are multiples of
q. Therefore it is natural to assume that also the warehouse reorder point Ri

0

as well as the initial inventory position at the warehouse are multiples of q.
Let us furthermore assume that not all customer demands are multiples
of some unit larger than one. Under these assumptions we have (see e.g.,
Axsäter, 1998).

Proposition 5 In steady state the installation stock inventory positions are
independent. The warehouse installation stock inventory position is uniform on
[Ri

0 þ q,Ri
0 þ 2q, . . . ,Ri

0 þQ0], and the retailer installation stock inventory
positions are uniform on [Ri

j þ 1,Ri
j þ 2, . . . ,Ri

j þQj].

In case of echelon stock (R,Q) policies, all installations have their echelon
inventory positions uniformly distributed on [Re

j þ 1,Re
j þ 2, . . . ,Re

j þQj],
i.e., also the warehouse. The retailer inventory positions are still independent,
but the warehouse echelon stock inventory position is correlated to the retailer
inventory positions. The coupling will depend on the initial stock at the
warehouse (see Axsäter (1997b) and Chen and Zheng (1997)).

Recall that when dealing with batch-ordering policies a standard approach
is to determine the batch quantities from a deterministic model in an initial
step. The remaining main difficulty is the policy evaluation. Given a suitable
evaluation method we can normally optimize the reorder points in the same
way as the order-up-to inventory positions when dealing with S policies,
see Section 4.2.
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In the rest of this section we shall give an overview of how different
researchers have approached the policy evaluation problem for distribution
systems with general batch-ordering policies. To avoid getting involved in too
many technical details we shall only sketch the basic ideas behind different
approaches.

5.2 METRIC type approximations

A common approach when evaluating batch-ordering policies in
distribution systems is to use decomposition techniques, which are similar in
spirit to the METRIC approach for one-for-one ordering policies that we
dealt with in Section 4.2. Recall that the METRIC approach means that
we evaluate the average delay for retailer orders due to shortages at the
warehouse. This average delay is added to the retailer transportation times to
get exact average lead-times for the retailers. When evaluating the costs at the
retailers, these averages are, as an approximation, used instead of the real
stochastic lead-times.

When dealing with different batch-ordering retailers it is still easy to
determine the average backorder level at the warehouse, and to obtain the
average delay at the warehouse by applying Little’s formula. This delay,
however, is an average over all retailers. A problem in connection with this
approach is that the average delays may vary substantially between the
retailers. Of course, the average delays are the same in the special case of
identical retailers.

The first METRIC type approach for batch-ordering retailers was by
Deuermeyer and Schwarz (1981). They first approximate the mean and
variance of the warehouse lead-time demand and fit a normal distribution to
these parameters. Next they estimate holding costs and the average delay at
the warehouse. The retailer lead-times are, as in METRIC, obtained as the
transportation times plus the average delay at the warehouse. Svoronos and
Zipkin (1988) use a different type of second moment approximation. Except
for the average warehouse delay, they also derive an approximate estimate of
the variance of the delay. Using these parameters they then fit a negative
binomial distribution to the retailer lead-time demand. Another related
technique is suggested in Axsäter (2002).

5.3 Disaggregation of warehouse backorders

Another possibility is to use the approach in Section 4.3. This means that
we need to disaggregate the total number of backorders to obtain the
distribution of the backorders that emanate from a certain retailer. In case of
Poisson demand and one-for-one replenishments a binomial disaggregation
is exact, and it is relatively easy to evaluate a policy exactly. In case of
batch-ordering retailers an exact disaggregation is much more complicated.
Chen and Zheng (1997) have still been able to derive an exact solution
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this way for echelon stock (R,Q) policies and Poisson demand. Lee and
Moinzadeh (1987a,b) and Moinzadeh and Lee (1986) approximate the
demand process at the warehouse by a Poisson process. Using this
approximation they determine the distribution of the total number of
outstanding orders at all retailers. Next the mean and variance of the number
of outstanding orders at a single retailer are obtained by an approximate
disaggregation procedure. They then use different two-moment approxima-
tions of the distribution of outstanding orders at the retailer. Axsäter (1995) is
another related approach.

5.4 Following supply units through the system

A third possible approach is to try to keep track of each supply unit as it
moves through the system. A batch is then seen as a ‘package’ of individual
units. This approach is related to the technique for one-for-one ordering
policies described in Section 4.4. Using this technique Axsäter (2000b) derives
the exact probability distributions for the inventory levels for a quite general
continuous review multi-echelon inventory system with batch-ordering
retailers facing compound Poisson demand. Related papers, which also deal
with batch-ordering policies, are Axsäter (1993a,b, 1997b, 1998), Forsberg
(1997a,b), Andersson (1997), Marklund (2002), Cachon (2001) and Cachon
and Fisher (2000).

Using this type of techniques exact policy evaluations are possible as long
as we deal with relatively small problems characterized by low demand and
corresponding small batch quantities. For larger problems the computational
effort grows quite rapidly and it is more realistic to rely on approximate
techniques.

6 Conclusions

Initially we discuss in Section 6.1 how the present knowledge can be
implemented in industrial supply chains. Thereafter in Section 6.2 we
comment on possible future research topics.

6.1 What does an optimal solution look like and how can it be implemented?

There is no doubt that the research concerning evaluation and optimization
of distribution inventory systems with stochastic demand has made a lot of
progress during the past two decades. We can handle a wider range of systems
exactly, and we have better approximate techniques for systems, which cannot
be analyzed exactly. Numerical experimentation with various test problems in
many research papers has also illustrated what a typical optimal solution
looks like (see e.g., Muckstadt and Thomas (1980), Axsäter (1993b, 2000c),
Hausman and Erkip (1994), Andersson (1997), and Gallego and Zipkin
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(1999)). The optimal solution of a particular problem will, of course, depend
on problem parameters like holding costs, backorder costs (or service
constraints), transportation times, and demand processes. Even if it is
dangerous to generalize, it is, however, striking that the optimal solutions very
often look the same in a certain sense. What is typical is that upstream
installations should have very low stocks compared to downstream
installations. Consider, for example, a distribution inventory system with a
central warehouse and about five retailers. Assume that the retailers are
required to provide a fill rate of 95% towards the final customers. It is then
common that the optimal solution means that we should have a negative
safety stock at the warehouse, and that the warehouse fill rate for orders from
the retailers should be just slightly above 50%. A very first important question
is how this knowledge can be used for more efficient control of practical
supply chains.

In practice it is still most common to handle different stocks in a supply
chain by single-echelon techniques. Quite often practitioners handle
upstream and downstream stock points in a similar way. This means
generally that the distribution of the total stock between upstream and
downstream installations is far from optimal. One way to achieve better
control is, of course, to implement exact or approximate techniques for multi-
echelon inventory systems. However, it may be difficult to replace an existing
simple control system by a relatively advanced multi-echelon technique. The
computational effort will also grow considerably. At least in the short run
it may be more realistic to implement the new knowledge in the following
way: (i) Analyze a small number of representative items by multi-echelon
techniques, and (ii) Adjust the service levels in the existing control system so
that they roughly correspond to the optimal solution. (See also the discussion
in Chapter 12.)

6.2 Future research directions

In Section 6.1 we have discussed how the present knowledge can be
implemented in practice. Another question is what kind of additional
knowledge that is most needed in the present state of the development
process. There is no doubt that the techniques that have been discussed in this
chapter can and will be improved. Such research is both welcome and needed.
However, there is also a need for research in different directions.

Some other research directions concerning multi-echelon inventory systems
have already attracted many researchers. One important example is the
coordination of different companies that are part of the same supply chain.
Not too many years ago the knowledge in this area was very limited, but at
present this is a very vital research area (see e.g., Chapters 6 and 7).

However, there are also other important research areas where we definitely
still need more research. For example, most of the present results are
completely based on the traditional hierarchical flow pattern, from upstream
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installations to downstream installations. In practice it is common to have a
flow of material also between installations at the same hierarchical level, e.g.,
between adjacent retailers. Although there exist quite a few results concerning
the effect of such lateral transshipments in multi-echelon inventory systems,
these results are generally considerably weaker than corresponding results for
traditional hierarchical flow patterns. Another very open research area
concerns the utilization of new and improved information structures. Today
more or less any type of information concerning the material flow is, or can
be, available at a low cost. For example, we do not only know when
outstanding orders were triggered, we also know exactly where in the supply
process they are situated at any time. It is reasonable to believe that such
additional information should to a larger extent affect the control of multi-
echelon inventory systems.
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Axsäter, S. (1990b). Modelling emergency lateral transshipments in inventory systems. Management

Science 36, 1329–1338.
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Axsäter, S. (1997a). On deficiencies of common ordering policies for multi-level inventory control. OR

Spektrum 19, 109–110.
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Axsäter, S. (2000a). Inventory Control, Boston, Kluwer Academic Publishers.

556 S. Axsäter
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Axsäter, S., J. Marklund, E.A. Silver (2002). Heuristic methods for centralized control of one-

warehouse N-retailer inventory systems. Manufacturing & Service Operations Management 4,

75–97.
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Axsäter, S., K. Rosling (1999). Ranking of generalised multi-stage KANBAN policies. EJOR 113,

560–567.
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1 Introduction

An assemble-to-order (or ATO) system includes several components and
several products. Demands occur only for products, but the system keeps
inventory only of components. To make each product requires a particular
selection of components, comprising only a subset of them, but possibly several
units of certain ones. Some or all components are shared by several products.
The time to assemble a product from its components is negligible. The time
to acquire or produce a component, however, is substantial. A product is
assembled only in response to demand. See Fig. 1.

A configure-to-order (or CTO) system is a special case. The components
are partitioned into subsets, and the customer selects components from those
subsets. A computer, for example, is configured by selecting a processor from
several options, a monitor from several options, etc. The difference between a
CTO system and an ATO system is important at the demand-elicitation level.
At the operational level, however, the differences are minor. Our discussion
focuses on general ATO systems.

Such systems have been employed for some time in various industries, but
lately their popularity has soared. An ATO system is an efficient way to deliver
a high level of product variety to customers, while maintaining reasonable
response times and costs.

One well-known ATO system (actually, a CTO system) is Dell Computer’s.
Dell lets the customer select among several processors, monitors, disk drives,
etc. – these are the components. Thus, the number of products (combinations
of options) is huge. This approach has been so successful that most other
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makers of personal computers are adopting similar systems. Indeed, the
ATO approach has become widespread throughout the electronics
industry. The major U.S. automobile companies are studying ambitious
ATO systems for the assembly of cars [Kerwin, 2000]. (In a real system,
product assembly may take some time, though not more than customers are
willing to wait.)

Certain other types of systems have the same structure. Consider a
mail-order or e-commerce retailer, which maintains inventories of the items
in its catalogue. The items correspond to components, and a product is any
combination of them. The assembly of a product entails picking out the
items in the customer’s order and packaging them. Also, consider the prob-
lem of stocking spare parts for the repair of equipment. The parts are
the components, and a product is a particular type of repair job, requiring
particular parts. The parts may be located at a central point, where
equipment needing service arrives (e.g., vehicles), or the parts may travel to
stationary equipment (as in field service of computers, copiers, and factory
machines). In either case, the part requirements of a job are usually unknown
in advance.

This chapter reviews the research to date on ATO systems. It covers
modeling issues and analytical methods, and also summarizes managerial
insights gained from the research. At the end, it identifies some directions
for future research. (See Song and Yao (2001) for other related articles.)

Two special cases are worth identifying. An assembly system has just one
product, and a distribution system has just one component. The key issue in an
assembly system is the coordination of the components, while the key issue in a
distribution system is the allocation of the component among the products.
(This assembly system is a special one, due to the negligible assembly time,
which implies that there is no reason to assemble the product in advance of
demand. The distribution system is special in the same way.) An ATO system
combines the elements of assembly and distribution, and so must resolve both

Fig. 1. Assemble-to-order system.
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coordination and allocation issues. This is what makes ATO systems difficult
to analyze, design and manage. See Fig. 2.

Research in this area has two major goals. One is efficient operation. Given
a particular system design, i.e., a line of products and a set of components, this
work aims to evaluate its performance under various conditions, including
inventory levels of the components. It also seeks to find good operating
policies, including inventory levels that balance cost and customer service. The
second research goal is to understand the impacts of alternative system
designs, for example, the effects of designing several products to share
common components.

In Section 2, we discuss one-period models. Section 3 focuses on multi-
period, discrete-time models, while Section 4 presents continuous-time
models. Section 5 summarizes research on system design. Section 6 points out
some future directions.

2 One-period models

This section focuses on one-period models. Some systems can be
understood fruitfully in a static framework. Either each time period really
can be treated in isolation, or the model can serve as a myopic heuristic for
more complex scenarios. As in the classic newsvendor model (one component
and one product), there is no need to distinguish between backorders and lost
sales, and we suppress procurement leadtimes. We present a fairly general
formulation of the problem and then discuss specific works in the literature.

The sequence of events within the period is as follows: (1) Components
are produced or acquired. (2) Demands for the products are realized. (3)
Components are allocated to products, and costs are assessed on the ending
situation. The basic approach is stochastic linear programming with simple
recourse. We consider these events in reverse order.

Fig. 2. Special cases.
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The problem for stage (3) can be formulated as follows: Define

m total number of components
n total number of products
i index for components (subscript)
j index for products (superscript)
a j
i units of component i required to make one unit of product j, A ¼ ða j

i Þ

(matrix)
d j demand for product j, d¼ (d j) (vector)
yi supply of component i, y¼ ( yi) (vector)
p j penalty cost for unit shortage of product j, p¼ ( p j) (vector)
hi cost for unit excess of component i, h¼ (hi) (vector)
z j production of product j, z¼ (z j) (vector)
wj shortage of product j, w¼ (wj)(vector)
xi excess of component i, x¼ (xi) (vector)

(The parameters a j
i , d

j, and yi are nonnegative real numbers, the p j are
positive real numbers, and the hi are any real numbers. A negative hi
represents a salvage value.) The problem is then

ðP3Þ ĜGðy, dÞ ¼ minimize hxþ pw

subject to

Azþ x ¼ y

zþ w ¼ d

w,x, z � 0:

This is a linear program. (It can be quite large if there is a large number of
products.) The minimal cost function ĜGðy, dÞ is convex.

Several modeling issues are worth noting: This formulation treats demands,
supplies, etc. as continuous. In some situations these quantities may actually
be discrete. If the model is revised accordingly, it becomes an integer linear
program. This model is of course much harder to solve than the original.

Also, this formulation assumes that the stockout penalty cost for each
product is linear in the shortage. An alternative formulation replaces the term
pw in the objective with p1(w), where 1(w)¼ (1(wj)) is the vector of 0-1
variables indicating which of the wj are positive. Here, a cost p j is incurred if
there is any shortage of product j, regardless of how much. This model too is
harder to solve than the original. Yet another formulation has a term
pmaxj[1(w)] in the objective. Here, a cost p is incurred if there is any short-
age of any product. Alternatively, any of these service measures can
be constrained instead of penalized. (In our opinion, the original linear
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formulation better represents service to customers, in addition to being more
tractable computationally.)

Lastly, the formulation assumes that a demand for a product must be filled
entirely or not at all. This makes sense when the product is really a product,
i.e., incomplete with any of its components missing. In a retailing setting,
however, the situation is less clear. The customer gets some benefit from
partial fulfillment.

Now let us examine two special cases. First, consider a distribution
system (one component, so we can omit the index i). Here, the model reduces
to a continuous knapsack problem, which is easy to solve: for each product,
compute the ratio p j/a j, the shortage cost per unit of the component. Select
the product with the largest ratio, and satisfy its demand as much as possible,
i.e., z j¼min{y/a j, d j}. If there is any of the component left, satisfy as much
as possible the demand for the product with the next largest ratio. Continue
in this manner until the component is exhausted, or all demands are filled.
(This assumes h� 0. If h<0, i.e., there is a positive salvage value�h, omit any
product with p j/a j<�h. Here, the solution can have both unfilled demand
and remaining component.) Thus, in this case, the best allocation of the
component is determined by a priority ranking of the products, which depends
on the cost and usage data only, not demand conditions.

Next, consider an assembly system (one product, so we can omit the
index j). Here too, the model is easy to solve: Set the production level z to fill
all demand, if possible, or else to use up the most limiting component. i.e.,
z¼min{min{yi/ai}, d}.

Now let us move to stage (1). Here, d is a random variable. Let x0 be the
initial component inventory vector. The expected cost at stage (3) given y is
GðyÞ ¼ Ed½ĜGðy, dÞ�. Let c(y�x0) denote the cost of acquiring the components.
The problem, then, is

ðP1Þ minimize cðy� x0Þ þ GðyÞ

subject to y � x0

The function G(y) is convex. If c( � ) too is convex (e.g., linear), then the overall
objective function is convex, and so the model is relatively easy to solve.

In particular, assume c( � ) is linear with cost-coefficient vector c. Let y* be
the global minimizer of cyþG(y). Then the optimal ordering policy is a base-
stock policy with base-stock level y*. That is, if x0� y*, then order up to y*.
Standard stochastic linear programming techniques can be employed to
compute G and y*.

In the alternative formulations mentioned above, where the objective of
(P3) includes p1(w) or something similar, the corresponding G includes terms
representing stockout probabilities. Except in special cases, the function G is
not convex.
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Some elements of this formulation are due to Gerchak and Henig (1986).
Assuming x0¼ 0, they compare the ATO system with a make-to-stock (MTS)
system in which the assembly is performed before demands are realized. In the
latter, there is no need to solve problem (P3), and y¼Az. The optimal value of
z is the solution of problem (P1) with Az replacing y. Problem (P1) now
reduces to n separate newsvendor problems. Let zS, yS, and CS denote the
optimal solution and cost for this MTS setting, and let zO, yO and CO be their
counterparts in the original ATO setting (by solving both (P3) and (P1)).
Then,

(a) CS
�CO. (The cost is lower when assembly is postponed until demand is

realized.)
(b) zO� zS. (More demand is fulfilled in the ATO system.)
(c) If component i is product-specific (used by just one product), then

yOi � ySi .
(d) On the other hand, one cannot predict the ordering of yOi and ySi if i

is a common component (used by more than one product).

The optimal stock of a common component may be higher or lower than the
combined optimal stocks of the specialized components it replaces. Thus,
moving to an ATO system need not reduce inventories. It does improve
overall performance, but the improvement may show up instead in reduced
stockouts.

The study of Gerchak and Henig (1986) builds on earlier work comparing
simple systems with and without common components among the products.
See Baker, Magazine, and Nuttle (1986), Gerchak, Magazine, and Gamble
(1988), and references therein. They assume a single constraint on the overall
stockout probability. In our notation, the problem is

minimize cy

subject to PðAd � yÞ � �

Here, A is a 0-1 matrix, and � is a prespecified service level. For the sytem
without common components, each column of A has only one non-zero entry.
In the system with common components, A has fewer columns, and some
columns have several nonzero entries. This is obtained by adding some
columns of the original A, i.e., combining some components into common
components.

It is shown that the total inventory investment required to meet the
constraint is lower with a common component than without it. Certain
additional qualitative properties of the solution derived in the first paper are,
however, shown in the second paper to hold only in special cases. Thus, while
commonality is certainly a good thing, all else being equal, its detailed effects
are hard to predict. See also Bagchi and Gutierrez (1992), Eynan (1996) and
Eynan and Rosenblatt (1996) for variations of these studies and similar
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conclusions. Eynan (1996) provides a summary of this line of research and
additional references.

The repair-kit problem also is related. The repair kit carried by a repairman
is a multi-item inventory. A demand is a repair job, which may require several
different items in the kit. Typically, each job requires either one or zero unit
of each item, so the matrix A contains only entries 0 and 1. The problem is
to determine an optimal kit that minimizes either the expected inventory
and penalty cost, or the inventory cost subject to a constraint on the job-
completion rate. Some models assume that the kit can be restocked after each
job, therefore the decision variables are binary; we only need to decide
whether to carry an item or not. See, e.g., Smith, Chambers, and Shlifer (1980)
and Graves (1982). Other models consider multiple units of each item in stock;
the performance measure is the expected number of jobs, which can be
completed before stock out or the probability of serving all jobs arriving in a
fixed period of time. There is no inventory replenishment during the period.
The difference between this model and the one-period model (P1) and (P3)
is that, within the period, the allocation is dynamic as demand occurs, and
it follows the FCFS rule. Network-flow and combinatorial techniques are
developed to solve the optimization problem. See, e.g., Mamer and Smith
(1982, 1985) and Brumelle and Granot (1993). Mamer and Smith (2001)
review this literature.

Swaminathan and Tayur (1999) consider an extension of the basic model
above. Between components and products is another layer of sub-assemblies.
A sub-assembly can be made from components in stage (1), before demand is
realized. The model explicitly includes a production resource (e.g., capacity or
time) that is used in the creation of products from components and/or sub-
assemblies in stage (3). To make a product from sub-assemblies consumes less
of this resource than making it directly from components. See Chapter 8 of
this handbook for a detailed discussion.

3 Multi-period, discrete-time models

This section focuses on discrete-time, multi-period models. Within a single
period, the decisions and the sequence of events are the same as in the
one-period problem. However, additional complications arise when we
link different periods, as the ending state in one period becomes the beginning
state in the next. One complication is due to leadtimes for component
replenishments. When the leadtimes for different components are different,
the replenishment decision in one period will affect the inventory levels in
different periods in the future. The problem becomes even more complex if
the leadtimes are uncertain. Another complication is how to deal with shortages
– whether the unsatisfied demand in one period is backlogged or lost. In the
backlogging case, there is also a partial-shipment or inventory-commitment
issue. That is, if we have only part of the components a demand requests,
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should we ship or put aside the available components as committed inventory
to this customer while waiting for those unavailable components to come? If we
keep committed inventory, then we pay both the backorder costs for the
unsatisfied demand and the holding cost for the committed inventory. Yet
another complication is the relative priority of backlogged demand and current
demand. This complication does not arise in the two special cases – one product
or one component. It is problematic only when there are different products with
overlapping component sets.

We first summarize results on the characterization of optimal policies and
then results on performance evaluation and optimization techniques for a
given type of policy.

3.1 Characterization of optimal policies

With all the complications mentioned above, the state space becomes quite
large: We need to track not only the component inventory vector (x), but also
the backordered products (w) and the outstanding-order vector for each
component. As a result, the literature includes only partial results for special
cases: zero leadtimes, or positive leadtimes but only one product.

Consider the case with no component replenishment leadtimes and no
committed inventory. Backlogged demand is merged with current demand,
i.e., no priority is given to the backordered demand. For simplicity, assume
stationary cost factors and component usages. Let T be the time horizon and t
the time index, t¼ 0, . . .,T. Use an additional subscript t to index the
variables. The sequence of events within each period is the same as in the one-
period model above.

Then the problem is

ðPÞ minimize E
XT
t¼0

½cðyt � xtÞ þ hxtþ1 þ pwtþ1�

( )

subject to

xtþ1 ¼ yt � Azt

wtþ1 ¼ wt þ dt � zt

wt, xt, zt � 0, yt � xt, t ¼ 0, . . . ,T :

For linear c( � ) the optimal-cost function for each period is convex, and
again a base-stock policy is optimal. That is, there are vectors y*t ðwÞ such that,
if xt � y*t ðwtÞ, then order up to y*t ðwtÞ. Otherwise, we know of no results
characterizing the optimal policy for the general case. (However, there are
some rsults for variations of the moel. See Veinott (1965).)

Because exact solution of (P) is difficult, various computational and
heuristic approaches have been developed. One approach is myopic: In each
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period, solve the embedded allocation problem, after the demand for that
period is realized (i.e., solve for zt after observing dt, ignoring future periods),
as in (P3). Stochastic programming techniques are then used to determine the
optimal order quantities for the entire horizon, as in (P1). The problem
can be reformulated as a nested stochastic program. See Swaminathan and
Tayur (1999).

Gerchak and Henig (1989) study a lost-sales model with stationary
data and linear order cost. (The paper states that the results hold for the
backlog case too, but the formulation does not completely cover that
case. There are no state variables or costs for backlogs.) In particular,
p¼ 0, and dt has the same distribution across t. Let r j be the unit revenue
of product j, and denote r¼ (r j). Then, the problem can be expressed as
follows:

ðLost SalesÞ minimize E
XT
t¼0

½cðyt � xtÞ þ hxtþ1 � rzt�

( )

subject to

xtþ1 ¼ yt � Azt

zt � dt

xt, zt � 0, yt � xt, t ¼ 0, . . . ,T :

They too adopt the myopic-allocation policy for this problem. That is, in
each period, after the demand dt is realized, solve a linear program to
find the that zt maximizes rzt while satisfying the constraints. They
show that, because of the stationary data, this myopic policy is optimal, so
the multi-period solution is identical to the single-period solution. In
other words, a base-stock order policy and the myopic-allocation policy
are optimal. Van Mieghem and Rudi (2001) obtain some related results
and explain in detail why the myopic result does not extend to the
backlog case.

Hillier (2000) studies a model in which a common component is shared by
all the products, and each product has a unique, product-specific component.
Let nþ 1 index the common component. Thus, the matrix A has nþ 1
rows and n columns, with aii ¼ 1, a j

i ¼ 0 for j 6¼ i and i, j¼ 1, . . ., n, and
a
j
nþ1 ¼ 1 for j¼ 1, . . ., n. The myopic-allocation policy above is employed.
Under certain special assumptions about purchase, holding and backorder
costs, as well as zero leadtimes, the paper concludes that commonality
may not be beneficial if the common component is more expensive than the
components it would replace.
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3.1.1 Distribution systems
Next, consider the special case of a distribution system, that is, a single

component and multiple products (or demand classes). Topkis (1968)
analyzes a model in which the order decisions can be made only at certain
fixed times. The number of periods between such decisions, called
a stocking cycle, equals the leadtime. Thus, at any time there is only one
outstanding order, and the order is received only at the end of the stocking
cycle. Also, all previous backlogs are cleared at each reorder point. Thus,
the problem is essentially a single-cycle problem. It is shown that,
under certain conditions, a base-stock policy is optimal for ordering, and a
rationing policy (described below) is optimal for allocation in each period
within a cycle.

Let us take a closer look at a cycle. Suppose the cycle length is Lþ 1
periods. The problem within the cycle is a special case of (P), in which T¼L,
y0 is fixed, and yt¼ 0, t¼ 1, . . . ,L. We can formulate this problem as a
dynamic program. There are two state variables. One is xt, the inventory level
at the beginning of period t. The other is ut¼wtþ dt, the vector of outstanding
product demands ( previous backorders plus demand in the period). Define
Vt(x, u) to be the minimal expected cost in periods t, tþ 1, . . . ,L, assuming
period t begins with inventory level xt¼ x and outstanding demand ut¼ u.
Then,

Vtðx, uÞ ¼ minfhtxtþ1 þ ptutþ1 þ E½Vtþ1ðxtþ1, utþ1Þ�g

subject to

xtþ1 ¼ x� Azt

utþ1 ¼ uþ dtþ1 � zt

utþ1, xtþ1, zt � 0, t ¼ 0, . . . ,T :

Assume a j
¼ 1 for all j. Renumber the products so that p1t � p2t � � � � � pnt .

Topkis shows that the optimal allocation policy is determined by nonnega-
tive rationing limits f ~zz

j
t , j ¼ 1, . . . ,ng with ~zz1t � ~zz2t � � � � � ~zznt . The rule works

as follows: Start with product n. Allocate as much as possible to it, as long
as the stock level does not drop below the rationing limit ~zznt . If any
demand remains unfilled, stop. Otherwise, apply the same rule to product
n�1, then n�2, and so forth. This rule is easy to implement, but the
computation of the rationing levels is difficult. (Note that the solution to
the single-period problem discussed in the last section corresponds to ~zz j ¼ 0
for all j. This is because, in that case, we do not need to consider future
demands.)

Sobel and Zhang (2001) study a model with no leadtime and two demand
sources, one deterministic (dt) and the other stochastic (d̂dt). Think of these as
two distinct products. The deterministic demand in each period must be
satisfied immediately, and the stochastic demand can be backordered. So, the
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allocation policy in each period is fixed: Satisfy all the deterministic demand,
and then satisfy as much of the stochastic demand as possible, including
backorders carried from previous periods. The order cost in each period is a
fixed cost k plus a linear cost with rate c. Problem (P) now becomes

minimize E
XT
t¼0

½k�ð yt � xtÞ þ cð yt � xtÞ þ hxtþ1 þ pwtþ1�

( )

subject to

xtþ1 ¼ yt � dt � zt

wtþ1 ¼ wt þ d̂dt � zt

xt,wt � 0, yt � maxfxt, dtg, t ¼ 0, . . . ,T ,

where �ðxÞ ¼ 1 if x > 0 and �ðxÞ ¼ 0 if x ¼ 0.
Assuming positive h and p, clearly, in the optimal solution,

zt ¼ minfyt � dt,wt þ d̂dtg. Also, xtþ1 and wtþ1 cannot be both positive. Let
~xxt be the net inventory at beginning of period t, i.e., ~xxt ¼ xt � wt, and ~yyt the
net inventory after ordering. The problem can be rewritten as

minimize E
XT
t¼0

½k�ð ~yyt � ~xxtÞ þ cð ~yyt � ~xxtÞ þ hð ~yyt � dtÞ
þ
þ pðdt � ~yytÞ

þ
�

( )

subject to

~yyt � ~xxt þ dt

~xxtþ1 ¼ ~yyt � dt, t ¼ 0, . . . ,T ,

where dt ¼ dt þ d̂dt. Except for the special constraint, the model is the standard
one. Indeed, a modified ðs,SÞ policy is optimal. The parameters st and St are
defined as usual. The optimal policy for period t is to order up to St (set
yt ¼ St) if xt < maxfst, dtg. Otherwise, do not order. (When the leadtime is
positive, the analysis breaks down.)

3.1.2 Assembly systems
Now, return to the general model (P), and consider the special case of an

assembly system (one product). The optimal allocation policy is simple: Just
satisfy as much backorders and demand as possible. It remains to determine
the component replenishment policy. When all components have the same
leadtime, then the inventories of all components (adjusted for usage) should
be equal at all times, and the problem reduces to a single-item model. Different
leadtimes, however, are challenging.
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Building on Schmidt and Nahmias (1985), Rosling (1989) studies a
multi-stage assembly system with deterministic leadtimes. He shows that,
under some mild conditions on initial inventories, the assembly system is
equivalent to a series system. So, following Clark and Scarf (1960), an echelon
base-stock policy is optimal. Applying this result to the ATO system
considered here (i.e., no subassemblies and no final assembly time), the
optimal policy is a balanced base-stock policy. This is like a base-stock policy,
but the components are coordinated as follows: Let Li be the leadtime
for component i. Without loss of generality, assume Lm > � � � > L1. Redefine
units if necessary so that ai ¼ 1 for all i. Orders for component m follow a
standard base-stock policy, as if component m were the only one. For
component i < m, order precisely the quantity of component m ordered
ðLm � LiÞ periods ago. Thus, the same amounts of all components arrive at
each time. See Zhang (1995).

In the following, we relate this problem (with different leadtimes) to the
formulation (P) and provide a proof of the optimal policy. Note that, with
positive leadtimes, the order decision for component i at t does not influence
the system cost until tþ Li. Thus, the variable yit in (P) can no longer serve as
a decision variable. Instead, a directly controllable variable is the inventory
position, the sum of net inventory and inventory on order. Let

x̂xit inventory position of component i at the beginning of period t
before ordering, x̂xt ¼ ðx̂xitÞ (vector)

ŷyit inventory position of component i at the beginning of period t after
ordering, ŷyt ¼ ð ŷyitÞ (vector)

~xxit net inventory of component i at the beginning of period t
d [t, s) cumulative demand in periods t, tþ 1, . . . , s�1, for s> t
d [t, s] cumulative demand in periods t, tþ 1, . . . , s, for s> t.

Then xit ¼ ½ ~xxit�
þ and wt ¼ maxi½ ~xxit�

�. So, the inventory-backorder cost can be
expressed in terms of the ~xxit. It is well known that

~xxi,tþ1 ¼ ŷyi,t�Li
� d½t� Li, t�: ð3:1Þ

Since there is only one product, an optimal policy must guarantee that, after
some initial periods, the net inventories of all components at the end of each
period are equal. Applying (3.1), we have

ŷyi,t�Li
� d½t� Li, t� ¼ ŷym,t�Lm

� d½t� Lm, t� ð3:2Þ

for all i < m. This is equivalent to

ŷyi,t�Li
¼ ŷym,t�Lm

� d½t� Lm, t� LiÞ ð3:3Þ
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for all i < m. Thus, the optimal policy is the balanced one described above,
and the problem reduces to a single-item problem with decision variable ŷym,t.
In particular, the optimal policy for component m is base-stock with
base-stock level s*m, the solution to

FmðsÞ ¼ p=ð pþ hmÞ,

where Fmð�Þ is the cumulative distribution function of d½1,Lm�. Each time we
order component m, we order the same amount for component i, i < m, but at
ðLm � LiÞ periods later. (Zhang (1995) achieves the same result by interpreting
Rosling’s result in the ATO setting.)

When the leadtimes are stochastic, the above approach does not work. It is
no longer possible to define m so that the difference Lm � Li is always
nonnegative. Song, Yano, and Lerssrisuriya (2000) consider the special case of
a one-time stochastic demand. The problem is to determine when and how
much of each component to order, to minimize the total expected cost. The
optimal order quantity for each component is generally less than in the
standard newsvendor model with no assembly structure and no leadtime
uncertainty. Several simple but reliable heuristic procedures are developed.
Numerical studies indicate that, in this setting, leadtime variability often has a
larger impact than demand variability. Moreover, it is better to approximate
leadtime uncertainty than to ignore it.

3.2 Performance evaluation

The optimal policy for the general system with positive leadtimes is
unknown. One attractive heuristic is a base-stock order policy along with
some allocation rule. Several authors focus on performance evaluation and
optimization techniques for such policies, assuming that demand in each
period has a multivariate normal distribution. The biggest challenge here is
the numerical evaluation of such distributions.

Hausman, Lee, and Zhang (1998) assume the FCFS allocation policy, so
that backlogged demands are filled in order of arrival. This implies that all
available inventory is committed to the earliest backlogged demands, even if
those units can be used to fill later demands. The service measure of interest is
the fill rate with time-window �, the probability of filling a demand within time
�, where � is a given nonnegative integer. This measure is hard to compute
exactly. The paper focuses on a lower bound, namely, the probability of filling
all demand in a period within time �, denoted R�.

For each component i, let si be the base-stock level and diðLi � � þ 1Þ the
demand over Li � � þ 1 time periods. It is shown that

R� ¼ PðdiðLi � � þ 1Þ � si, 8iÞ: ð3:4Þ
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It turns out that R� ¼ ~RR0, where ~RR0 indicates R0 in a revised system with
truncated leadtimes ~LLi ¼ ½Li � ��

þ. The paper examines the problem
of maximizing the R0, which is a multivariate normal probability, subject to a
linear budget constraint. Even this objective is hard to evaluate in general, and
so the paper develops heuristic methods. The best of these seems to be an equal
fractile heuristic, which selects the base-stock levels to equalize the components’
fill rates.

The model of Agrawal and Cohen (2001) minimizes the total expected
component inventory costs, subject to constraints on the order fill rates.
Without the constraints, the problem separates by components. The allocation
policy is the following:

1. Partial FCFS: Assign the available stock of components to specific
finished-product orders, and release units for delivery, even when the
entire subset of components is not available. (However, the product
order is considered complete only when the entire kit has been
delivered.)

2. Fair-share allocation: In case of a component shortage, the available
stock is allocated to the orders, based on the actual demand in the
period. Specifically, for each component i, product j receives a fraction
of the stock, the ratio of its demand for the component to the total
component demand.

The paper develops an expression for the order fill rate under this policy.
Again, this requires the evaluation of multivariate normal distributions.
The paper shows that the objective function is convex and the constraints
are quasi-convex, so the globally optimum solution for the optimization
problem exists and is characterized by the Kuhn-Tucker conditions. This
approach leads to quite different solutions from the equal-fractile heuristic of
Hausman et al.

Zhang (1997) studies a similar problem using a different allocation rule. He
assumes that demands in different periods are filled according to the FCFS
rule. However, for demands within the same period, a product priority rule is
followed. Also, the following stock-commitment policy is used: Once
component units are allocated to a product as above, these units remain
committed to the product, even if the demand cannot be filled due to
inadequate stock of other components. Two easy-to-compute lower bounds
on the order fill rate are proposed, based on properties of the multivariate
normal distribution, and their performances compared through numerical
experiments. The results indicate that neither bound dominates the other.

Cheng, Ettl, Lin, and Yao (2002) assume i.i.d. replenishment leadtimes and
FCFS allocation rule. They study the problem of minimizing average
component inventory holding cost subject to product-family dependent fill
rate constraints. They use an approximation for the fill rate in each product
family, so that the constraint functions are linear functions of the item fill
rates. An exact algorithm and a greedy heuristic algorithm are developed.
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Using the solution techniques and real data from applications in IBM, the
paper further conducted numerical experiments to highlight several key
benefits of the ATO operation in terms of risk pooling. Their numerical
examples also show that, compared to the Make-to-Stock model, ATO can
lead to substantial inventory savings and improved demand forecast accuracy.

de Kok and Visschers (1999) propose a modified base-stock policy that
adapts Rosling’s approach for pure assembly systems to more general ATO
systems. This approach essentially fixes the allocation of components among
products, before the components actually arrive in inventory. The result,
instead of a series system, is a multi-level distribution system. See Chapter 12
of this handbook for details.

To summarize, the research to date has developed several plausible,
reasonably effective heuristic methods. These methods are quite different,
however, in spirit as well as in detail. One cannot yet draw broad conclusions
about which approaches are most promising in practice.

4 Continuous-time models

This section reviews continuous-time models. Again, we discuss first the
characterization of optimal policies and then results on performance
evaluation and optimization of a given type of policy.

4.1 Characterization of optimal policies

Again, little is known about optimal polices in the general case, and so our
discussion focuses on special cases.

For assembly systems, Chen and Zheng (1994) extend the results of Rosling
(1989) discussed above in several directions. In particular, they show that the
results hold for continuous as well as discrete time. So, a continuous-time,
single-product ATO system again reduces to a single-item one.

Ha (1997) studies a single-item M/M/1 make-to-stock queue with several
demand classes and lost sales. (In our terms, this is a type of distribution
system.) His results have the same flavor as those of Topkis (1968). Each
demand class has a rationing limit. When the inventory is at or below the limit,
it is optimal to reject demands of this class in anticipation of higher-priority
demands. de Véricourt, Karaesmen, and Dallery (1999) study a similar
problem with backlogs. The optimal policy has the same form.

4.2 Performance evaluation

For continuous-review, multi-product systems, all research to date assumes
independent compound-Poisson processes for product demands. This implies
that demand for each component too is compound-Poisson. Otherwise, the
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works differ in the modeling of the component supply and in analytical
approaches.

Before summarizing individual works, we first introduce a formulation of
the demand process, the stock allocation policy, and the inventory control
policy, which is largely due to Song (1998).

Let I ¼ f1, 2, . . . ,mg denote the set of component indices. Product-demand
epochs form a stationary Poisson process, denoted fAðtÞ, t � 0g, with rate l.
Each demand may require several components in different amounts
simultaneously. For any subset of components K � I , we say a demand is
of type K if it requests ZK

i > 0 units of component i 2 K , and 0 units in I \K.
The random variable ZK ¼ ðZK

i , i 2 KÞ has a known discrete probability
distribution  K . Assume that each order’s type is independent of the other
orders’ types and of all other events. Also, there is a fixed probability
qK that an order is of type K,

P
K qK ¼ 1. Thus, the type-K order stream

forms a Poisson process with rate lK ¼ qKl. (An order type is thus a bit
different from a product, as the word is used above. A product corresponds to
a fixed recipe of components. An order type has a fixed set of components, but
the quantities are random.)

Let K be the set of all demand types, that is, K ¼ fK � I : qK > 0g.
Note that K is not necessarily the set of all possible subsets of I. For each
component i, letKi denote the family of subsets ofK that contain i. The demand
process for component i forms a compound Poisson process with rate
li ¼

P
K2Ki

lK ¼ qil and batch size Zi, the mixture of ZK
i for all K 2 Ki.

In general, the demand model does not impose any restrictions on the
batches ZK

i among i 2 K . It is, however, worth mentioning three important
special cases:

(1) Unit demand: ZK
i ¼ 1 for all i 2 K . That is, a demand of type-K

requires one and only one unit of each component in K. Such a demand
process is especially common when the items are relatively expensive or
durable. For instance, a customer of a bookstore may buy several
books but only one copy each. In the consumer market of the mail-
order personal computer business, a demand typically requires one
motherboard, one keyboard, one monitor, and at most one video card.
Here,  K concentrates on a single point.

(2) Assembly of multiple products: ZK
i ¼ aKi �

K , where the aKi are constant
positive integers and �K is a positive-integer random variable. In this
case, a type-K demand requests a random number �K of units of
product K , which has the fixed bill-of-material aKi , i 2 K . Here,  K is in
effect a one-dimensional distribution – that of �K .

(3) Pick and pack: ZK
i are independent across i 2 K . This is a reasonable

approximation for demands in distribution systems, such as in mail-
order retailing, especially when the items in K are not too closely
related, e.g., women’s sweaters and men’s slacks. Here,  K is the
product of the marginal distributions  K

i of ZK
i .
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Demands are filled on a first-come-first-served (FCFS) basis. Demands that
cannot be filled immediately are backlogged. When a demand arrives and some
of its required components are in stock but others are not, we either ship the in-
stock components or put them aside as committed inventory. However, a
demand is considered backlogged until it is satisfied completely.

The inventory of each component is controlled by a base-stock policy, with

si :¼ the base-stock level for component i:

Let t � 0 be the continuous time variable, and for each t denote

INiðtÞ net inventory of item i,
AK ðtÞ number of type-K demands by time t,
DiðtÞ cumulative demand for i by time t
BK ðtÞ type-K backorders at t

number of type-K orders that are not yet completely satisfied by t,
BiðtÞ number of backorders for item i at t.

Let Di stand for the steady-state limit of Diðt� Li, tÞ ¼ DiðtÞ �Diðt� LiÞ, the
lead-time demand of item i. Let INi be the steady-state limit of INiðtÞ, and
define BK and Bi similarly. Also, define

WK ¼ steady-state waiting time of a type-K backorder:

The performance measures of interest are, for any demand type K,

f K ,w type-K order fill rate with time window w
probability of satisfying a type-K order within a time window w
P[WK

�w]
f K fill rate of type-K demand¼ f K,0

E½BK � average number of type-K backorders.

With these order-based performance measures, one can easily obtain the
following system performance measures:

f average (over all demand types) off-shelf fill rate¼
P

K qKf K .
E[B] total average order-based backorders¼

P
K E½BK �.

It is also interesting to relate the order-based performance measures to the
component-based ones:

fi off-shelf fill rate of component i,
E[Bi] average number of backorders of component i.

4.3 Constant leadtimes

Let Li be the leadtime for component i, a constant. Then,

INi ¼ si �Di:
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Performance evaluation thus involves the joint distribution of the leadtime
demands ðD1, . . . ,DmÞ. For example,

f K ¼ PðDi þ ZK
i � si, i 2 KÞ:

Let f K,wðsjLÞ be f K,w in a system with base-stock levels s ¼ ðsiÞi and
leadtimes L ¼ ðLiÞi. When Li ¼ L for all i, we write f K ðsjLÞ as f K ðsjLÞ. It is
shown in Song (1998) that, for any fixed K and 0 � w < maxi2KfLig,

f K,wðsjLÞ ¼ f K ,0ðsjðL1 � wÞþ, . . . ,ðLn � wÞþÞ: ð4:1Þ

Thus, f K ,w equals the immediate fill rate f K in a transformed system, where
the leadtimes are truncated by w. So, we only need to focus on f K

henceforth. (This result is similar to the one for discrete-time systems
discussed above.)

Song (1998) observes that there are several independent random variables
shared by the elements of the leadtime-demand vector ðDiÞi, each of which is a
univariate Poisson random variable. Thus, the dimension of the distribution
of the vector can be reduced by conditioning on these common elements. As a
result, the order fill rates can be obtained through convolutions of one-
dimensional distributions. The paper develops an algorithm that sequences the
conditioning steps. This procedure makes the calculation much simpler and
faster than the direct approach using the joint distribution of the net
inventories.

To illustrate the result, consider a 2-component, unit-demand system.
Here, there are three types of demand: A type-1 customer requires one unit
of component 1 only; type-2 requires one unit of component 2 only; and
type-12 (short notation for type-f1,2g) asks for one unit of each component.
In this unit-demand case, Di, which has the same distribution as DiðLiÞ,
has a Poisson distribution with parameter liLi. For convenience, let pð�jaÞ,
Pð�jaÞ, and Pcð�jaÞ denote the probability mass function, cdf and
complementary cdf, respectively, of the Poisson distribution with parameter a.

The type-i fill rate is exactly component i’s fill rate

fi ¼ PðINi > 0Þ ¼ PðDi < siÞ ¼ Pðsi � 1j�iLiÞ, i ¼ 1, 2:

The type-12 fill rate is

f 12 ¼ PðIN1 > 0, IN2 > 0Þ ¼ PðD1 < s1,D2 < s2Þ:

Assume L1 ¼ L2 ¼ L. Then,

Di ¼ DiðLÞ ¼ DiðLÞ þD12ðLÞ, i ¼ 1, 2:
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Here, DK ðLÞ has the Poisson distribution with parameter lKL. Moreover, the
DK ðLÞ are independent. By conditioning on D12ðLÞ and then deconditioning,
we obtain

f 12ðsjLÞ ¼
Xminfs1,s2g�1

k¼0

pðkj�12LÞPðs1 � k� 1j�1LÞPðs2 � k� 1j�2LÞ:

In the case L1 6¼ L2, a few extra calculations yield a similar result.
Now, let us return to the general problem. Song (1998) also develops

simpler bounds on the order fill rate, which require lower-dimensional joint
distributions or merely the marginal distributions. More specifically, it is
shown that, for any K ,

f K �
Yk
l¼1

f Sl , ð4:2Þ

where fS1, . . . ,Skg is any partition of K . In particular,

f K �
Y
i2K

fi: ð4:3Þ

Also,

f K � min
i2K

fi:

It turns out that f ij, the fill rate for type-fi,jg demand, is quite easy to
obtain for any i and j; it has the same formula as f 12 given above. So,
(4.2) yields a better lower bound on f K than

Q
i2K fi without too much

computational effort. Finding the best pair partition so that this lower bound
is maximized is equivalent to the nonbipartite weighted matching problem,
which can be solved by existing algorithms in the combinatorial-optimization
literature.

Song (2002) studies the evaluation of order-based backorders for the same
model. Let BK

i ðtÞ be the number of backorders for item i at time t that are due
to demand type K, where K 2 Ki. Let B

K
i be the steady-state limit of BK

i ðtÞ.
Then

E½BK � ¼ E max
i2K

BK
i

� �
: ð4:4Þ

Given Bi ¼ n, BK
i is a binomial random variable with n trials and success

probability lK=li in each trial. However, since the Bi are correlated random
variables, computing its joint distribution alone is difficult, not to mention
the conditional binomial distributions and the max operation within the
expectation. Song presents a much simpler approach. To illustrate the
results, consider the 2-item, unit-demand system with equal leadtimes
discussed above. Let E½BK ðsjLÞ� denote the expected type-K backorders with
base-stock levels si and common leadtime L. First, notice that a request for
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item i is due to a type-i order with probability li=li, so the average type-i
backorders equals

B
i
ðsijLÞ ¼

�i

�i
E½BiðsijLÞ�,

where

E½BiðsijLÞ� ¼ �iL�
Xsi�1
k¼0

Pcðkj�iLÞ:

Also,

E½B12ðsjLÞ� ¼ �12L� q12
Xminfs1,s2g�1

l¼0

Xs1�l�1
m¼0

Xs2�l�1
j¼0

ðlþmþ jÞ!

l!m! j!

� ðq12Þlðq1Þmðq2Þ jPcðlþmþ jj�LÞ:

Using the formulas, the paper discusses a few examples to gain manage-
rial insights. It is shown, for example, that for a given level of inventory
investment, using common components or fewer product configurations may
not reduce backorders. This is in contrast to conclusions drawn from more
restrictive single-period models in the literature.

Although the exact result enjoys a tremendous computational advantage
over simulation, it can still be computationally demanding for large systems.
The paper also develops easy-to-compute bounds. In particular,

LBK :¼ �K max
i2K

E½Bi�

�i
� E½BK � � �K

X
i2K

E½Bi�

�i
:¼ UBK :

Summing these inequalities yields bounds on the total average order-based
backorders:

LB :¼
X
K

LBK � E½B� �
X
K

UBK :¼ UB:

It can be verified that

UB ¼
XJ
i¼1

E½Bi� ¼ the total average item-based backorders :¼ E½BI �:

So, the total item-based backorders always dominates the total order-based
backorders.

A natural approximation for E½BK � is the simple average of LBK and UBK .
Numerical results indicate that the approximation performs extremely well.

Song (2000) extends the above results to more general policies, the ðR, nQÞ
policies. (Here, for each component i, there is a base lot-size Qi, a positive
integer. When the inventory position of item i falls to or below the reorder
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point Ri, an order of size nQi is placed, where n is the integer such that the
inventory position after ordering is between Ri þ 1 and Ri þQ. When all
Qi ¼ 1, the policy reduces to a base-stock policy.) Under reasonable
conditions, the service measures can be computed as simple averages of their
counterparts under base-stock policies.

4.4 Uncapacitated stochastic leadtimes

Next, consider the case where the supply system of each component consists
of many parallel processors, so that its leadtimes are i.i.d. random variables.
The constant-leadtime model is a special case. Let

XiðtÞ ¼ number of outstanding orders of component i at time t:

Then (returning to base-stock policies),

INiðtÞ ¼ si � XiðtÞ:

Thus, performance evaluation involves the distribution of the outstand-
ing-order vector XðtÞ ¼ ðX1ðtÞ, . . . ,XmðtÞÞ and its steady-state limit X ¼
ðX1, . . . ,XmÞ.

I.i.d. leadtimes were assumed in the earliest studies of dynamic product-
based performance, in the literature on multi-indenture models of multi-
echelon inventory systems. Here, an end item ( product) consists of several
repairable modules (components). A failure of a product is due to the failure
of one component. The performance measure of interest is the number of
products backordered. Cannibalization is allowed, that is, a good component
in a failed product can be used to replace a failed component in another failed
product. Thus, the number of products backordered is the maximum of the
component backorders, i.e.,

B ¼ max
i

Bi ¼ max
i
½ðXi � siÞ

þ
�: ð4:5Þ

Suppose the product fails according to a Poisson process. Then, one can
calculate the cumulative distribution of B. For other arrival processes, one can
obtain the expected value of B. See Nahmias (1981) for a review.

Cheung and Hausman (1995) consider multivariate Poisson demand, so
there can be simultaneous failures of several components. Again, they assume
complete cannibalization, so (4.5) holds. The authors propose the following
disaggregation approach for the joint distribution of Xi: Define YK to be the
number of jobs of type-K that have one or more components outstanding.
Then, according to Palm’s result for M=G=1 queues, YK has a Poisson
distribution with mean lKE½maxi2K Li�, and the YK are independent over K .
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Let XK
i be the number of outstanding orders of component i that originated

from demand type-K , so Xi ¼
P

i2K XK
i . Then, E½B� can be evaluated by

conditioning on ðY ¼ yÞ ¼ ðYK ¼ yK , 8KÞ. The conditional probability
P½X1 � x1, . . . ,Xm � xmjY ¼ y� must be obtained through computation. This
probability is easy when all yK ¼ 0 or 1. For larger yK , it becomes
complicated.

Two approximations are proposed to simplify the computation of E½B� for
large m. However, the approximations still employ the conditional probability
mentioned above. Also, Jensen’s inequality yields a simple lower bound:

E½B� � max
i
fð�iE½Li� � siÞ

þ
g:

Unfortunately, as the paper shows, this bound works poorly as an
approximation.

Gallien and Wein (2001) assume i.i.d. component leadtimes in a single-
product assembly system. Demand is Poisson with rate l. Inspired by
Rosling’s result for deterministic leadtimes, the following class of policies is
considered: Start with stocks of all components at a common base-stock level,
s. Every demand triggers an order for each component after a component-
dependent delay �i � 0. Numerical experiments show that this policy achieves
nearly identical performance to the standard base-stock policy with base-stock
levels si ¼ s� l�i.

To keep the analysis tractable, the paper imposes a synchronization
assumption, namely, that components are assembled in the same sequence
they are ordered in. Thus, the time needed to replenish a complete set of
components is maxiðLi þ �iÞ. Let Y be the steady-state number of replenish-
ment orders for complete sets of components, for which at least one of the m
individual component orders has not yet arrived. Then, applying Palm’s
result, Y has a Poisson distribution with mean � ¼ lE½maxiðLi þ �iÞ�. Also,
I ¼ ðs� YÞþ and B ¼ ðY � sÞþ. Using a tandem queueing network analogy, it
is shown that

E½Ii� ¼ �ðE½max
i
ðLi þ �iÞ � E½Li� � �iÞ:

Now, assume Li has the Gumbel distribution with cdf expð��ie
�mxÞ, m > 0.

This implies that all the Li have the same variance �2. Then, E½maxiðLi þ �iÞ�
can be written in closed form for any �i. This permits the closed-form
determination of optimal values of �i and s that minimizes the long-run
average cost

Xm
i¼1

hiE½Ii� þ
Xm
i¼1

hi

 !
E½I � þ b½B�,
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where hi and b are unit holding-cost rate and backorder cost rate, respectively.
That is,

�*i ¼ max
j

E½Lj� �

ffiffiffi
6
p

p
� ln hj

� �
� E½Li� �

ffiffiffi
6
p

p
� ln hi

� �
, i ¼ 1, . . . ,m

�* ¼
�

ffiffiffi
6
p
�

p
ln

Xm
i¼1

exp
pðE½Li� þ �*i Þffiffiffi

6
p
�

� �" #

s* is the smallest integer that satisfies Pðs*j�*Þ �
b

bþ h
:

Numerical results for an 11-component system indicate that this
approximate solution is within 2% of the best among this class of policies
(found by simulation), in all cases with a common leadtime variance. It also
significantly outperforms policies that ignore either component dependence or
leadtime variance. In addition, it is reasonably robust with respect to various
modeling assumptions. However, the order-synchronization approximation
does affect the results; it overestimates the amount of inventory required.

Song and Yao (2002) also study the single-product system with Poisson
demand and i.i.d. leadtimes. They adopt the standard base-stock policy,
without order synchronization. Under any base-stock policy, the outstanding-
order vector XðtÞ is precisely the numbers of jobs in m M/G/1 queues with a
common arrival stream. This XðtÞ has a steady-state limit, X . Let Gið�Þ be the
cdf of Li and Gc

i ¼ 1� Gi. Let NðaÞ denote a Poisson random variable with
mean a. Then, X can be expressed as partial sums of 2m�1 independent
Poisson random variables as follows:

Xi ¼
X
S:i2S

Nð�	SÞ, with 	S ¼

Z 1
0

Y
k2S

Gc
kðxÞ

" # Y
j2InS

GjðxÞ

" #
dx:

ð4:6Þ

Here, for any subset S of I, Nðl	S) is the number of jobs (in steady state) still
in process in the queues k 2 S, but completed by the other queues.

In principle, all the performance measures can be evaluated exactly using
(4.6). However, there are 2m � 1 independent Poisson random variables. This
exponential growth in the number of components means that the method is
impractical for large systems.

The paper investigates the effect of leadtime variability by comparing two
systems, the original system with leadtimes Li, and another system with
leadtimes ~LLi. Assume E½Li� ¼ E½ ~LLi� ¼ li, and that Li is more variable than ~LLi

in the sense of the ‘increasing convex ordering’, denoted Li �icx
~LLi, i.e.,

Z 1
x

Gc
i ðuÞ du �

Z 1
x

~GGc
i ðuÞ du

Ch. 11. Supply Chain Operations: Assemble-to-Order Systems 583



for x � 0. (Here, ~GGc
i is the complementary cdf of ~LLi.) Note that the above

implies Var½Li� � Var½ ~LLi�. Let ~ff and ~BB denote the fill rate and the number of
backorders in the new system. Then,

f � ~ff ,

B �st
~BB:

Thus, in contrast to the standard single M/G/1 queueing system, leadtime
variability degrades performance here.

Since evaluating E½B� is hard, the paper develops simple upper and lower
bounds on E½B� and uses them as surrogate objectives in the following
optimization problem:

minE½Bðs1, . . . ,smÞ� ð4:7Þ

s:t: c1s1 þ � þ cmsm � C:

Greedy algorithms are developed, and numerical results indicate that these
solution techniques are fairly effective.

The paper considers another optimization problem that minimizes the
average component inventory costs subject to a required fill rate. Approxi-
mating the constraint by using (4.3) yields a separable convex programming
problem, which can be solved via a greedy algorithm. Numerical results show
that this lower bound approach usually results in an order fill rate (in the
original system) that is substantially higher than the required service level.
However, the greedy algorithm has considerable advantage in computation
time. Therefore, it can be used to quickly generate an initial solution, followed
by a neighborhood search to find the best solution.

The extension of this analysis to multiple products turns out to be far from
routine. Lu, Song, and Yao (2003a) derive the joint generating function of X:

 ðz1, . . . ,zmÞ : ¼ E
Ym
j¼1

z
Xj

j

" #
,

¼ exp

"X
K2K

�K
Z 1
0

ð ZK

ðG1ðuÞ þ z1G
c
1ðuÞ, . . . ,GmðuÞ

þ zmG
c
mðuÞÞ � 1Þ du

#
:

In the special case of unit demands (all Zi:1), the generating function
takes the following form:

 ðz1, . . . , zmÞ ¼ exp
X
K2K

�K
Z 1
0

Y
j2K

½GjðuÞ þ zjG
c
j ðuÞ� � 1

 !
du

" #
,

584 J.-S. Song and P. Zipkin



which corresponds to a multivariate Poisson distribution. Thus, we obtain a
generalization of (4.6):

Xi ¼
X
K2Ki

X
S3i,S�K

Nð�K	KS Þ

where all the Poisson variables are independent, and for any subset S of K ,

	KS ¼

Z 1
0

Y
j2S

Gc
j ðuÞ

Y
j2KnS

GjðuÞdu:

The effort required to evaluate the performance measures is linear in the
number of products. Unfortunately, it is again exponential in the number of
components. On the other hand, the generating function can be used to obtain
simple expressions for the means, variances and covariances. Let Kij denote
the family of subsets that contain both i and j. Then,


j :¼ E½Xj� ¼ E½Lj�
X
K2Kj

�KEðZK
j Þ,

�2j :¼ Var½Xj� ¼ EðXjÞ þ
X
K2Kj

�K ½EððZK
j Þ

2
Þ � EðZK

j Þ�

Z 1
0

½Gc
j ðuÞ�

2du,

�ij :¼ Cov½Xi,Xj � ¼
X
K2Kij

�KEðZK
i Z

K
j Þ

Z 1
0

Gc
i ðuÞG

c
j ðuÞdu i 6¼ j,

This suggests using the multivariate normal distribution with these
moments to approximate X. This is still a difficult calculation, and the paper
develops several further approximations.

One approximation is based on an upper bound on the covariance:

�ij � �i�j,

where

�i :¼

"X
K2Ki

�KEððZK
i Þ

2
Þ

#1=2"Z 1
0

ðGc
i ðuÞÞ

2du

#1=2

:

It turns out that the normal calculations become easy with each �ij replaced by
�i�j. This is called the factorized normal approximation.

A second approximation applies (4.2) to a pairwise partition of I. The
calculation then reduces to the evaluation of bivariate normal distributions.
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A numerical study compares the factorized normal approximation, the
pairwise approximation and the marginal lower bound (4.3). The pairwise
approximation is the most accurate, but the other two methods require less
computational effort, and their accuracy is reasonably good.

Lu, Song, and Yao (2003b) focus on the following optimization problem
for the same multiproduct model:

min
s

X
K

wKE½BK ðsÞ� ð4:8Þ

s:t: c1s1 þ � þ cmsm � C:

where s ¼ ðs1, . . . ,smÞ, and wK � 0 is a weighting factor for the average type-K
backorders. To find the optimal solution, the authors study two surrogate
problems, based on upper- and lower-bound approaches to approximate the
objective function. Both surrogate problems are of the same structure. Let n
be the number of demand types (or products). Then the optimal base-stock
levels can be determined by solving n! minimizations problems of the fol-
lowing form:

min
y

Xn
l¼1

vlyl

s:t:
Xn
l¼1

�lð y1 þ � � � þ ylÞ � C, y � 0:

Each of these problems can be solved by greedy methods. Heuristic algorithms
are also developed to speed up the computation. Numerical results indicate
that these solution techniques are quite effective.

Lu and Song (2002) formulate an unconstrained cost-minimization
problem for the multi-product, unit-demand system. Let bK be the backorder
cost rate for each backlogged customer order of type-K , and let Ji be the
steady-state number of units of item i that have been put aside and committed
to demands which are backlogged due to the unavailability of other items. The
expected total average cost under any base-stock policy s ¼ ðs1, . . . ,smÞ is:

CðsÞ ¼
X
i

hiE½IiðsiÞ þ JiðsÞ� þ
X
K

bKE½BK ðsÞ�

¼
X

hisi þ
X
K

~bbKE½BK ðsÞ� �
X
i

hiE½Xi�,

where

~bbK ¼ bK þ
X
i2K

hi:
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The paper compares the above formulation with item-based formulations –
that is, treat the system as a set of independent single-item systems. Let bi be
the unit backorder cost for item i backorders. The item-based optimization
problem is

min
s

Xm
i¼1

ðhiE½IiðsiÞ� þ biE½BiðsiÞ�Þ ¼
Xm
i¼1

ðhisi þ ðhi þ biÞE½BiðsiÞ�Þ

�
X
i

hiE½Xi�:

This problem is separable across i. The problem for each i is a newsvendor-
type problem and its solution can be obtained easily.

Lu and Song show that, if we set

bi ¼
X
K2Ki

�K

�i
bK þ

X
j2K , j 6¼i

hj

 !
,

the result of this item-based calculation is an upper bound on s*. A different
choice of bi yields a lower bound for the upper bound. Moreover, using the
upper bound as a starting point, s* can be obtained in a greedy fashion by
employing recently developed optimization techniques for discretely convex
functions.

4.5 Capacitated stochastic leadtimes

Song, Xu, and Liu (1999) consider a multi-product, unit-demand model.
The supply system of each component i is modeled as single exponential
processor with rate 
i and a finite backlog buffer of capacity bi � 0. The finite
buffer works as follows: A demand for component i that cannot be filled
immediately goes to the backlog queue i, provided the queue is not full. The
demand will be shipped out (or put aside) as soon as a unit of item i becomes
available. When a demand arrives and finds any of its items’ backlog queues
full, it signals the customer that a long wait is likely, and the customer decides
to leave. Thus, the buffer sizes can be viewed as measures of customer
impatience. (When bi ¼ 1 for all i, unfilled demands are backlogged. When
bi ¼ 0 for all i, unfilled demands are lost.)

Two blocking mechanisms are considered when an incoming demand finds
the backlog queue for at least one of its components full:

	 Total order service (TOS): If a type K order sees at least one of its
component’s backlog queue is full, then the order is lost entirely. In other
words, a type K order must be accepted as a whole. This model is valid
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for the assemble-to-order environment and also for some make-to-stock
systems.

	 Partial order service (POS): When a type K order arrives and the backlog
queue i is full for i 2 K 0 � K , then the order for items in K 0 is lost,
whereas the order for items in K � K 0 is satisfied, either immediately or in
the future. This model fits many distribution systems, where customers
often accept partial shipments of finished goods.

Thus, in the POS model, customer impatience is associated with individual
items, while in the TOS model, it is associated with the whole order.

The paper shows that the outstanding-order vector XðtÞ is an irreducible
continuous-time Markov chain with finite state space. Its unique stationary
distribution can be obtained through the matrix-geometric solution of a quasi
birth-and-death (QBD) process [Neuts, 1981, Chapter 3]. The paper derives the
exact expressions for f K,w and E½BK � in terms of this solution.

Numerical experiments indicate that the results from the POS model
provide reliable estimates of their counterparts in the TOS model. So, it is
sufficient to focus on one order service scheme. Also, with moderate traffic
the finite-buffer model provides an accurate approximation for the infinite-
buffer model.

Iravani, Luangkesorn, and Simchi-Levi (2000) employ a similar modeling
framework and technique to study a system with flexible customers. Each K is
partitioned into two subsets K1 and K2. K1 contains the ‘key’ components of a
type-K demand. If any components in K1 are not available, a type-K
demand is lost. On the other hand, if some ‘non-key’ components – those in
K2 – are not available, then a type-K customer may accept substitutions or
even ignore them. Specifically, for i 2 K , there is a probability pKij that
customers of type-K will accept component j if component i is not available.
If pKij ¼ 0 for all j 2 S fig, then customer type-K accepts no substitutes for
component i.

Glasserman and Wang (1998) model the supply system as a set of M/G/1
queues (G/G/1 queues for the single-product case). Assuming the fill rate f K ,w

remains high, the paper investigates the tradeoff between the delivery time
window w and the total base-stock units s ¼ s1 þ s2 þ � � � þ sm. It is intuitively
clear that, fixing the fill rate, s increases as w decreases. The key result of the
paper is that this relationship is asymptotically linear, provided the ratios
ki ¼ si=s are kept constant as s increases. The two parameters of this linear
relationship can be determined exactly (through analysis of the arrival and
service times’ cumulant generating functions) or approximately (from their
moments).

Let Ui denote the random processing time of a unit of component i, and Vi

be the interarrival time of demand for component i. It is shown that for large s
or w, the item fill rate can be approximated by

1� f wi 
 Cie
��iw��isi :
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for some constants Ci,�i and �i. For Poisson demand process (which is
necessary for the multiproduct case),

Ci ¼ �
�1
i ð�i þ �iÞð1� �iE½Zi�E½Ui�Þð 

0
Zi
ð�iÞ Ui

ð�iÞð�i þ �iÞ � 1Þ�1:

Recall that Zi is the demand batch size for component i. The constants �i and
�i can be obtained by solving some equations involving the cumulant
generating functions of the input random variables. (The cumulant generating
function of a random variable Y is defined by  Y ð	Þ ¼ log E½e	Y �.) They can
also be approximated by the first two moments of these random variables as
follows:

�i 
 �
2E½Ui�E½Zi� � E½Vi�

E½Zi�Var½Ui� þ Var½Zi�ðE½Ui�Þ
2

and

�i 
 E½Ui��i þ
1

2
Var½Ui��

2
i :

Let

�K ¼ min
i2K
f�ig and WK ¼ fi 2 K : �i ¼ �

Kg:

Define �i ¼ ki�i and let

�K ¼ min
i2K
f�ig and S

K
¼ fi 2 K : �i ¼ �

Kg:

Then, when the time window w is long, the order fill rate can be approxi-
mated by

½1� f K,w� 

X
i2WK

Cie
��Kw��is:

When the total base-stock units s is high,

½1� f K,w� 

X
i2SK

Cie
��iw��

Ks:

Assuming that all products’ fill rates are the same and high, and the items’
base-stock levels change in constant proportions, this approximation suggests
that, when the time window w is changed, the base-stock levels should be
varied according to the component-level tradeoff rule

�si ¼ �
�i
�i
�w
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to maintain the same order fill rate. Numerical experiments show that under
certain conditions this linear rule provides satisfactory results.

This result, however, depends strongly on the assumption of finite capacity.
(It is easy to show that, in a simple single-item system with constant leadtimes,
the relationship is nonlinear.)

Wang (1999) applies this result to an optimization problem to minimize
average inventory cost subject to a fill-rate constraint. The paper focuses on a
single-product system and solves a surrogate problem with closed-form
solution. In particular, it shows that there exists an index k, such that the
following solution is effective:

~ssi ¼
1

�i
log

	kCie
��iw

hi=�i
, for i � k and ~ssi ¼ 0 for i > k,

where

	j ¼

P j
i¼1 ðhi=�iÞ

��
Pm

i¼jþ1 Cie��1x

and hi is the unit holding cost of component i.
Dayanik, Song, and Xu (2001) examine several ideas scattered in

diverse literature on approximations for multivariate probability distributions,
and determine which approach is most effective in estimating performance in
capacitated ATO systems. Tailoring different approximation ideas to the ATO
setting, they derive several performance bounds, such as setwise bounds based
on the dependence structure of the system, distribution-free Bonferroni-type
bounds commonly used to bound multivariate distributions, Frechet-type
bounds, and bounds that are combinations of these previous ones. The paper
compares these bounds both analytically and numerically. The general
conclusion is that the setwise bounds are most effective.

Xu (2001) summarizes several performance bounds for ATO systems based
on stochastic comparison techniques.

To summarize, research on continuous-time models has made major strides
in the last few years in developing robust analytical tools for design and control
of ATO systems. Both exact and asymptotic results as well as bounds and
approximations have been developed. The methods, however, heavily depend
on the detailed model assumptions. So, in applying these methods, one should
be careful about which model framework fits best in the particular application.

5 Research on system design

Another line of research aims to understand the broad issues involved in
product and process design. An overview is given by Nevins and Whitney

590 J.-S. Song and P. Zipkin



(1989) and a review of the research literature by Krishnan and Ulrich (2001).
This work, of course, considers a range of production modes, not just ATO.
Here, we focus on research that explicitly treats the product- and component-
variety issues posed by ATO systems.

This research tends to suppress most of the detail of the operational models
discussed above. Instead, it aims to approximate the operational cost of a
system by means of simple functions.

Fisher, Ramdas, and Ulrich (1999) develop a model for system design
in one specific industry, automobile brakes, and test it empirically. This
model represents the total operational costs (and design costs as well) by
affine functions of demand. Brakes differ from each other on one critical
dimension, their rotor diameters. Depending mainly on its weight, a car
requires rotors of at least a certain diameter. The model aims to determine the
optimal number of brakes for a given family of cars. Under certain simplifying
assumptions, the optimal number of brakes is proportional to a simple index,
the square root of (total demand times the range of car weights). The paper then
tests the model using data from six companies, half American and half
Japanese. The index accurately predicts the actual variety in brakes.

Ramdas and Sawhney (2001) develop a model to redesign a product line.
First, they develop a method to estimate the impact on revenues due to
product-line extensions. Second, they outline a method to estimate the
operational-cost impact. This method includes terms reflecting the scale
economies due to component commonality in the new products. Third and
finally, they combine these methods into an integer-programming model to
select the optimal line extensions. The paper reports a case study based on
data from a wristwatch manufacturer.

Krishnan, Singh, and Tirupati (1999) develop another product-line
design model. Although it focuses on product-development costs, it
includes functions that represent part-commonality effects in operational
costs. The end result, again, is an optimization model. Krishnan and Gupta
(2001) use a similar model to evaluate ‘product platforms’, sets of
components and subassemblies shared across whole families of products.
They identify conditions under which such platforms may, and may not, be
beneficial.

The issue of component commonality is related to the broader issue of
modular design. Baldwin and Clark (2000) provide an overview of this
concept. Thonemann and Brandeau (2000) develop a detailed model to
optimize the level of part commonality.

These few works are, in our view, best seen as initial forays into
largely uncharted territory. The design process involves many factors in
addition to operational costs. Although the phrase ‘design for manufacturing’
represents a recognition of the importance of such costs, we do not yet
understand how best to organize design resources to take them into account,
along with other critical factors. Future research, we hope, will shed more
light on this matter.
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6 Summary and future directions

As we have seen above, recent research has made considerable progress in
developing analytical methods for ATO systems. We now have tractable
methods to estimate and improve performance, at least for some systems.
Those methods have led to some interesting and useful managerial insights.
Much work remains, nevertheless. Here we point out a few areas where
further research is needed.

6.1 Optimal policies

As indicated above, little is known about the forms of optimal policies for
multi-period models. The research to date mostly assumes particular policy
types. It would be valuable to learn more about truly optimal policies. Even
partial characterizations would be interesting. Also, better heuristic policy
forms would be useful.

6.2 Tractable methods for large-scale systems

Many real ATO systems contain hundreds of components and thousands of
products. A division of Hewlett-Packard, for example, uses over 100 PC
components grouped into eight component families to make their computers.
Such a system poses a considerable computational burden on existing models
and solution methods. Even data estimation is no trivial task.

A number of approaches might improve matters. One approach is to seek
model formulations with special structures that allow efficient evaluation of
the performance measures. Another approach is to develop decomposition
and approximation schemes allowing algorithm ‘scalability’ to large data sets.
Sections 3 and 4 reviewed several ideas in the recent developments. Still, better
methods of this sort would be most welcome.

6.3 Demand distributions

Nearly all the models in this chapter assume stationary data. However,
short product life cycles imply time-varying or state-dependent demand. It is
desirable that practical models in the future allow for such complex demand
models.

6.4 Shifts in supply chain structures and costs

The pressure to streamline supply chain flows and to increase supply chain
efficiency and reduce cost has led many manufacturers to outsource some
(even all) steps of assembly operations (mostly product configuration and
customization), usually to their distributors, who might in turn delegate part
of the final assembly to the retailers. Hence the ATO problem might be
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encountered by multiple players in the same supply chain. (Chapters 6 and 7
of this volume discuss the issues involved in multi-player supply chains.)

In addition, new issues and management practices continue to emerge.
Manufacturing capacity in assembly, once owned and concentrated at the
manufacturer, is now shifted downstream in the supply chain and becomes
distributed among the players and more flexible and less expensive to expand
at the same time. Therefore, the scheduling of short-term flexible capacities to
meet temporary product demand fluctuations or product mix changes, and the
coordination of capacities at different stages of a system, will continue to be
important research problems.

The manner in which supply-chain players share the financial risks and
costs might also be changing. A particular example is the ‘price protection’
contract between the manufacturer and its distributor. Designed to protect the
distributor from rapid price declines and shift the price decline risk to the
manufacturer, the price protection policy changes the traditional definition of
inventory holding cost so that much of the inventory cost might be shifted to
either the supplier or the customer. Furthermore, the cost relationship
between the supplier and the buyer may be made more complex by vendor-
managed inventory (VMI) programs. Since the inventory holding cost is a
critical parameter in ATO models, the change in the cost structure might affect
the solution and the recommendation significantly. (Chapters 7 and 8 of this
volume discuss these and other issues involved in multi-player supply chains.)

6.5 Product design implications

Model-based research on product design, as suggested in Section 5, is at an
early stage. Unfortunately, we do not yet understand detailed operational
models well enough to derive from them simple, empirically testable and
usable cost models. For the time being, therefore, empirical models must rely
on ad hoc cost functions with little basis in theory. We see many opportunities
for future research to help bridge this gap.
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Chapter 12

Planning Supply Chain Operations: Definition and
Comparison of Planning Concepts

Ton G. de Kok and Jan C. Fransoo
Department of Technology Management, Technische Universiteit Eindhoven, 5600 MB

Eindhoven, The Netherlands

1 Introduction

In this chapter we discuss the Supply Chain Operations Planning problem.
Positioning Supply Chain Operations Planning (SCOP) in the context of
Supply Chain Management (SCM), the objective of SCOP is to coordinate the

release of materials and resources in the supply network under consideration
such that customer service constraints are met at minimal cost.

We boldfaced the coordination of releases of materials and resources, since
this distinguishes SCOP from other SCM decision processes discussed in this
volume. First, by deciding on the releases of both materials and resources, we
take into account material and resource constraints simultaneously. Second,
we explicitly consider coordination of all release decisions in a multi-item,
multi-period setting, i.e., operational coordination over time. Especially this
operational coordination over time distinguishes SCOP from other Supply
Chain Planning (SCP) activities, such as setting seasonal stock levels based on
aggregate supply-demand balancing or planning availability of resources in
general. The SCOP problem incorporates the outcomes of earlier planning
decisions and generates material and resource release decision that are exe-
cuted by the shopfloor control function. In the context of the SCP matrix
presented in Stadtler and Kilger (2000), SCOP overlaps both mid-term and
short-term planning, i.e., it translates mid-term planning decisions into short-
term execution decisions.

Another consequence of the focus on operational coordination is the
incorporation of demand uncertainty and throughput time uncertainty in the
models discussed in this Chapter to the extent possible to date. In that sense
our approach differs from the more common approach in the context of SCP
to formulate a deterministic instance of a particular SCP problem and develop
heuristics or optimization methods to solve the instance. We will discuss the
difference between these two approaches in more detail in Sections 4 and 6.
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We boldfaced ‘supply network’ since we discuss in this chapter the SCOP
problem for general supply network structures. This implies that we assume
that items considered in the SCOP problem may be assembled from other
multiple items and may be assembled themselves into other multiple items. In
that respect we extend the analysis presented in Chapters 10 and 11 of this
volume, albeit that the generality of the problem posed prohibits an analysis
of similar elegance.

Notice that nowadays the supply network involves multiple organizations,
e.g., an OEM and 1st and 2nd tier suppliers. Furthermore, the SCOP problem
involves multiple units within an organization, e.g., sales, marketing,
production and purchasing, or different manufacturing or warehousing
locations. This observation has important consequences for the formulation
of quantitative models that formalize the SCOP problem. In our formulations
we assume that there exists a centralized objective function, and that
information is shared across the supply chain. Furthermore, we assume that
each of the echelons in the supply chain assumes responsibility for
maintaining a certain lead time, as this is not considered part of the SCOP
task. We will discuss this decomposition further in the next section, where we
argue that this hierarchical decomposition and ordering of planning decisions
is the only possible way both from a theoretical and from a practical
perspective. Note that we will thus neither consider multi-agent situations in
SCP, nor gaming situations (which have only been studied until now in a
supply chain contracting setting, see Chapters 6 and 7 of this volume). We
would however like to point out that some form of central coordination is
possible even under limited information exchange using the models discussed
in this chapter (see Fransoo, Wouters, and de Kok (2001)).

We boldfaced the objective of meeting customer service level constraints at
minimal cost, because our objective is to compare, where possible and by
selection of appropriate case situations, the various SCOP concepts proposed
in the literature to date. To our knowledge such a comparison has not yet been
undertaken and we have found that it generates deeper insights into the nature
of the SCOP problem. Surprisingly, the comparative study also generated
further insight into the design of supply networks, in particular the positioning
of inventory capital in a given supply chain structure.

The outline of this introductory section is as follows. In Section 1.1 we
introduce the SCOP problem from a practical perspective in more detail.
Thereafter we define the variables and notions that enable to formulate the
SCOP problem as a quantitative optimization problem. These variables and
notions are used throughout this chapter. In Section 1.2 we discuss the
material aspect of the SCOP problem, whereas in Section 1.3 we discuss
resource aspects. In Section 1.4 we briefly discuss the concept of so-called
planned lead times. In Section 1.5 we present two optimization problems that
are used as a basis for comparison between different SCP concepts. In Section
1.6 we deal with the Customer Order Decoupling Point (CODP) concept and
its relevance for the SCOP problem.
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1.1 The SCOP problem

The SCOP function is responsible for the coordination of activities along
the supply chain, by making decisions on the quantities and timing of material
and resource releases. In this chapter, we explicitly model the supply chain as a
network, i.e., activities that transform inputs into outputs using available
resources are preceded by multiple transformation activities and succeeded by
multiple transformation activities. Note that a transformation activity is a
general designation of any type of relationship between two items in a supply
chain, and can be both referring to physical transformation activities such as
manufacturing or assembly activities and to non-physical transformation
activities such as transportation from one location to another. Typical
activities to be considered are

1. Manufacturing activities, i.e., activities that physically transform
physical inputs into physical outputs.

2. Transportation activities, i.e., activities that move physical outputs from
one location to another.

3. Planning activities, i.e., all administrative activities that are required for
enabling a manufacturing or transportation activity to take place, such
as process planning, transportation contracting, creation of purchase
orders, etc.

From the SCP point of view it is essential to identify all relevant activities
and their mutual relationships. In particular planning activities can be
executed parallel to manufacturing and transportation activities. On the other
hand it is well possible that planning activities determine a major part of
the overall supply chain throughput time, e.g., when negotiation of price is
essential for economic viability or acquisition of information about future
demand is of paramount interest, or when letters of credit need to be obtained
before actual manufacturing can start.

In each SCOP situation, the definition of these three types of activities,
including their characteristics, is the starting point for defining the SCOP
problem. In this subsection we concentrate on the representation of the
manufacturing activities and transportation activities in relation to the SCOP
problem. Reason for this starting point is two-fold:

1. Manufacturing activities and transportation activities are usually well-
defined processes of which the main characteristics like processing times,
resource requirements and process yields can be easily determined
relatively.

2. Supply chain planning in itself is a planning activity at a specific
hierarchical level. This implies that the choice for a particular SCP
concept impacts planning activities at both lower and higher hierarchical
levels. We postpone a detailed discussion to Section 2.
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When considering physical transformation activities and their mutual
relationships, we find that two generic aspects determine these relationships:

1. One transformation activity’s output is another transformation activity’s
input.

2. One transformation activity shares one or more resources with another
transformation activity

In Section 1.2 we focus on the first aspect, defining a Bill Of Material
(BOM) structure and all related variables. In Section 1.3 we discuss the second
aspect, defining a Bill Of Process (BOP) structure and all related variables.

1.2 Bill of material structure

The physical supply network structure is defined by parent-child relation-
ships between items. ‘Item’ is the generic term for any input into and any output
from transformation activities. In the case of amanufacturing operation a set of
items is transformed into one or more items. In this chapter, we restrict
ourselves to the situation that a transformation process outputs only a single
item, which in turn can be used inmultiple other transformation processes. This
assumption is valid in many situations, e.g., in discrete part manufacturing.
There are situations, especially in process industries and reverse manufacturing,
where the manufacturing of one item implies that another item is manufactured
at the same time. Such items are called by-products. For a discussion of
this phenomenon and the resulting complexities, we refer to Spengler,
Püchert, Penkuhn and Rentz (1997). It is important to note that a trans-
portation activity transforms one item into another by changzing the location
of the material involved. Generally speaking an item is equivalent to a material/
location combination. We omit here the time-aspect of an item; we assume the
item does not change over time, e.g., due to engineering changes.

Let us consider a supply network consisting of N items. For each item i,
i¼ 1, 2, . . . ,N we define aij as the number of items i required to produce one
item j (i¼ 1, 2, . . . ,N, j¼ 1, 2, . . . ,N).

The matrix ðaijÞ is called the Bill Of Material (BOM). In the context
of MRP-literature the BOM is usually associated with a single end-item
or so-called MPS-item (MPS is Master Production Schedule) [cf. Orlicky
(1975)]. Our definition of BOM comprises that definition in the sense that
if our supply network would produce a single end-item for a market then
both definitions of BOM would be identical.

An end-item is an item that is not used in any other item. Such an end-item
is delivered to customers of the supply network. We define E as the set of end-
items, i.e.,

E fijaij ¼ 0, i ¼ 1, 2, . . . ,N, j ¼ 1, 2, . . . ,Ng
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We define the set I of intermediate items as

I fij9 1 � j � N with aij > 0, i ¼ 1, 2, . . . ,Ng

For notational purposes it is convenient to introduce the following sets
associated with each item,

Vi f jj aij > 0, j ¼ 1, 2, . . . ,Ng

Wi f jjaji, > 0, j ¼ 1, 2, . . . ,Ng

Hence Vi is the set of successors of item i and Wi is the set of predecessors of i,
i¼ 1, 2, . . . ,N. With the above definitions we have characterized completely
the material structure of the supply chain.

One set of decisions that results from solving the SCOP problem is the
set of material release decisions. In order to rigorously describe these
decisions we must introduce some notation. The variables defined relate to the
solution of the SCOP problem at a particular point in time. We assume that
the SCOP problem is solved periodically at equidistant moments in time.
Typical periods used in practice are days, weeks and months.

Let us define period t as the time interval (t�l, t]. At time t, t¼ 0, 1, 2, . . . ,
release decisions are taken. We define for i¼ 1, 2, . . . ,N:

Di(t) independent demand for item i in period t, i.e., demand in period t
for item i, that is not derived from demand for items in I [ E

Gi(t) dependent demand for item i in period t, i.e., demand in period t
for item i, that is derived from demand for items in I [ E

pi(t) quantity of item i that becomes available at the start of period t from
the transformation activity generating item i

ri(t) quantity of item i released at the start of period t immediately after
receipt of pi(t)

Ii(t) physical inventory of item i at the start of period t, immediately before
receipt of pi(t)

Bi(t) backlog of item i at the start of period t, immediately before receipt
of pi(t)

Ji(t) net inventory, i.e., physical inventory minus backorders, of item i
a t the start of period t, immediately before receipt of pi(t)

Notice that independent demand is demand generated by customers of the
supply network. Such demand is usually not known beforehand and must be
forecast. We define the item set P as,

P Set of items i with DiðtÞ > 0 for some t > 0:

Furthermore notice that {ri(t)} are the set of decision variables that
constitute one part of the core outcome of the SCOP problem, viz. the
material release decisions.
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1.3 Bill Of process structure

Manufacturing and transportation activities are executed by resources.
Execution of an activity at a resource requires some processing time. In
general such a processing time may vary over time due to many different
causes, most of which cannot be controlled. Hence in general we represent the
processing time by a random variable.

We assume that the processing time at a resource depends on the item that is
the output of the transformation activity. It can be easily seen that this
assumption is without any loss of generality. We furthermore assume that a
resource can only execute one transformation process at a time. This
assumption may be a restriction, e.g., in process industries it is quite common
that one transformation activity generates multiple items (e.g., by-products),
which implies that multiple transformation processes are run in parallel on the
same resource. In our definition, this would have to be solved by pre-allocating
a specific portion of the available resource capacity to a specific item.

As stated above we assume that the SCP process is executed periodically,
e.g., daily or weekly. This implies that we define resource availability as
available capacity in units of time during a period. Thus we define

Ckt Amount of capacity available in units of time of
resource k in period t, k ¼ 1, . . . ,K, t� 1,

where K is the number of available resources. Let us define the following
variables associated with resource usage,

Uk Set of items that can be processed on resource k
ci Time required to process one unit of item i on its resource

For the sake of simplicity we assume that an item can be processed on one
resource only. In many cases the analysis can be extended to the situation
where item i can be processed on multiple resources, which implies the
definition of additional variables and constraints.

The decision variables related to the release of resources at the start of
an arbitrary period are given by the set {qi (t)}, where qi (t) is defined as

qi (t) Amount of item i processed in period t, t � 1.

We note here that we assume that an amount of item i processed in period t
becomes available at the start of period tþ 1. This implies that

piðtÞ ¼ qiðt� 1Þ, t � U:

This implies that we do not consider the possibility of random yield. For an
extensive discussion of random yield we refer to Yano and Lee (1995). Based
on our experience with SCOP problems in highly volatile environments with
random yields we argue that current state-of-the-art literature on this subject
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is not applicable to multi-item multi-echelon networks. As a quick-and-dirty
solution we propose to incorporate random yield through periodic updates of
the state of the supply network, taking into account actual yields, and some
safety stock provisions.

1.4 The planned lead time concept

As stated above SCP coordinates release of material and resources.
The coordination of material would be more or less trivial if transformation
activities would require negligible time. However, transformation activities
require processing times on resources. Due to various sources of uncertainty,
such as demand uncertainty and random processing times, the interactions
between materials and resources result into lead times of item orders. The
phenomenon of lead times in manufacturing has been extensively studied. For
an overview of this literature, which strongly relies on queuing network
theory, we refer to Suri, Sanders and Kamath (1993) and Buzacott and
Shantikumar (1993). From this literature we learn that a lead time consists of
a processing time and a waiting time. The waiting time is typically the major
part of the lead time, caused by interaction between multiple item orders,
which are using the same resources for the execution of the transformation
process. Waiting of an item can occur both before and after the actual
transformation activity.

Thus, in order to properly coordinate the release of materials and resources,
the SCOP level has to take into account lead times. For each item we thus
define its lead time Li,

Li throughput time between time of release of an order for item i and
time at which the ordered items are available for usage in other items
and/or delivery to customers

Given the periodic nature of the SCP process we assume that Li is an
integer number of time units. We assume that items i released at the
start of period t are available for usage at the start of period tþLi, i.e., in
(tþLi�1, tþLi].

In the context of SCP we are faced with the following core issue:

Is Li endogenous or exogenous to the SCP concept?
This issue is extensively discussed in Section 2. It is concluded there that

the lead time Li is exogenous to the SCOP problem. Given the fact that, as
stated above, lead times are related to resource utilization, the actual choice
of Li should be consistent with the resource availability and resource
requirements that can be derived from the BOP and the exogenous demand
characteristics. Such consistency should be derived from either empirical data
or by applications of the above-mentioned results from queuing (network)
models.
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1.5 Performance measurement as a basis for comparison

The main objective of this chapter is to provide insights into the
applicability of the various SCP concepts proposed in the literature. Typically,
each scientific contribution in this area selects its own case to generate
managerial insights. Contrary to common practice in combinatorial
optimization there is no commonly accepted set of test problems.
Furthermore, it may happen that analytical results are derived based on
assumptions that need not hold. A typical example of the latter is the
assumption that upstream availability is guaranteed, so that a decomposition
of the supply chain model results. We have seen examples where the analysis
that builds on this assumption eventually yields ‘optimal’ solutions that
strongly violate the assumption required for the analysis. Such examples are
discussed in Section 5.

In order to make a proper comparison of different SCP concepts we define
a cost structure and a performance criterion. We define C(t) as the cost
incurred at the end of period t, t� 0,

CðtÞ ¼
XN
i¼1

h, IiðtÞ,

where hi var value of item i 8i
Notice that C(t) is not really a cost function but represents the total supply

chain inventory capital investment at the start of period t. We are interested in
the long-run average value of C(t),

C ¼ lim
t!1

1

t

Xl
s¼1

CðsÞ:

We assume existence of C, which holds true in the case of stationary
stochastic demand. The comparisons of SCOP concepts in Sections 5 and 6
are restricted to that situation.

The long-run average supply chain inventory holding cost can be
derived from multiplying C by the interest rate. Note that by taking C as a
basis for comparison we circumvent discussions about proper interest rates,
although a discussion about value added in the supply network cannot be
circumvented.

Comparing capital investments suffices only when lot-sizing restrictions are
irrelevant. More precisely, when we assume that each period for all items a
positive quantity is released, we can refrain from considering fixed set-up or
ordering costs. In many practical applications lot sizing is not an issue at
SCOP level. Either because of sufficiently high manufacturing flexibility
[cf. Bertrand (2003), Chapter 4 of this volume for an extensive discussion of
flexibility in supply chain management context], or because of the time
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aggregation into weekly or monthly buckets, implying that lot sizing decisions
are taken at the level below the SCOP level. In most cases the lot sizing
restrictions have been determined at some level above the SCOP level, since lot
sizing impacts the need for resources. Still, there are situations where lot sizing
decisions must be taken at SCOP level. We will not deal with that
situation due to the fact that to date virtually no results are available in
literature on the analysis of general assembly networks under demand
uncertainty and lot sizing restrictions. For an in-depth discussion of lot sizing
and its position in the planning hierarchy we refer to Chapter 9, Fleischmann
and Meyr (2003).

The capital investment is needed to ensure sufficient customer service. Note
that we must define customer service for all items with independent demand,
i.e., for all items in P. As performance criteria we choose �i and �i, 8i 2 P,
defined as

�i lim
t!1

PfIiðtÞ > 0g, 8i 2 P, non-stockout probability

�i lim
t!1

1�
½EðIiðtÞ þ piðtÞ �DiðtÞÞ

þ
� � E½ð�IiðtÞ � piðtÞ

þ
�

E½DiðtÞ�
, 8i 2 P, fill rate

Likewise the case of C we assume existence of �i and �i. Notice that �i is
identical to the P1-measure defined in Silver, Pyke, and Peterson (1998) and �i
is identical to the P2-measure defined there. For each SCOP concept P we
want to solve the following problems:
Problem (P�)

minCðPÞ

s:t: �iðPÞ � �*i , i 2 P

Problem (P�)

minCðPÞ

s:t: �iðPÞ � �*i , i 2 P

It is implicitly assumed that the SCP concept P satisfies the set of
material and resource constraints derived in Section 3. In both problems
we express the dependence of both C and �i and �i on P. Hence we want to
minimize capital investments subject to the service level constraints �*i or
�*i , i 2 P. An alternative to the use of service level constraints is the intro-
duction of penalty costs. Apart from the fact that penalty costs are hard to
determine in practice, one is also compelled to replace capital investments by
inventory holding costs in order to make a proper trade-off. As indicated
above we want to circumvent a discussion of holding costs. For results on the
equivalence of penalty costs and service level constraints we refer to Silver
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et al. (1998), Diks, de Kok and Lagodimos (1996), Diks (1997), Janssen (1998)
and Van Houtum and Zijm (2000).

Apart from a comparison of SCP concepts, we will also discuss the
differences in analysis of particular SCP concepts as reported in the literature.
Especially for SCP concepts that assume stochastic demand, which are
discussed in Section 5, we have found different simplifying assumptions
needed for tractability. We will show that some of these assumptions may
yield suboptimal or erroneous results when validating the model results with
simulation or an exact analysis.

We emphasize here that the comparative approach presented here is, to
our knowledge, the first of its kind. Furthermore, the supply chain
operations planning problem with stochastic demand is complex and to
date no insight exists into the structure of optimal policies for general
supply chain structures. For single period problems with two components and
two end-items Rosenblatt and Eynan (1996) are able to derive the optimal
policy structure. A recent paper by Hillier (2000) discusses an Assemble-To-
Order situation, where the supply chain structure consists of multiple
components and multiple end-items. Stocks are only held at the component
level. Using Stochastic Dynamic Programming Hillier derives the optimal
policy for the multi-period problem and the infinite-horizon problem. For
more complex supply chain structures no results are currently available in the
literature.

All this implies that this state-of-the-art comparative study identifies more
questions than answers. These questions are the basis for further research,
which is, as stated above, discussed in Section 7.

1.6 The customer order decoupling point concept

In this introductory Section, it is relevant to discuss a concept from
the Supply ChainManagement literature that is relevant for the development of
an appropriate SLOP model. This concept is known as the Customer
Order Decoupling Point [CODP, cf. Bertrand, Wortmann and Wijngaard
(1990), Silver et al. (1998), or Hoekstra and Romme (1991), from which
the Decoupling Point concept originates]. The CODP is the point that indicates
how deeply the customer order penetrates into the supply chain. It is the
distinction between the order-driven and forecast-driven parts of the supply
chain for a particular product market combination. Items that are kept in stock
at the CODP are those items for which demand must be forecast due to the fact
that future demand between the moment of release of items and the moment
those items are received is (partially) unknown; the lead time of supplying the
item is longer than the lead time requested by the customer. Downstream of the
CODP, items are not kept in stock, since future demand for these items between
release moments and receipt moments is known; the lead time of supplying the
item from the CODP to the customer is shorter than the lead time requested by
the customer. In our models, we only consider demand upstream from the
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CODP. Demand at the CODP then is independent demand, either originating
directly from the demand forecast of end-items (Make-to-Stack), demand
forecasts of modules (Assemble-to-Order), or of components (Make-to-Order).
All releases downstream of the CODP are based on actual customer orders and
thus are not planned under uncertainty of demand (cf. Final Assembly
Schedule, Orlicky (1975)). All releases upstream of the CODP are planned based
on dependent demand.

It is interesting to note here that originally the CODP concept is applied to
a single organization. When taking a supply chain view, i.e., a view comprising
multiple organizations, many CODPs vanish due to the fact that demand
originally considered to be independent and thereby requiring forecasting,
becomes dependent demand. As we will see in the sequel this observation has a
major impact on the performance of the supply network. Typically, items that
are stocked at the CODP are assumed to be available with high probability to
satisfy independent demand. When converting these items that face
independent demand into items facing dependent demand only, such a
requirement is no longer relevant. Trade-offs will reveal that a supply chain
view implies low availability of these items to prevent unnecessary inventory
capital investments.

In this chapter, we will only consider the releases of items that are kept in
stock at the CODP and the items that are part of the BOM of those CODP-
items. Therefore, without loss of generality, we denote the CODP-items as end-
items in this text. In case these end-items are not sellable products, but modules
or (sets of) components, the independent demand for these end-items can be
derived from forecasts of (sets of) sellable products. Alternatively, one can use
historical data and market intelligence to derive forecasts of end-items directly.

1.7 Structure of the chapter

This concludes our discussion of the basic notions that enable to define
the SCOP problem in the form of quantitative models. The remainder of this
Chapter is structured as follows. In Section 2 we discuss the position of the
SCOP problem in the context of a hierarchical planning framework com-
prising aggregate planning, SCOP and detailed scheduling. An important
aspect of the discussion in Section 2 is the motivation for incorporating so-
called planned lead times into the formulation of the SCOP problem, since
in the sequel of this Chapter we restrict to supply network models with
deterministic item lead times. In Section 3 we derive generic material and
resource release constraints, which we denote further as ‘generic SCOP
constraints’, which are used in later sections to test the validity of various
SCOP concepts proposed in the literature. In Section 4 we use the generic
SCOP constraints to derive an LP formulation for the SCOP problem
without lot sizing restrictions on the material releases. The LP formulation
is a benchmark in the discussion of other SCOP concepts based on deter-
ministic exogenous demand in a rolling schedule context. The exogenous
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demand is derived from a forecasting or sales planning process [cf. Chapter
9, Fleischmann and Meyr (2003) of this volume]. In Section 5 we discuss
SCOP concepts based on quantitative models that explicitly incorporate
stochastic demand. Where possible we compare the various concepts with
respect to assumptions made regarding the supply network structure and
regarding the item availability assumptions required for the quantitative
analysis. In Section 6 we compare the LP-based SCOP concept with a so-
called synchronized base stock (SBS) policy developed by De Kok and
Visschers (1999) under infinite resource availability. The reason for selecting
these two concepts is that they represent two really distinct modeling
concepts for the SCOP problem for general supply networks and for both
concepts we can derive solutions that ensure that predefined customer
service level constraints are met with a high accuracy. The LP-based concept
represents the class of SCOP concepts based on deterministic models in a
rolling schedule context, widely available in standard software for SCOP as
discussed by Fleischmann and Meyr (2003) in Chapter 9. The SBS concept
seems to be to date the only concept representing SCOP concepts explicitly
incorporating stochastic demand into the SCOP model, that is able to cope
with the general multi-item multi-echelon models that result from the SCOP
problem for general supply networks. The comparison of these two concepts
yields fundamental insights into the SCOP problem that are extensively
discussed. Finally, in Section 7 we summarize our findings and discuss
further SCOP research challenges.

2 The hierarchical nature of SCP

In this chapter, we position the supply chain operations planning problem
in a hierarchical framework. Hierarchical planning frameworks enable us to
accurately model the consecutive planning and scheduling decisions made in
manufacturing organizations. The SCOP problem is only one in a series of
planning and scheduling problems to be solved by (groups of ) manufacturing
organizations to realize their objectives in terms of customer service, turnover,
profit, ROI, etc. We start with a discussion of various research perspectives
that underlie the development of hierarchical planning concepts developed in
the past.

2.1 Hierarchies in planning

Decisions with regard to the different components of planning of supply
chain operations have traditionally been analyzed independently from one
another by researchers. Research addressing the scheduling problem, the
(multi-echelon) inventory problem, and the aggregate capacity planning
problem have hardly been interconnected while maintaining their own
characteristics. On the contrary, in the late 1960s and early 1970s attempts
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have been made from each of these domains to expand the scope of research
and apply their available specific methods to other components of the SCP
problem. In these approaches, the specific nature of each of the components
has however been disregarded, and the problems have developed into
conceptually monolithic models. An illustration is the work on combining lot
sizing and scheduling [see, e.g., Dauzère-Pérès and Lasserre (1994)], in which
two models remain to exist, but a final solution is obtained by iterating
between the two models.

Managers were however still faced with this multitude of different problems
in the SCP domain. They solved these issues by organizing these decisions in a
hierarchical manner. Meal (1984) analyzes and describes these hierarchies and
links them to the hierarchical planning hierarchies introduced by Hax and
Meal (1975) and Bitran and Hax (1977).

The idea for hierarchical production planning was captured formally by
Anthony (1965). He introduced three levels of hierarchical control: Strategic
Planning, Management Control, and Operational Control. The principal ideas
for developing this planning hierarchy into a set of formal models supporting
coordinated decision making at these levels were developed by Bitran, Hax,
and Meal (BHM) in the early 1970s [Winter (1989)]. In their publications,
generally the following terms are used for the models supporting the three
decision levels: aggregate planning, family disaggregation, and item
disaggregation. The BHM hierarchy is based on capacity coordination only.
Material coordination is not considered and bills-of-material are not included,
which precludes the use of their methodology in SCP. Originally, the work
was motivated by and the models were based on discrete parts batch
manufacturing, with later applications in continuous manufacturing and job
shops [see Bitran and Tirupati (1993) for a review and McKay, Safayeni and
Buzacott (1995) for a historical perspective]. Note that all these environments
are primarily capacity oriented [Bertrand et al., 1990]. Essentially there are
two types of constraints at each of the levels of the BHM formulation:

(1) Primary process constraints: these are ‘hard’ constraints that are
derived from physical constraints in the process, such as resources.

(2) Decision process constraints: these are ‘soft’ constraints that are
imposed upon a level by its immediate higher level in the decision
hierarchy.

At the highest level, the aggregate resource constraints form the basis of the
resource hierarchy, with the decision how much time to allocate in regular
time and in overtime, in line with the original HMMS model [Holt et al.
(1960)], although the costs in the BHM model are linear and not quadratic as
in HMMS. A distinction between the primary process constraints and the
decision process constraints is not made in the model formulation, leading to
the fact that, e.g., a decision to produce a certain quantity of a product family
is fixed, despite possibly ‘better’ feasible solutions once the more detailed
planning starts at a lower level.
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When multiple stages are introduced into the BHM formulation, perfect
aggregation becomes very difficult [see the review of the work of Axsäter by
Bitran and Tirupati (1993)] and the only way in which to devise a hierarchical
planning procedure is by a very loose coupling. Graves, Meal, Dasu and Qui
(1986) propose a two-level model, which at the aggregate level plans capacity
and at the detailed level uses a base stock approach to coordinate the various
stages of production. Bitran and Tirupati (1993) and Meal, Wachter and
Whybark (1987) discuss the relationship between the BHM formulation of
hierarchical planning and MRP. They conclude that the hierarchical planning
and MRP systems are complimentary, in that hierarchical planning focuses
primarily on determining capacity levels and capacity smoothing, while MRP
determines the amount of material required at various points in the
manufacturing process. Due to the interactions between material release and
resource release decisions as formulated in the SCOP models to be discussed in
the following sections, we can argue that this argument cannot be extended to
supply chain operations planning, and in fact can only be upheld if the time
periods considered in BHM’s hierarchical planning model are an order of
magnitude longer than the time periods in the MRP model and if resources are
flexible.

Decisions with regard to the planning of supply chain operations have
traditionally been taken at the operational level. Meal (1984) argues that this
was necessarily decentralized due to the lack of good information processing
technology. In this approach, which he names the ‘conventional approach’,
operations planning decisions were an integral part of the decision making
power of the line managers in all parts and at all levels in the organization.
Decisions were only coordinated marginally, and certainly not in a systematic
manner. Due to the emergence of large-scale information processing
technology in the 1970s, initiatives were taken to create large-scale
comprehensive models of planning operations. Meal (1984) calls this the
‘centralized approach’, which is based on a tendency to create central decision
functions which are given the power to control in detail the planning decisions
of the operational process in all parts of the organization.

There are a number of difficulties associated with these centralized
monolithic decision models [see also Chapter 9 of this volume, Fleischmann
and Meyr (2003)]. The models tend to be very big and complex. This makes
the analysis of the models and finding an optimal solution very difficult and
requires a decomposition of the model in order to be able to solve this. Model
decomposition is a widely used strategy in solving optimization problems.
Apart from the complexity in the mathematical sense, there are also a number
of organizational and people-related difficulties associated with the centralized
approach. The most important difficulty is that there appears to be no owner
of the monolithic model. Responsibilities within organizations tend to be
dispersed over a number of people. The monolithic model assumes it is a
single organizational unit deciding about a large number of details across the
entire organization. If we assume that the higher-level management would
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actually own the model and make these decisions, a number of people and
model related difficulties come about:

(1) detailed figures do not mean much to higher-level managers
(2) detailed figures give a false sense of security because they may be highly

unreliable, not only if they refer to some future state of the system (e.g.,
forecast of exogenous data), but also if they refer to the current state of
the system (data quality problems)

(3) centralized planning takes away authority from local managers further
down the hierarchy and reduces their responsibility, which is not in line
with the dominant management philosophy of self-contained and
autonomous groups. Apart from that, it is also contradictory to a
principle from control theory, which states that responsibility and
decision authority should be matched with the opportunity to control.
This last issue is extensively discussed by McPherson and White (1994),
who state that ‘Planning at superior levels must be consistent with
control capabilities at subordinate levels, while planning at subordinate
levels must be consistent with achieving the superior goals of the
hierarchy.’

(4) A model never captures the complete richness of a situation. As a
consequence, a local planner down the hierarchy will always have more
information and a better representation of the actual processes than a
(higher-level) model.

All this leads to the fact that a decomposition of the problem is required
in order to be able to find a solution to the planning problem that can also
be implemented within an organization. If a decision problem is
decomposed and a hierarchy is constructed, higher levels of the hierarchy
will need to aggregate the lower level models. This aggregation is necessary
to overcome the difficulties just listed. Furthermore, this decomposition will
lead to more or less independent units along the supply chain, that are self-
contained with regard to their control within the unit, but receive objectives
and constraints to be taken into account from an aggregate and centralized
control function. This is in line with the idea of separating goods flow
control and production unit control, as developed by Bertrand and
Wortmann (1981) and further elaborated on by Bertrand et al. (1990). A
consequence of this approach is that lead times of the various production
units are fixed and are input to the system rather than output. These lead
times are then essentially modeled in exactly the same way as in MRP
[Orlicky (1975)]. We will discuss this issue further in Section 2.4. Note that
the fixed lead time we are discussing here is the internal lead time of the
controlled part of the supply chain that needs to be distinguished from the
external lead time promised to any customers of this supply chain. The
external lead time must vary to reflect the work load changes over time. As
a consequence of this approach, workload control is executed over the
supply chain. In summary, we can state that hierarchical decomposition of
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the SCP problem has two essential characteristics, namely:

– aggregation, which is necessary to construct higher level models
– fixed lead times, which are needed as a control mechanism.

In the next two subsections we will discuss the concepts of effectuation lead
times and information asymmetry which underlie the notion of obtaining
supply chain control by working with planned lead times. This notion of
control will be further elaborated on in Section 2.4.

2.2 Effectuation lead times

Asymmetry in the decision making hierarchy and the necessity to
anticipate is primarily caused by the fact that it takes time to implement a
decision. We will denote this time in the remainder of this chapter as
effectuation lead time. The effectuation lead time is the time that passes
between the moment a decision is made and the moment that the
consequences of this decision can be observed in the operation of the supply
chain. In SCP decisions, the length of the effectuation lead times can be
determined based on the product and process structure: the bill of material
and the bill of resources.

An example of an effectuation lead time is the procurement time of
components. If the procurement lead time for a component i is Li, then ri(t),
the quantity procured at the start of period t is supposed to be available for
further assembly or sales at the start of period tþLi. The immediate decisions
{ri, (t)} are dependent on the exogenous demand forecasts D̂Diðt, tþ sÞ

n o
, s � 0,

defined as

D̂Dtðt, tþ sÞ forecast of exogenous demand for item i in period tþ s as
decided on at the start of period t, t� 0, s� 0, 8 i

Assuming supply is reliable and Li is realized, we may expect that

p̂piðt, tþ LiÞ ¼ riðtÞ,

where we define p̂pjðt, tþ sÞ as

p̂pjðt, tþ sÞ forecast of quantity of item i that becomes available at the start of
period tþ s as determined at the start of period t, t � 0, s � 0, 8i

reflecting the decision of the supplier to ship as late as possible. Note that
p̂piðt, tþ LiÞ is only a planned decision from the perspective of the organization
ordering the item. For the supplier this may be either a firm decision, in case
the supplier has to start immediately with processing and transporting the
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order for item i, or a planned decision, in case the effectuation lead time
incorporates some slack time.

Suppose that at time t the planned decision is taken according to the
above equation. At the start of period tþ 1 we generate new forecasts
fD̂Diðtþ 1, tþ sÞg, s � 1: It is now well possible that, e.g., due to a decrease in
demand for item i it is decided to change the decision made earlier, i.e.,

p̂piðtþ 1, tþ LiÞ 6¼ p̂piðt, tþ LiÞ

Following the discussion of planned versus firm decisions, we can see that
dependent on the incorporation of slack time into the procurement time, it is
possible or not to change the earlier decision. Flexibility can be further
modelled by the choice of the (time-dependent) resource constraints.

Information asymmetry itself can be described using the following example.
Consider again item i with planned lead time, i.e., the effectuation lead time of
the material order release decision, Li. Often suppliers receive forecasts about
future orders in some period t multiple times in order to take consecutive
decisions on e.g., buying production equipment, hiring and training people
and procurement of materials. As stated above the forecasts fD̂Diðt� s, tÞg
for period t made at the start of an earlier period t-s differ for different s.
Thus the procurement orders derived from these forecasts change over time,
so that the supplier’s decision to buy production equipment is based on
different information then the supplier’s decision to procure materials. This
asymmetry in information needs to be taken into account when designing the
decision hierarchy or supply chain control structure. The effectuation lead
time thus leads to differences between the moments in time that certain
decisions must be taken. Also, it means that decisions are often taken a
substantial time before the actual action in the physical process takes place.
As a consequence the decision maker in fact feeds forward in terms of
control theory rather than feeds back as is often suggested in hierarchical
production planning frameworks. In order to feed forward, the decision
maker essentially anticipates the events over the period of time until his
decision is effectuated.

It should be realized that the effectuation lead time is not only related
to the bills of materials and bills of resources, but is also a characteristic of
the SCP and control system. In many cases, the time buckets at higher levels
of decision making are larger than at lower levels (Meal (1984)). Further,
the frequency at which decisions are made, revised or processed is less at
higher levels of decision making (the hierarchical structures of Gershwin
(1994) are based upon this premise). This means that changes in the actual
(physical) process, e.g., changes in demand, may not be observed directly.
Further, if they are observed, there may be a delay in processing the
consequences of this observation. This processing time due to the decreased
frequency of decision making at higher levels should be included in the
effectuation lead time.
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2.3 Asymmetry in SCP

After constructing a hierarchical planning structure, oftentimes the
resulting planning situation is characterized by asymmetry of information.
Essentially having different levels of control being owned by different
organizational units leads to different information statuses.

A useful framework that describes this anticipatory decision cycle, is
presented by Schneeweiss (1999) and discussed by Fleischmann and Meyr
(2003). In Schneeweiss’s model, a decision structure within an organization
can be represented as a series of decision tandems, i.e., two decision levels
interacting with each other by the first of the two levels (the top level) giving
an instruction to the second of the two levels (the base level), and the base
level responding by giving a reaction to the top level. Before giving its
instruction, the top level anticipates the base level’s reaction by either
implicitly or explicitly modeling the behavior of the base level in the top
level’s model. This is called the anticipated base model. Schalla, Fransoo
and de Kok (2001) have further analyzed the various types of anticipation
that may exist. In general, the anticipated base model can be constructed
based on aggregating information and/or on aggregating the base level
model itself.

We will now first discuss the aggregation of the base model itself.
Aggregation referring to the model part explicitly deals with complexity
reduction. At the top level the decision making process is represented by an
aggregate and simple model in order to reduce complexity and to distribute
detailed decisions to lower planning levels. We can thus distinguish the
following anticipation types with regard to the model:

� Explicit Model: The base level model as seen at the top level is exactly the
same as the original base level model.

� Implicit Model: The base level model as seen at the top level is different
than the original base level model.

Consequently, the terms explicit and implicit with regard to anticipation
refer to the fact whether the top-level base model (including the objective
functions) is exactly the same as the base-level base model. If this is the case,
we call this explicit anticipation; if this is not the case, we call this implicit
anticipation. Explicit anticipation thus uses a detailed model of the base level,
whereas implicit anticipation uses an aggregate model of the base level.

The second type of aggregation to construct an anticipation model is
aggregation of information. This type of aggregation is related to uncertainty
and effectuation time. In the context of the questions related to the
anticipation function, special attention regarding information is paid to the
concept of information asymmetry. Information asymmetry basically entails
the fact that when making a decision at a higher level, the amount and quality
of information may be different from when the lower level decision is made
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(later), and again different from when the actual execution of the decision is
taking place. The fact that information asymmetry exists, leads to the
necessity to anticipate at a higher level decision what may happen at the lower
levels decisions. We can thus distinguish the following anticipation types with
regard to information:

� Exact Information: The base level information as seen at the top level is
exactly the same as the original base level information.

� Approximate Information: The base level information as seen in the top
level is different than the original base level information.

Consequently, the terms exact and approximate refer to the fact whether
the top level model has exact information of the base level status. Note
that in most cases some time elapses between the moment at which the
top level makes its decision (instruction) and the moment at which the
base level makes its (final) decision. This difference in effectuation lead
times of top level decisions and base level decisions usually entails a dif-
ference in the information status between the top level and the base level,
resulting in information asymmetry and – automatically – in approximate
anticipation.

Taking all combinations between anticipation types referring to the
modeling part and anticipation types referring to the information part, we can
distinguish three types of anticipation, based on the various types of
aggregation used to construct the anticipation function as discussed above.
The three types are:

� Explicit Model l Exact Information (EE)
� Explicit Model 1 Approximate Information (EA)
� Implicit Model l Approximate Information (IA)

Note that the combination of exact information and implicit model does
not make a lot of sense, since there does not seem to be a clear reason for
constructing an implicit model (i.e., more aggregate than the detailed model) if
exact information is available. Further note that information asymmetry more
often than not will lead to the fact that approximate information is the only
information that can be used in the anticipatory model at the higher level.
Given the fact that only approximate information can be used, it is not a
priori clear whether the use of an explicit and detailed model is better than the
use of an implicit model.

It is interesting to note that the BHM hierarchical models hardly contain
any anticipation of the lower levels by the higher level, as has been noted by
Schneeweiss (1999). Neither do the BHM models contain the concept of
effectuation lead time, although this concept is noted as a rationale for
hierarchical planning in a book largely built on the BHM models (Miller
(2001), p. 8, named as ‘gestation period’).
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2.4 The need for control

Anticipation models need to capture the base level behavior in a sufficiently
accurate manner. In this sense, accurate refers to the predictive quality of
the anticipation model. When designing a decision structure, two different
approaches can be taken when constructing the anticipation functions.
The first approach is to try and capture the base level behavior as completely
as possible by enriching the anticipation function by as many details as
known about the base level. The second approach is to design the decision
function at the base level in such a way that the actual anticipation
becomes straightforward. In this case, the objective of the base level is to
realize a set of targets set by the top level (see also McPherson and White
(1994), for a discussion on this matter). We will refer to this situation as a
controlled situation. An example of such a design is the reliance on planned
lead times maintained by workload control methods (Bertrand and
Wortmann (1981), Bertrand et al. (1990), Wiendahl (1987, 1995) and Van
Ooijen (1991)).

It is neither obvious nor conclusive whether working with planned lead
times is a correct approach, since current research is not conclusive and there
are researchers who advocate the use of variable lead times. Kanet and
Sridharan (1998) demonstrate results by which the use of detailed scheduling
information in material procurement reduces the inventory of components
that are controlled by MRP. Tardiff (1995) and Hopp and Spearman (2000) in
their concept called Capacitated MRP (or MRP-C) calculate the expected
Work-in-Process and then adjust the lead times of the products accordingly,
by ‘building ahead’ those items that would be late due to longer lead
times caused by higher WIP levels. Based on work by Buzacott (1989), a
research line has been developed which integrates the capacity and material
planning perspectives completely using so-called ‘generalized kanban systems’
[Frein, Di Mascola and Dallery (1995), see also Section 5.8]. The assumptions
are however very strict, such as Poisson arrivals of items orders and FIFO
dispatching at resource level. These assumptions are mostly not satisfied due
to the periodic review nature of the SCP process, which leads to coordinated
release decisions.

Apart from the mathematical complexity of applying detailed scheduling
on a supply chain wide scale, approaches that use detailed scheduling
information to update the supply chain plan abstain from two basic principles
that we have outlined earlier, namely the organizational hierarchical concerns
and the asymmetry in information. Since the scheduling decision is generally
the domain of some lower-level organizational function than the SCP
decision, taking this scheduling decision at a higher level may infringe upon
this organizational design [Meal (1984)]. With regard to information asym-
metry, note that the actual schedule will be constructed at a later stage when
more information will be available. As a consequence, the actual schedule may
be very different from the projected detailed schedule constructed to make the
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supply chain plan. In fact the more detailed scheduling of materials will then
lead to additional constraints on the operational schedule. This issue is not
addressed in the paper by Kanet and Sridharan (1998) discussed above. Given
only slight variations in for example the operating times, the impact on the
schedule in various environments may be substantial [see e.g., Lawrence
(1997), for an example of this in a job shop]. Unfortunately, this interaction
between the SCP level and the detailed scheduling level has not been
researched under asymmetric information conditions, so we do not know the
impact of this effect on the operational performance.

With regard to dynamically adjusting the information based on
aggregate status (workload) information of the shopfloor, the impact is
even less clear. Much will depend upon the actual stability of the workload
prediction between the moment that the SCP decision is taken and the
moment the actual execution takes place, i.e., the quality of the expected
workload as an anticipator of the actual lead time. If this quality is good, then
the method should work fairly well in the manufacturing environments
for which it was designed. In situation with multiple items and multiple
resources it is however very difficult to give accurate predictions of the lead
time and to adjust the supply chain plan accordingly. This will lead to very
complex models and will lead to performance and accuracy problems
[Hopp and Spearman (2000)]. The situation is however very different when
multiple actors conduct collaborative planning actions across independent
companies in the supply chain. In that case, the planned lead times act as a
coordination aid between the various actors in the supply chain and
planned lead times allow for independent planning of parts of the supply
chain.

2.5 Positioning SCOP in the hierarchy

From the exposition above, it can be concluded that SCOP needs to be
positioned hierarchically above the unit control functions that are responsible
for controlling lead time in a particular unit of the supply chain [cf. Bertrand
et al. (1990)]. Supply Chain Operations Planning in most industries deals with
a horizon up to several months typically with weekly time buckets. In some
industries, e.g., bulk chemicals, this function may have a horizon as short as a
couple of weeks with daily buckets, whereas in other industries, e.g.,
pharmaceuticals, the horizon may be as long as a couple of years with
monthly time buckets. Everything is determined by the typical effectuation
lead times of the industry and the lead times that customers are willing to
accept. Next to the SCOP function, an order acceptance function (often called
Available-To-Promise engine in current planning software) needs to be
introduced in the control loop in order to control the total amount of work
accepted by the supply chain, and to externalise the portion of the customer-
perceived leadtime that is due to varying demand that cannot be processed
within the fixed and controlled leadtime. Finally, a parameter setting function
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needs to coordinate the safety stock, leadtime, and workload parameters of
the Supply Chain. This system is depicted in Fig. 1.

Note that the functions discussed here only relate to the planning of
operations, i.e., the release of materials and resource triggered by actual
demand downstream. In this discussion, we abstain from other functions, such
as supply chain design, the planning of seasonal or other controlled
inventories, lotsizing, transportation planning, etc. For a full description of
this hierarchy, we refer to Fleischmann and Meyr (2003). Along a timeline, it
clearly shows that the various SCOP decisions need to be timed along the lead
time characteristics of the supply chain, both the physical lead time and the
information processing lead time. This is depicted in Fig. 2 and was discussed
in detail in Section 2.2.

In the next section, we will further model the SCOP problem in detail, and
formulate the constraints that determine the SCOP problem.

3 Constraints for SCOP

In this section we propose a modeling framework that comprises currently
existing supply chain operations planning concepts. In Section 3.1 we derive
the set of constraints that follow from the material structure (BOM). In
Section 3.2 we derive the set of constraints that follow from the resource
structure (BOP). We emphasize here that the constraints derived are induced
by the underlying BOM and BOP and hold for any choice with respect to the
SCOP concept. It may be that one chooses to ignore particular constraints as

Fig. 1. Position of Supply Chain Operations Planning in the Planning Hierarchy.
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irrelevant, implying that the result of the SCP process may be infeasible. The
decision to ignore particular constraints should imply that either the
constraints are never binding (which one might be able to prove) or the impact
of the resulting infeasibility is negligible (which is likely to be much harder to
prove).

3.1 Material constraints and their representation

The definitions in Section 1.1 characterize completely the material structure
of the supply chain.We now exploit this structure to identify a set of constraints
that any SCOP concept should satisfy. These constraints can informally be
described as follows: any SCOP concept can only release items for usage in a
transformation activity if it is physically available at the moment of release.
This might seem an obvious statement, but the pitfall lies in the definition of
‘release’. In this chapter a release decision at the start of period t is a decision
that authorizes at the start of period t the usage of materials and resources for a
transformation process. The release decision is the core decision in Materials.
Requirements Planning (MRP-I), Manufacturing Resource Planning (MRP-
II), Statistical Inventory Control (SIC) and Just-In-Time (JIT) and any other
planning and control concept. It is assumed that such release decisions are
coordinated, since they are mutually dependent. In the concepts mentioned
above the release decision is taken without a check on availability of resources
and materials. For example, in SIC [Statistical Inventory Control, cf. Silver
et al. (1998)] a release decision is only based on the output item status (in this
case its inventory position) associated with a transformation process and not
with the input item(s) status. This implies that a release decision cannot be
executed at the time it is authorized to do so. Hence execution delays occur
that should be taken into account when coordinating decisions. Similarly,
the top–down explosion process of MRP-I does not incorporate item
availability checks. Only exception messages are generated, but the explosion
process implicitly assumes that infeasibilities at lower levels in the BOM
are resolved. It can be argued that such a fallacy has a major impact in
situations where lots of items are assembled into multiple other items, which

Fig. 2. Decision moments driven by leadtime structure.
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explains the current practice of human expediting in high volume consumer
electronics supply chains.

Since SCOP coordinates release decisions between different parts of an
organization or even between different organizations, typically such release
decisions are taken periodically. In between the periodic release decisions
preparatory process planning activities take place, such as demand
forecasting, checking availability of resources, etc. In the sequel we therefore
restrict to periodic SCOP concepts. Where appropriate, we discuss extensions
to continuous SCP concepts.

Let us now formally derive the material release constraints. Given the
definition of the physical inventory Ii(t) and the backlog Bi(t) it is clear that

IiðtÞ,BiðtÞ � 0, t � 1,8i

It is obvious that a backlog exists iff. the physical stock is zero, i.e.,

IiðtÞBiðtÞ ¼ 0, t � 1, 8i

The net inventory is defined as the physical inventory minus the backlog, i.e.,

JiðtÞ ¼ IiðtÞ � BiðtÞ, t � 1,8i

Independent demand is demand generated by customers of the supply
network, either directly at the CODP or indirectly by derivation from final
product forecasts and an offset by the lead time for final assembly. Such
demand is usually not known beforehand and must be forecast. Note that
E � P , since end-items have independent demand, only. Yet there may be
items in I that have independent demand, too. For example, a company
producing hard disks may sell to OEM as well as to individual customers. The
product sold to individual customers contains the product sold to the OEM as
a subassembly. The subassembly is an item in I, while the OEM demand for
the subassembly is independent.

For items with independent demand it is impossible to preclude backorders,
unless some upper bound on the demand per period is known. In this chapter
we assume that such an upper bound does not exist or the upper bound is
so high compared to the average demand per period that it would be
economically infeasible to guarantee no backordering of exogenous demand
for an item. However, for items with dependent demand by definition the
demand is known, since it is determined within the planning process itself. We
argue that backordering of dependent demand does not make sense. Suppose
at some period we take the decision to create a backorder for an item by
deciding to release more material then available. In that case we only release
all available material physically. The earliest moment in time that we may
resolve the backordering situation is at the start of the next period. However,

620 A.G. de Kok and J.C. Fransoo



at the start of the next period we have exact information about demand during
the current period and possibly better information about future demand.
Thus, it is easy to see that the decision taken to create a (logical) backorder by
releasing more material than available cannot be better than the decision to
release exactly all available material.

Our argument only holds for SCOP concepts where all items in the supply
chain ‘know’ information about future exogenous demand, either implicitly or
explicitly. This applies to all SCOP concepts that subsume some centralized
database with all current state information and forecast information. Top–
down SCOP concepts like SIC and MRP-I use the explosion process to
transfer exogenous demand information at the expense of incorrect order
release decisions, that cannot be executed and require human intervention to
resolve the resulting issues.

The above implies that we impose the following constraint on the evolution
of the backorders over time, which holds for all items.

Biðtþ 1Þ � BiðtÞ � DiðtÞ, 8i, t � 1: ð3:1Þ

The above equation states that the increase of the backlog cannot exceed
the exogenous demand. It is easy to see that for an intermediate item i with
Di(t)¼ 0 for all t � 1 ,i.e. intermediate item i has no independent demand, we
have that

Bið1Þ ¼ 0) BiðtÞ ¼ 0, t � 1:

Dependent demand Gi(t) for item i is generated by items in Vi.
The dependent demand for item i at the start of period t consists
of the sum of all released quantities of items in Vi at the start of period t.
This implies that

GiðtÞ ¼
X
j2Vi

aijrjðtÞ, 8i 2 I

Clearly there must be sufficient inventory of item i to ensure immediate start
of the execution of the transformation activities involved in the release
decisions. The physical starting inventory at the beginning of period t equals
piðtÞ þmaxð0, IiðtÞ � BiðtÞÞ. Thus it follows that Gi(t) must satisfy the following
equation,

GiðtÞ � piðtÞ þmaxð0, IiðtÞ � BiðtÞÞ, 8i, t ¼ 1, . . . ,T

The set of Equations (3.1) states that the backlog from a period to the next
period must not grow faster than the exogenous demand in that period, while
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the above set of equations states that a planning concept must not release
more than physically available. The lemma below shows that both sets of
equations are equivalent.

Lemma 1.

GiðtÞ � piðtÞ þmaxð0, IiðtÞ � BiðtÞÞQBiðtþ 1Þ � BiðtÞ � DiðtÞ

The proof of the above Lemma 1 is straightforward and is derived from the
inventory balance equations formulated below and the definition of the
variables involved.

Furthermore we assume that all released quantities are non-negative, i.e.,
returns are not possible,

riðtÞ � 0, 8i, t ¼ 1, . . . ,T ð3:2Þ

This implies that the released quantities together constitute a feasible plan.
Note that Equations (3.1) only state that one is not allowed to release more
than physically available. One might decide to reserve availability for
exogenous demand in case i 2 P:This aspect is dependent on the SCOP
concept and will be discussed in Section 4 and following.

It can easily be shown that the MRP/DRP-concept [cf. Silver et al. (1998)]
as a planning concept does not satisfy constraints (3.1) (see above discussion
of top–down planning logic). In Section 4 we discuss mathematical program-
ming models that can be seen as an extension of the MRP/DRP-concept in
that such models incorporate the feasibility constraints at the expense of
(much) more computational effort.

Given the release decisions taken we can write the so-called inventory
balance equations,

Jiðtþ 1Þ ¼ JiðtÞ � GiðtÞ �DiðtÞ þ piðtÞ, 8i, t ¼ 1, . . . ,T : ð3:3Þ

Using the definition of the net inventory we equivalently can write

Iiðtþ 1Þ � Biðtþ 1Þ ¼ IiðtÞ � BiðtÞ � GiðtÞ �DiðtÞ þ piðtÞ,

8i, t ¼ 1, . . . ,T ð3:30Þ

The dynamics of Ii(t) and Bi(t) determine the performance of the supply
network. We want to emphasize here that the impact of the release decisions
taken in the past as well as the impact of the planned lead time of item i is
‘accumulated’ in pi(t). This will be discussed in detail in Sections 3.2 and 3.3.

Summarizing, we have defined the material structure of a supply network
by defining gozinto relations between items. From those relations we derived a
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set of (release) constraints that should be satisfied by any supply chain
operations planning concept. When discussing the various supply chain
operations planning concepts we pay attention to their adherence to these
constraints.

3.2 Resource constraints and their representation

In this subsection we derive a set of necessary conditions with respect to
capacity usage that any SCOP concept should satisfy, given the above
information on resource availability and resource usage. It turns out that
the derivation of such constraints is not as straightforward as the mate-
rial constraints derived in the previous section. This can be explained as
follows.

Given the released quantities ri(t) and the lead time Li for orders of item i,
we can formulate the following set of constraints,

X
i2Uk

ciriðtÞ � CktþLi�1, k ¼ 1, . . . ,K , t � 1,

implying that the total capacity requirements for resource k associated with the
item orders released at the beginning of period t should not exceed the
available capacity of resource k during period tþLi�1. These conditions are
sufficient, yet not necessary, for ensuring that orders for item i released at the
start of period t are made available for usage at the start of period tþLi. The
constraints above are necessary, only, if we require that items released at
the start of period t are processed in period tþLi� 1. This is equivalent to the
decision rule to produce as late as possible with respect to the lead time Li. In
general it follows from the planned lead time Li of an order for item i, that the
item order released at the start of period t, i.e., the time interval (t�1, t], must
be processed on its associated resources in the time interval (t�1, tþLi� 1] in
order to guarantee availability for usage at the start of period tþLi. Since
material required for processing orders for item i must be released earlier it
follows that

Xt
s¼1

riðsÞ �
Xt
s¼1

qiðsÞ: ð3:4aÞ

The right hand side of (3.4a) denotes the cumulative amount of item
i processed up to and including period t. The left hand side of (3.4a)
denotes the cumulative amount of item i released up to and including period
t. Here we assume without loss of generality that at the start of period 1 the
system is empty, i.e., no orders are released before time 0, no stocks are
available.
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To ensure that the order released at the start of period t is available for
usage in period tþLi we must process the materials associated with ri(t) in the
periods t, . . . , tþLi�1. From this it follows that

Xt
s¼1

riðsÞ �
XiþLi�1

s¼1

qiðsÞ: ð3:4aÞ

From the definition of qi(t) we find thatX
i2Uk

ciqiðtÞ � Ckt: ð3:4bÞ

Combining the above we find

Xt
s¼1

X
i2Uk

ciriðsÞ �
XtþLi�1

s¼1

Cks, k ¼ 1, . . . ,K , t � 1: ð3:5Þ

The necessity of condition (3.50) is obvious. The sufficiency follows from the
fact that we may assume a FIFO allocation of capacity from which we can
construct a feasible allocation by allocating orders released as soon as possible
to the resources. In a rolling schedule context we can rewrite the necessary and
sufficient conditions so that capacity consumed before period t is subtracted
from the left-hand side of (3.50), and capacity available before period t is
subtracted from the right-hand side of (3.50). In the sequel we will use
equations (3.4a), (3.4b) and (3.5) since they explicitly relate material release
quantities {ri (t)} and material processing quantities {qi (t)}. The latter
quantities provide useful information about capacity usage.

Extension to the situation where item i can be processed by multiple
resources implies the definition of variables that indicate which amount of
the order released at the start of period t is processed by a specific resource. For
our further comparison of the different supply chain planning concepts we can
restrict to the situation where each item is processed at a single resource.

3.3 Planned lead times and the relationship between
{ri(t)}, {qi(t)} and {pi(t)}

In the inventory balance Equations (3.30) we use the variables {pi(t)} that
denote the amounts of material that become available for usage at the start of
period t. Clearly, these variables are related to the material release quantities
{ri(t)} and the material process quantities {qi(t)}, since these are decisions that
have to be taken before amounts can be made available for usage. It turns out
that we have a considerable degree of freedom here. As stated in Section 1.3
we have that

piðtÞ ¼ qiðt� 1Þ, t � 0,
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which implies that we assume that an amount of item i processed in period t�1
becomes available at the start of period t. This provides maximum flexibility
within the decision space bounded by constraints (3.4a), (3.4b) and (3.5).
However, this may imply that materials are available earlier than planned for,
according to the moments of order release and the planned lead times. This
may be seen as favorable, yet this may imply that materials are available too
early. We must be aware of the fact that the SCOP model is a representation
of part of reality only, implying that materials not modeled at SCOP level are
only available at the due dates derived from the planned lead times. And even
if it would represent all materials, than still we are faced with uncertainty of
processing and future demand.

The concept of planned lead times is a means to create certainty about
future material availability. In our view we should formulate the SCOP
constraints such that they reflect the conceptual ideas behind the planned lead
times concept. This is ensured by defining {pi(t)} as

piðtÞ ¼ riðt� LÞ, t � 0

Assuming that planned lead times are realistic and thereby due dates are
met with high probability by the shopfloor level, this definition is in line with
the constraints (3.4a) and (3.4b). Notice that this is the typical assumption
when we consider uncapacitated systems as in classical inventory management
theory [cf. Silver et al. (1998)].

By the above definition of {pi (t)} we reformulate the inventory balance
equations as follows,

Iiðtþ 1Þ � Biðtþ 1Þ ¼ IiðtÞ � BiðtÞ � GiðtÞ �DiðtÞ þ riðt� LiÞ,

8i, t ¼ 1, . . . ,T ð3:3Þ

3.4 Summary

In this section we defined the supply chain operations planning problem
in detail and derived necessary and sufficient material and resource constraints:

Necessary and sufficient material constraints

Biðtþ 1Þ � BiðtÞ � DiðtÞ, 8i, t � 1 ð3:1Þ

riðtÞ � 0, 8i, t ¼ 1, . . . ,T ð3:2Þ

Iiðtþ 1Þ � Biðtþ 1Þ ¼ IiðtÞ � BiðtÞ � GiðtÞ �DiðtÞ þ riðt� LiÞ,

8i, t ¼ 1, . . . ,T ð3:3Þ
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Necessary and sufficient resource constraintsXt
s¼1

riðsÞ �
Xt
s¼1

qiðsÞ, 8i,t ¼ 1, . . . ,T ð3:4aÞ

Xt
s¼1

riðsÞ �
XtþLt�1

s¼1

qiðsÞ, t ¼ 1, . . . ,T ð3:4bÞ

X
i2Uk

ciqiðtÞ � Ckt, 8k, t ¼ 1, . . . ,T ð3:5Þ

qiðtÞ � 0, 8i, t ¼ 1, . . . ,T ð3:6Þ

Conditions (3.4a), (3.4b) and (3.5) have been derived for the special case
where each item can only be processed on a single resource. Still, the above-
defined constraints provide a basis for comparison of different supply chain
concepts. In particular they enable to identify what assumptions are made on
material and resource availability and usage.

In the next section we use the generic SCOP constraints to develop SCOP
concepts based on the optimization of a deterministic SCOP model in the
rolling schedule framework.

4 Mathematical programming models for supply chain planning

In this sectionwe derive the basicmathematical programming formulation of
the supply chain operations planning model in a rolling schedule context. We
use the product structure and the resource constraints presented in Section 3 as
a representation of the primary process to be planned. Special attention is paid
to the fact that exogenous demandmust be forecast in order to derive a sensible
problem formulation. We show how the generic supply chain planning
constraints derived in Section 3 are incorporated into the mathematical
programming formulation. Since the SCOP problem is a stochastic problem by
nature we next address the issue of safety stocks, i.e., buffer stocks required to
cope with end-item demand uncertainty. In particular we present a theorem
that enables us to apply mathematical programming models in a rolling
schedule context in such a way that the long-run average costs to maintain
customer service level constraints can be determined. After that we give an
overview of the main contributions to the literature on mathematical
programming models for supply chain planning over the last 10 years.

4.1 Rolling schedule context

In reality a planning concept does not only generate immediate release
decisions, but also provides information on future release decisions. These
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future release decisions are provisional because they will be affected by future
unknown events. In particular we do not know future demand. To cope with
this we must forecast future demand. Incorporating the fact that we must
forecast future demand we reformulate the generic supply chain planning
constraints. Towards this end we define the following variables,

D̂Diðt, tþ sÞ exogenous demand for item i in period tþ s as determined at the
start of period t, t � 1, s � �t,8i

ĜGiðt, tþ sÞ endogenous demand for item i in period tþ s as determined at
the start of period t, t � 1, s � �t, 8i

B̂Biðt, tþ sÞ backlog of item i at the start of period tþ s as determined at the
start of period t, t � 1, s � �t,8i

r̂riðt, tþ sÞ quantity of item i released at the start of period tþ s as
determined at the start of period t, t � 1, s � �t,8i

q̂qiðt, tþ sÞ quantity of item i processed in period tþ s as determined at the
start of period t, t � 1, s � �t,8i

Note that for �t<s<0, these variables represent actuals, i.e., realized
quantities taken from historical data and exogenous to the problem. For s � 0,
these variables represent forecasts, i.e., estimates of future quantities, made at
the start of period t. Note that r̂riðt, tþ sÞ, q̂qiðt, tþ sÞ, for s � 0, are the decision
variables of the supply chain operations planning problem at the start of period
t. In the sequel we assume that there is a time origin 0 at which the SCOP
problem is solved first and the initial state of the system at time 0 is known. This
is important because some equations formulated below are formulated in terms
of decisions taken from time 0 onwards, i.e., from period 1 onwards.

4.2 LP formulation of the supply chain planning problem

In Section 3 we have derived a set of material and resource constraints that
each supply chain operations planning concept should satisfy in order to gene-
rate feasible solutions with regard to the current demand forecast. This suggests
that we want the decision variables r̂riðt, tþ sÞ, q̂qiðt, tþ sÞ, for s � 0, to satisfy
these generic supply chain operations planning constraints. Then the planning
problem to be solved at each time t must satisfy the following equations.

LP constraints

ÎIiðt, tþ sþ 1Þ � B̂Biðt, tþ sþ 1Þ ¼ ÎIiðt, tþ sÞ � B̂Biðt, tþ sÞ

�
XN
j¼1

aij r̂rjðt, tþ sÞ � D̂Diðt, tþ sÞ þ r̂riðt, tþ s� LiÞ,

8i, s ¼ 0, . . . ,T � 1
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B̂Biðt, tþ sþ 1Þ � B̂Biðt, tþ sÞ � D̂Diðt, tþ sÞ, 8i, s ¼ 0, . . . ,T � 1

Xs
w¼1�t

r̂riðt, tþ wÞ �
Xs

w¼1�t

q̂qiðt, tþ wÞ, 8i, s ¼ 0, . . . ,T � 1

Xs
w¼1�t

r̂riðt,tþ wÞ �
XsþLi�1

w¼1�t

q̂qiðt,tþ wÞ, 8i, s ¼ 0, . . . ,T � 1

X
i2Uk

ciq̂qiðt, tþ sÞ � Ck;Lþs, k ¼ 1, . . . ,K, s ¼ 0, . . . ,T � 1:

r̂riðt, tþ sÞ � 0, 8i, s ¼ 0, . . . ,T � 1,

q̂qiðt, tþ sÞ � 0, 8i, s ¼ 0, . . . ,T � 1,

ÎIiðt, tþ sÞ � 0, 8i, s ¼ 0, . . . ,T � 1,

B̂Biðt, tþ sÞ � 0, 8i, s ¼ 0, . . . ,T � 1:

As remarked above the model formulation includes decision variables with
decisions taken before period t. Obviously we have that

r̂riðt, tþ sÞ ¼ riðtþ sÞ, s < 0,8i, t � 1,

q̂qiðt, tþ sÞ ¼ qiðtþ sÞ, s < 0, 8i, t � 1:

The decisions implemented at the start of period t are given by {ri (t)} and
{qi (t)}, which are derived from the equations below.

riðtÞ ¼ r̂rðt, tÞ, 8i, t � 1,

qiðtÞ ¼ q̂qðt, tÞ, 8i, t � 1:

In the sequel we assume that the planning decisions ({ri(t)}, {qi(t)}) are
executed according to plan.

The above set of linear equations constitutes the basis for the formulation
of a mathematical programming model. In fact we can formulate an LP model
that can be solved by standard algorithms, such as the simplex method. The
LP-formulation requires the definition of a linear objective function. Let us
discuss the derivation of such a linear objective function in the context of
supply chain planning under stochastic exogenous demand. In the sequel we
assume that P¼E, i.e., only end-items have exogenous demand. The results
below can be extended straightforwardly to the situation, where P 6¼ E.

First notice that the concept of service level constraints does not make sense
in the context of a deterministic model instance embedded in a rolling schedule
concept. In order to still ensure that within the deterministic setting of the
problem priority is given to satisfaction of exogenous demand, we introduce
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linear backorder costs. Assuming that expensive items are more important
than cheap items we assume that the cost per item i backlogged at the end of a
period is proportional to hi, the cost per item held on stock at the end of a
period. This yields the following objective function,

XN
i¼1

XT
s¼1

hiÎIiðt, tþ sÞ þ
X
s2E

�hiB̂Biðt, tþ sÞ

 !
ðO1Þ

We assume that � � 1.
The above formulated objective function does not completely solve our

problem. We want to determine feasible plans that satisfy end-item service
level constraints at low cost, since it is easily seen that the above problem
yields the same solution for any value of � larger than some value �0. This
implies that with this objective function we obtain customer service levels that
may not satisfy our objective.

Apparently the customer service level restrictions require additional
decision variables. Following the inventory management literature (cf. Silver
et al. (1998)) we introduce the concept of safety stocks in order to cope with
short-term demand uncertainty

vi safety stock parameter of item i, i¼ 1, 2, . . . ,N

We note here that in general the safety stocks depend on t and tþ s, since
the demand forecast may show seasonality and trends. Since our purpose is to
explicitly compare different SCOP concepts, we must restrict to the stationary
demand situation, implying a constant safety stock.

In order to control the customer service levels we modify the objective
function as follows,

XN
i¼1

XT
s¼1

hiðÎIiðt, tþ sÞ � �iÞ
þ
þ
X
s2E

�hið�i � ÎIiðt, tþ sÞÞþ

 !
ðO2Þ

At first glance the objective function (O2) does not represent the real
inventory holding costs and backorder costs. However, we should keep in
mind that the MP problem formulation is only an attempt to model the supply
chain operations planning problem under stochastic exogenous demand. In
that sense any such formulation results into a heuristic with respect to the
original optimization problem. Still objective function (O2) reflects the trade-
off between inventory holding and backorder costs. On top of that the safety
stock parameters control the service levels. This becomes even more evident
from the following lemma.
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Sample path lemma
Suppose a sample path {Di(t)}of the demand process and a sample path

fD̂Diðt, tþ sÞg of the forecasting process are given. Furthermore assume that for
all end items

Iið0Þ ¼ vi, i 2 E

Then the solution to the problem expressed in terms of the material order
releases fr̂riðt, tþ sÞg and processed quantities fq̂qiðt, tþ sÞg with objective
function (O2) subject to the LP constraints is the same for each value of
vi, i 2 E, for all t � 1 and for all s � 0.

The proof of the sample path lemma is based on induction. Given the
initial inventory levels it is clear that the objective function (O2) implies an
optimal solution ðfr̂rið1, 1þ sÞg, fq̂qið1, 1þ sÞgÞ that is the same for any value of
vi. This implies that ({ri(1)},{qi(1)}) are the same for any value of vi. But then
Ii (1)�Bi(1)�vi is the same for any value of vi. This argument can be repeated
for any value of t. For a formal proof we refer to Køhler-Gudum and De Kok
(2002).

Corollary to sample path lemma
The problems P� and P� for the SCOP concept defined by the LP

constraints and objective function (O2) have a unique solution vif gi2E , where
each vi, i 2 E, can be determined independent of all other vj, j 2 E, j 6¼ i.

Noticing that the objective function (O1) is identical to (O2) with vi ¼ 0,
i 2 E, the corollary to the sample path lemma justifies the following procedure.

i. Run a discrete event simulation of the system with vi¼ 0, where at the
start of each period t¼ 1, 2, . . . , we solve the LP that follows from
the forecasts fD̂Diðt, tþ sÞg, the set of linear constraints given above and
the linear objective function (O2).

ii. From the discrete event simulation compute the empirical distribution
function of Ji(t)�vi.

iii. Given this empirical distribution function compute vi*, such that the
required end-item service level is achieved.

iv. Run another simulation with vi* in order to compute CðPÞ.

We note here that step (iii) can be executed for most well-known perfor-
mance measures, such as non-stockout probability at the end of a period, fill
rate and average backlog [cf. Køhler-Gudum and De Kok (2002)]. In the
comparison of SCOP concepts in Section 6 we apply this procedure with
service criterion � the probability of a non-negative stock at the end of an
arbitrary period.

Though the service level constraints determine the safety stocks vi, i 2 E,
finding the optimal safety stocks vi, for all items i 2 I constitutes an extremely
complex nonlinear optimization problem. In Section 6 we argue that choosing
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vi¼ 0 for all items i 2 E yields a useful heuristic solution, yet clearly more
research is required to validate this heuristic.

We notice here that the above approach can be applied to many other
MP problems, so that alternative rolling schedule approaches for specific
stochastic planning and scheduling problems can be compared. One of the
(current) main issues with this approach is the CPU time required to
accurately compute the stationary distribution of Ji(t), assuming it exists.
Especially when capacity constraints are tight one is confronted with similar
issues as typical for the simulation of high load queueing (network) systems.
Typically, several millions of periods (customers) are required to obtain
sufficient accuracy for comparison purposes. Combined with the solution of
an LP-problem in each period, this may result in extremely long computation
times (several hours to several days per problem!). In the comparison study
reported in Section 6 we circumvent this issue by restricting the analysis to
non-capacitated systems.

4.3 Alternative MP formulations for the SCOP problem

The SCOP problem can be seen as a multi-item multi-level capacitated lot
sizing problem (MLCLSP). Literature reviews of mathematical programming
approaches for production planning and supply chain planning can be found
in Shapiro (1993) and Baker (1993), and Erenguc, Simpson and Vakharia
(1999). In this section, we will review some papers, each of which can be seen
as representative of a class of approaches for the MLCLSP.

The MLCLSP formulation is a more general formulation than the SCOP
problem. In fact, in the MLCLSP literature, no explicit reference is made to
the planning problem as such. This means that the formulation can be used
for a variety of planning problem in the SCP hierarchy. If the MLCSLP
formulation is used for the SCOP problem, it is assumed that the quantities
planned are also the quantities released, i.e., the MCLSP formulation does not
distinguish between r̂riðt, tþ sÞ and q̂qiðt, tþ sÞ. In most cases, therefore, it
makes more sense to use the MLCLSP formulation at a higher level of
planning than SCOP. In this higher-level plan, the determined quantities are
then in fact aggregate quantities to be detailed out at a later stage.

If lot sizing restrictions are not considered at the SCP level under
consideration, the MLCLSP formulation typically reduces to the LP formu-
lation given above. However, in the paper by Billington, McClain and Thomas
(1983) one finds an LP formulation of the SCP problem that differs from our
formulation presented earlier in this section. Billington et al. (1983) formulate
a periodic planning problem, where the periods are typically short periods of
time, e.g., hours or shifts. Furthermore they do not consider planned lead
times. Instead they introduce a so-called minimum lead time, which should be
interpreted as the minimum time involved in the transformation process to
make an item available for usage. This time represents a delay and during this
time no resources are used. A valid interpretation is that first an item is
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produced by some resource after which it is transferred to a stock point. The
transfer time equals the minimum lead time. Billington et al. (1983) consider
the item lead times, consisting of both waiting and processing times and the
minimum lead time, as endogenous to the model. At first sight such an
approach seems superior to ours, yet our discussion in Section 2 formulated
this as an issue for further research.

Erenguc et al. (1999) give an excellent overview of MP formulations
of the SCOP problem and discuss various issues by distinguishing between
supplier stage problems, plant stage problems and distribution stage prob-
lems. Based on their literature survey they formulate a number of MP models
for the SCP problem that include the notion of planned lead times, yet no
distinction is made between material order release variables and material
processing variables. In our view this is an important distinction that models
manufacturing flexibility in accordance with the planned lead time concept. As
follows from the discussion in Section 3 capacity checks on {ri(t)} instead of
{qi(t)} yield inefficient usage of available resources.

Özdamar and Barbarosoglu (2000) represent a class of heuristics that is
based on Lagrangean relaxation of either the capacity constraints (3.5) or the
inventory balance equations (3.3) or both. Relaxing the capacity constraints
and introducing Lagrange multipliers associated with those constraints reduce
the MLCLSP to a number of independent uncapacitated problems. If also the
inventory balance equations are relaxed one obtains a number of single item
lot sizing problems that can be solved by e.g., the Wagner-Whitin algorithm
[cf. Silver et al. (1998)]. The solutions to these undependent problems are tied
together by an iterative update procedure for the Lagrange multipliers based
on the calculation of subgradients. Özdamar and Barbarosoglu (2000)
propose simulated annealing for solving the relaxed uncapacitated lot sizing
problems. They present a number of combinations of different Lagrangean
relaxations and simulated annealing. A computational study identifies the best
combination and shows the practical applicability of this method. The model
presented in Özdamar and Barbarosoglu (2000) is similar to the model
presented in Billington et al. (1983), i.e., planned lead times are not
considered, but lead times of material orders are time dependent outputs of
the algorithm. In principle it is possible to modify the analysis in Özdamar and
Barbarosoglu (2000) to take into account planned lead times. The paper by
Barbarosoğlu and Özgür (1999) is similar to Özdamar and Barbarosoglu
(2000) in that problem decomposition is proposed based on the Lagrange
multiplier technique. It is interesting to mention their observation that the
decomposition relates to an organizational decomposition where specific parts
of the organization are responsible for particular sets of items. The
decentralized decision making that results from this decomposition is
supported by a central agent that ensures the exchange of relevant
information between the different parts of the organization. This
observation is related to our discussion in Section 2 about the distinction
between problem decomposition, which is strongly based on organizational

632 A.G. de Kok and J.C. Fransoo



considerations, and model decomposition, which is strongly based on
algorithmic efficiency considerations. Apparently both points of view may be
aligned.

Belvaux and Wolsey (2001) propose MP formulations of the MLCLSP that
lend themselves to relatively efficient solution with commercial mixed integer
programming software such as CPLEX and XPRESS. The focus of their
paper is the derivation of problem-specific (yet generic to the MLCLSP) sets
of necessary inequalities, i.e., cutting planes, that considerably improve the
performance of MIP solvers. They also emphasize the usefulness of the
echelon stock concept [cf. Section 5] when dealing with multi-level problems.
The echelon concept enables to reformulate the multi-level multi-item problem
as a set of relaxed single-item problems that provide additional constraints
that can be used for further efficiency of the MIP solution procedures. Belvaux
and Wolsey (2001) remark that a distinction should be made between SCP
problems where planning occurs infrequently and SCP problems where
planning occurs frequently: big bucket problems versus small bucket
problems, respectively. In the former case typically many setups for many
different items occur during the single planning period under consideration,
while in the latter case a small number of setups for a limited number of items
occurs and multiple planning periods must be considered. The models to be
applied in the two different cases are different. The SCOP problems considered
in this chapter should be considered as small bucket problems. The SCP model
formulation proposed by Belvaux and Wolsey (2001) does not include planned
lead times, nor does it distinguish between material order release variables and
material processing variables. Still, the equations derived in their paper as well
as the techniques proposed can be easily modified to include these two
phenomena.

This concludes our brief survey of MP formulations for the SCOP
problem. In the next section we discuss the recent literature on stochastic
models for the SCOP problem for general supply networks. In Section 6 we
compare the LP-formulation of the SCOP problem as a representative of the
class of MP models with a specific stochastic model on the basis of the
required supply network inventory capital to achieve target customer service
levels.

5 Stochastic demand models for supply

chain planning

In this section we discuss various SCOP concepts for stochastic demand
models as proposed in the literature. We assess these concepts on the basis of
the SCOP constraints derived in Section 3. The discussion is restricted to
incapacitated supply chains, since results for capacitated systems are only
available for single item, single stage systems [see e.g., De Kok (1989)], serial
systems [Tayur (1993)], or for divergent systems where only the most upstream
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stage is capacitated [see De Kok (2000)]. Due to the fact that the analysis of
general supply networks with stochastic demand in the current literature is
based on simplifying assumptions, we discuss the validity of these assump-
tions. In the context of Supply Chain Operations Planning under stochastic
demand we focus on the determination of safety stocks, since these parameters
determine an important part of the supply network inventory capital.

For ease of presentation we assume that aij is 0 or 1. For most of the
policies we can easily extend the analysis to general aij values. Also we assume
without loss of generality that P¼E.

5.1 Echelon concept

Stochastic multi-echelon models can be distinguished by the state variables
used to derive the item orders. In Axsater (2003), Chapter 10 of this volume,
the distinction between installation stock policies and echelon stock policies
has been discussed in detail. In this chapter we restrict ourselves to echelon
stock policies. The main reason for this is that in a SCOP context installation
stock policies typically violate SCOP constraints (3.1), since dependent
demand is backordered. For general supply networks we define the echelon
stock, echelon inventory position and some associated concepts in order to
formally define item order release policies.

Firstly, we define

Oi (t) Cumulative amount of orders outstanding at the start of period t.

Then we can define the echelon inventory stock Xi(t) and the echelon
inventory position Yi(t) of item i recursively as follows,

XiðtÞ ¼ JiðtÞ, 8i 2 E

YiðtÞ ¼ XiðtÞ þOiðtÞ, 8i 2 E

XiðtÞ ¼ JiðtÞ þ
X
j2Vi

YjðtÞ, 8i 2 I

YiðtÞ ¼ XiðtÞ þOiðtÞ, 8i 2 I

The echelon inventory position has the following important interpretation.
The echelon inventory position of item i represents the coverage of future
demand for item i up to and including the periods in time that the last order for
item i becomes physically available for sales to customers. Typically, an item
becomes physically available for sales to customers as part of a sellable item,
i.e., an item in E. Also, we emphasize that in that sense an item becomes
available for sales in different future periods in time, since that period depends
on the sellable item under consideration and the assembly steps required to
convert the item into this sellable item. The interpretation of the echelon
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inventory position as a coverage of future demand for sellable items is
important for the synchronization of order releases for items that are assembled
into the same sellable items. As we will see we can use this interpretation for the
development of order release policies for general supply networks. For the
special case of pure assembly systems we find that the concept of coverage of
future demand is in line with optimal policies found in the literature. Let us first
discuss the class of pure base stock policies as proposed by Magee (1958).

5.2 Pure base stock policies

In Chapter 11 of this volume, Song and Zipkin (2003) discuss stochastic
models for assembly systems. In particular they focus on pure base stock
policies. For sake of self-containedness of this chapter we define pure base
stock policies below. Let

Si Base stock level of item i

A pure base stock policy operates as follows:

riðtÞ ¼ Si � YiðtÞ: ð5:1Þ

Song and Zipkin (2003), Chapter 11 of this volume, restrict their analysis
to so-called Assemble-To-Order (ATO) systems, i.e., the general assembly
system consists of two levels only: a finite product level and a component level.
Only components can be kept in inventory. Through this restriction pure base
stock policies are feasible. If we extend the general system to more than
two levels or to the case where finite products can be kept in inventory as
well, pure base stock policies are no longer feasible, even in the infinite
capacity case.

It is easy to see that pure base stock policies in general violate
constraints (3.1), which state that the increase of the backlog cannot exceed
the exogenous demand. This is due to the fact that equation (5.1) is not
constrained by upstream availability considerations. It implies that dependent
demand can be backordered. In that sense it suffers from the same problem
as the MRP I-logic. Incorporation of upstream availability constraints is
non-trivial as can be seen from the analysis in Agrawal and Cohen (2001),
Hausman, Lee and Zhang (1998), amongst others, where even the alloc-
ation of components to final products in an ATO-setting makes analysis
of remnant component stocks due to lack of other components intractable.
In Sections 5.3 and 5.5 we discuss synchronized base stock policies that
can circumvent this problem at the expense of inadequate exploitation of
component commonality.

A key result for ATO systems under pure base stock policies derived by all
authors dealing with this is the following [cf. Agrawal and Cohen (2001),
Hausman et al. (1998)].
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ATO key theorem
Let �i be defined as the probability that the demand for item j 2 E in period

t can be satisfied immediately. Furthermore assume that if an item i is out-of-
stock at the end of period t then all items j 2 Vi are allocated part of the
shortage of item i. Then

�i ¼ P
Xt

s¼t�Liþ1

DiðsÞ � Si, 8i 2Wj

( )
:

The results follows from the fact that the demand for item j 2 E in period t
can be satisfied immediately if and only if all component stocks of items
j 2Wj are positive at the end of period t. Computation of �j is complicated
due to the correlation between the random variables

Pt
s¼t�Liþ1

DiðsÞ, i 2Wj.
Hausman et al. (1998) and Agrawal and Cohen (2001) assume the demand for
final products to be normally distributed, so that they can apply results for
multivariate normally distributed random variables. Song (1998) explores the
combinatorial nature of the probabilistic expression for �j in the case of
continuous review (compound) Poisson demand and derives computationally
efficient upper and lower bounds [cf. Song and Zipkin (2003), Chapter 11 of
this volume].

From the ATO key theorem we can derive the following property of pure
base stock policies.

Pure base stock policy property
Let j1, and j2 be two different end-items. Then

Wj1 �Wj2 ) �j1 � �j2 :

Although this property is obvious and can be extended to multiple level
systems, it shows an important drawback of pure base stock policies, even in
situation where they yield feasible solutions. The property states that if an
end-item contains a subset of the components of the other end-items then the
non-stockout probability of the former is at least as high as the non-stockout
probability of the latter. Considering typical ATO settings one finds that high-
end end-items have additional features compared with low-end end-items.
This implies that high-end end-item service levels must be lower than low-end
end-item service levels. This is typically not desired because of economic
reasons. As a consequence we find:

Under pure base stock policies arbitrarily chosen customer service levels for
different end-items cannot be satisfied with equality.

This is different from what we have been able to show for the
mathematical programming formulation of the supply chain operations
planning problem in Section 4 and this is likely to cause higher supply
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chain capital investments than deemed necessary. In the next subsection we
will discuss the generic approach proposed by De Kok and Visschers
(1999) that circumvents this problem. We will compare the two generic
approaches on the basis of some small-scale ATO examples.We notice here that
the approach by De Kok and Visschers (1999) can be applied to any network
structure and to combinations of Assemble-To-Order and Make-To-Stock.

5.3 Modified base stock policies for pure assembly systems

As stated above under pure base stock policies it may be possible that the
quantity released cannot be met due to lack of material. As shown by Rosling
(1989) and Langenhof and Zijm (1990) the echelon-order-up-to-policies for
pure assembly systems, i.e., each item has at most one parent, can easily be
modified by taking into account the availability of the child items.

Let us derive this modified base stock policy for pure assembly systems.
First of all note that for pure assembly systems we have exactly one end-item
and each item i has exactly one successor suc(i). Thus we can uniquely define
the cumulative lead time Lc

i of item i,

Lc
i ¼ Li, i 2 E,

Lc
i ¼ Li þ LsucðiÞ, i 2 I :

Given the definition of Lc
i we can state that Yi(t) represents the

coverage by item i of the end-item demand from the start of period t
until the start of period tþ Lc

i just before releasing the item ordered at the
start of period t. Now notice that for all items with a longer cumulative
lead time that at the start of period t we know exactly their coverage
of end-item demand from the start of period t until the start of period tþ Lc

i .
Define

Zij(t) coverage of end-item demand by item j from the start of period t until
the start of period tþ Lc

i , L
c
j > Lc

i .

Given the state information (Yi(t), {Zij(t)}) we can define the modified base
stock policy as follows,

riðtÞ ¼ max 0,min Si, min
jjLc

j
�Lc

i
j

� �fZijðtÞg

8<
:

9=
;� YiðtÞ

0
@

1
A:

It is shown in Rosling (1989) Langenhof and Zijm (1990) that the policy
described through the above equation is cost-optimal. In De Kok and Seidel
(1990) and Van Houtum and Zijm (1991) simple computational schemes are
given to determine the optimal echelon order-up-to-levels.
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Thus for pure assembly systems we can find easy-to-implement optimal
order release policies. This seems relevant for the SCOP problem in the
manufacturing of complex and expensive products, such as manufacturing
equipment and aircraft. Recognizing that such products have a modular
structure where typically the forecast-driven activities relate to items common
to all variants and the order-driven activities relate to variant-specific items, the
supply network that faces stochastic demand may be seen as a pure assembly
system. For such a system Dellaert, de Kok and Wang (2000) study a
nonoptimal base stock policy for pure assembly systems. This non-optimal
policy is inspired by a Make-To-Order environment (e.g. assembly of Public
Telephone Exchanges), where the final assembly lead time is shorter than
component purchasing lead times, so that the latter are held on stock. The base
stock policy releases a production order for the main assembly, after which this
main assembly is pushed through a number of assembly stages. Given the
planned throughput time at each assembly stage for each component, purchase
orders are released based on the projected demand according to the production
order for the main assembly. This is clearly non-optimal from an inventory
management point of view, since the orders for the components should be based
on the latest customer demand information, as is the case for the optimal
policy given above. However, in practice other considerations, like workforce
planning, play a role. The push policy provides early information about
resource requirements, whereas the optimal policy decides at each assembly
stage how much to release immediately after receiving the latest demand
information. In Dellaert et al. (2000) insight is given into the circumstances
under which the push policy yields near-optimal inventory costs.

5.4 Optimal and near-optimal base-stock policies for divergent systems

Another special supply chain structure is the divergent structure, where
each item has exactly one child, but may have multiple parents. The most
upstream item, the root item, has a single supplier with infinite material
availability. In Diks and de Kok (1998) the structure of the average-cost
optimal policies for divergent systems is derived under the balance
assumption. The costs considered are linear holding and penalty costs
incurred at the end of a period. The penalty costs are incurred for each
end-item short. The balance assumption states that in case the cumu-
lative orders from parent items exceed the available stock of the item, then the
optimal allocation policy guarantees that each parent item is allocated a non-
negative quantity of the available stock. It can be easily verified by discrete
event simulation that even in a two-echelon divergent system with identical
end-items the balance assumption is violated by the optimal allocation policy,
which is an equal fractile policy [cf. Eppen and Schrage (1981) Axsater
(2003)]. Below we discuss this issue of imbalance in more detail.

The optimal policies under the balance assumption are base-stock policies
and satisfy so-called generalized Newsboy equations. In order to formulate
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the necessary and sufficient conditions for base stock policies under the
balance assumption we introduce the following notation:

For each item we can define its associated end-items,

pi penalty cost incurred for each unit short of item i and the end of a
period, i 2 E

Ui all items on the path from the root item (inclusive) to item i
(exclusive), i¼ 1, 2, . . . ,N

Ei set of end-items downstream of item i
�ik non-stockout probability of k 2 Ei under the optimal policy under the

balance assumption for the subtree of the divergent system with item i
as root item, i ¼ 1, 2, . . . ,N

It follows from the definition of Ei, that

Ei ¼ fig, i 2 E

Ei ¼ [
j2Vi

Ej, i 2 I

Diks and de Kok (1998) proof the following theorem:

Generalized newsboy equations theorem
Under the balance assumption the optimal base stock levels Sj and optimal
allocation policies satisfy

�ik ¼

P
m2Ui

hm þ pk

hk þ
P

m2Uk
hm þ pk

for every k 2 Ei, i ¼ 1, 2, . . . ,N:

From the Generalized Newsboy Equations Theorem in theory one can
recursively compute the optimal base-stock levels Si and optimal allocation
policies. However, this turns out to be computationally infeasible for realistic
problem instances. The main issue here is the non-linearity of the optimal
allocation functions. Diks and de Kok (1999) propose to assume linear
allocation functions. In order to define these linear allocation functions we
introduce the following variables:

qj fraction of shortage allocated to item j
Xt,i echelon stock of item i at time t immediately before allocation
It,j echelon inventory position of item i at time t immediately after

allocation

A linear allocation rule associated with item i and its parent items j 2 Vi is
defined by

It,j ¼ Sj � qj
X
m2Vi

Sm � Xt,i

 !þ
:
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Note that
P

m2Vi
Sm � Xt,i

� �þ
is the shortage at time t, since it indicates the

difference between the cumulative base stock levels of all parent items of i and
the echelon stock of i.

Diks and de Kok (1999) derive a generalized Newsboy equation
theorem for optimal linear allocation policies, implicitly assuming
that in each stage of the recursive procedure linear allocation policies
can be found that solve these generalized Newsboy equations. Though
this is not true in general, the generalized Newsboy equation theorem
for linear allocation policies yields a recursive heuristic to efficiently compute
(Si, qi) for all i¼ 1, 2, . . . ,N. Diks and de Kok (1999) show that the
heuristic yields policies that ‘‘almost’’ solve the recursive set of generalized
Newsboy equations, thereby suggesting that the policies found are close-to-
optimal.

Likewise with the optimal allocation policies it cannot be guaranteed that
linear allocation policies satisfy the balance assumption. This motivated
Van der Heijden (1997) to determine the linear allocation policies that
minimize the probability of imbalance. Based on proxies for the imbalance
probability he derived a remarkably simple expression for the allocation
fractions qi, i¼ 1, 2, . . . ,N. Defining

Dk :¼ demand per period of item k 2 E

�j :¼
X
k2Ej

E½Dk�

�j :¼ �ð
X
k2Ej

DkÞ,

we find the following expression:

qj ¼
�2
j

2
X
m2Vi

�2
m

þ
�2j

2
X
m2Vi

�2m
, j 2 Vi , i ¼ 1,2, . . . ,N

In the formula above we correct an error in the analysis in Van der Heijden
(1997): from his formula (22) he minimizes the variance of each expected
negative allocation to a successor separately instead of minimizing the sum of
the probabilities of a negative allocation to a successor. The formula above
coincides with the one derived in Van der Heijden (1997) when assuming that
�j¼� for all j 2 Vi. We assume here that the demands for different end-items
k 2 E are independent. Extensive discrete event simulation experiments show
that indeed the linear allocation policies based on the above formula for qj
(Van der Heijden (1997) coins the term Balanced Stock rationing) yield such
low probabilities of imbalance that imbalance can be ignored. This is
extremely important because this implies that the analytical results and the
policies obtained in Diks and de Kok (1999) are applicable, i.e., average costs
and customer service levels are accurately computed. Further numerical study
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is required to find out whether the combination of base stock control policies
and Balanced Stock rationing yields cost-effective policies as compared with
alternative policies proposed in the literature. We refer to Axsater (2003) for a
further discussion of the issue of imbalance. We conclude here with the
statement that for the combination of base-stock policies and linear allocation
policies it is possible to efficiently compute base-stock levels and allocation
fractions. The policies computed seem to be close-to-optimal and performance
characteristics, such as costs and customer service levels, are accurately
computed. The analysis of divergent systems is the basis of a class of policies
that can be applied to general assembly networks.

5.5 Synchronized base stock policies for general supply networks

The optimal policy derived for pure assembly systems cannot be applied to
assembly systems where items have multiple successors (parents). We can
identify two related root causes for this statement:

(1) In case of a shortage the above policy does not define the procedure for
allocation of this shortage to successors.

(2) The state variables Zij(t) cannot be defined since we cannot uniquely
define Lc

i in case of multiple successors.

In De Kok and Visschers (1999) a class of policies is proposed that
introduces uniquely defined state variables similar to Zij(t) and allocation
mechanisms derived from the analysis of divergent systems [cf. Van der
Heijden, Diks and de Kok (1997)], so that it is possible to generate feasible
item order releases in a straightforward way. Furthermore within this class of
policies it is possible to characterize the optimal policy under i.i.d. exogenous
demand, and near-optimal policies can be found numerically. For pure
assembly systems this class of policies coincides with the modified base-stock
policies described above. To understand the idea behind the class of policies
proposed for general assembly systems let us consider in more detail our
material co-ordination problem.

The lead time structure identifies at which moments in time item orders
must be released in order to have them available for (sub)assembly activities
required for production of the end-items at the start of period t. A natural
order of decisions made over time thus arises. We can identify the item(s) that
must be released first, which ones thereafter and so on. It is important to
understand that as soon as an item is ordered, this ordering decision restricts
the future demand that can be satisfied. In fact, the ordering decision leads to
a particular echelon inventory position and, as stated above, this echelon
inventory position covers future end-item demand. The problem however is
that it is not clear how this coverage is actually used over time by the various
end-items. This is not only due to uncertainty in future demand, but also due
to the interactions between items caused by lack of availability. If some item is
missing for an assembly operation, then another item is no longer needed as
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well. In a sense people in practice find themselves coping with a material
co-ordination problem where solving the problem of a particular item creates
a problem for another item, and so on.

The main reason for this complexity is that in a general supply network
there is no clear hierarchy in decision making about order releases as we found
above for the case of a pure assembly systems. Such a clear hierarchy also
exists if the supply network would be a pure divergent system, i.e., each item is
transformed into multiple items without a need for other items. The approach
proposed in De Kok and Visschers (1999) is based on an artificial hierarchy
derived from the structure of the general supply network. This structure is
determined by the BOM and the planned lead times. Below we restrict
ourselves to the main ideas behind this hierarchical planning concept. The
artificial hierarchy enables us to define state variables that unambiguously
define the item order releases.

We define the cumulative lead time of an item as follows:

Lc
i ¼ Li, i 2 E,

Lc
i ¼ Li þmax

j2Vi

Lj, i 2 I :

Now we define the root node s as

s ¼ arg max
i

Lc
i

� �
,

i.e.

Lc
s � Lc

i , i 2 I [ E:

Without loss of generality we assume that s is unique and that all
cumulative lead times are different. Now we develop a hierarchical procedure
that decides on all item order releases related to the end-items in Es. The
hierarchy is derived from the cumulative lead times Lc

i . Define the set of items
ĈCi as follows,

ĈCi ¼ jjLc
j > Lc

i ,Ej \ Ei 6¼ �
n o

:

We assume without loss of generality that

Ej \ Ei ¼ Ei, 8j 2 ĈCi,

i.e., all items that are used in the same end-items as item i, but are
ordered earlier than item i, are common to end-items in Ei. In case this
restriction does not hold, we can find a partition of Ei, and a one-to-one
related collection of subsets of ĈCi for which the above holds for each one-to-
one related pair of subsets and apply the principles below to each of the
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subsets. Finally we define

EðĈCiÞ ¼ \
j2ĈCi

Ej :

The first decision in the hierarchy is to order item s at the start of period t
according to a pure basic stock policy, i.e.,

rsðtÞ ¼ Ss � YsðtÞ:

Let us consider item i to be ordered at the start of period t. In principle we
would like to order according to a base stock policy, i.e., bring the echelon
inventory position to Si to cover future end-item demand. Notice that
decisions have already been taken in the past for items j 2 ĈCi that affect this
decision. In fact we assume that our decision hierarchy in the past determined

Z
ĈCi
ðtÞ coverage of future end-item demand during periods

t, tþ l, . . . , tþ Lc
i , for all items in EðĈCiÞ at the start of period t.

Given our assumptions stated above we have that Ei is a subset of EðĈCiÞ.
Therefore we distinguish between two situations:

(i) Ei ¼ EðĈCiÞ

(ii) Ei 6¼ EðĈCiÞ

In situation (i) we have that ZĈCi
ðtÞ is fully dedicated to future demand of

end-items in Ei. Our target coverage equals Si, but it does not make sense to
increase the coverage above Z

ĈCi
ðtÞ. Thus we release an order for item i as

follows,

riðtÞ ¼ max 0,min Si,ZĈCi
ðtÞ

� �
� YiðtÞ

� �
:

In situation (ii) Z
ĈCi
ðtÞ is intended to cover future demand for other end-

items than those in Ei, alone. The problem is that we must decide how much to
order for item i, thereby allocating quantities of the components in ĈCi to item
i, while it may well be that we need not order yet any other items related to
EðĈCiÞ n Ei. In this case we maintain our hierarchy in decision making by
introducing an artificial base stock level SEðĈCiÞnEi

that relates to end-items in
EðĈCiÞ n Ei. This implies that the target coverage of future demand for all end-
items in EðĈCiÞ equals Si þ SEðĈCiÞnEi

. In case ZĈCi
ðtÞ is below this target level,

then we must decide about the rationing of the deficit. This yields the
following order release policy for item i,

riðtÞ ¼ max 0,Si � qi Si þ S
EðĈCiÞnEi

� Z
ĈCi
ðtÞ

� �þ
�YiðtÞ

� �
:
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Here we use a linear rationing policy, where qi is the fraction of the deficit
allocated to end-items in Ei. Notice that situation (i) is a special case of
situation (ii) with qi¼ 1 and S

EðĈCiÞnEi
¼ 0:

In situation (ii) we create coverage by a set of items for future demand
related to end-items in Ei and EðĈCiÞ n Ei. The set of items associated with Ei is
ĈCi [ fig. The set of items associated with EðĈCiÞ n Ei is ĈCi, which implies that ĈCi

may again play the role of the set of items that will restrict the order release
decision for an item to be ordered later. In fact, the creation of an artificial
order-up-to level SEðĈCiÞnEi

always implies such a situation. Each order-up-to-
level thus relates to a decision node, which is uniquely determined by the
combination of a set of items and a set of end-items. A set of items can be
associated with multiple decisions nodes, c.q. (artificial) order-up-to-levels,
and a set of end-items as well can be associated with multiple decision nodes.

In case Z
ĈCi
ðtÞ > Si þ S

EðĈCiÞnEi
the excess coverage Z

ĈCi
ðtÞ � ðSi þ S

EðĈCiÞnEi
Þ

with respect to future end-item demand in periods t, tþ 1, . . . , tþ Lc
i is not

used to cover this future demand and hence will be available to cover end-item
demand after period tþ Lc

i . As a consequence this excess coverage results
in future excess stocks of all items in ĈCi at the end of period tþ Lc

i . Hence
a decision node can be seen as a stockpoint, where physical inventory
relates one-to-one to excess future stocks of the items associated with this
decision node.

We have stated that the procedure above holds for any supply network.
Informally speaking, the above approach creates a number of divergent
systems of decision nodes. Our restrictions on the sets Ei given above are
restrictions on the possible combinations of item sets and end-item sets. Once
understanding the principles it is rather straightforward to remove these
restrictions. In Sections 5.6 and 6 we present examples for which we derive
the divergent system(s) of decision nodes.

As stated above the policy described above extends the optimal policy
for pure assembly systems described in Rosling (1989) to a (nonoptimal)
policy for general assembly systems, i.e., multi-item multi-echelon systems.
The main idea behind the approach is the artificial hierarchy that enables
synchronization of order release decisions over time. Hence we define these
policies as synchronized base stock policies.

An important distinction between the pure base stock policies and the
synchronized base stock policies given here is that in the former case each item
has a uniquely defined base stock level, while in the latter case multiple base
stock levels, each associated with a decision node, may be associated with a
single item. In addition the allocation fractions defined above constitute
another set of decision variables. This implies that the synchronized base stock
policies provide many more degrees of freedom. This explains why pure base
stock policies do not allow for any combination of target customer service
levels, while synchronized base stock policies can be found that satisfy any set
of customer service level constraints with equality.
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We note here that multiple divergent systems emerge when an order must
be released for an item that is not contained in any of the end-items for which
we know the limits on future coverage due to earlier decisions. In that case this
item becomes the root node for another divergent tree of decision nodes and
we can apply a pure base stock policy for this item.

It is important to note that synchronized base stock policies are not cost-
optimal. In fact in situation (ii) we allocate part of the future coverage ZĈCi

ðtÞ
specifically to item iwithout a real need for taking that decision. This allocation
could have been postponed until the moment items are physically assembled
into a (sub) assembly or end-item. In De Kok and Visschers (1999) it is shown
for product families satisfying a particular constraint on the product and lead
time structure, that this simultaneous ordering and allocation decision seems to
hardly affect the performance of the system in terms of cost and customer
service level. The comparison in Section 5.6 seems to underline the effectiveness
of the synchronized base stock policies. The comparison in Section 6 provides
even stronger support to the SCOP concept described above. Yet clearly more
research is required to make any conclusive statement.

Due to the fact that the general assembly network is translated into a set of
divergent systems we can apply the algorithms proposed by Diks and de Kok
(1999) in order to determine order-up-to-levels and rationing fractions that
satisfy the service level constraints [cf. Section 5.4]. This implies that given the
concept of synchronized base stock policies as defined above we can derive
close-to-optimal policies for this concept even for large-scale systems. In De
Kok (2002a) efficient algorithms are proposed for determining these close-to-
optimal policies based on the relationship between generalized Newsboy
equations and finite-horizon ruin probabilities.

5.6 Comparison of pure and synchronized base stock policies

To provide insight into the differences between the pure base stock policy
models discussed in the literature and the synchronized base stock control
policy model, we discuss an example. We consider an ATO system consisting
of 3 end-items and 3 modules. Fig. 3 shows the product structure. End-item 1
is a base-version, consisting of module 6, only. End-item 2 and 3 have
additional features, represented by modules 4 and 5 respectively. The costs of
items 4, 5 and 6 are 1, 1 and 8, respectively.

The synchronized base stock policies are related to a logical mapping of the
above structure into (a set of) divergent structures. In the case of this simple
example we find a single divergent structure as given in Fig. 4.

Here Ek denotes the set of end-items associated with decision node k, and
Ck denotes the set of items associated with decision node k. The triangle
associated with Ek and Ck expresses the fact that the release decisions taken
with respect to successors of decision node k may result into an excess
coverage of future demand for end-items by the items associated with decision
node k [see Section 5.5]. This excess is planned at the moment the release
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decisions associated with decision node k are taken, but eventually the excess
results in physical stock of the items associated with decision node k. This
implies that the long-run average physical stock of each item i can be
computed from this associated divergent multi-echelon inventory system by
adding the long-run average physical stocks of all decision nodes k with
i 2 Ck:

From this divergent structure we obtain the following decision hierarchy:

� First we order, say at time 0, component 6 to be used in all end-items 1, 2
and 3.

� After two time units, i.e., at time 2, we order item 5 after deciding first on
allocation of the echelon stocks associated with item 6, thereby
determining how much of future availability of item 6 is allocated to
end-item 1 and how much to end-items 2 and 3 together.

� After another two time units, i.e., at time 4, we order item 4 after deciding
first on allocation of the echelon stocks associated with items 5 and 6

Fig. 3. Example product structure

Fig. 4. Divergent structure underlying synchronized base stock policies for example

product structure.
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dedicated to items 2 and 3, thereby determining how much of future
availability of item 5 and 6 is allocated to end-item 2 and how much to
end-item 3. At this point in time all items have been allocated to satisfy
demand during period 6, which starts at time 5.

In Table 1 below we give the results for the situation where item 3, the high-
end-item consisting of all three modules, has a target � of 99%, item 2 has a
target a of 95% and item 1 has a target � of 90%. The demand per period for
the end-items is i.i.d. with mean E[D] and �(D).

The base stock levels are denoted by S, the average stock investment of a
module by X. The index PBS denotes the pure base stock policies, the index
SBS denotes the synchronized base stock policies. The SBS policies have been
computed from the generalized Newsboy equations derived in Diks and de
Kok (1999), while the PBS policies have been derived from a brute force cost
minimization based on the results in de Kok (2002b).

The results are at first sight negative for the pure base stock policies, since
the amount of stock investment required is 4% higher than the stock
investment requirements in case of the synchronized base stock policy. A
closer look reveals clearly why this is the case. In order to guarantee a 99%
service level for item 3, items 1 and 2 both have a service level of 99%. These
high service levels are enabled by high stocks of all items. Yet more insight can
be gained when we realize the following. The main reason for the extreme
difference in stock requirements is caused by the definition of the �-measure in
the case of pure base stock policies and the assumption underlying the explicit
expression given in the ATO theorem: In case of a shortage of a particular item
it is assumed that all end-items share part of the shortage.

Although this seems obvious at first sight, it implies the ordering of the �-
values for end-items in case one item’s component (or module) set is a subset
of another item’s component set and it implies a worst-case scenario. In reality
typically one would like to share shortages, yet not to the extreme that any
shortage of a component causes a backorder for all end-items using this

Table 1
Performance base stock policies in case of high service of high-end-item

Item E[D] �(D) �* �PBS �PBS

1 100 25 0.9 0.99 0.9
2 100 25 0.95 0.99 0.95
3 100 25 0.99 0.99 0.99

Component charactristics
Item SPBS SSBS XPBS XSBS

4 200 192 100 83
5 810 800 210 166
6 1740 1733 1923 1891
System 2233 2140
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component. What seems to be a quite natural assumption leading to an
elegant expression for the non-stockout probabilities, in fact may yield high
supply chain capital investments. Apparently, it is important to explicitly
define a component shortage allocation mechanism that ensures lower supply
chain capital requirements. Since the main reason for high supply chain
investments is caused by the fact that the high-end-items have the highest
service, we expect a more favorable situation for the case that we want high-
end-items to have a lower service level than the low-end end-item. The results
in Table 2 confirm this. In this case the pure base stock policies outperform the
synchronized base stock policies by 2.4%. This is likely to be caused by the
fact that synchronized base stock policies allocate common components too
early, as follows from the logical decision hierarchy that is depicted in Fig. 4.

It should be clear that in practice we set �-service level constraints on the
basis of an (implicit) trade-off between supply chain stock capital investments
and penalty costs for disservice. It is likely that high-end service levels are
higher than low-end service levels. The discussion above implies that pure base
stock control policies do not allow for sufficient degrees of freedom (or means
of control) to set the �-service levels accordingly. The potential supply chain
cost savings are an interesting subject for further research. This concludes the
discussion of pure base stock policies as a basis for SCOP.

5.7 Heuristic analysis of general network structures

In Section 5.2 we argued that pure base stock policies cannot be used for
supply chain operations planning, since these policies do not satisfy the
material availability constraints (3.1). We must be aware of the fact that even
in the case of infinite resource capacity, the constraints (3.1) are of such
complexity that it is not at all clear how to incorporate them into a supply
chain operations planning concept that takes into account demand (and
supply) uncertainty. We emphasize again here that this is the most important

Table 2
Performance base stock policies in case o low service of high-end-item

Item E [D] �(D) �* �PBS �SBS

1 100 25 0.99 0.99 0.99
2 100 25 0.95 0.95 0.95
3 100 25 0.9 0.9 0.9

Component characteristics
Item SPBS SSBS XPBS XSBS

4 142 162 43 47
5 708 770 109 126
6 1740 1741 1923 1952
System 2075 2125
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reason to resort to mathematical programming based supply chain planning
concepts in a rolling schedule context. However, such concepts do not answer
important questions such as

� Where and how much safety stocks should be held?
� What is the impact of demand uncertainty on supply chain capital
requirements to achieve the required customer service levels?

Such questions are more of a strategic and tactical nature, yet the answers
have an immediate consequence for the operational performance of the supply
chain.

In the literature we find several approaches that discuss the issue of safety
stock positioning. For an extensive discussion of these approaches we refer to
Axsater (2003) and Song and Zipkin (2003) (Chapters 10 and 11, respectively,
of this volume). It seems appropriate to briefly discuss these approaches in the
context of general assembly structures. For such structures it seems that there
are two generic assumptions underlying the heuristic analysis of such systems:

Decomposition assumption. Safety stock parameters are set at such high levels
that every material order released can be satisfied from stock on hand without
checking upstream availability.

The decomposition assumption allows an analysis of general assembly
systems, where costs are derived by adding costs derived from an item-by-item
single-item single-echelon model and customer service levels are derived from
single-item single-echelon models for items in E.

Assembly assumption. If an assembly order has to wait for material then this is
caused by the shortage of exactly one item required for assembly.

The assembly assumption simplifies the analysis considerably due to the fact
that it enables the translationof an assembly system into aweighted sumof serial
systems. The weights relate to the probabilities that particular items are short.

The decomposition assumption seems stronger than the assembly
assumption. It can be verified by discrete event simulation that when item
service levels for items in I are above 95%, then the (heuristic) analysis of the
performance of the supply chain in terms of costs and service yields an
acceptable accuracy. Realizing that 95% service levels are also a prerequisite
for the assembly assumption to hold, we might argue that if the assembly
assumption holds, then the decomposition assumption holds as well, in the
sense that both yield more or less the same results. Further research is however
required to verify this line of thought.

Analysis under the decomposition assumption
The typical focus of the heuristic analysis under the decomposition

assumption is on the analysis of a supply network cost function under some
service level restriction and the derivation of properties of optimal policies
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[e.g., see Lee and Tang (1996)]. We notice however that the optimal policies
found, by implication of the decomposition assumption, keep high stocks at
all upstream stages. It follows fromWhybark and Yang (1996) (and the results
of Section 6) that truly optimal policies tend to concentrate inventory capital
at downstream stages, unless a high value is added at the most downstream
stages. We believe that this observation may have considerable impact with
respect to the benefit of postponement of item diversity. Item diversity is
postponed if the item is made more common to downstream items.
Postponement strategies therefore allow for reduction in upstream item
stock investments while maintaining end-customer service levels. The
decomposition assumption may yield exaggeration of the benefits of
postponement since these benefits are derived from reduction of upstream
safety stocks that guarantee high intermediate service levels. For an in-depth
discussion of the benefits of postponement in Supply Chain Management we
refer to Lee and Swaminathan (2003), Chapter 5 of this volume.

We notice here that postponement strategies should not be confused with
strategies that allow for an upstream shift of the CODP [cf. Section 1]. In that
case changes in the transformation and transportation processes allows
holding e.g. modules instead of end-items. An upstream shift of the CODP
typically has a large impact on stock investments, since (specific) end-item
stockpoints with high service requirements are eliminated completely.

In Graves and Willems (2003), Chapter 3 of this volume, the decomposition
approach proposed by Inderfurth (1994) and Graves and Willems (2000)
based on Simpson (1958) is extensively discussed. Minner (2000) discusses the
distinction between full-delay models and no-delay models. The full-delay
models assume that if an item is not available, then one has to wait with an
order release until the item becomes available. This is in line with our
discussion in Section 3 and in fact is equivalent to the set of constraints (3.1).
In no-delay models it is assumed that if the dependent demand from
downstream orders exceeds the available inventory, then there is some outside
source (not considered in the model in terms of costs) that provides the
material. In fact, this is the assumption that Simpson (1958) proposed and
enables an elegant analysis of complex supply networks. Graves and Willems
(2000) argue that this assumption is reasonable if safety stocks are set such
that they cover the maximum demand during a so-called coverage time. The
coverage time is the sum of the lead times of items that are consecutively
upstream of the item under consideration.

The analysis of no-delay models reduces to the determination of the
optimal cover times. In fact the concept of cover times enables a
generalization of the decomposition assumption in that if a cover time of an
item covers multiple upstream stages, then at these stages no safety stocks are
kept and the safety stock is only held for the item under consideration. We
note here that the no-delay assumption converts the analysis of a stochastic
demand model into the analysis of a deterministic model with cover times as
decision variables.
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From the analysis in the above-mentioned papers one finds items where no
stocks are held at all and items for which the stock equals the safety stock
associated with the cover time derived and the demand uncertainty associated
with the item. Using dynamic programming Minner (2000) is able to analyze
general supply chain structures. He shows by an example of a serial supply
chain that the optimal policies for no-delay models and full-delay models may
differ considerably. He discusses heuristics that may bridge the gap between
full-delay models and no-delay models. However, more research is required to
better understand the applicability of no-delay models. Hereby we implicitly
assume that full delay models better represent the reality modeled in a supply
chain operations planning context. We emphasize here that the main issue
here is the external validity of either approach. Since in reality people
intervene in situations where demand exceeds availability the only way to test
applicability of models like the ones discussed in this Chapter is empirical.
Only then we can identify situations where either full-delay or no-delay
models perform best.

An interesting contribution to the analysis of the SCOP problem based on
the decomposition assumption is given in Graves, Kletter and Hetzel (1998).
They consider a general supply network under dynamic demand. The main
contribution of the paper is the introduction of so-called forecast revisions
�F(t, tþ s),

�Fðt, tþ sÞ ¼ D̂Dðt, tþ sÞ � D̂Dðt� 1, tþ sÞ, s � 0:

As before D(t, tþ s) denotes the forecast of the demand in period tþ s
made at the start of period t. It is assumed that the random variables
�F(t, tþ s) are i.i.d. with respect to t. The forecast revisions for an arbitrary t
may be correlated. These assumptions seem quite reasonable. Graves et al.
(1998) give a detailed analysis of the single stage model. They assume that item
order release revisions ri (t, tþ s)�ri (t�1, tþ s) can be expressed as a linear
function of the forecast releases. This assumption enables the formulation of
an optimization problem focused on minimizing the variance of the item
order releases subject to a constraint on the variance of the net inventory,
which relates to the level of customer service. The decision variables are the
weights that determine the linear relationship between item order release
revisions and forecast revisions. Applying the decomposition assumption the
results for the single stage system are combined into an analysis of a general
assembly system. The approach was successfully applied to a real life case
study.

The approach described in Graves et al. (1998) has a strong resemblance
with the seminal work by Holt, Modigliani, Muth and Simon (1960)
who study linear decision models in the context of aggregate planning. In
both approaches the linear relationship between production schedule
revisions and forecast revisions is used as a means to implicitly model finite
capacity.
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Even though Graves et al. (1998) focus on the design of the supply network,
their innovative modeling of the demand process deserves further study in the
context of the SCOP problem (see Section 7).

Analysis under the assembly assumption
The assembly assumption has been extensively used in literature. It enabled

the exact analysis of spare part networks, where end-items consist of modules
that may fail due to components that may fail, etc. In this context the
assembly assumption states that if a product fails this is due to exactly one
module. In turn, this module failed due to exactly one component, etc. For
an extensive survey of relevant literature we refer to Sherbrooke (1992) and
Axsater (2000).

In the context of safety stock positioning in general supply networks
recently Ettl, Feigin, Lin and Yao. (2000) developed a framework of analysis
building on the assembly assumption. They assume continuous review
installation base stock policies for all items. In line with the discussion in
Sections 1 and 2 they assume so-called nominal lead times that are equivalent
to the planned lead times assumed in this chapter. Demand is modeled as a
compound Poisson process. The authors emphasize that the compound
Poisson process is a means to approximate the real life demand process and
provides the degrees of freedom to obtain a good fit.

The objective of Ettl et al. (2000) is to find optimal base stock levels that
minimize costs subject to customer service level constraints. The analysis in
the paper is roughly as follows: First of all, it is easy to see that the external
demand process and the installation base stock policies determine the demand
process for each item, irrespective of the base stock levels of its parent items.
This enables to compute on an item-by-item basis the waiting time
distribution of an arbitrary order for the item, given its base stock policy.
This waiting time is derived from the analysis of the number of outstanding
orders, which in turn is derived from the analysis of an M[X]/G/1 queue. The
analysis yields for each item, the first two moments of the waiting time
distribution of an arbitrary order for this item. Next the assembly assumption
converts the multi-item multi-stage problem into a set of interrelated single
stage problems that can be analyzed subsequently. Thus expressions can be
derived for holding costs and service levels. This yields an overall objective
function that is optimized using a conjugate gradient search technique with
the base stock levels as decision variables.

A careful study of the numerical results reported in Ettl et al. (2000)
and, more extensively, in Feigin (1998) reveals that the optimal solution
yields extremely low upstream fill rates (between 0.1 and 0.7). This puts
forward a fundamental issue. The approach is based on the assembly
assumption, yet the optimization procedure suggests optimal solutions that
strongly violate the major assumption underlying the approximate analysis.
Although the actual performance of the heuristic may be very good or even
close-to-optimal, from a standpoint of mathematical rigor it implies that the
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solution obtained is infeasible and the optimization problem should be
reformulated including constraints that ensure adherence to the assembly
assumption. This problem is addressed implicitly in Ettl et al. (2000) in that
they apply discrete event simulation to verify the solutions obtained. It means
that the quality of the solutions cannot be supported by the analytical
characteristics of the approach. In our view this fundamental issue deserves
further research.

This concludes our discussion of base stock policies in the context of the
SCOP problem. Before summarizing our conclusions we would like to discuss
briefly another interesting class of control policies.

5.8 Combined Kanban and base stock policies for Supply Chain Planning

This class of policies for the control of manufacturing systems has been
proposed by Buzacott and Shantikumar (1993) and Frein et al. (1995) and
others: a combination of base stock control policies and Kanban control
policies. Though there are differences between the concepts proposed by the
various authors the idea behind the policies are essentially the same. Below we
give an informal discussion of this type of policies and focus on their relevance
for SCOP. We will denote these concepts as Combined Kanban Base Stock
Control (CKBCS), without having the ambition to add another acronym to
this part of the literature, but to avoid that we are not precise enough to
describe any of the proposed mechanisms.

First of all let us consider the standard Kanban policies. A standard
Kanban policy can be defined through two parameters: the number of cards
circulating between two stages and the quantity per card. To clarify this
further let us consider an arbitrary item i. Assume that item i is processed on
resource ki after which it is used by items j2Vi that are processed on resources
kj. Then we can define

Kij Number of Kanban cards associated with items i and j circulating
between resource ki and resource kj

Qij The quantity associated with each Kanban card to be released of item
i on behalf of item j

Si Base stock level of item i

As seen before the base stock level should be seen as a target inventory
level associated with item i. Yet the state variable that defines the inventory
level can have different definitions. We have seen examples such as the
echelon inventory position and the local inventory position, but in
principle alternatives exist. Typically, one could vary the definition of the
echelon of item i, comprising more or less of the supply chain downstream of
item i.

In principle CKBSC policies operate as follows: If the inventory level of
item j is below its target level Sj and at least one Kanban card associated with
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items i and j is available, then a Kanban card is sent from resource kj to
resource ki, releasing an amount Qij of item i. From this we see that the base
stock level Si should ensure availability of item i, while the parameters Kij and
Qij ensure that the maximum amount of work in process of item i, i.e., the
total amount of outstanding orders of item i, cannot exceed

P
j2Vi

KijQij

It can be shown that CKBSC policies can emulate all currently known
inventory control policies by appropriate choices of both the definition of the
inventory state variable and the values of the parameters Si, Kij and Qij.
Although the discussion in Buzacott and Shantikumar (1993) and Frein et al.
(1995) restricts to continuous review systems, in our view the principles of
CKBSC policies carry over to the periodic review setting of supply chain
planning.

When testing the CKBSC policies against our generic supply chain
planning constraints we find that the feasibility constraints (3.1) may be
violated. The reason for this is that a Kanban card is sent from a resource kj
without checking availability of the material required. One solution to this
problem is to ensure that the number of outstanding orders never exceeds the
base stock level, so that always inventory is available. This implies thatP

j2Vi
KijQij � Si. In the CKBSC concepts proposed in the literature the

opposite is assumed, i.e., the maximum amount on order is at least equal to
the base stock level. If this is the case we have to develop procedures that
impose the feasibility constraints (3.1). It is likely that such a modification
will greatly complicate the analysis of the performance of CKBSC systems.
Currently, this analysis is strongly related to the performance analysis of
queuing network systems. For further details we refer to Frein et al. (1995)
and Buzacott and Shantikumar (1993). It should be noted that such an
analysis strongly relies on the assumption of continuous review and a FCFS
discipline for dealing with priorities in case of material shortage. Given the
fact that the supply chain operations planning problem is by nature periodic
and priorities should be based on costs structures, it is clear that further
research is required to develop the framework of CKBSC policies for a
supply chain planning. Given the richness of the framework as such we
consider this direction for further research as quite promising. However, the
state-of-the-art of analysis of CKBSC policies does not allow for a
comparison with other supply chain planning concepts, as we intend to
undertake in Section 6.

5.9 Concluding remarks

In this section we discussed quantitative models for the incapacitated SCOP
problem that explicitly include demand uncertainty. We have shown that pure
base stock policies violate the feasibility constraints (3.1). We extensively
discussed the synchronized base stock policies introduced by De Kok and
Visschers (1999) that satisfy the feasibility constraints and allow for an exact
analysis and the numerical computation of near-optimal policies within this
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class. We identified policies that combine Kanban control and base stock
control as interesting candidates for further SCOP research. We discussed
various heuristic methods to compute control policies minimizing costs subject
to service level constraints. The heuristics based on the decomposition
assumptions yield solutions that contradict the findings in Whybark and Yang
(1996) about optimal positioning of safety stocks, i.e., safety stocks should be
concentrated downstream (see also Section 6). The assembly-assumption-
based heuristic of Ettl et al. (2000) yields solutions that, although they seem to
violate the assembly assumption, are close to optimal.

In the next section we compare the two classes of control concepts for
which we have been able to show that all SCOP constraints are taken into
account, viz. the LP-based control concept discussed in Section 4 and the
synchronized base stock policies discussed in this section. We restrict our
comparison to the uncapacitated SCOP problem, since there are no results for
the capacitated SCOP problem under stochastic demand.

6 Comparison of supply chain planning concepts for general supply chains

In this section we compare supply chain operations planning concepts from
the two main classes of supply chain planning concepts, i.e., MP-based
concepts in a rolling schedule context (discussed in Section 4) and concepts
based on stochastic models that are applicable to general supply chain
structures (discussed in Section 5). Firstly in Section 6.1 we briefly discuss in
the impact of a (dynamic) forecasting process on the release decisions
generated by the two classes of concepts. Thereafter, we present a numerical
study that provides insight into various aspects of the SCOP problem. We
restrict this numerical comparison to the situation with infinite resource
availability. The main reason for this restriction is that stochastic model-based
concepts do not incorporate finite capacity resources. Furthermore we assume
stationary stochastic demand. We expect that the results obtained are
applicable to the situation with stationary forecast errors, yet this requires
further research.

Because our focus is on managerial insights into the SCOP problem and the
characteristics of the two different SCOP concepts, we restrict our comparison
to a relatively simple case situation. One should be aware of the fact that the
structural complexity of the SCOP problem discussed in this chapter, i.e.,
multi-item, multi-echelon, general BOM relationships, is enormous. By
carefully selecting case situations we obtain useful insights. These insights
were confirmed by results from a comparative study based on a real-world
case [cf. De Kok (2001)].

In Section 6.2 we present the case situation. In Section 6.3 we present the
results of our comparative study. In Section 6.4 we recapitulate our
conclusions into a number of managerial insights and issues.
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6.1 Supply Chain Planning concepts and forecasting

As has been made clear in Section 4 the key dynamic input to an SCOP
concept is the forecast of exogenous demand for items in E (like before we
assume P¼E). A practically relevant question that seems to have an obvious
affirmative answer is the following: Are the immediate release decisions
affected by the forecasts of exogenous end-item demand? Given the set of
equations in Section 4 this may be obviously true, but we concluded that the
answer depends on the planning concept used. It can be easily proven that a
planning concept based on base-stock policies with fixed base-stock levels
generates immediate order release decisions that do not depend on the forecasts
generated. Similarly, it can be proven that if the base-stock levels are dependent
on the forecast, for example, when the base stock levels represent a fixed
number of weeks coverage of future demand, then the immediate order release
decisions depend on the forecast. It can also be verified that the supply chain
operations planning concept based on LP discussed in Section 4 generates
immediate order release decisions that depend on the forecasts of exogenous
demand. It seems natural to assume that the SCOP concept should generate
immediate order release decisions that depend on the forecast. In this context it
is interesting to notice that recently a growing number of retail and
manufacturing companies seems to resort to classical end-item inventory
management policies with fixed reorder and/or order-up-to-levels. There seems
to be empirical evidence that current forecasting (or sales planning) processes
generate a forecasting accuracy that justifies these decisions. For an interesting
discussion of this particular issue we refer to Aviv (2001).

6.2 Comparison of the LP-based SCOP concept and the SBS concept

In this section we compare the LP(-based SCOP) concept presented in
Section 4 with the SBS concept presented in Section 5. The LP concept
represents the class of deterministic optimization models in a rolling schedule
setting, while the SBS concept represents the class of stochastic models for
SCOP. We first describe the case example in detail.

Case description
In this section we describe the case we used for a comparative study. We

subsequently present the BOM structure, the demand process, the cost
structure and the performance measures used in our comparison.

The example product structure.

In order to compare the two SCOP concepts we create a test bed. We only
consider the specific product structure consisting of 11 items given in Fig. 5.
As stated above we found that the results obtained for this test bed are typical.
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We consider an 11-item product structure consisting of four end-items 1 to
4. All products contain common component 11. Products 1 and 2 share
component 9, while products 3 and 4 share component 10. Each product
contains a specific component.

As stated above we do not consider finite resources. Implicitly, such finite
resources can be incorporated into the BOM through the planned lead times.
High resource utilizations result into long planned lead times, low resource
utilizations result into short planned lead times. In the context of the
discussion in Section 2 on planning hierarchies one might state that the choice
of the planned lead times is such that the order release decisions generated at
SCOP level can be realized at shopfloor level with high probability. That is the
due date of an order derived from the moment of its release and the planned
lead time can be met with high probability.

Therefore, it is of interest to vary the lead times of the different items. Note
that the lead time of the end-items 1 to 4 relates to an assembly process. We
may consider the lead times for items 5 to 11 as procurement lead times. A
long procurement lead time thus relates to a supplier with tight capacity in a
remote location. The planned lead time structure is given by the following
variables:

Lf planned lead time end-items
Ls planned lead time specific components

Fig. 5. The example product structure
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Lsc planned lead time semi-common components
Lc planned lead time common component

This implies the following equations,

Li¼Lf, i¼ 1, 2, 3, 4
Li¼Ls, i¼ 5, 6, 7, 8
Li¼Lsc, i¼ 9, 10
Li¼Lc, i¼ 11

In order to get insight into the impact of the supply chain structure we
vary the planned lead times (Ls, Lsc, Lc)as follows,

(1, 2, 4) common component long lead time, specific component short lead
time

(4, 2, 1) common component short lead time, specific component long lead
time

(1, 4, 2) semi-common component long lead time, specific component short
lead time

We note here that the planned lead time structure impacts the divergent
structures that emerge when applying the SBS concept. Below we present the
divergent structures associated with each of the three planned lead time
structures.

Demand process and cost structure

As stated above we assume that the demand for the end-items is stationary.
More precisely, demand for end-item i in consecutive periods is i.i.d. We also
assume that the demand processes for different end-items are uncorrelated.
We define

E[Di] average demand per period for item i, i¼ 1, 2, 3, 4
c�2i squared coefficient of variation of demand per period item i,

i¼ 1, 2, 3, 4

We set E[Di] equal to 100 for all end-items. To get insight into the impact of
demand variability on the choice of an SCOP concept we vary c�2i as 0.25, 0.5,
1 and 2. Unless stated otherwise, we assume identical demand parameters for
all end-items.

Cost structure

As explained in the introduction to this chapter we want to compare
different SCOP concepts on the basis of the supply chain inventory capital
required to achieve a prespecified customer service level. Based on the cost
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structure in high volume electronics supply chains we developed a base case
cost structure as follows. Analogously to the definition of planned lead times
we define

hf added value end-items
hs added value specific components
hsc added value semi-common components
hc added value common components,

implying that

hi¼ hf, i¼ 1,2,3,4
hi¼ hs, i¼ 5,6,7,8
hi¼ hsc, i¼ 9,10
hi¼ hc, i¼ 11

In the base case we assume that (hf, hs, hsc, hc,)¼ ($10, $10, $30, $50).
Hence the common component is expensive, while the added value of
assembly is only 10% of the total value of the end-item. An example of such a
situation is the manufacturing of TVs. Typically the Cathode Ray Tube is
50% of the total cost, a Printed Circuit Board may account for 30% of the
cost, while additional materials such as a housing account for another 10% of
total cost.

Customer service levels

In the introduction we defined the two most commonly used customer
service levels in practice, the non-stockout probability � and the fill rate �. In
our comparative study we will discuss results for the �-service measure, only.
In our base case comparisons the customer service objective is to achieve a
non-stockout probability of 95%, i.e.,

�* ¼ 0:95

Evaluation of the SCOP concepts
The above case description has been the basis for a numerical study where

discrete event simulation was used to compute the performance of the two
SCOP concepts. Let us describe the steps along which we derived the
numerical results in more detail.

For the SBS concept described in Section 5 we determined the base-stock
levels and allocation policies analytically. Towards this end we followed the
procedure in De Kok and Visschers (1999) (see Section 5.5) to derive the
divergent structures presented in Fig. 6a–c. Given these divergent structures
we computed near-optimal linear allocation policies and base stock levels
based on the algorithms given in Diks and de Kok (1999). Thereafter we
checked these analytical results with discrete event simulations. The
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simulation run length in all experiments was 100,000 time periods. The point
estimates obtained did not change with longer simulations.

For the analysis of the LP concept we had to fully rely on discrete event
simulation. In each period simulated we solved the LP problem described in

Fig. 6. (a) Decision node network for (Lf,Ls,LsC,Lc)¼ (1, 1, 2, 4).

Fig. 6. (b) Decision node network for (Lf,Ls,LsC,Lc)¼ (1, 1, 4, 2).
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Section 4 using CPLEX [cf. http://www.ilog.com]. As described in Section 4
we used an initial run with end-item safety stocks equal to zero to compute for
each end-item the empirical distribution of the difference between net stock
and safety stock. From this distribution we determined the safety stocks that
would ensure the required service level. A second simulation run with the
required safety stocks yielded the performance of the LP concept. For both
simulation runs we used a run length of 25,000 time periods. This run length
proved to be sufficiently long for all experiments to obtain the required
accuracy with respect to determination of the end-item safety stocks
guaranteeing 0.95 service levels.

6.3 Quantitative comparison of LP and SBS

For our base case we generated twelve different SCOP scenarios by
combining three planned lead time structures and four squared coefficients of
variation. The results are given in Table 3.

From Table 3 we conclude that the analytical results for the supply chain
inventory capital obtained with the SBS concept, found in the column with
heading SBSana, coincide with the results obtained with discrete event
simulation, found in the column with heading SBSsim. As expected the
procedure described above for the LP concept yields the target �-levels (�LP).
Likewise the SBS policies computed yield the required customer service levels
(�SBS).

Furthermore we find that the SBS concept considerably outperforms the
LP-based concept. This in itself is an important and striking result. We should
realize ourselves that most commercial software for Supply Chain Planning

Fig. 6. (c) Decision node network for (Lf,Ls,LsC,Lc)¼ (1, 4, 2, 1).
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currently available is at best employing the LP-based concept of Section 4 and
most likely LP is embedded in a set of heuristics to generate a feasible solution
to the deterministic SCOP model described in Section 4. This statement is in
line with the findings of Stadtler et al (2000) and Fleischmann and Meyr
(2003), Chapter 9 of this volume.

Interestingly, the difference between the two concepts is not very sensitive
to the demand variability. One might expect that LP performs better if
demand variability is low. The difference between the two concepts is mainly
determined by the lead time structure. The difference is largest for the case
with a long lead time for the common component and smallest for the case
with a long lead time for the specific component. Apparently the SBS concept
better exploits the commonality in the former situation.

To gain intuition for the surprising observation from Section 4 we present
for both concepts the allocation of supply chain inventory capital among
stocks of common component, semi-common components, specific compo-
nent and end-item.

The results in Table 4 indicate that the LP-based concept does not seem to
find the right balance in allocating stock among the different items. In case
commonality can be exploited, i.e., when (semi-)common components have a
longer lead time than the specific component the LP-based concept tends to
withhold too much stock in (long-lead time) components. A possible
explanation for this is that the LP-based concept aims at satisfying the end-
item demand forecast. After satisfying this forecast remaining stocks of
components are not used for assembly of end-items, because stocks of
components are cheaper than stocks of assembled end-items. Especially if
exogenous demand is low in a number of consecutive periods, then the LP
concept will tend to build up stock upstream. The base stock levels computed

Table 3
Supply chain stock capital comparison, identical end-item demand

c�2i (Lf, Ls,Lsc,Lc) Supply chain inventory capital Customer service

SBSana SBSsim LP �% �SBS (%) �LP (%)

0.25 (1,1,2,4) 72,188 71,682 83,225 16 95 95
0.25 (1,4,2,1) 76,154 76,476 83,762 10 95 95
0.25 (1,1,4,2) 74,162 73,550 84,424 15 95 95
0.5 (1,1,2,4) 105,114 104,448 119,645 15 95 95
0.5 (1,4,2,1) 112,226 112,316 121,586 8 95 95
0.5 (1,1,4,2) 108,079 107,616 122,916 14 95 95
1 (1,1,2,4) 152,583 152,203 173,056 14 95 95
1 (1,4,2,1) 165,264 165,328 180,211 9 95 95
1 (1,1,4,2) 157,294 157,034 177,166 13 95 95
2 (1,1,2,4) 217,664 218,551 258,651 18 94 95
2 (1,4,2,1) 246,637 245,998 265,952 8 95 95
2 (1,1,4,2) 228,967 228,789 261,499 14 94 95
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under the SBS concept are typically such that even during low demand periods
inventory capital is pushed towards the locations where customer demand
must be met. Informally speaking, the base-stock policies have a just-in-case
character, whereas the LP-based concept has a just-too-late character.

Extensive numerical studies indicate that under the SBS concept the
sums of base stock levels at each echelon in the divergent structures of decision
nodes underlying the SBS concept tends to increase slightly upstream. If
these sums had been equal at all echelons then no stocks would be held at
all upstream stages. The results in Table 4 seem to indicate that we are close
to that situation. This seems to imply that when commonality can be
exploited, then only little common upstream stocks are required to reap the
benefits.

In case the specific component has the longest lead time, commonality
cannot be exploited and in that case the LP-concept seems to stock too much
end-item. In that case it may be that the SBS concept identifies indeed that
commonality cannot be exploited and favors to hold more (less expensive)
components.

The rationale behind the extremely low component stock levels with both
concepts, and in particular for the base-stock policies, is that holding back
stock at component level does not contribute to immediate customer service.
Apparently this outweighs the so-called portfolio effect for common
component stocks, i.e., demand for the common component is relatively
more stable than demand for individual products.

Another interesting observation from our computational study is that
under the LP concept the safety stocks for the identically distributed end-items
strongly differ. Our explanation is that for our base case with identical added

Table 4
Allocation of inventory capitol along the supply chain

c�2i (Lf, Ls,Lsc ,L) End-item Specific Semi-common Common

SBS
(%)

LP
(%)

SBS
(%)

LP
(%)

SBS
(%)

LP
(%)

SBS
(%)

LP
(%)

0.25 (1,1,2,4) 95 86 0 1 1 4 3 10
0.50 (1,1,2,4) 97 86 0 1 1 4 2 10
1.00 (1,1,2,4) 99 87 0 1 0 3 1 9
2.00 (1,1,2,4) 100 88 0 1 0 3 0 8
0.25 (1,1,4,2) 93 87 0 1 5 7 2 6
0.50 (1,1,4,2) 94 88 0 1 5 6 1 5
1.00 (1,1,4,2) 96 89 0 1 4 6 0 5
2.00 (1,1,4,2) 97 89 0 1 3 6 0 5
0.25 (1,4,2,1) 88 91 6 3 5 3 1 2
0.50 (1,4,2,1) 90 93 6 2 4 3 0 2
1.00 (1,4,2,1) 90 93 7 2 4 3 0 2
2.00 (1,4,2,1) 91 94 6 2 3 2 0 2
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values for all end-items the LP-problem solved each period is strongly
degenerate. Thereby it depends on the particular implementation of the
algorithm (e.g. choice of tie-breaking rules), which end-item is favored over
the other with respect to the allocation of items. Apparently the CPLEX-
solver used is not allocating these mismatches evenly over time among the
end-items. Of course, the base-stock policies are identical for all end-items.
Given this observation with respect to the allocation of stocks, it is interesting
to compare the average stock levels in case the values of end-items are
different. In Table 5 we present some results that support our conclusion that
the LP concept does not handle component shortages properly. In Table 5 we
define �1 as the standard deviation of the three different safety stocks for end-
items 1, 2, and 3 normalized by their mean, while �2 is defined as the relative
difference between the average safety stock for products 1, 2, and 3 and the
safety stock of the lower cost end-item 4.

It follows from Table 5 that the modified base-stock concept yields identical
safety stocks for identical products (�1¼ 0), while the LP-concept yields
considerably different safety stocks (�1>0). For different end-items we find
that the �2, the difference between the low-cost end-item safety stock and the
high-cost end-items safety stock, is much bigger for the LP concept than for
the SBS concept.

The results in Tables 3–5 show that the LP-based concept rations shortages
among items inappropriately. Identical products are not rationed similarly
due to tie-breaking rules needed to deal with the degeneracy of the associated
SCOP problem. In case of different products, LP rations shortages according
to a priority list based on holding and penalty costs. The priority list implies
that the item first on the list is satisfied first (if possible), after that the item
second on the list is satisfied, etc. until no inventory is left. Lagodimos (1992)
has shown that such a priority rationing mechanism is suboptimal. The linear
rationing rules used in the SBS concept ensure that shortages are shared
among all products. Apparently this is superior. Informally speaking, LP is a
greedy approach that is inferior to the balanced SBS approach. The
importance of careful rationing of shortages of material has, to our

Table 5
Safety stock differences for non-identical end-items

ðc�21, c�
2
2, c�

2
3, c�

2
4Þ (h1, h2, h3, h4) (Lf,Ls,Lsc,Lc) LP SBS

�1 (%) �2 (%) �1 (%) �2 (%)

(0.25,0.25,0.25,0.25) (20,20,20,10) (1,1,4,2) 23 48 0 14
(0.25,0.25,0.25,0.25) (20,20,20,10) (1,1,2,4) 11 73 0 14
(0.50,0.50,0.50,0.50) (20,20,20,10) (1,1,2,4) 9 58 0 14
(0.50,0.50,0.50,0.50) (20,20,20,10) (1,1,4,2) 17 39 0 14
(1,1,1,1) (20,20,20,10) (1,1,2,4) 11 39 0 13
(1,1,1,1) (20,20,20,10) (1,1,4,2) 16 29 0 14
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knowledge, not been identified in the Mathematical Programming literature
on the SCOP problem. An explanation for this may be, that this problem only
reveals itself when applying MP-based concepts in a rolling schedule context
under stochastic demand. We conjecture here that similar rationing
problems should be addressed when resources are constraining the release
of orders.

We also considered more complicated product structures and the
superiority of the synchronized base-stock concept seems even stronger, i.e.,
stock capital investment differences become greater as the structure gets more
complicated. For a more detailed discussion of a real-world case consisting
of 57 items we refer to De Kok (2001).

6.4 Managerial insights

From our comparison of the LP concept and the SBS concept we draw a
number of conclusions leading to managerial insights. First we summarize
some generic insights that hold for both SCOP concepts discussed. Thereafter
we summarize the major distinctions between the two concepts.

Product flow towards the CODP
From the definition of the Customer Order Decoupling Point (CODP)

given in Section 1 we derive that the CODP in the networks considered in our
comparison is at the end-item level. From the results presented above we
conclude that inventory capital is concentrated at end-item level. Since little
inventory capital is held at controlled intermediate stock points, we may
conclude that optimal solutions can be characterized by items flowing in the
supply network towards the CODP’s. Intuitively this is in line with notions
such as Just-In-Time (JIT), where the objective is to create perfect flow. We
should note however that JIT, more precisely Kanban, is a usage-driven
control concept, which requires a high degree of usage stability, otherwise
such a pull concept cannot guarantee high customer service with low
inventories. The optimal SCOP concept enables item flows even under
situations with highly volatile demand, because parameters can be set such
that low upstream inventories are guaranteed. For example, for the
synchronized base stock policies by setting an item base stock level close to
the sum of the base stock levels of its successors, one creates almost permanent
‘‘shortages’’ from the successors’ point of view, whereby all available item
inventory is allocated among the successor items.

An intuitive explanation for this characteristic of optimal policies (within
the concepts considered) is as follows. When allocating inventory capital
among all items in the supply network a trade-off must be made between
customer service and inventory capital cost. By definition customer service is
realized only by availability at the CODPs. When balancing inventory capital
between the CODPs and upstream item level one expects that, because of the
portfolio effect, an increase of inventory capital at (common) upstream item
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levels enables a decrease of inventory capital at the CODP level. However such
a decrease must not lead to a decrease of customer service below the target
levels. The results presented above apparently show that the pull of inventory
towards the CODPs to ensure high service is stronger than the pull of inventory
towards upstream items to reap the benefits of the portfolio effect.

Stochastic control concept outperforms MP-based control concept
The results clearly show the superiority of the SBS concept over the LP-

based rolling schedule concept. This is an observation with far reaching
consequences. Currently, all commercially available SCP software is based on
objective functions and constraints that are within the MP realm. Apparently
a control policy based on optimization of a deterministic model, within which
stochastic demand is only represented by average values, yields release
decisions over time that are suboptimal. Again this is counterintuitive to most
people not familiar with stochastic models.

The good news is that the SBS policies are remarkably simple from a
computational point of view. Supposing the SBS concept can be extended to
real-life situations, this may enable interactive SCOP. Such is currently
infeasible due to the running times of MP-based software [cf. Schalla (2001)].

Another feature of the SBS policy is that it is based on a (to some extent
artificial) decision hierarchy that provides insight into the SCOP problem that
cannot be derived from an MP modeling approach. The hierarchy, expressed
through the divergent systems of decision nodes associated with sets of
components and end-items, gives guidelines for the different aggregation levels
for which forecasts of future demand are needed. By choosing the appropriate
aggregations of future demand over time it may be possible to exploit the
(likely higher) accuracy of aggregate forecasts.

The consequence of dealing with uncertainty outside the MP models is that
safety stocks and safety lead times are human input. The above discussion of
(safety) stock positioning in the supply network shows that setting safety
stocks without decision support of a stochastic model to capture the complex
interactions between items is beyond a human’s capability.

Clearly, the results obtained have been derived for stationary demand, only.
In our view the stationary demand process is not the main reason for the
results obtained. Both classes of policies can easily be modified to take into
account non-stationary demand. In that case we must assume stationary
forecast errors, which is no real restriction. The forecast revision process
proposed in Graves et al. (1998) seems to be an interesting candidate for
modeling non-stationary demand. Further research is needed to support our
claim.

Hybrid approaches
The comparison has been restricted to uncapacitated problems. The reason

for this is that no stochastic control concepts are available in the literature
that apply to general capacitated networks. The LP-based rolling schedule can
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be applied to capacitated problems. The insights discussed above seem to
indicate the need for the development of a hybrid approach. If the rationing
mechanism in the SBS concept is one of the main reasons for its superiority, it
seems logical to implement the linear rationing rules into the LP-based
concept in the form of additional constraints. In addition the linear rationing
mechanism could be applied in case of binding resource constraints, as well.
These are topics for further research.

This concludes the analysis of SCOP concepts. In the next section we
discuss topics for further research that we identified from this research.

7 Summary and issues for further research

In this chapter we have discussed various Supply Chain Operations
Planning concepts defined in the literature. We provided a generic setting
for the SCOP problem by defining decision variables and state variables.
We motivated a generic formulation of the SCOP problem driven by a
hierarchical planning approach. We argued that the concept of planned lead
times is the building block for making a clear distinction between different
planning levels that does justice to the modeling of information asymmetry.
Information asymmetry is inevitable because related planning decisions are
made at different moments in time and are made in different parts of an
organization with a different view of the state of the system.

We have formulated sets of constraints for release of materials and
resources that have been used as the basis for an assessment of these SCOP
concepts. We identified two major classes of SCOP concepts that have been
developed using two different modeling perspectives:

� Mathematical Programming models embedded in a rolling schedule
approach

� Stochastic models that incorporate random demand

Based on our perspective of the SCOP problem we formulated a
capacitated multi-item multi-stage LP model that lends itself for straight-
forward optimization using commercially available software. Extensions to
the problem with lot sizing restrictions have been briefly discussed.

An extensive discussion of stochastic models identified that no literature is
available on uncapacitated general supply networks, and then presented the
various approaches for uncapacitated models. It turned out that in the
literature mostly base stock control concepts have been proposed, either based
on the installation stock concept or based on the echelon stock concept. We
discussed the infeasibility of pure base stock policies for the SCOP problem
for general supply networks. The reason for this is the violation of material
availability constraints, i.e., pure base stock policies generate material orders
without checking availability of upstream inventories. A synchronized base
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stock (SBS) control concept has been discussed that solves this problem at the
expense of suboptimality. The suboptimality is caused by the integration of
material allocation and material ordering decisions in the sense that
availability of upstream item inventories is checked after taking allocation
decisions of these upstream items among their successors in case of shortages.
It has been shown that the SBS concept allows for an exact analysis of general
supply networks and further permits the alignment of supply chain design and
supply chain planning under the assumption of stationary demand.

The high level of complexity of the SCOP problem for general supply
networks under random demand explains why currently available literature
mostly proposes a heuristic analysis. We distinguished between heuristics
that assume 100% upstream availability (decomposition assumption) and
heuristics that assume that in case of lack of availability, there is exactly one
item causing this (assembly assumption). We found that the decomposition
assumption implies relatively high inventory levels at all echelons of the supply
network, which is in contrast with the characteristics of near-optimal solutions
for divergent networks that indicate that the inventory levels at upstream
echelons should be low. We note here that the above statement does not apply
to the analysis of Inderfurth andMinner (1998) andGraves andWillems (2000).
This is because their analysis allows covering potential shortages at some
stockpoint by downstream and upstream stockpoints. The heuristic developed
by Ettl et al. (2000) that was based on the assembly assumption yields optimal
solutions that violate the assembly assumption, because it finds solutions with
low upstream fill rates. Interestingly, Ettl et al. (2000) report that the solutions
found could not be improved by discrete event simulation based methods.

Based on a set of cases we compared the SBS concept with the LP-based
concept. Surprisingly, the SBS concept outperformed the LP-based concept
considerably. This indicates the importance of further study into stochastic
models for the SCOP problem. Explanation for the superiority of the SBS
concept was found in the way LP tends to prioritize items in case of shortages
of upstream availability instead of rationing among the items that need this
upstream availability. Also LP tends to keep too much inventory capital
upstream, because a deterministic objective function identifies upstream stages
as attractive due to lower cumulative added value.

Based on our discussion we have identified several areas for further
research. We will subsequently discuss empirical validation of SCOP models,
capacitated stochastic demand models for SCOP in general networks,
incorporation of non-stationary demand into the SBS concept, comparison of
SCOP concepts and integration of SCOP and shopfloor scheduling.

7.1 Empirical validation of SCOP models

Our discussion of the various SCOP models is strongly based on a
mathematical perspective. This implies that we discussed the SCOP model
definition and assessed the validity of certain assumptions that enabled us to
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simplify the analysis of themodel.Wherever possible, we used amathematically
rigorous approach. If this was not possible we used discrete event simulation to
assess validity. Although this is a scientifically sound approach, it fails to
answer a fundamental question, which is:Are the results of the model analysis in
line with empirical data from the real-life SCOP problem? In theory it may be
that a mathematically sound analysis of an SCOP problem yields worse results
than a heuristic analysis of the same problem. If such is the case this raises new
and scientifically relevant research questions aboutmodeling. In general we find
that most of the research about SCOP in general supply networks lacks
evidence that managerial insights obtained are supported by empirical
validation. Even if successful cases are reported it is questionable whether
there is a causal relationship between the use of specific models for SCOP and
this success. We advocate the careful design of scientifically sound empirical
studies, where such a causal relationship can be tested. The existence of ERP
systems allows for the analysis of transactional data over time, from which we
can obtain insight into the behavior of demand, inventories and lead time. Such
research will be time consuming and difficult, due to the fact that the
experimental setting cannot be fully controlled. Such research will be rewarding
in terms of deeper insights into real-world SCOP problems and the contribution
of quantitative modeling to its solution.

7.2 Incorporation of non-stationary demand

From experiences with real-life SCOP problems we conclude that in many
situations we are faced with non-stationary demand. Examples are seasonality
of demand, new product introductions and old product phase-outs. Graves
et al. (1998) provide an interesting model for such non-stationarity. It assumes
the capability of humans (possibly supported by software) to update
forecasting information in such a way that the revisions of the forecast for a
particular period into the future from one period to the next are i.i.d. Such
models of non-stationary demand may still allow for a mathematically
rigorous analysis of the SCOP problem.

If demands are correlated over time the question arises even for serial
supply chains whether base stock policies are optimal and if so, whether the
optimal policy can be found by solving the generalized Newsboy equations as
derived in Diks and de Kok (1998). The issue of demand correlation over time
is quite relevant, since most standard forecasting methods, including simple
exponential smoothing, induce forecast errors that are correlated over time.

7.3 Capacitated models with stochastic demand

The above issue of empirical validation is quite relevant for the
development of models for capacitated supply networks. The generalized
Kanban control policies discussed in Section 5.8 have been proposed for the
control of manufacturing systems. Typically resources are modeled as queues.
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Hence the analysis of such policies integrates material control and resource
usage. However, SCOP plans resource usage in order to smooth capacity
requirements, while maintaining the due dates set by the planned lead times.
This implies that a queuing network analysis based on continuous review and
FCFS at resources does not represent properly the planning characteristics
and periodic nature of SCOP.

Still, queuing network analysis may be a starting point for both the
determination of planned lead times and a heuristic analysis of the capacitated
SCOP problem under stochastic demand. The main idea behind this is that in
most real-life situations capacity is hard to define. Processes can be speeded up
if necessary; resources can be reallocated to provide more capacity to specific
capacity requirements. This observation is one of the reasons to decompose
the SCOP problem and the short-term scheduling problem. Thus capacitated
SCOP models may be based on a similar decomposition of the control of
material order releases and resource releases. This would result into a queuing
network analysis of the resources that provides realistic planned lead times.
The justification of this idea requires an experimental and empirical validation
as discussed above.

We discussed non-stationarity of demand. Similarly, resource availability
may be non-stationary due to preventive maintenance and holidays. The non-
stationarity of resources does not fit a typical queuing (network) analysis. It
seems to us that this problem is a white spot in the literature on stochastic
models.

7.4 Comparison of SCOP concepts

The fact that there is a surge in the implementation of commercial soft-
ware (such as Advanced Planning and Scheduling (APS) Systems) for SCOP
motivates a scientific assessment of the various SCOP concepts implemented.
Our experience shows that many people involved with the implementations of
APS Systems do not really understand the mismatch between the optimality
notions from deterministic optimization and the optimality notions from
stochastic models. The discussion in Section 6 provides solid ground for
a critical assessment of software based on LP, MIP, and rule-based
optimization, since the common denominator of these approaches is the
deterministic world view within a rolling schedule concept. In our opinion the
results of our comparison surfaced some planning principles that allows for
implementation in commercial software, yet further research is necessary to
test the hybrid SCOP concepts suggested in Section 6.

We argued in this chapter that lead times need to be exogenous to the
SCOP concept, implying that the system needs to take care of controlling lead
times such that they are more or less fixed. In a supply chain context, it has not
yet been researched whether this actually does provide better results than
working with variable lead times.
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Finally, we notice that none of the research conducted has been studying
the SCOP concept performance under dynamic conditions. Dynamic
conditions do not only refer to the non-stationarity of demand (or forecast
error) and resource availability, but also to the dynamics in the planning
process. In our exposition in Section 2, we have discussed the importance of
anticipating future events. We know that estimates will never be completely
correct. Further, we know from the research in the field of Systems Dynamics
[e.g., Sterman (2000)] that even small differences between anticipated values of
variables, perceived values of variables and actual values of variables may
yield very unstable systems and uncontrolled planning situations. This
dynamic behavior of the concepts discussed and proposed in this chapter,
will need to be investigated.
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Chapter 13

Dynamic Models of Transportation Operations

Warren B. Powell
Department of Operations Research and Financial Engineering, Princeton University,

Princeton, NJ 08544, USA

A manufacturing supply chain can be viewed as a sequence of steps
consisting of the modification of a resource at a point (manufacturing)
followed by the transfer of the product over space (transportation).
Transportation arises because of the spatial distribution of resources, skill
sets, and customers. The challenge we face is completing this component of
the supply chain efficiently, reliably, and in the case of common carriers,
profitably.

It is useful to contrast ‘transportation planning’ as it is practiced in the
context of moving people versus freight. Airlines, passenger trains, and bus
companies typically run fixed schedules over fixed routes that are planned
months, if not a year, in advance. People are typically able to adjust their
travel plans around a fixed schedule, and it is extremely important that the
provision of the transportation service be almost perfectly predictable. By
contrast, freight operations are highly dynamic, responding to the demands of
the market place and the production processes that serve this market. This is
not to say that planning problems are not important. Freight companies have
to plan the location of terminals, and they will plan operations to a degree,
although these tend to be modified on a day-to-day basis.

Our presentation focuses on the issues that arise in the dynamics of real-time
operations.We do this in part because dynamic information processes are a key
characteristic of freight transportation systems, and also because the literature
on static models is relatively much more mature. For a recent and thorough
review of planning models for freight transportation and logistics, an excellent
reference is Crainic and Laporte (1997). Other important references include
Bodin, Golden, Assad and Ball (1983), Fisher (1995), and Desrosiers, Solomon
and Soumis (1995) for vehicle routing; Haghani (1989), Glickman and Sherali
(1985), and Crainic, Ferland and Rousseau (1984) for rail transportation;
Brown, Graves and Ronen (1987) for ocean transportation; and Crainic and
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Roy (1992) and Powell (1986a) for less-than-truckload trucking. General
discussions of modeling freight transportation systems can be found in Crainic
and Roy (1988) and Crainic and Rousseau (1988).

Three key classes of decisions control transportation companies: physical
(how to move the product), financial (how to price it), and informational
(what information should be provided to manage the system). Of course, the
greatest complexity in transportation and logistics is the complexity of the
physical processes, which as a result occupies most of our attention. We can
use these three dimensions to briefly summarize the characteristics of
transportation that make it hard:

(1) Physical: The objects that we are managing:

– Reusable resources: Classical models of the transportation
function, when done from the perspective of the shipper, simply
have a cost for moving product from one location to another.
From the perspective of the transportation company, this activity
is done with reusable resources: drivers, tractors, and trailers, for
example. Thus, serving a customer request (to move freight from
one location to the next) has the effect of changing the state of the
system.

– Resource layering: Serving a customer request may require one or
more resource classes, which are combined to get the job done. For
example, moving a truckload of freight requires a driver, tractor, and
trailer. Combining different resource classes is called layering and it
has the effect of creating complex interactions between resource
classes.

(2) Financial: In this dimension, we focus purely on pricing:

– Contract pricing: Given the challenges of the physical process, it is
necessary to price a transportation service correctly. The pricing
of transportation services are complicated by network effects
(sharing resources among different markets), consolidation (sharing
space on the same vehicle), and the practice of paying only for the
service received, while expecting the resources to be available on
demand.

– Static pricing: These would be standard prices a carrier would use for
moving freight between a pair of regions (sometimes called traffic
lanes). These are market rates (i.e., they are not specific to a contract)
that are set in advance. These are generally the highest rates a carrier
will quote.

– Spot pricing: In some cases, a customer is willing to pay for a service
when requested. A carrier has to be able to quote the right price for
this request. Spot pricing needs to account for the state of the system,
as it now exists, and the impact the activity will have on the system
(the cost of the decision).
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(3) Informational: A critical dimension of a modern transportation system
is the flow of information.

– Customer demands: Customers place demands on the system
randomly over time, with varying degrees of advance information.

– Resource availability: The availability of people (drivers and crews),
complex equipment (locomotives, aircraft, and even tractors), and
containers (trailers, box-cars, and intermodal containers) is often
governed, in part, by exogenous factors.

– Spatially distributed information: Often (although this is changing in
today’s information age) there is a lot of information about the
system that is not available centrally. As a result, many decisions are
made locally based, by and large, on the ‘head knowledge’ of local or
regional managers and dispatchers.

In a short chapter such as this, it is not possible to discuss all the different
variations of transportation operations, or to discuss the most interesting
variations in anything approaching completeness. In the face of such richness,
the question arises: how do we discuss such a broad problem class without
resorting to a series of anecdotes? Our response is to focus on fundamentals,
with enough examples and illustrations so that the reader can tackle variations
that we are not able to cover.

The modeling of dynamic systems has a long history, and yet in many ways
remains an extremely young field. The earliest dynamic models in freight
transportation addressed the issue of managing fleets of containers for rail or
ocean operations [Leddon & Wrathall (1967), White (1972), Misra (1972),
Herren (1977), Turnquist (1986), Mendiratta & Turnquist (1982), and Crainic,
Gendreau and Dejax (1993)]. These earliest models captured the time staging
of physical activities, but not the time staging of information (in other words,
they were deterministic models). The first explicit stochastic model of the car
distribution problem for rail is presented in Jordan and Turnquist (1983),
which assumed a) that a car that was moved empty once could not be moved
empty again and b) a car assigned to a demand did not reappear. This line of
research was continued in the context of truckload trucking in Powell (1986b,
1987, 1996), Frantzeskakis and Powell (1990), and Cheung and Powell (1996).
A significant breakthrough came with the introduction of adaptive estimation
techniques. Powell and Carvalho (1998) introduced the use of linear
functional approximations to capture the impact of decisions made now on
the future. These techniques then led to the use of nonlinear functional
approximations, which, while somewhat more difficult to use, produce much
higher solution quality [see Godfrey & Powell (2002a,b)], as well as more
stable solutions.

One of the oldest problems in transportation and logistics is the vehicle
routing problem. The dynamic version of this problem has been recognized
for many years [see, for example, Wilson (1969)] but received little attention in
the research literature [some early references include Stein (1978) and Jaw,
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Odoni, Psaraftis and Wilson (1986)]. Psaraftis (1988) is an important early
reference, which discussed some of the issues arising in dynamic routing [for
an update of this discussion, see Psaraftis (1995)]. The large majority of the
literature on dynamic vehicle routing, as of this writing, focuses on simulating
myopic heuristics, and the computational issues that arise in this setting
[Gendreau, Guertin, Potvin & Taillard, 1999 and Regan, Mahmassani &
Jaillet, 1998]. Literature has emerged on the so-called stochastic vehicle
routing problem, which is really a static vehicle routing problem, where
the tours have to be designed to anticipate ‘route failures’ which arise when
the vehicle picks up more goods than it can hold, and has to return to
the depot to empty out before resuming its tour [see Stewart & Golden
(1983), Laporte & Louveaux (1990), Dror (1993), and Dror, Laporte and
Trudeau (1989)].

Research into routing and scheduling algorithms, which explicitly capture
the impact of the future on decisions made now, is extremely young. A fairly
complete review of this literature prior to 1995 is contained in Powell, Jaillet
and Odoni (1995), which includes a review of the literature of probabilistic
vehicle routing and stochastic fleet management. Powell (1996) appears to be
the first paper to formulate and solve a dynamic routing and scheduling
problem that uses an explicit stochastic model of future events. The problem
involved the matching of drivers to loads for truckload motor carriers,
which is considerably simpler than problems involving multiple pickups and
deliveries. Secomandi (2000, 2001) considers the case of routing a single
vehicle dynamically through time using neuro-dynamic programming
techniques [see Bertsekas & Tsitsiklis (1996)]. The single vehicle case avoids
the explosive growth in the size of the state space that even neuro-dynamic
programming methods are sensitive to.

The most significant advances in the modeling of problems in
transportation and logistics in the presence of dynamic information
processes have been made in the arena of fleet management (single and
multicommodity flow problems). This work has led to a general approach
for using approximate dynamic programming methods for solving resource
allocation problems. One of the most significant technical challenges
that arise in the use of these techniques for dynamic resource management
problems is the size of the state space describing the attributes of a
single resource. Both single and multicommodity flow problems have
relatively small attribute spaces. Flow problems involving more complex
resources (people, locomotives, ships) can be modeled as heterogeneous
resource allocation problems [Powell, Shapiro, & Simão, 2000a] which
typically involve attribute spaces that are too large to enumerate. Even
harder are multistop pickup and delivery problems, which not only exhibit
a large state space but are also characterized by a difficult mixture of
known and unknown information (the easiest problems are those where
we know everything or nothing; it is the ones in between that are the
hardest).
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Given the breadth and complexity of problems that we are trying to
address, this chapter is going to focus on the following goals:

(a) It provides an overview of the different types of problems arising in
transportation and logistics, focusing on operational problems where
dynamic information processes play a significant role. In contrast
to other presentations, these problems are addressed from three
perspectives, which we refer to as the physical, financial, and infor-
mational views. The physical view focuses on the objects being
managed; the financial view focuses on pricing; and the informational
view discusses challenges from the perspective of designing information
architectures that can be used to run an operational system.

(b) We provide a notational framework that is extremely general,
encompassing issues such as multiattribute resources, resource layer-
ing, complex system dynamics, and the organization and flow
of information and decisions. This framework allows us to tackle
a broad range of problems in transportation and logistics, without
having to introduce new notational systems for each new problem class.

(c) We introduce four major classes of information that may be used to
solve a dynamic problem, and describe the types of algorithms that
arise from using different classes of information. These classes
encompass all the major algorithmic strategies in use today, but
include some new ideas that are not commonly used.

(d) A relatively new class of approximation strategies is outlined based on
dynamic programming. These strategies allow us to design practical
algorithms that are more than just myopic or rolling horizon
procedures.

(e) A series of basic problems are described using the notational frame-
work which illustrates, using problems of increasing complexity, how
dynamic problems in transportation and logistics can be solved.

We begin our presentation in Section 1 with a discussion of operational
problems that arise in a range of industries that perform transportation
functions. This review summarizes the key issues, helping to set the stage for
the formulation of models. Then, Section 2 presents a general modeling
framework for dynamic problems, giving us a modeling vocabulary with
which we can address a range of problem classes. Section 3 reviews general
algorithmic strategies that arise in the context of dynamic systems, focusing in
particular on the modeling of both the physical and informational dimensions
of the problem. Section 4 then presents specific models for some of the major
problem classes. Section 5 provides brief remarks on the issue of data quality
when implementing operational models, and Section 6 makes some closing
remarks.

Due to space limitations, our mathematical modeling focuses on rep-
resenting physical processes in the presence of dynamic information processes.
We consider both single and multiagent control structures, thereby capturing
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both the organization as well as the flow of information. Space constraints
prevent a treatment of pricing problems [see Muriel & Simchi-Levi (to appear)
for a treatment of pricing from a shipper perspective], which remains a
surprisingly young field in freight transportation. Even less mature is the
explicit modeling of the information infrastructure, which is the true means by
which most systems are controlled. By explicitly modeling both pricing and
information availability in our representation of the problems, we hope to set
the stage for these emerging dimensions of research.

1 Operational challenges in transportation

Each of the subsections below addresses a different industry segment
that serves the transportation function. These industries form in response to
the characteristics of the market that each is serving. These characteristics
include:

– Consolidation: Markets can be divided between small package (less
than 150 pounds), less-than-truckload (150 to 10,000 pounds), full
truckload, car- or container-load, and bulk (requiring many carloads or
tankers).

– Distance: Delivery from a regional warehouse to local customers
represents the shortest distances, which is work that is typically handled
by pickup or delivery fleets. Medium distances might be 100 to 750
miles (approximately 150 to 1200 km), which might be handled by
regional LTL or short-haul truckload carriers. Long distances include
moves over 750 miles (1200 km) within the continent, or interconti-
nental movements.

– Control: Private fleets are owned and operated by the customer.
Common carriers represent outsiders. In railroads, freight cars may
be owned either by the railroad or the customer. Ownership
primarily arises when service is an issue, but the opportunity to
consolidate is also a major factor. A company will only want to own
its own trucks when it feels that it can use them effectively. Also, the
ability to place advertising on the side of a company-owned truck is a
factor.

– Cost: Commodity products require the lowest possible price; higher
margin products can absorb higher transportation prices for better
service. The same truckload carrier will charge different prices to
different customers in the same market for the same service, reflecting
the nature of the product being moved. Private fleets will be used to
provide more customized service but with lower utilization. This service
can only be justified for products that command the margins to cover
the cost.
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– Service: Service is typically measured as a function of speed and
reliability. Of course, this ignores the many other dimensions of service
that a transportation company can provide (packaging, setup, tracking,
and billing). Everyone wants fast, reliable service, but not everyone is
able to pay for it.

Each industry reviewed below services customers that can be charac-
terized along at least some of the dimensions listed above. Most of the
industries have specialized companies that further segment the market. Thus,
railroads and waterways dominate low cost, bulk commodities, but compete
aggressively (with mixed success) with trucking companies for merchandise
freight.

Our discussion of different service types is organized in a very specific
way. After giving a brief overview of the industry, we review the resource
classes and the decision classes as a way of giving a feeling of what is
being managed and how we are managing it. We focus on active resource
classes, representing the resources we are actively managing. Given our
emphasis on dynamic systems, our resources tend to consist of people
and equipment over fixed facilities (which are dynamic over longer horizons).
Our definition of a resource [taken from Powell, Shapiro & Simão, 2001]
is a general one, and includes, as a ‘resource class’ the customer demand
itself. This may not seem customary, but as we evolve to more complex
operations, we have to manage the customer’s order just as we would manage
the ‘resources’ (such as drivers, tractors, and locomotives) that belong to a
carrier.

We then summarize decisions, organized into three key classes: (1)
physical (decisions that act on physical resources), (2) financial (pricing and
incentives), and (3) informational (decisions that determine the availability
and flow of information). Each of these classes can be organized into two
types: dynamic (which depend on the physical state of the system) and static
(which do not). Our presentation highlights the importance of all three
dimensions, as opposed to more classical presentations that focus primarily on
the management of physical resources.

1.1 Truckload trucking

On the surface, truckload trucking sounds deceptively simple. A customer
requests an entire trailer to move freight from one location to another.
He may call in the request for pickup the same day, but most requests are
made between one and three days in advance (longer when a weekend is
involved). The trucking company has to decide what driver will pick up the
load, and when. Once the load is picked up, the driver may take the load
directly to the destination, or drop it off at an intermediate relay so that
another driver can complete the delivery. There are over 10,000 companies
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consisting of a single truck, and several companies consisting of over 10,000
trucks.

1.1.1 Resource classes
There are four primary resource classes in truckload trucking: the driver,

the tractor, the trailer, and the load itself. Issues associated with each resource
class include:

– Drivers: The choice of the driver to cover a load has to consider factors
such as the destination of the load and the home domicile of the driver.
The load may have to cross borders into Canada or Mexico, and not all
drivers have experience doing this. Or, the load may require the use of a
sleeper team to reach the destination in time to make the delivery
appointment. Drivers are typically on the road for two or more weeks
at a stretch, so getting drivers home is a major challenge for truckload
carriers in the presence of the highly random demands they have to
serve.

– Tractors: Tractors need refueling, routine maintenance and, from time
to time, major maintenance at a maintenance facility. As these major
maintenance intervals arise, it can be necessary to route the tractor
toward such a facility.

– Trailers: Trailers can be vans (boxes) or flatbeds. Vans may be
refrigerated or ‘dry.’ Most freight moves in dry vans, which may be 45,
48, or 53 feet in length (48 feet is the most common). Trailers are
typically called ‘semi-trailers’ because there is a set of wheels on only
one end of the trailer (since the tractor holds the other half of the
trailer).

– Loads: The basic customer request is to move a load of freight from an
origin to a destination, with specified constraints for pickup and
delivery. A load may allow very little time between pickup and delivery,
possibly requiring the use of sleeper teams (which can drive
continuously). At the other extreme are loads that allow so much
time between pickup and delivery that it is necessary to park the trailer
for several days to avoid arriving before the delivery appointment. In
some cases, the request may involve making a sequence of stops to
deliver portions of the load (less frequently, the request may require
making a sequence of pickups with a single destination).

Other resource classes include fuel and maintenance resources.

1.1.2 Decisions
The decisions that govern a truckload carrier include:

(1) Physical: It is useful to roughly divide decisions impacting physical
resources between operational decisions which impact operations on a
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day to day basis, and planning decisions which capture design decisions
which affect operations over longer periods of time.

(a) Operational:

– Load acceptance: When the shipper calls, should the carrier
accept the responsibility to move the load?

– Driver assignment: What driver should be assigned to pick up a
load?

– Load routing: Should the load be moved directly to the
destination, or should it be relayed at an intermediate point? If
so, where, and what driver should then move the load for its final
leg. Intermediate relays allow different drivers to perform the
original pickup versus the final delivery.

– Trailer pool management: It is necessary to manage pools of
trailers, sometimes at specific shippers, so that they have access
to trailer capacity when it is needed. One of the challenges of
moving loads is that it is also necessary to shuttle trailers into
and out of pools. Idle drivers waiting for an assignment normally
handle these activities.

(b) Planning:

– Fleet size and mix.
– Number of drivers and their home domicile.
– Terminals: Truckload carriers will use terminals for main-
tenance and storage of tractors and trailers. It is necessary to
determine how many terminals to have and their size and
location.

– Customers: What customers should a carrier serve, and what
commitments (e.g., in terms of number of loads) should the
carrier make to the shipper? A carrier might commit to move
loads for a shipper in a particular traffic lane (origin/destination
pair).

(2) Financial: For our applications, ‘financial’ decisions focus on pricing,
as opposed to other classes of financial decisions such as borrowing and
investments.

– Contract pricing: What price (usually specified as a cost per mile or
kilometer that a trailer has to be moved) should be charged for
freight in each lane? In a typical contract, a shipper will estimate how
much freight will move in each lane, but the shipper is not held to
these estimates. Prices depend on the lane because of imbalances in
the level of freight.

– Spot pricing: A shipper may offer a particular load at a spot price.
A carrier has to decide whether to accept the load at that price at
that time.
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(3) Informational: Here we are focusing on decisions to acquire
information by investing in specific information technologies.

– Management information systems: Most truckload carriers start with
a single truck driver. As the company grows, it has to make the
transition from slips of paper and a notebook to computerized
systems of increasing sophistication. Several vendors market MIS
systems, but most companies use these as starting points and then
customize. The choice of MIS system usually involves both hardware
and software.

– Communications: A major decision faced by truckload carriers is
whether to invest in onboard communications, providing two-way
(data and possibly voice) communication with the driver and his
unit. Other forms of communication allow tracking the status of the
tractor and the trailer.

– Real-time communication: Communicating costs money, so a
decision has to be made whether to communicate with the driver
at any given time.

– Driver assignment models: These have been available for over a
decade, but very few companies use them. At the same time, a
handful of companies have seen dramatic successes with real-time
driver assignment packages. The adoption of this technology is a
major decision today.

– Demand management systems: Forecasting demand and deter-
mining which freight to book is a key decision for truckload motor
carriers.

1.2 Private fleet operations for collection and distribution

The vast majority of private fleets are primarily for local distribution (and
sometimes collection), although some shippers will use their own trucks to
handle movements between facilities. Private fleets are most commonly used
for local distribution, since this component of the process offers the fewest
opportunities for joint use with other customers and also offers the highest
possible exposure to customers (hence the advertising on the side of the truck).
Private fleets are used when the volume of deliveries to a regional area is high
enough to use the fleet effectively. When this is not the case, companies
typically fall back on LTL and small package carriers.

The most basic operation faced by the private fleet for local delivery is
loading up at a central terminal or warehouse, and then delivering to a group
of customers. These operations typically work on a daily cycle (tied to
business hours). Tours may be fairly regular (particularly when delivering high
volume products to retail outlets) or highly dynamic, as would occur when
delivering custom orders.
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1.2.1 Resource classes
There are different ways to model basic pickup and delivery problems. The

most classical view is that of the vehicle routing problem where the resource
being managed is a ‘vehicle,’ which is understood to consist of a driver and a
truck (which may itself consist of a tractor and a trailer). For this ‘simple’
problem, we would manage:

– Vehicles: This is the principle active resource. Vehicles may be
homogeneous or heterogeneous, but generally do not reflect the
characteristics of individual drivers.

– Customer demands: The product to be picked up or delivered.

At the other extreme is the situation faced in the delivery of cryogenic
chemicals. These companies must deliver product to tanks before they run
out. A customer may require one or two deliveries per month, or several
deliveries per day. It is often the responsibility of the company to estimate
when a delivery is needed (an instance of vendor managed inventory). For this
‘complex’ problem, the resource classes include:

– Driver: A driver may be characterized by home domicile, total driv-
ing time in a day, experience, days away from home, and language skills.

– Tractor: There are two types of tractors (e.g., a longer tractor with a
double axle set in the rear, and a shorter one with a single axle set), and
they also have maintenance requirements.

– Trailer: A trailer can hold a certain type of chemical. Also, there are
different sizes of trailers, and they also have the attribute of how full
they are.

– Product: There are several types of product, and it may be necessary for
the truck to go from one terminal to another in order to pick up
product.

– Customer tank: The customer tank is a reusable resource just like a
driver, tractor, or trailer. Delivering product to a tank simply changes
its characteristics (the inventory level), which determines when it must
be refilled again (which may be as little as a few hours into the future, or
several weeks).

1.2.2 Decisions
The decisions that govern private fleet operations include:

(1) Physical:

(a) Operational:

– Consolidation: What customer orders should be consolidated
into a particular truck?

– Driver assignment: What driver should handle a particular
delivery tour? These decisions may be static or dynamic.
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(b) Planning:

– Distribution facilities: Size and location.
– Fleet size and type.
– Delivery zones – In some operations, a particular driver will

cover deliveries in a particular region.
– Customer commitments – These decisions determine which cus-

tomers the carrier commits to serve over the course of a year.

(2) Financial:

– Contract pricing: What price should a company charge for a pickup
or delivery? The price may vary as a function of the location (which
will capture the distance from the terminal) as well as the size and
weight.

– Zone pricing – Orders that are not served under a contract are
typically charged a price based on shipment characteristics (size and
weight) and the geographic zone.

(3) Informational:

– Communication: Should the company use radio technologies to
communicate real-time with the driver? Should bar code scanning
systems be used? In the case of pickups, should the company collect
information about the pickup centrally when the original call is
made?

– Databases: Many operations still work with sheets of paper and
people. The transition to a computer in this segment remains a key
decision.

– Decision support systems: GIS systems, map databases and vehicle
routing algorithms are rapidly maturing, but remain imperfect. The
decision to make the transition to an automated system is a major
one today.

1.3 Less-than-truckload (LTL) trucking

Less-than-truckload trucking moves shipments that are typically between
150 and 10,000 pounds. The shipments can vary widely in terms of density and
shape (which affects the ability to stack shipments). In the United States,
shipments are typically loaded on 28-foot trailers or 48-foot vans. Most of the
time, a single driver will pull a single 48-foot van or two 28-foot trailers, but
‘triples’ are allowed by some states on selected portions of the interstate
highway network. The 28-foot trailers are popular partly because they allow a
driver to pull 56 feet of trailers, but also because the LTL carrier will often
load the trailers with freight to different destinations. Less-than-truckload
carriers struggle to fill trailers to some locations. It is easier to fill a 28-foot
trailer to some destinations than a 48-foot trailer.
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A single tractor pulling two 28-foot trailers will be pulling, on average,
between 30,000 and 35,000 pounds (around 14,000–16,000 kg). An LTL
shipment averages about 1,000 pounds (about 450 kg), so a driver will be
moving 30–35 shipments in a single move. Achieving this consolidation
requires a tremendous amount of infrastructure. An LTL carrier has to have
local pickup and delivery operations, and a network of terminals to handle the
consolidation of freight.

Less-than-truckload carriers can be roughly divided into two broad
classes. The regional carriers move shipments up to 1,000 miles, typically
with overnight or two-day service. These carriers must deliver this service
with very high reliability, and as a result they will often have to move a
trailer that is not full just to maintain service. The long-haul carriers focus
on longer lengths of haul (although as this chapter is being written, the
borders between regional and long-haul carriers is blurring), serving markets
that are typically between two and five days (international movements can
take longer). Although service reliability is quite high, these carriers move
freight that is especially price sensitive, and as a result they have to focus on
maximizing load average (the number of pounds on each trailer), minimizing
the total miles traveled, and minimizing the number of times a freight bill is
transferred. They are forced, then, to take advantage of day-to-day
variations to fill trailers to different destinations as opportunities arise. In
addition, they will not move a trailer, that is, say, less than a third full just
to make service. However, the carriers have become increasingly
sophisticated in their ability to identify which shipments actually require
high service.

The typical path of an LTL shipment starts at the shipper’s dock where
the carrier will pick up the shipment with a pickup and delivery truck. These
trucks make most of their deliveries at the beginning of the day, and then
focus on pickups. At the end of the day, these trucks come into an end of
line terminal, where the freight is usually (but not always) unloaded onto
line haul trucks, which handle the movement of freight between the various
terminals. In a regional carrier, this truck might then take the freight directly
to the destination end of line for delivery the next day, or it may be
transferred through a single break bulk or distribution center. For a long
haul carrier, the standard path is to first take the shipment into an origin
break bulk, where it is transferred onto a trailer that takes it to the
destination break bulk. There it is transferred a second time before the final
segment to the destination end of line. In the past, some carriers followed a
strict policy of forcing all shipments through two break bulks, producing a
transfer ratio of 200 (meaning that shipments were transferred, or handled,
on average twice). However, the best-run national LTL carriers actually
achieve transfer ratios below 100 (that is, shipments are transferred on
average less than once). This ratio arises because break bulks are typically
located near major cities, which means that a large number of shipments
originate at one break bulk and terminate at another (producing zero
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transfers). Transfer ratios of 100 means that there are still quite a few
shipments moving through two break bulks.

The largest LTL carriers in the United States are primarily unionized,
which has the effect of imposing a variety of rules on how drivers must be
managed, and what a worker can and cannot do. For example, unlike
truckload carriers that face a real challenge in getting drivers home in a timely
way, the long-haul LTL carriers manage their single drivers in a way that
ensures that they are home every night or every other night, with only
occasional trips that take the driver out for two nights. Sleeper teams moving
freight over longer distances may be away from home for three or four days,
but are guaranteed to be home every week.

The LTL carriers are exceptionally competitive, and the large majority
have gone out of business since the industry was deregulated in 1980. The
survivors have learned how to strike the delicate balance between cost and
service for a particular set of markets. For the long-haul carriers, the
emphasis is on cost with very high service. For the regional carriers, the
expectations on service are even higher. The biggest challenge faced by the
regional carriers is that they have so little time to move a shipment that they
have to make decisions quickly, and they are often forced to move trailers
that are less than half full. The long-haul carriers have more time to work
with a shipment, but their large networks offer many more options that can
be considered.

The pickup and delivery process of LTL carriers has many elements in
common with the description of pickup/delivery operations for private fleets.
The biggest difference is that private fleets are usually doing pure pickup or
pure delivery, whereas LTL carriers must handle both activities. Furthermore,
it is common to separate the planning of pickup and delivery operations for
LTL carriers from the planning of the line haul operation (movements
between terminals).

A closely related segment is the small package industry, dominated at
this writing in the United States by the UPS and FedEx. There are a number
of subtle yet important differences between moving LTL freight (over 150
pounds) and small packages (under 150 pounds). For example, a trailer may
hold 20–30 LTL shipments, while a trailer may hold hundreds of small
packages. One effect of small shipment sizes is that there is considerably less
variability in the day-to-day flows. Another is that small shipments lend
themselves much more readily to automation in the sorting facilities.

1.3.1 Resource classes
The principle resource classes are:

– Drivers: They are characterized by home domicile, driving hours,
whether they are a single driver or part of a sleeper team, their bid
characteristics, and the number of days they have been away from home.
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– Tractors: The carrier must maintain appropriate pools of tractors at
major terminals, and manage the maintenance requirements of tractors.

– Trailers: These are typically 28 foot ‘pups’ and 48 foot ‘vans.’
– Shipments: Varying in size between 150 and 10,000 pounds, traveling

distances between 100 and 3,000 miles.
– Terminals: Here we have to determine the number of terminals, and

their size, type, and location.
– Dock labor: These are the people who load and unload trailers. This

determines the fraction of the physical capacity of the terminal that is
actually used.

As in most problems involving multiple resource classes, it is common to work
with one or two classes at a time. We illustrate this modeling strategy in
Section 4.

1.3.2 Decisions
Key decisions include:

(1) Physical:

(a) Operational:

– Service network design: From a terminal, to which destinations
should we send a trailer direct? These decisions have to capture
the ability to consolidate freight in a timely fashion.

– Traffic assignment: What freight bills should go on a specific
trailer? This can be a difficult problem for long-haul carriers who
face a number of options. For regional LTL carriers, it is usually
obvious.

– Pup matching: A tractor will usually pull two, and sometimes
three, of the 28 foot ‘pups.’ It is not always the case that the pups
will have the same origin or same destination. Pups must be
matched so that the combined weight is within legal limits. If
pups are being matched which do not have the same destination,
it is desirable to match them so that they can stay hooked
together as long as possible. Finally, it is best if the two pups
have freight with similar service requirements.

– What driver should be used to pull a load? The choice of driver
depends on domicile, how many hours he has been driving, how
many days he has been away from home, whether the ‘driver’ is a
single individual or a team, and the type of bid (for union
drivers).

– Trailer management – Most of the time trailers remain balanced
because of the need to balance drivers (a driver normally pulls
empty trailers if there are no loaded ones to move). But sometimes
it is necessary for a driver to bobtail (move the tractor without a
trailer) and this creates an imbalance in the flows of trailers.
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– When should the loads be moved? This is one of the hardest
decisions, since the decision has to balance the service
requirements of the shipments on the trailers, and the constraints
on moving the driver and getting him home.

(b) Planning:

– Terminals: Size, type, and location.
– Dock labor: How many people should staff each terminal?
– Equipment pools (tractors and trailers): How large should the

pools be?
– Physical transportation links: Less-than-truckload carriers are

called ‘regular route’ carriers, and the decision to move trucks
over a particular route joining two terminals is a planning
decision.

– Contracts: This covers the agreement to serve major accounts,
typically for a year. These commitments reflect expectations of
the amount of freight that will be moved for the account
(typically by traffic lane).

(2) Financial:

– Contract pricing: What price should be charged for freight for a
specific account? These prices will be a function of the weight of an
individual shipment, and the traffic lane (origin and destination) in
which it is moving. For LTL trucking, this is an exceptionally
difficult problem. It has to reflect the cost of pickup and delivery (see
notes on this under private fleet operations), transferring the freight
at terminals, and moving the freight over the line haul network.
Transportation costs (line haul costs) have to reflect the density of
the freight and its ‘stackability’ (the ability to stack the freight with
other shipments in the same lane).

– General pricing: Same as contract pricing, but it is for freight offered
to the carrier that is not covered by a contract. Typically, these prices
are substantially higher than the contract price.

– Spot pricing: What price should an LTL carrier offer for a specific
shipment on a specific day to help with network balance? Spot prices
apply almost exclusively to truckload shipments.

(3) Informational:

– Communication technologies: Less-than-truckload carriers face an
array of decisions regarding communication technologies. Some of
these include:

� Shipment bar code scanning equipment for shipment pickup: This
allows the carrier to learn more about the characteristics of the
shipment when it is picked up.
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� On-board driver communication: This allows the carrier to
dispatch a driver on the street to pick up a shipment that has
just been called in.

� Bar code scanning at the terminals: This allows the carrier to know
exactly when a shipment was pulled from one trailer and loaded
onto another.

� On-board vehicle tracking: This would be the same technology
used by truckload carriers. Its adoption for LTL is less obvious
since the LTL trucks typically follow fixed routes.

– Databases and screens: Collecting, storing, and displaying data to
support decisions is a major, ongoing challenge with any company.
These systems are expensive, however, and have to be cost-justified.

– Planning models: A range of models are evolving to help support
LTL carriers, ranging from routing of pickup and delivery trucks,
service network design, pup matching, and driver management. As of
this writing, these models are young and are seeing only the earliest
adoption.

1.4 The railroads

Railroads remain the primary mover of bulk cargo, including both dry
(grain, coal, etc.) and liquid (although pipelines offer some competition
here). In some areas, barges can handle bulk movements, but for land move-
ments, rail is almost the only option. Bulk cargo, however, represents only a
portion of rail business. A substantial amount of merchandise freight moves
by rail, as well as container movements that are moving to or from inter-
national locations. In fact, although much is made of the competition between
trucking companies and rail, all the major trucking companies (truckload and
LTL) use rail extensively for long moves. Trucking companies in particular
have a difficult time moving freight between the Midwest and the west coast in
North America; the distance is long and it can be difficult finding and
managing drivers over this long movement. It is cheaper and more convenient
to take a trailer of freight and load it onto a flatcar to be moved by rail.

Railroads, however, struggle with certain operating characteristics that
are fundamental to the nature of a railroad. First of course is the limited
infrastructure. The massive majority of all non-bulk movements must begin
and/or end on a truck. The process of picking up freight and taking it to a rail
yard, or delivering freight from a railroad, is known as drayage (the drivers who
handle this step are called draymen). Most drayage operations are relatively
inefficient and can add a substantial amount of cost to the process.

A second challenge faced by railroads is that freight is moved in extremely
large blocks. A single train will typically weigh between 2,000–5,000 tons, but
some bulk trains can weigh as much as 15,000 tons. A typical truck, by contrast,
is moving about 15 tons of freight, with a gross weight of about 30 tons. So, a
single train can be equivalent to as many as 500 trucks moving down the track.
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The process of batching up enough freight to form these big blocks introduces a
substantial amount of noise in the process. A train may be cancelled if there is
not enough freight to justify its movement (the policy of canceling trains to save
on crew and fuel costs is hotly debated in the industry, and is becoming less
frequent), or because of problems finding enough power and a rested crew.
When a train is delayed or cancelled (for any reason) the impact on the network
can be fairly substantial.

A third challenge is the capacity of the track. High priority trains move
faster than bulk trains. Passing a train going in the same direction requires
that the slower train pull off on a siding. Since these sidings are located only at
selected points along the track, it may be necessary to pull a train off the track
for several hours until the pass can be completed. The same issue arises when
trains have to move in opposite directions over a single-track route. One train
will have to find an appropriate siding. Compounding the challenge of sitting
at sidings is that the crew may run out of hours to complete the trip. Thus, an
eight-hour trip can turn into an 11-hour trip, violating maximum duty time
rules for the crew. The railroad is forced to drive a new crew out to the train to
finish the trip.

The major railroads all offer high priority service for certain classes
of freight, where they try to compete with trucking companies. Given the
limitations of the infrastructure and the nature of rail operations, it is virtually
impossible for rail to provide a higher level of service than truck. On the other
hand, no other land-based mode can compete with its efficiency.

1.4.1 Resource classes
The broad range of resources, which must be managed to provide rail

service, characterizes railroads. Some of these include:

– Freight cars: These come in a variety of styles, including boxcars,
flatcars, and tanker cars, but with many variations of each type.

– The freight: Freight can exist by itself as an unsatisfied customer
demand, or coupled with a boxcar (producing a loaded car).
Freight is characterized by origin, destination, size, and service
characteristics.

– Locomotives: There are about a dozen major classes of locomotives,
but viewed closely enough, locomotives are almost unique.
Characteristics of a locomotive can include its horsepower, whether
it is high or low adhesion (a feature that determines the ability of the
train to get started from a standstill), features required to classify it
as the lead unit on a train (which is where the crew rides), its
maintenance status, and what other locomotives it is currently
attached to (the process of connecting multiple locomotives to pull a
single train involves a fairly elaborate set of connections which have
to be tested before the train can move).
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– Operators: The rules for moving crews are governed by federal
regulations, and a dizzying array of union work rules, some of which
date back centuries.

– Track: The track limits the ability of trains to move. Decisions to
build new track or maintain existing track are some of the most
important infrastructure decisions a railroad can make.

– Yards: As with track, the yards have capacity and limit the
throughput of trains.

– Maintenance facilities: Locomotives represent complex pieces of
equipment, with federally required maintenance intervals (in
addition to those required to keep a locomotive in working order).
Some maintenance equipment runs into millions of dollars.

1.4.2 Decisions
As with the resources, there is a complex array of decisions required to

manage these resources:

(1) Physical:

(a) Operational:

– Trip planning: How should a loaded freight car be routed
through the network? Freight cars are allocated to blocks (a
group of cars being routed over a common segment) that are
moved by trains. Both trains and blocks have capacities, so it is
necessary to plan the route of a car through a sequence of blocks
while not violating either capacity constraint.

– Blocking: What blocks should be formed? How should blocks be
routed through the network?

– Car distribution: To what yard or customer should an empty
freight car be allocated?

– Locomotive management: What locomotive should be used to
pull a train? How should power be repositioned from surplus to
deficit locations?

– Crew planning: What crew should be used to move a train?
– Line capacity planning: How should trains be sequenced over a
track (and the sidings)? When should trains be scheduled to
depart?

(b) Planning:

– How much track, how many sidings and their placement, and
how well should they be maintained (which affects the speed at
which trains can move over the track)?

– Location and size of new yards, local stations, and maintenance
facilities.

– Fleet size and mix, for locomotives as well as the freight cars.
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– Customer commitments, which set carrier expectations of the
amount of freight a customer may tender (and therefore the
resources required to serve the customer).

(2) Financial:

– What price should be charged for a contract? These prices will be
a function of the origin and destination, shipment size, freight car
requirements, and other service constraints.

– What spot prices should the railroad accept?

(3) Informational:

– Should the railroad invest in train tracking technology (which tells
them the location of the train on the track)?

– Should the railroad invest in transponders that detect the presence of
locomotives? Freight cars?

– Should a train have voice communication while it is en route?
– What databases should be created to store and display
information?

– What planning models should a railroad invest in? As of this writing,
major railroads are taking noticeably different approaches toward
the use of planning models; some are focusing on longer range
planning models; others on short-term operational models, while
others are limiting their use of models.

1.5 Intermodal container operations

Intermodal containers are boxes, typically 20 or 40 feet in length, which
can themselves move by truck, rail, or ocean container ships. Unlike
trailers, containers can be stacked two levels high on a rail flatcar, in
addition to beingpushed against each other (trailers, withwheels, require special
panels on the flatcar to ensure that they do not roll). As a result, they are a much
more productive way to move freight over both road and rail. On the other
hand, they are not as large as the 48-foot vans. The 20-foot containers are
smaller than the 28-foot pups favored by LTL carriers, a difference that is
compounded when a single driver can pull two 28-foot pups, a volume that is
much larger than two 20-foot containers. It is not possible to pull two 40-foot
containers using a single tractor.

If the freight has to move by vessel, the container is the only way to move
merchandise. It is not possible to stack trailers, and stacking allows the largest
container ships to hold thousands of containers.

In contrast with our previous examples, the management of intermodal
containers consists only of the containers. Containers may be owned by
shipping lines, or by other logistics organizations. For this reason, we do not
address the dimensions of motive power (tractors, locomotives, and ships) and
operators (drivers and crews).
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1.5.1 Resource classes

– Containers: These come in two basic lengths (20 feet and 40 feet) but a
variety of other features will distinguish one container from another,
including refrigeration, height, and stacking capability.

– Customer orders: This is freight moving from an origin to destination
(multiple stops are never permitted), with specific service requirements.

1.5.2 Decisions

(1) Physical:

(a) Operational:

– What type of container should be allocated to an order?
– How should containers be distributed in anticipation of
forecasted orders? How many containers of each type should
there be in a pool on any given day?

– How should a loaded container be routed from origin to
destination (this may involve a combination of ship, train, and
truck)?

– Stacking and storage of containers in the port and on the ship
itself: Where should a container be stacked and stored (both in
the port, as well as on the ship) to minimize total handling of
containers.

(b) Planning:

– How many containers, and what type, should be owned?
– What are the size and location of container pools?
– What transportation contracts should be arranged? Container
shipping typically requires arrangements with other transporta-
tion companies to move the containers.

(2) Financial:

– How should a contract be priced?
– What should standard rates be for non-contract movements in a

traffic lane?
– How should the carrier spot price individual moves?

(3) Informational:

– What types of tracking technologies should a company use (especially
for use in the ports)? There is a movement toward the use of satellite
tracking of individual trailers (in trucking) and containers (in
shipping). To what extent should these technologies be used?

– Should the company invest in forecasting and optimization
technologies?
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2 A general modeling framework

The examples in the previous section illustrate the range of different
industries that have evolved to meet segments of the freight transportation
market. Each exhibits specific qualities in terms of cost and service, reflecting
the nature of the market that is being served.

The next challenge is modeling these problems. Fortunately, certain
physical processes characterize all of these problems. If we can develop models
for the basic processes that characterize these problems, then we can build up
more complex models from these building blocks.

To begin, we need a notational system to describe our problem. Our
notation [which is based on Powell et al. (2001)] builds on standard notational
conventions, but most of the standard research in logistics avoids some
key issues that arise in real applications. Examples include multiattribute
resources and resource layering, dynamic information processes, and multi-
agent control.

We need some general notation through the presentation. We represent the
geography of our problem using: For transportation applications, it is useful
to define in addition a set of geographical locations:

I ¼ a set of locations

We generally model our problem over a set of discrete time periods:

T ¼ (0, 1, . . . ,T ).

At times, we want to represent rolling horizon problems where at time t2T,
we will optimize over a set of time periods that start at t and extend over a
planning horizon, given by:

T
ph
t ¼ ðt, tþ 1, tþ 2, . . . , tþ Tplanning horizonÞ:

Our representation is divided along three primary dimensions: resources,
processes, and controls.

2.1 Resources

Resources are comprised of three sub-dimensions:

(a) Resource classes.
(b) The attributes of each resource class.
(c) The resource layering, which represents how resources can be coupled

together to perform work.
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For this, we define:

C
R
¼ The set of resource classes (e.g., drivers, tractors, trailers, locomotives,

and loads).
Rc

t ¼ The set of resources in class c at time t.
ar¼ The attributes of resource r.
A

c
¼ The space of attributes for resources in class c, where ar2A

c for r2Rc.

In some cases, it is easiest to track individual resources, which means that
(ar, r 2 R

c
t ) would capture the state of the resources in class c at time t. This

representation is often most useful when resources are relatively complex, such
as people, aircraft, and locomotives. When the resources are simpler, it is more
useful to use vector notation:

Rta¼ The number of resources with attribute a at time t, before new arrivals
in time t have been added in.

Rt¼ (Rta)a2A.

An important but fairly subtle issue that arises purely in the context of
dynamic problems is referred to as the time lagging of information.
Specifically, there may be resources that we know about at time t, but
which cannot be acted on until time t0. In this setting, t refers to the time at
which the resource becomes known, whereas t0 is when it becomes actionable.
Thus, we may know about a customer order now, but we do not have to
satisfy it until later. Or we may know about a boxcar that will become
available in the future. We handle this concept by defining:

Rt,at0 ¼ The number of resources with attribute a that we know about at time t
but which do not become actionable until time t0.

Rtt0 ¼ ðRt,at0 Þa2A
Rt¼ ðRtt0 Þt0�t:

We call Rt the resource state vector. Not uncommonly, this vector is defined
with respect to an aggregation function:

G : A�AG

where AG is a more compact space of attributes. For our purposes, we use Rt

exclusively as our resource state vector, recognizing that the discrete
representation Rt is more appropriate for complex resources.

The use of the attribute vector a is very convenient. For the simplest
problems, we might be modeling the flows of a common type of trailer
between locations i2I. In this case, the location i represents the state of the
resource, and we would have a¼ (i). We might have different types of trailers
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or containers k2K, as would commonly arise in multicommodity flow
problems. In this case, k is the commodity and i is the state of the resource.
The attribute vector would then be a¼ (k, i). As we move to more complex
resources, the attribute vector would grow. By using a common attribute
vector a, our notational system responds easily to different types of resources.

One of the most difficult dimensions of resource management arises in the
presence of resource layering. Consider, for example, the problem of moving a
load in trucking. We need a driver and a trailer to pull a load of freight. We
start with an idle driver (in a tractor). The first step is to find a trailer, at which
point we have a driver with an empty trailer. Next we have to move to the
customer and pick up the load of freight. Now we have a driver with a trailer
and a load of freight. At this point we have to decide whether the driver
should move directly to the destination to deliver the load, or to move the
trailer to a relay point where he would drop off the trailer (of course, still full
of freight). The driver/trailer, driver/trailer/load, or the trailer/load, represent
instances of layered resources.

We represent layered resources by first defining a layering, L. This is most
easily described by example. Let C¼ (D,T,L) represent our three resource
classes. For our example, a layering would be:

L ¼ ðDjTjL,TjLÞ

If we use this as our layering, we would call the first layer the driver layer. It
consists of a driver, trailer, and load. The attributes of a driver layer consist of
the attributes of a driver, and then the attributes of a trailer and a load that
may be coupled to the driver. In general, if l2L represents a particular layer,
we let a (l ) represent the attributes of layer l, while ac would be used to
represent the attributes of a particular resource class c2CR. We may refer to a
specific layer, such as the driver layer, using:

aðDÞ ¼ The attributes of a driver layer:

¼ aDjaT jaL:

If a driver is not coupled with a trailer or load, his primitive attribute vector
would be aD, but his layered attribute vector would be a(D)

¼ aD|� T|� L,
where � T and � L are null vectors with the same dimensions as aT and aL,
respectively. Thus, the attributes of a driver layer are not determined until we
decide which resources (trailer and load) to couple the driver with. We also
have a trailer layer, which again can consist of a single trailer, or a trailer and
a load. We identify a layer by its lead resource class.

Layering is an important concept for modeling more complex operations,
but it can sometimes be avoided. Consider, for example, the case of truckload
trucking, but assume that once a driver picks up a load, that he always drives
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it directly to the destination. Thus, the decision to assign a driver to a load
produces a driver at the destination of the load and a (presumably) happy
customer (the load has been delivered). At no time did we have to explicitly
capture the state that the driver had the load. Layering arises when there is a
specific set of decisions that we have to choose, from given the attributes of a
layered resource.

Resource layering is critical when we have to capture the state of two
resources coupled together, at which point there is a new set of decisions that
apply to the characteristics of the layered resource. More examples of resource
layering are given in Section 4.

2.2 Processes

There are three dimensions of processes:

(a) Dynamic information processes.
(b) System dynamics.
(c) Constraints.

There are two types of information processes: exogenous information
(outside of our control) and endogenous information, more commonly known
as decisions (a good working definition of a decision is an endogenously
controllable information class that changes the state of the system). At this
stage, we use general models of both (specific illustrations are given in Section
4). For exogenous information processes, we let:

Wt ¼ A random variable representing a family of random variables
describing new information arriving at time t.

In complex problems, there can be a number of exogenous information
processes. For us, we use Wt to represent all of these. We let ! 2 � represent
an elementary outcome of the sequence ðWtÞt 2 T , and we let !t ¼Wtð!Þ be a
realization of the information arriving in time period t. Following standard
conventions in probability theory, we let Ft be the �-algebra generated by
ðWt0 Þ

t
t0¼0. For our problem, there are two special types of information that

arrive. The first is information about new resources that are arriving such
as new customer demands, or new units of capacity entering the system
from outside sources (e.g., a boxcar being released empty to the network).
We represent these by:

R̂Rt,a0t0 ¼ The number of resources, with attribute a0, that first become known at
time t that can be acted on at time t0.

R̂Rt¼ ðR̂Rt,a0t0 Þa02A,t0�t:

The second class of information represents parameters that govern the
dynamics of the system (described shortly). For example, we might get new
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information about the speed of a train, the cost of a movement, or the price of
fuel. We capture these parameters using:

�t ¼ A vector of parameters that impact the dynamics of the system.
�̂�t ¼ New information about these parameters arriving in time t.

An element of �t might be the estimate of the transit time between two points,
or the average number of pounds that a trailer normally holds.

Endogenous information processes represent our decisions. For the
moment, we let:

D ¼ The set of possible decisions that can be used to act on the resources.
xtad ¼ The number of resources with attribute a that decision d2D is

applied to at time t.

System dynamics governs how the system changes in response to new
information. The effect of new resources is captured simply using:

Rþt ¼ Set of resources at time t including new arrivals in time period t.
¼ Rt þ R̂Rt

In Section 3 we demonstrate the special roles of Rt and Rþt (and the reason for
this particular notational style).

We represent the updating of system parameters using the general notation:

�t U�ð�t�1, �̂�tÞ

For example, if �t is an estimate of the travel time, and �̂�t is a recent obser-
vation of a travel time, we might think of U�ð�t�1,�̂�tÞ as an equation that per-
forms exponential smoothing, as in �t ¼ ð1� �Þ�t�1 þ ��̂�t, where 0 < � < 1
is a smoothing factor.

More interesting is modeling the impact of a decision on the system. We use
the concept of a modify function, which performs the mapping:

Mðt,a,dÞ ! ða0,c,�Þ ð2:1Þ

Where a is the attribute of a resource (or resource layer) being acted on by
decision d, where t represents what we know when the decision is made (or
implemented). a0 is the attribute of the modified resource, c is the contribution
(or cost, if we are minimizing) generated by the decision, and � is the time
required to complete the action. The modify function is useful conceptually
and in software, but for algebraic purposes, it is useful to define:

�t0a0 ðt, a, dÞ ¼
1 ifMðt, a, dÞ ¼ ða0, c, t0 � tÞ
0 otherwise

�
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The modify function plays the role of a transfer function in dynamic systems,
but it is expressed at the level of a single decision acting on a single (type of)
resource. Sometimes it is useful to refer specifically to the attribute of a
transformed resource, or the cost or time required to complete the decision.
For this purpose, we introduce the notation:

Mðt, a, dÞ ! ðaMðt, a, dÞ, cMðt, a, dÞ, �Mðt, a, dÞÞ ð2:2Þ

We call aMtad the terminal attribute function, where the superscript ‘M’ is used to
help identify the difference between the attribute vector a and the terminal
attribute function aMtad . More often, we use the vector notation ctad¼ cM(t, a, d )
and �tad¼ �

M(t, a, d ) to represent costs and times. Our representation assumes
that ða0, c, �Þ are all deterministic functions of (t, a, d ). This assumption serves
the purposes of our presentation here, but the reader should understand the
richness of dynamic problems. For example, it is very common that transit
times are not deterministic functions of (t, a, d ); for some areas (intermodal
container transportation, rail transportation, and even the large truckload and
LTL carriers), the randomness of the transit time is of central concern to some
shippers where precise delivery dates are essential.

Our first use of the delta function is to express the evolution of the resource
vector:

Rtþ1,a0t0 ¼ Rt,a0t0 þ R̂Rt,a0t0 þ
X
a2A

X
d2D

�t0a0 ðt, a, d Þxtad 8a
0 2 A, t0 � t

ð2:3Þ

Finally, the evolution of the system is restricted by constraints. For our
purposes, it is sufficient to represent flow conservation constraints:X

d2D

xtad ¼ Rta

and rate of process transformation constraints:

xtad � utad

where utad is an upper bound (normally some sort of physical constraint) on
the flow. In practice, upper bounds apply to aggregations of flows.

2.3 Controls

Five dimensions characterize controls:

(a) The types of controls.
(b) The organization of controls.
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(c) The information available to a decision maker.
(d) The decision function.
(e) Measurement and evaluation.

We describe the types of controls using:

C
D
¼ The set of decision classes.

D
c
¼ The set of decisions in class c2CD.

In many problems, it does not make sense to define a single general set of
decisions. For example, the decision to ‘send a truck empty to Chicago’ does
not make sense if the truck is in Miami. Any practical implementation requires
being able to specify the set of decisions given the attributes of the resource
being acted on (typically, we would use an aggregation of the attribute vector).
Thus, we would define:

Da ¼ The set of decisions that can be applied to a resource with attribute
vector a.

In practice, the decision class we are working with is understood (or there is
only one class), allowing us to avoid the explicit modeling of decision classes.
Just the same, it is important to recognize the presence of multiple decision
classes. Reading the academic literature could easily lead a student to think that
the only thing a transportation company does is move something from one
location to another. Companies have to buy and sell, maintain, paint and clean,
and refuel. The notation we provide here allows us to write a basic formulation
of the problem that will remain valid even if we add decision classes later.

For our discussion, we restrict our attention to classes of decisions that
directly impact resources. Thus, these are the classical decisions of routing
drivers and freight, as well as purchasing/selling new equipment, hiring new
drivers, or choosing which customer demands to serve in the spot market.
Other classes of decisions include pricing (both contract and spot), and
decisions about the information infrastructure.

Decision classes can be divided into three major groups: couple, uncouple,
and modify. The couple and uncouple classes arise only when we are modeling
resource layers. A couple decision brings two (or more) resources together,
e.g., a driver pulling a load or a pilot flying a plane. In this case, a is the
attribute of the active resource, while d is the decision to augment a with the
attributes of a secondary resource. For a modify decision, d simply modifies
the attribute vector a. Most problems feature ‘one to one’ coupling (one
driver, one load; one pilot, one aircraft; one boxcar, one demand). More than
one locomotive is needed to move a single train, which is an instance of
‘several to one’ coupling. A single truck may move dozens (or hundreds, in the
case of packages) of shipments, and this is an instance of ‘many to one’
coupling.
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It is useful to start by listing only the primitive decisions, each of which
is a single, elementary action. For example, the decision to ‘assign a driver
to a load’ in truckload trucking can consist of the primitives: move to the
load, couple with the load,move the load, and uncouple from the load. Once the
primitives are in place, it is often useful to create tactics that represent sequences
of decisions, as in our example to ‘assign a driver to a load.’ Had we formulated
the problem purely in terms of the primitives, we would have to capture the
layered state ‘driver coupled with a load.’ If we were not modeling driver relays,
a model based purely on primitive decisions would be unnecessarily complex.
But, planning driver relays may be important, in which case it is useful to work
in terms of the primitive decisions.

For complex operations (railroads and trucking companies) it is
important to model the organization of information. Large companies are
managed by a series of decision makers, which the modeling community calls
agents. Let:

Q ¼A set of agents which control the system.
Dq¼The set of decisions controlled by agent q2Q, which implicitly includes

when a decision will be implemented.
Aq¼The attributes of resources that are controlled by agent q, which we

also assume includes the time at which the resource is available to be
acted on.

Tq ¼The set of time periods over which the decisions in Dq apply.
xq ¼ ðxtadÞt2T q,a 2 Aq,d 2 Dq:

For notational simplicity, we assume that an agent implies an interval
of time. Often, we will find ourselves modeling a single controller at a point
in time, in which case we can simply replace the index q with a time index t.
Our ‘agent’ notation, where time is implicit in the definition of the agent, gives
us a simple notational mechanism for modeling more general informational
decompositions with no additional complexity in notation.

The sets Q,Dq,Aq, and Tq define the organization of control in the
operation. It is assumed that an agent q will make decisions within Dq that are
coordinated (e.g., if the decision maker is assigning drivers to loads, he will
not assign the same driver to two loads at the same time). It is also necessary
to understand the impact of agent q on other agents (which may exist within
the same organization, or in other organizations). For this purpose, we need
to define:

~MMq ¼ The set of agents q0 2Q who are directly impacted by decisions
made by agent q.

Rq,aq0 ¼ The number of resources of attribute a that are sent from agent q
to q0.

Rqq0 ¼ ðRq,aq0 Þa2Aq
:
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We next have to model the organization of information. We let:

Iq¼The information elements available to decision maker q.

There are four classes of information that may be used in the set Iq:

Kq ¼ Knowledge, which is the exogenous data that is accessible to
q. Knowledge contains data in databases as well as other
informal sources that are present as ‘head knowledge.’

�q ¼ Forecasts of exogenous information which would come as
updates to Kq. Normally, the set �q will consist of a single
element representing a point forecast, but it might include
different elements, representing different scenarios that we wish
to model in the future.

xpq ¼ Plans for the future, which can be thought of as forecasts of
future decisions.

Vqq0 ðRqq0 Þ ¼ Value functions which capture the impact of decisions by q
on q0 2 ~MMq:

The value functions can be thought of as forecasts of dual variables. A
simple example of these functions arises when purchasing parts from
a supplier. The decision to place an order has an impact of requesting
parts from the supplier (Rqq0 becomes the number of orders that q is
transferring to q0). The supplier then charges a price (say, pq0), so our value
function is simply pq0Rqq0 . When the value function is linear, it is possible to
show that Vqq0(Rqq0) ¼ Vq0(Rq0).

It is important to understand that when designing the set Iq, the goal is not to
create the ultimate information set, but rather to model the information that is
actually available. Many decisions are made purely using Kq (the vast majority
of simulation models fall in this category). Optimization models that use
deterministic forecasts would use the set Iq ¼ (Kq,�q) where the set �q usually
consists of a single point forecast. Models based on this information set are
called rolling horizon procedures.

Given the information set, the next problem is to actually make a decision.
Let:

�q ¼ The feasible region for agent q.

The process of actually making decisions is then given by:

Xp
q ðIqÞ ¼ The vector of decisions produced by information set Iq. Thus, we

compute decisions using xq ¼ Xp
q ðIqÞ. We let:

� ¼ The family of policies (literally, different decision functions, each of
which constitutes a method for translating information into
decisions).
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A policy represents any means of finding a decision given a state, which we
also call a decision function. Our problem is one of finding the best decision
function. But, it is also going to be important to build functions that use
information that is actually available. In this way, we are attempting to model
the organization and flow of information just as we model the flows of
physical resources.

Finally we have the dimension called measurement and evaluation. For our
purposes, this is the objective function. We assume that we can define a
contribution function:

Cq(xq, Kq) ¼ The contribution from decision xq given our knowledge Kq.

Remembering that each agent q implicitly defines a time interval over which
his/her decisions apply, our objective function can now be stated:

max
p2�

E
X
q2Q

Cq Xp
q ðIqÞ,Kq

� �( )

This optimization problem takes on more meaning when we define specific
classes of functions Xp

q .

3 Algorithmic strategies

Now that we have a specific modeling framework, we have to address the
challenge of designing an algorithmic strategy. We start in Section 3.1 by
presenting strategies for solving time-staged problems under uncertainty using
a new class of dynamic programming approximations. Section 3.2 discusses
the issues that arise when we combine nonlinear value functions with
multiperiod travel times. This concept is then extended in Section 3.3 to solve
multiagent problems using the same framework. These two sections establish
the fundamentals of solving the problems when information is staged over
time, and when information is organized among different decision makers.
These presentations then lay the groundwork for Section 3.4, which provides a
general framework for building different classes of decision functions for a
variety of complex problems.

By the end of this section, we will have the foundation we need to address a
fairly broad range of complex operational problems.

3.1 Strategies for dynamic problems

Our first challenge is solving problems when information is staged over
time. This is the classical problem of stochastic, dynamic problems. These can
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be solved approximately in a variety of ways that are discussed in Section 3.4.
Here, we demonstrate how to use dynamic programming approximations
effectively to solve time-staged problems.

Our presentation is divided into two stages. First, we have to address a
subtle but critical problem in how we model the evolution of information over
time and the definition of the state variable. In particular, we do not use the
classical definition of a state variable as it is presented in dynamic
programming. Instead, we introduce the concept of an incomplete state
variable, which will prove computationally far more tractable. After this
discussion in Section 3.1.1, and Section 3.1.2 discusses specific strategies for
approximating value functions in dynamic programs.

3.1.1 Setting up the optimality recursion
We start by describing the evolution of information in our system. As we

noted before, we have exogenous and endogenous information processes that
can be represented using:

W0,X
p
0 ,W1,X

p
1 , . . . ,Wt,X

p
t , . . .

� �
We need to capture what we know at each point in time. This can be measured
immediately after we have new exogenous information, and after we make a
decision. We let Sþt be the state after new information has arrived, and we let
St be the state after we make a decision, giving us the sequence.

W0,S
þ
0 ,X

p
0 ,S1,W1,S

þ
1 ,X

p
1 ,S2, . . . ,St,Wt,S

þ
t ,X

p
t ,Stþ1 . . .

� �
We refer to Sþt as the complete state variable, because it captures all the
information needed to make a decision at time t. St is called the incomplete
state variable, specifically because it does not include all the information
needed to make a decision. The importance of this distinction will become
clear shortly.

Our goal is to solve the problem:

max
p2�

E
X
t2T

Ct X
p
t ,S

þ
t

� �( )
ð3:1Þ

Equation (3.1) can be formulated in general using the optimality recursion:

Vþt ðS
þ
t Þ ¼ maxx2�Ct x,S

þ
t

� �
þ E Vþtþ1 Sþtþ1

� �
jSþt

� �
ð3:2Þ

Here and throughout this section, we use x as the variable we are optimizing
over, and let xt represent the solution of (3.2).
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The field of dynamic programming is typically expressed in terms of
discrete states and actions (decisions), with algorithms that assume that you
can loop over all possible states and actions. This approach suffers from
the classic ‘curse of dimensionality’ which means that when the state
variable is multidimensional, the state space becomes intractably large. For
this reason, dynamic programming has seen few applications in transpor-
tation and logistics. Not surprisingly, this is partly to blame for the
dependence on myopic models and deterministic approximations found in
transportation.

It turns out that the situation is even worse than we thought. Equation (3.2)
actually suffers from three curses of dimensionality: the state space, the
outcome space, and the action space. To avoid this problem, we adopt a new
approach for approximating dynamic programming. As a first step, we could
replace the value function with an approximation, producing a recursion that
looks like:

Veþt Sþt
� �

¼ maxx2�Ct x,S
þ
t

� �
þ E V̂

þ

tþ1 Sþtþ1
� �

jSþt

n o
ð3:3Þ

On the right hand side of (3.3), we have an approximation V̂
þ

tþ1 Sþtþ1
� �

. On
the left hand side, we use a placeholder that we call Veþt Sþt

� �
.

For the next step, we assume that V̂
þ

t Sþt
� �

¼ V̂
þ

t Rþt
� �

, which is to say that
our approximation is purely a function of the resource state variable, and not
the full information state. In fact, it is sometimes important to write the
function in terms of an aggregated form of the resource state variable, which
we could write V̂

Gþ

t ðGðRtÞÞ. For the rest of our discussion, we do not include
the aggregation function G() explicitly, but the reader should understand that
we can use this device at any time. Now, we have:

Veþt ðSþt Þ ¼ maxx2�Ct x,S
þ
t

� �
þ E V̂

þ

tþ1 Rþtþ1
� �

jRþt

n o
ð3:4Þ

Our next problem is the expectation. For real problems, this is compu-
tationally intractable. We could approximate the expectation using a
sample, as in:

Veþt Sþt
� �

¼ maxx2�Ct x,S
þ
t

� �
þ
X
!2�̂�

p̂pð!ÞV̂
þ

tþ1 Rþtþ1ð!Þ
� �

ð3:5Þ

where �̂� is a sample from � and p̂pð!Þ is probability of outcome ! 2 �̂�.
Equation (3.5) can itself be quite hard, even when the sample �̂� is relatively

small. In transportation problems, the basic one-period optimization model
could represent a resource allocation problem with thousands of variables, or
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a difficult integer programming problem arising in vehicle routing or network
design. We would prefer to use a single sample:

Veþt ðSþt ,!Þ ¼ maxx2�Ctðx,S
þ
t ,!Þ þ V̂

þ

tþ1 Rþtþ1ð!Þ
� �

ð3:6Þ

Now, we have created a decision function where xt is allowed to ‘see’ Rþtþ1ð!Þ,
which violates a basic information constraint. We avoid this problem by
formulating our recursion in terms of our incomplete state variable:

VtðStÞ ¼ E maxx2�Ctðx,S
þ
t Þ þ Vtþ1ðStþ1Þ jSt

� �
ð3:7Þ

Since St is incomplete, the decision xt is a random variable, and as a result we
have to pull the expectation outside of the max operator. Following the same
path as before, we obtain the approximation:

VetðSt,!Þ ¼ maxx2�Ctðx,St,!Þ þ V̂tðRtð!ÞÞ ð3:8Þ

Note that we index V̂tðRtð!ÞÞ by t instead of tþ 1 because it is a function of the
information in time t. We have to devise an updating strategy that revises the
estimates from one iteration to another. If n is our iteration counter, then we
can just use the representation:

V̂
n

t  UV ðV̂
n�1

t ,Vent ,Rn
t Þ ð3:9Þ

The updating function UV( � ) could be nothing more than the use of
exponential smoothing on a constant (this would be the case when we are
using linear approximations) or a strategy for updating nonlinear approxima-
tions (specific examples are given in the next section).

We now have a general approximation strategy for dynamic programs,
(illustrated in Fig. 1) with two ‘hot spots.’ The first is that we have to devise
an approximation scheme V̂tðRtÞ. The second is that we have to exploit the
structure of the resulting approximation to solve what is typically an integer
program.

3.1.2 Approximating the value function
We propose using two classes of approximations for V̂t : linear, and

nonlinear, separable. For problems where integer solutions are required
(which is common in logistics problems), we would use a piecewise linear
function instead of a continuously differentiable function (which might be
attractive because of the low number of parameters needed to characterize it).

710 W.B. Powell



Linear functions are always the easiest to implement and use, but they can
be unstable. Just the same, they serve as a useful illustration. Assume that the
basic problem maxx2�Ct(x,St) is computationally tractable. Then,

Ven
t ðSt,!tÞ ¼ max

x2�
Ctðx,StÞ þ v̂vntþ1Rtþ1 ð3:10Þ

subject to:

X
d2D

xtad ¼ Rta ð3:11Þ

xtad � utad ð3:12Þ

should also be computationally tractable. If the problem is a continuous linear
program, then we can use the dual variable for constraint (3.11) to help us
estimate our linear approximation. Let ~vvnta be the dual variable of equation
(3.11) at iteration n. We may then estimate a linear approximation using:

v̂v nta ¼ ð1� �
nÞv̂vn�1ta þ �

n ~vvnta ð3:13Þ

Linear approximations can work well, but for the types of resource
allocation problems that arise in fleet management, (separable) nonlinear
approximations have proven to work the best. Although a number of
strategies can be used to estimate nonlinear functions, the interest in
obtaining integer solutions has led to the development of piecewise linear

Fig. 1. Prototype of an adaptive dynamic programming algorithm.
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approximations. Thus, we can write our nonlinear approximation in the form:

V̂tðRtÞ ¼
X
a2A

V̂taðRtaÞ

Many problems in transportation and logistics require integer solutions.
When this is the case, it is easiest to build piecewise linear approximations.
Piecewise-linear concave value function approximation components are
characterized by a series of break points {u0, u1, u2, . . ., un} and slopes vl on
the portion [ul, ulþ 1] with v0� v1� � � � � vn. Then (dropping the subscripts and
superscripts for state and time):

V̂ðRÞ ¼
Xm�1
l¼0

v̂vlðulþ1 � ulÞ þ v̂vmðR� umÞ ð3:14Þ

where m¼max{l: ul � R}. We can update V̂ðRÞ using sample gradients. Let ~vvn

be a sample estimate of the dual variable of the resource constraint (3.11).
When the underlying problem is a network, it is possible to get left and right
gradients using flow-augmenting paths [see Powell (1989)]. When this is
possible, let ~vvþ and ~vv� be the right and left gradients, respectively (in the
discussion below, if these are not available, simply let ~vvþ ¼ ~vv� ¼ ~vv). We now
want to use these gradients to update our slopes for V̂. The idea is to use this
information to update the function locally, while retaining the basic concavity
of the function at all times.

This process is illustrated in Fig. 2. In Fig. 2(a), we have a concave estimate
of the value function, along with new slopes at a particular point. Fig. 2(b)
shows that if we smoothed these new estimates of slopes into the immediate
area of the estimate, we would obtain a non-concave approximation. Fig. 2(c)
shows that if we expand the range over which we are smoothing the slopes,
then the resulting updated function remains concave.

More formally, let unl and v̂vnl denote the breakpoints and slopes of the
function at iteration n. To maintain concavity, we update the function over
the range (l�, lþ ), given by:

lþ ¼ min l : ul � Rn
ta, 1� �nð Þv̂vnl þ �

n ~vvnþ � v̂vnlþ1
� �

l� ¼ max l : ul � Rn
ta, 1� �nð Þv̂vnl þ �

n ~vvn� � v̂vnl�1
� �

Then for all l2 [l�, lþ ] we update the slopes as:

vnþ1l ¼
ð1� �nÞvnl þ �

n ~vvn� l < Rn

ð1� �nÞvnl þ �
n ~vvnþ l � Rn

�

712 W.B. Powell



to obtain the value function approximation at iteration n þ 1.
A somewhat simpler way of estimating a nonlinear function is via the

SHAPE algorithm [Cheung & Powell (2000)]. Here, the basic updating
equation is given by:

V̂
n
ðRÞ ¼ V̂

n�1
ðRÞ þ �n ~vvn � rV̂

n�1
ðRnÞ

� �
� RR � 0 ð3:15Þ

The basic idea is that we start with an initial approximation V̂
0
, and then

successively ‘tilt’ the function using the linear slope term ð ~vvn � rV̂
n
ðRnÞÞR,

which serves as a correction term by adding the difference between the

Fig. 2. Illustration of updating over a smoothing interval to maintain concavity. (a) Initial

function with unsmoothed update. (b) Smoothing creates nonconcave functional

approximation. (c) Expanding the smoothing range maintains concavity.
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current estimate of the slope of the function and the actual slope of the
approximation. Since we want to maintain concavity, we should use a concave
function, such as:

V̂
0
ðRÞ ¼ �0 1� e��1R

� �
V̂

0
ðRÞ ¼ lnðRþ 1Þ

V̂
0
ðRÞ ¼ ��0ðx� �1Þ

2

If we need a piecewise linear function, any of these examples can be modeled
as piecewise linear with breakpoints at each integer. SHAPE is provably
convergent for continuously differentiable functions. If piecewise linear
functions are used, it appears to provide very good results based on
experimental testing. If we are solving sequences of network problems and
have access to left and right gradients, we can use a two-sided version of
SHAPE given by:

V̂
nþ1
ðRÞ ¼

V̂
n
ðRÞ þ �n ~vvn� � V̂

n
ðRnÞ

� �
R R � Rn

V̂
n
ðRÞ þ �n ~vvnþ � V̂

n
ðRnÞ

� �
R R � Rn

8<
:

3.2 Nonlinear value functions and multiperiod travel times

Special care has to be used when adopting nonlinear functions. One
issue that arises is in the context of multiperiod travel times. Consider two
locations i, and j sending vehicles to location k [see Fig. 3]. Assume that
the travel time tjk from j to k is greater than that from i to k. If we use a
nonlinear value function approximation, location j will ‘see’ this function
first, before the arrivals from i have been planned. As a result, location j
will underestimate the total flow into the location, and therefore use the
higher estimate of the slope of the function [the solid part of the function
in Fig. 3]. By overestimating the value of resources at this location, the
model is encouraged to move them a longer distance than might be
necessary.

If we use linear value function approximations, both i and j see the same
value of vehicles downstream, since the slope of a linear function is
independent of the flow into the location. Presumably, our updating
strategy will eventually find the right price (or slope) for resources in the
future, which will result in a solution that uses resources from j rather
than i. But, when we use nonlinear value functions, this will not generally
be the case. Location j will see the function first, and will price resources
at the steepest part of the curve (since it is concave). If location j
sends vehicles to k, location i will then see this decision (which at time t0
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has already been made) and subsequently value additional resources at a
smaller slope.

Our solution to this problem is relatively simple. First define:

Rtt0 ¼ The number of resources that we know about at time t that can be
used (acted on) at time t0.

In a particular subproblem, we may act on resources in Rtt, whereas resources
captured by Rtt0 , t

0 > t would represent resources that are en route and will
not arrive until some point in the future.

We use a value function approximation that is separable over time:

V̂tðRtÞ ¼
X
t0�t

V̂tt0 ðRtt0 Þ

Let:

xtt0 ¼ The vector of decisions made at time t producing resources that will
become available at time t0.

xt ¼ (xtt0)t0 � t

Rtt0 ðxtÞ ¼ Att0xt,, where AttO0 is a matrix that sums the elements in xt that
arrive to locations in time t0.

Fig. 3. The challenge of using nonlinear value functions with multiperiod travel times.
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Finally, we would like to define the cumulative number of resources at time t0

that we know about at time t, including decisions made before time t:

Rtt0 ¼ The cumulative number of resources that will become
available at time t0 made before time t.

¼
P

t<t Att0xtt0 ,

¼ Rtt0 þ Rtt0 :

Thus, Rtt0 þ Rtt0 ðxtt0 Þ is the total number of resources that will be available at
time t0 that we know about at time t, including the effect of decisions made at
time t.

Our basic approximation strategy involves solving problems of the form:

VetðRt,!tÞ ¼ maxx2�Ctðx,StÞ þ
X
t0>t

V̂tt0 ðRtt0 þ Rtt0 ðxt,!tÞÞ ð3:16Þ

which is solved subject to:

X
d2D

xtad ¼ Rt,at þ R̂Rt,at ð3:17Þ

X
a2A

X
d2D

xtad�t0a0 ðt, a, dÞ � Rt,a0t0 ¼ R̂Rt,a0t0 ð3:18Þ

Let ~vvt,at be the dual variable with respect to equation (3.17) and let ~vvt,a0t0 be the
dual variable for equation (3.18). Equation (3.18), then, captures the impact of
a decision made before time t on problem t by creating resources that become
actionable at time t0. This issue did not arise with single period travel times, or
with linear approximations. If possible, we will try to find the value of one
more and one less resource. In this case, the duals are denoted ~vvþ and ~vv�,
respectively.

The updating strategy is basically the same as before:

V̂
nþ1

tt0  UV V̂
n

tt0 , ~vv
n�
tt0 , ~vv

nþ
tt0 , Rn

tt0 þ R
n

tt0

� �� �
ð3:19Þ

We are updating the slopes around the point Rn
tt0 þ R

n

tt0

� �
, since we are

effectively approximating the value function as a function of the number of
resources that we know about at time t.

Note that we only solve a single problem at time t, and yet we appro-
ximate functions of the form V̂tt0 . In the case of problems that can be
formulated as multistage linear programs (which covers most of the problems
that arise in this setting), we would use the dual variables for the resource
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constraints, ~vvntt0 to update separable nonlinear approximations using either
SHAPE or CAVE.

One step that can dramatically accelerate the rate of convergence (especially
when some travel times are quite long, measured in units of time periods)
works as follows. Instead of using the dual variable ~vvtt0 , we instead use:

v�t,at0 ¼ min
t�t�t0

~vv�
tat0

� �
ð3:20Þ

vþt,at0 ¼ max
t�t�t0

~vvþ
tat0

n o
: ð3:21Þ

Equation (3.20) uses the best dual variable of all the subproblems that are
sending resources to state a at time t0. This has the effect of quickly finding the
best location that should send resources arriving at time t0 and then building
the value of this location into the value function approximation for time t. We
would then use v� and vþ instead of ~vv� and ~vvþ.

3.3 An algorithmic metastrategy for multiagent problems

Large, complex systems such as trucking companies, railroads, and inter-
modal operations are almost always characterized by a number of decision
makers (or agents) solving different parts of the problem, each with their own
information. In Section 2.3 we introduced the basic notation required to
handle multiagent thinking.

The challenge of multiagent problems, of course, is trying to devise a
strategy that allows each agent to behave independently, but using infor-
mation that encourages the agents to behave in a coordinated way. We are
going to accomplish this using a relatively minor adjustment to our basic
dynamic programming recursion. In fact, we are going to find that the
presentation in Sections 3.1 and 3.2 is most of what we need. The handling of
multiple agents is more a change in perspective than an entirely new class of
techniques.

The transition to multiagent thinking involves making the transition
from stepping through time, to one of stepping through areas of control
as well as time. In a time-staged environment, we made decisions at
each time period t2T. We can think of each of these decision epochs as
a decision with a different set of information. We can formulate a kind of
dynamic programming recursion using:

VeqqðRqqÞ ¼ maxxq CqðxqÞ þ
X
q02 ~MMq

V̂qq0 Rqq0 þ Rqq0 xqq0
� �� �

ð3:22Þ

Ch. 13. Dynamic Models of Transportation Operations 717



Note the similarities between equations (3.19) and (3.22). In fact, if we assume
that the agent subproblems are solved in sequence, then we can view the
multiagent problem in a manner identical to a time staged formulation by
simply using q as the time variable. Of course, there is no assurance that such
sequencing would occur.

We can solve equation (3.22) using the same approximation techniques that
we used for the time-staged problem, and the same updating schemes. In fact,
the same issue arises when we decide to use nonlinear value functions as arises
in the context of multiperiod travel times.

v̂v�q,aq0 ¼ min
q�q�q0

~vv�qaq0
n o

ð3:23Þ

v̂vþq,aq0 ¼ max
q�q�q0

~vvþqaq0

n o
: ð3:24Þ

Then we use v̂v�q,aq0 and v̂vþq,aq0 to update V̂q,aq0 .

If we use a linear approximation for V̂, we do not need the double indexing
(qq0). In fact, linear approximations fall in the general strategy of pricing
systems in multiagent systems. Nonlinear approximations do not seem to have
been considered. But, as we have discussed (primarily in the context of
multiperiod travel times) they offer special challenges that need to be
addressed.

3.4 Classes of decision functions

We now have the foundation to introduce a very general class of decision
functions. We return to our four classes of information: knowledge (Kq),
forecasts of exogenous processes (�q), plans (xp) and values (Vqq0). We
illustrate each of these classes of information by briefly describing a decision
function based on knowledge alone, or knowledge paired with each of the
other three classes of information by themselves, creating four combinations
of information sets shown in Table 1. Each of these combinations produces a
decision function that falls within a major class of algorithms.

This discussion is intended to emphasize that optimizing dynamic systems
can come in a variety of forms. It is very common in the transportation and
logistics community to assume the use of myopic policies, or rolling horizon
policies based on deterministic forecasts of future activities. Both are valid
approximations, which can work well in certain situations. But, they over-
look the other two classes of decision functions, or the possibility of mixing
information to form a hybrid strategy.

We now discuss each class of decision function.
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3.4.1 Myopic policies (�M)
We start with knowledge alone. These decision functions know the state of

the system, but do not make any forecast of the future. These represent
myopic policies, which we designate by �M. The information set for myopic
policies is represented by: IMq ¼ ðKqÞ.

Myopic policies are the most widely used in practice (humans
predominantly use myopic policies). Less-than-truckload companies use
myopic policies to determine when trucks should be dispatched and the
routing of freight through the network. The most basic dispatch rule is a
control limit policy. Let Xtij ¼ 1 if a truck should be dispatched from i to j at
time t, and 0 otherwise. Let Rt be the amount of freight weight to be
dispatched. Then a basic dispatch rule is simply:

Xp
t ¼

1 Rt � dt

0 Otherwise

�

Here, dt is a dispatch rule. If the amount of freight is at least dt, then we
dispatch the truck. Otherwise, we hold. In LTL carriers, the basic rule will
typically be ‘send the truck if full until the end of the freight cycle; if it is the
last dispatch of the night, send the truck if it has at least a certain amount of
freight.’ Such a policy would be used if there is a strong daily cycle to the
freight, as would happen if the freight is arriving from the city trucks coming
off the street. Dispatchers know when they are filling up the last truck of the
night. If there are only a few shipments on the truck, the carrier will typically
hold the freight until the next day, resulting in a service failure (with some
insight, the carrier has held a few noncritical freight bills to the side).

Another example of a myopic policy is a dynamic assignment problemwhere
we are assigning drivers to loads. Let Rt be the set of drivers available to be
assigned at time t, and Lt the set of loads. We may optimize the assignment of
drivers to loads using a simple assignment problem:

minx
X
r2R0

X
l2L0

c0rlx0rl ð3:25Þ

Table 1
Summary of elementary classes of decision functions

Information set Function class Designation

Kq Myopic policies
QM

Kq, �q Rolling horizon policies
QRH

Kq, x
p Proximal point algorithms

QPP

Kq,V ~MMq
Dynamic programming

QV
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subject to:X
r2R0

x0rl � 1 8 l 2 L0 ð3:26Þ

X
l2L0

x0rl � 1 8r 2 R0 ð3:27Þ

Again, we are using only the information we know at time t.

3.4.2 Rolling horizon policies (�RH)
Rolling horizon policies combine what we know now (our knowledge base)

with forecasts of the future over a planning horizon. We let T ph
t be the set

of points in time in our planning horizon given that we are planning a system
at time t. Our information set for a rolling horizon policy, then, would be
expressed by:

It ¼ ðKt,�tÞ

where �t ¼ ð�tt0 Þt02T ph
t

is the set of events that we have forecasted in the
future given what we know at time t. In practice, �t contains a single
outcome representing a point forecast, and we are going to assume that we
are using a point forecast here. For example, if we are trying to allocate
containers to meet future demand, we would normally forecast what we would
expect would happen. The biggest challenge of using distributional forecasts
(j�tj>1) is the lack of effective tools for solving problems under multiple
future scenarios (by contrast, we do not have any difficulty using
distributional forecasts when we use value functions).

Consider, for example, the basic assignment problem we formulated
in (3.25) and (3.26). Assume we can generate a forecast of resources and
tasks in the future. Thus, !2� would correspond to ðR̂Rt,L̂LtÞt2T ph . We might
want to allow a resource at time t to be assigned to a task at time t0>t, so
we let:

Rt ¼ The cumulative set of all resources available at time t or some
time in the future.
Rt [t0�t R̂Rt0

Lt ¼ The cumulative set of all tasks available at time t or some time
in the future.
Lt [t0�t L̂Lt0

Under this forecast, we would solve the following problem:

minx
X
t2T ph

ctxt
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subject to:X
l2Lt

xtrl � 1 8 r 2 RtX
r2Rt

xtrl � 1 8 l 2 Lt

The myopic version of the assignment problem can be criticized because we
might take a driver and assign him to a less valuable load now, when we could
have used him on a more valuable load later. By contrast, when we use a
deterministic forecast, the rolling horizon procedure could have us holding a
driver now, even though there is a load available, for a load in the future that
may never materialize.

Myopic policies, and rolling horizon procedures, are the most widely used
techniques in practice for solving dynamic problems in transportation and
logistics. Myopic policies tend to work well in situations that are either highly
dynamic, and when rules can be devised which reflect the outcomes that might
happen in the future. For example, in our assignment problem, we might have
a basic rule that we will not assign a driver to a load shorter than 500 miles
(since it probably pays too little). Thus, if the only load we have available to us
is only 200 miles, we will refuse the assignment, knowing that there is a good
likelihood that a longer load will become available shortly. Thus, a good
myopic policy can work quite well.

3.4.3 Proximal point algorithms (�PP)
Often overlooked in the design of algorithms is the value of making

decisions that reflect either a forward looking plan, or past patterns of
behavior. We claim that both of these represent instances of planning, and
should be reflected in decisions made now.

Assume we are managing the flows of intermodal containers on a global
level. A separate planning process has made a projection of the number of
containers that should move from one location to another on a weekly basis
for the next 10 weeks. We can represent this plan using the basic form:

x
p
tad ¼ The number of containers with attribute a to which we will apply

decision d at time t.

A plan is almost always expressed at some level of aggregation. Thus, we may
have 30 types of containers, but we may plan for only the five major groups.
Similarly, it may be necessary to send containers to specific locations, but our
plan may express decisions only on a regional level. For simplicity, we may let
âa represent an aggregation of the attribute vector, and d̂d an aggregation of a
decision (such as, the decision to send to a region instead of a specific
location). Similarly, we may aggregate time as well (total flow over a week
instead of on a particular day). Our vector xp, then, is expressed at a fairly
aggregate level.
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In a number of operations, there is not an explicit plan, but there is a
pattern of activity. In this setting, we may define x

p
tad as the average flow that

satisfies the pattern (a, d ). When looking at past history, we would aggregate
time into a period such as a day of week. As with planning, averaging past
history is usually done at a more aggregate level.

Now we wish to solve a problem that we might express as:

min
x2�

X
t2T

ctxt ð3:28Þ

where T is the set of time periods in the planning horizon. It is intuitively
reasonable to make decisions that do not deviate from a plan by too much. At
the same time, if xp represents a summary of past patterns of behavior, we can
also argue that our optimization model should not deviate too much from past
patterns. We can achieve this by modifying our basic optimization problem
(3.28) as follows:

min
x2�

X
t2T

ctxt þ �jjGðxÞ � xpjj ð3:29Þ

Here, G(x) is an aggregation function that maps our decision variable x (which
presumably is fairly detailed) back into the more aggregated space that we
are using to plan. The term �jjG(x) – xpjj is precisely the term used in Rocka-
fellar’s proximal point algorithm, which solves sequences of problems of the
form:

xnþ1 ¼ argmin
x2�

X
t2T

ctxt þ �jjx� xnjj

where:

xnþ1 ¼ ð1� �nÞxn þ �nxnþ1

3.4.4 Dynamic programming (�V)
Our last information class is IDP

q ¼ ðKq,VqÞ: Here, we want to make
decisions that reflect what we know, and the impact of our decisions on
other parts of the problem. The conceptual framework is precisely that
of dynamic programming, which we have already covered in earlier sections.
Returning to our illustrative assignment problem, let’s now try to solve it
over time, with multiple potential outcomes in the future. This would
be formulated as:

minp2� E
X
t2T

ctX
p
t

( )
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We can formulate this using a basic dynamic program:

Vþt Sþt
� �

¼ maxx2�Ctðx,S
þ
t Þ þ E Vþtþ1ðS

þ
tþ1ÞjS

þ
t

� �
but these are rarely solvable. Instead, we resort to our approximation strategy:

VetðSt,!tÞ ¼ max
x2�

Ctðx,S
þ
t Þ þ V̂tþ1ðRtþ1ð!tÞÞ

where the goal is to devise a version of V̂ which will produce a near-optimal
solution. We can think of this as a function:

Xp
t ðSt, V̂tþ1Þ ¼ argmax

x2�
Ctðx,S

þ
t Þ þ V̂tþ1ðRtþ1ð!tÞÞ

This expression uses a state variable, which in our information-theoretic
vocabulary, represents our knowledge base.

It is significant that a dynamic-programming based approach, which uses
value functions to capture the impact of decisions made now on the future,
incorporates uncertainty relatively easily. The effect of different possible
outcomes is captured in the value function V̂, which is much simpler than
solving a problem at time t with an explicit set of multiple scenarios in �.
Since the function V̂ is estimated over a number of iterations, it is useful to use
the notation V(�) to represent the information content of a value function.
Specifically, a decision function that uses value functions is implicitly using a
forecast of exogenous outcomes, expressed through the value functions.

Adding value functions to a decision function is equivalent to using
a forecast of the impact of a decision on another agent. Companies do this
all the time when the decision is to purchase supplies, and the agent is
a supplier. The value function, then, is usually a linear function that is the
price of the product times the quantity. A car distribution manager for
a railroad might implicitly use a value function when he looks at a
region and recognizes that there is a surplus (marginal value of additional
equipment is small) or a deficit (marginal value of additional equipment
is large). The distribution manager is implicitly using a nonlinear value
function if he is also thinking ‘this region needs 20 additional cars.’

As a rule, humans have difficulty with value functions because it explicitly
requires using costs to make decisions. Human decision-making is based on
the concept of state/action pairs: if the system is in this state, then take this
action. Recognition of this fact is the basis for artificial intelligence (AI). The
application of AI to complex problems have typically failed simply because the
state variable is far too complex. The power of the brain to sort through patterns
to identify the relevant portion of the state variable has not beenmatched on the
computer. Cost-based optimization models, on the other hand, have little
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difficulty with very complex state variables. Computers are good at adding up
costs to make a decision, which is the reason that math programming-based
models have proven to be so popular. Needless to say, value functions appear
to be most useful to computer-based models and algorithms. If you tell a
human that you are going to give him a value function to help him make a
decision, the response is generally going to be disappointing.

3.5 A hybrid model

We have seen that four information classes each produce a different class of
algorithms that have been widely studied. This raises a natural question of
whether we can combine all four classes. We propose to do this by
incorporating forecasts (�) through the value function as we did in dynamic
programming. Thus, our information set is given by:

It ¼ Kt, x
p
t ,Vtþ1ð�Þ

� �
Such a decision function would look like:

Xp
t ðSt, V̂tþ1Þ ¼ argmax

xq2�q
Cqðxq,S

þ
t Þ � �jjGðxÞ � xpjj

þ
X
q02 ~MMq

V̂qq0 ðRqq0 þ Rqq0 ðxqq0 ,!ÞÞ

We offer equation (3.30) as a relatively general function which is scalable to
very large problems such as railroads and trucking companies. Not only does
it incorporate all four information classes, it also handles the multiagent
structure common to complex operations. At the same time, it is important to
realize that it is not necessary to use the ultimate decision function, since value
can be obtained using much simpler functions, and all the more basic decision
functions, including myopic policies, can be very effective.

4 Modeling operational problems

The next step is to apply our framework to specific operational problems in
transportation and logistics. An effective way to classify operational problems
is to begin by organizing them on the basis of how resources interact. There
are three fundamental ways to change a resource:

(1) Couple – Combine two resources to create a layered resource consisting
of two or more resources.
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(2) Uncouple – Break down a composite resource into its primitive
components (or simply decouple one resource from a set of layered
resources).

(3) Modify – Major classes of modify include: a) move (from one location
to the next), b) entry (such as purchasing a resource), c) exit (a resource
leaves the system), and d) do nothing. Other examples might include:
perform maintenance on an engine, clean out a trailer, have a driver go
on vacation.

Different problem classes can often be created based on the type of coupling
they entail. Special classes of interest in transportation include:

(1) One-to-one – Such as one driver and one load, one pilot and one plane,
one boxcar and one customer demand.

(2) Several-to-one – Several locomotives pull one train, two drivers may
create a sleeper team to drive a tractor, and several customers can fit in
one vehicle.

(3) Many-to-one – Many freight bills or packages may fit in one trailer,
many boxcars fit in a train.

The several-to-one class has some important variations in transportation.
The first is the bundling of several resources with a common location (multiple
locomotives at a location being assigned to the same train; two drivers
being assigned to move the same tractor). The second is bundling resources
with different locations (clustering), such as occurs in the vehicle routing
problem.

Our discussion proceeds in stages. We start with resource allocation
problems, which are all in the class of one-to-one coupling problems. These
are described starting with single layer problems (Section 4.1), two-layer
problems (Section 4.2), and multi-layer problems (Section 4.3). Finally, we
turn to problems that involve bundling (Section 4.4).

4.1 Single-layer resource allocation

Fundamental to operational problems is the coupling of two layers
(product with customer, driver with load, vehicle with delivery). We might say
that the ‘energy’ derived from coupling two resource layers together is what
keeps the process moving. So, how can we even have a single-layer problem?
The answer is simple: any time we have demands that must be satisfied at a
particular point in time. In production problems, this means no backlogging
of demand. In transportation and logistics, it often means that there are ‘tight
time windows.’ For example, we would have a one-layer problem if we were
assigning locomotives to trains, where the trains had to be moved at a point in
time. The same would be true if we are moving boxcars to serve demands that
have to be served at a particular point in time.
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We are interested in problems where we are managing a set of reusable
resources. These problems arise when we are managing sets of containers
(trailers, boxcars, intermodal containers etc.), vehicles (tractors, locomotives,
aircraft, etc.), and people (drivers, pilots, crews, etc.). In this section, we are
going to focus on problems where the number of resources being managed is
relatively large, which means that it is typically not useful to track each
individual resource.

Most of the time, representing these problems as single-layer resource
allocation problems can be justified only as simplifications of real-world
problems. But, the one-layer problem serves not only as a useful pedagogical
tool, but it is also practical for some problem classes.

Throughout our discussion, our solution strategy is assumed to follow the
framework described in Section 3. For the most part, we are primarily
concerned with how to solve the basic problem:

max
x2�

ctxt

which means, ‘what do we do at time t?’ Note that what we do at time t may
consist of a series of steps that extend into the future. Recall that xt ¼ ðxtt0 Þt0�t;
meaning a vector of decisions over time using information that we know at
time t. Thus, ctxt is equivalent to

P
t0�t ct0xtt0 . As we proceed, it is important to

be clear whether we are solving a problem at time t with actions strictly at time
t, or whether the actions may extend into the future using the information at
time t.

We proceed with the expectation that including plans or value functions
would not destroy the fundamental structure. There are different ways to
incorporate the effect of plans, with the use of the term jjG(x) – xpjj only one
of them. If we include value functions, we note that linear value functions will
never destroy structure, but nonlinear functions (even separable nonlinear
functions) must be handled with care.

Our discussion of resource allocation proceeds in a progression from single
commodity (Section 4.1.1) to multicommodity (Section 4.1.2) to hetero-
geneous resources (Section 4.1.3). In all three of these sections our
subproblems consist of a single set of actions initiated at time t.

4.1.1 Single commodity
Single commodity problems arise when (a) the attribute vector a consists

only of a scalar state variable (which in transportation problems usually
represents a geographical location), and (b) when a resource must be in the
same state as a task to serve the task. In transportation applications, it is very
common for the ‘state’ of a resource to be a geographical location. If we have
only one type of resource, we would use a ¼ (i). For this section, we use the
index i instead of the attribute vector a to emphasize the structure of the
problem. Our purpose in switching to a different notation can be explained by
the desire to exploit structure that arises only in the context of single
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commodity problems. We are going to continue to use this specialized
notation when we discuss multicommodity problems, which also exhibit
special structure.

We have two types of decisions for this problem class:

D
s
¼ Decisions to serve a task. The set Ds may be a set of specific tasks, or a

set of task types. We let Ds
i be the set of tasks that can be served by a

resource in state i.
D

r
¼ Decisions to reposition a resource from one state to another.

utid ¼ Upper bound on the number of times that decision d2Di may be
executed. We assume that utid is bounded for d2D s, and unbounded
for d2Dr.

Similarly, we assume that:

Mtðt, i, dÞ ¼ iMtid , ctid , �tid
� �

We use the notation iMtid as our terminal attribute function instead of aMtid to be
consistent with our adoption of the simple state notation i instead of the more
general attribute vector notation a, for single commodity flow problems.

A myopic version of the problem (at time t) is given by:

max
X
i, j2I

X
d2D

ctidxtid ð4:1Þ

subject to:

X
d2Di

xtid ¼ Rti þ R̂Rti ð4:2Þ

xtid � utid ð4:3Þ

Such a formulation would never work because we would never reposition
resources from where we need them to where we want them. Virtually all
transportation companies, which solve resource allocation problems, require
some sort of mechanism (typically, a central planning group), which looks
into the future and makes decisions about repositioning. The simplest model
that looks into the future is based on a deterministic forecast over a planning
horizon. We may be using a forecast of new resources ðR̂RtÞc, upper bounds
(ut), times (�tid) and costs ðctidÞ:

max
X
t02T

ph
t

X
i2I

X
d2D

ct0idxt0id ð4:4Þ
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subject to, for t0 2 T ph
t :X

d2Di

xt0id ¼ Rt0i þ R̂Rt0i 8j 2 I ð4:5Þ

X
i2I

X
d2Di

xt0��tid,id�t0 jðt
0 � �tid , i, dÞ ¼ Rt0j 8 j 2 I ð4:6Þ

xt0id � ut0id ð4:7Þ

xt0id � 0 ð4:8Þ

Equations (4.5) and (4.6) can be combined to create classical flow
conservation constraints. We retain this form since it creates a more natural
transition with stochastic models. The problem (4.4)–(4.8) is a pure network
and is easily solved as a general linear program or with more specialized
solvers.

Solving rolling horizon problems using deterministic forecasts is
popular and can be effective, but suffers from several limitations: it
uses point forecasts of demands (which means it may not supply
enough capacity to provide a high level of service), and it takes a problem
where all you can do is determine what to do right now (since information
will change in the future) and formulates a problem where you are
making decisions over an extended planning horizon, which is inherently
more difficult. We overcome these limitations by using our dynamic
programming approximations and solve:

VetðRt,!tÞ ¼ max
x2�

X
i2I

X
d2D

ctidxtid

þ
X
t0>t

X
j2I

V̂tþ1, jt0 ðRtþ1, jt0 þ Rtþ1, jt0 ðxt,!tÞÞ ð4:9Þ

If we use a linear approximation for V̂, then equation (4.9) reduces to:

VetðRt,!tÞ ¼ max
x2�

X
i2I

X
d2D

ctidxtid

þ
X
t0>t

X
j2I

v̂vtþ1, jt0 ðRtþ1, jt0 þ Rtþ1, jt0 ðxt,!tÞÞ ð4:10Þ

¼ max
x2�

X
i, j2I

X
d2D

ctidxtid

( )
þ

X
t0>t

X
j2I

v̂vtþ1, jt0 ðRtþ1, jt0 Þ

( )

þ
X
t0>t

X
j2I

v̂vtþ1, jt0Rtþ1, jt0 ðxt,!tÞ

( )
ð4:11Þ
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The second term in brackets on the right side of (4.11) is not a function of xt
and hence can be ignored. The third term can be simplified by using:

Rtþ1, jt0 ¼
X
i2I

X
d2Di

�t0jðt,i,dÞxtid ð4:12Þ

Dropping the second term in brackets in Eq. (4.11) and substituting Eq. (4.12)
into Eq. (4.11) gives:

VetðRt,!tÞ ¼ max
x2�

X
i2I

X
d2D

ctidxtid

( )
þ

X
t0>t

X
j2I

v̂vtþ1, jt0
X
i2I

X
d2D

�t0jðt,i,dÞxtid

( )

ð4:13Þ

¼ max
x2�

X
i2I

X
d2D

ctidxtid

( )
þ

X
i2I

X
d2D

X
t0>t

X
j2I

�t0jðt,i,dÞv̂vtþ1, jt0xtid

 !( )

ð4:14Þ

We note that:X
t0>t

X
j2I

�t0jðt,i,dÞv̂vtþ1, jt0xtid ¼ v̂vtþ1,iM
tid
,tþ�tid xtid ð4:15Þ

Eq. (4.15) simply says that if we act on a resource in state i at time t with
decision d and it produces a resource in state j ¼ iMtid at time t0, then we can
pick up the value of that resource. This allows us to reduce (4.14) to:

VetðRt,!tÞ ¼ max
x2�

X
i2I

X
d2D

ctid þ v̂vtþ1,iM
tid
,tþ�tid

� �
xtid ð4:16Þ

Eq. (4.16) shows us that using a linear approximation of the value function is
equivalent to adding a price to each assignment that is the marginal value of
the resource in the future. In fact, if we look at the updating equation for
linear approximations, we quickly see that v̂vtt0 ¼ v̂vt0 , allowing us to further
simplify (4.16) to:

VetðRt,!tÞ ¼ max
x2�

X
i2I

X
d2D

ctid þ v̂viM
tid
,tþ�tid

� �
xtid ð4:17Þ

Linear approximations introduce an additional simplification: problem
(4.16) decomposes by location. Thus, we can solve (4.17) by solving a sequence
of problems that look like:

VetiðRti,!tÞ ¼ max
x2�

X
d2Di

ctid þ v̂viM
tid
,tþ�tid

� �
xtid ð4:18Þ
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Furthermore, the solution of (4.18) involves nothing more than a sorting of
decisions d2Di in order of ðctid þ v̂viM

tid
,tþ�tid Þ.

Linear approximations are especially appealing since they are so simple. In
practice, they can be unstable. If the term ðctid þ v̂viM

tid
,tþ�tid Þ is attractive, we end

up with a large value for xtid. If d2D
s, which means we are serving a task, then

the number of tasks serves as a natural upper bound which stabilizes the
solution. If d2Dr, then typically udt is unbounded, and we can get extreme
flows.

There are three solutions to this behavior. One is to add an artificial upper
bound, which we might call ytid, where y is a decision variable. We would then
solve the same problem with the added constraint xtid� ytid. We then have to
introduce procedures for changing the artificial controls y. This approach was
used in Powell and Carvalho (1998) with reasonable success. But, it does not
generalize easily to multicommodity and heterogeneous resources (see below).

A second approach is to include a nonlinear stabilization term. One
framework for including such a term is to use a proximal point algorithm,
where at iteration n we would solve:

xn ¼ argmax
x2�

X
i2I

X
d2D

ðctid þ v̂vtþ1, j,tþ�tid Þxtid þ �
X
i2I

X
d2D

ðxtid � xntid Þ
2

ð4:19Þ

with the updating scheme:

xn ¼ ð1� �nÞxn�1 þ �nxn

The proximal term ðxtid � xntid Þ
2 helps to stabilize the solution, and because the

additional term is separable, it does not generally cause serious algorithmic
headaches. If we are looking for integer solutions, then a piecewise linear
penalty term should be used.

A third approach is to use a nonlinear value function approximation.
Separable functions of the form:

V̂tt0 ðRtt0 Þ ¼
X
i2I

V̂t,it0 ðRt,it0 Þ ð4:20Þ

are generally fairly easy to work with. We find ourselves having to solve
equation (4.9) directly. Assume that we are interested in integer solutions,
which leads us to use a piecewise linear form for V̂, as given in equation (3.14).
This would produce a network such as the one illustrated in Fig. 4. This
problem is easily solved as a linear network, and it naturally returns integer
solutions.

For this problem class, nonlinear functions appear to work extremely well.
They are easy to estimate using the techniques of Section 3.1; they are
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computationally quite easy to solve (sequences of pure networks) and produce
high quality solutions. Table 2 compares the technique when applied to
deterministic networks (something you would not want to do in practice, since
specialized algorithms are extremely good), indicating near optimal
performance. When compared against a rolling horizon procedure, we get
the results shown in Table 3. This table provides results as a function of the
number of locations, and of the number of resources (holding the number of
tasks fixed). Problems with a larger number of locations are harder to solve, in
part because the problem becomes increasingly nonseparable. The number of
resources is important since the problem becomes more difficult as the number
of resources is decreased. The results indicate that a nonlinear value function

Fig. 4. Illustration of a single commodity flow problem at time t with separable, nonlinear

value function approximations. Thin, solid arcs represent assignment of resources to tasks.

Thick solid arcs are tasks moving forward in time. Dashed arcs represent repositioning

moves in response to future value function approximations.

Table 2
Percentage of integer optimal value obtained using CAVE
for second set of deterministic experiments with single-
period time windows (network problems), from Godfrey
and Powell, 2002a

Locations Planning horizon

15 (%) 30 (%) 60 (%)

20 100.00 100.00 100.00
40 100.00 99.99 100.00
80 99.99 100.00 99.99
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approximation can significantly outperform a deterministic approximation
based on rolling horizon simulations.

Of particular value is going to be our ability to take this general strategy
and apply it to increasingly more general problems. We first illustrate its
application to multicommodity problems, followed by heterogeneous resource
allocation problems. We then indicate how it can be applied to two-layer
problems.

4.1.2 Multicommodity
Multicommodity flow problems arise whenever we have different types of

resources and different types of tasks, and we are allowed to substitute the use
of different resources, but where the cost of serving a task depends on the type
of resource. This might arise when we are managing fleets of trailers, and there
are different types of trailers with some substitution. It arises when managing
fleets of boxcars and containers, as well as distributing different product types
to consumers.

Multicommodity flow problems arise when the attribute of a resource can
be described as a ¼ ðk, iÞ, where k represents a commodity class (or simply a
commodity) and i, our state variable. In any transformation:

Mðt, a, dÞ ! ða0, c, �Þ

we assume that if a ¼ ðk, iÞ then a0 ¼ ðk, i0Þ. We let:

K ¼ Set of commodity classes.

Table 3
Comparison of nonlinear approximation using CAVE to a
deterministic rolling horizon procedure, for stochastic problems
with different numbers of locations and resources. Posterior
bound is computed by finding optimal solution assuming all
information is known (from Godfrey & Powell, 2002a)

Number of
locations

Number of
resources

Percentage of posterior bound

Rolling
horizon (%)

Stochastic
using CAVE (%)

20 100 92.2 96.3
20 200 96.3 97.8
20 400 96.6 98.1
40 100 81.0 90.5
40 200 90.7 96.2
40 400 92.6 96.8
80 100 66.3 82.1
80 200 81.4 93.3
80 400 84.8 94.5
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Rk
it ¼ The number of resources of type k in state i.

xktid ¼ The number of times we act on a resource of type k in state i with
decision d.

We note that we are following standard notational conventions of putting
the commodity class as a superscript. This runs against the notational
style that we have been following in this chapter, where all indices are
expressed as subscripts. We violate our own notational conventions for
reasons of consistency with the research literature. The reader is encouraged
to contrast this presentation with our discussion of a more complex problem,
heterogeneous resources, where our notation is actually simpler.

We can set up and solve the multicommodity version of the problem just as
we did with the single commodity. Rolling horizon procedures are stated
simply as:

max
X
t02T

ph
t

X
k2K

X
i2I

X
d2D

ckt0idx
k
t0id ð4:21Þ

subject to, for t0 2 T ph
t :X

d2Di

xkt0id ¼ Rk
t0i þ R̂Rk

t0i 8j 2 I , k 2 K ð4:22Þ

X
i2I

X
d2Di

xkid,t0��tid �jt0 ðt
0 � �tid , i, dÞ ¼ Rk

jt0 8j 2 I , k 2 K ð4:23Þ

X
k2K

xkt0id � ut0id ð4:24Þ

xkt0id � 0 ð4:25Þ

The costs cktid may incorporate the cost of assigning a resource of type k to a
particular type of task, if d 2 Ds. We could, for example, divide the set Ds

(representing decisions to serve a demand) into subsets Ds
k.

The complicating constraint in this formulation is equation (4.24). If our
problem is not too large, and we are not interested in integer solutions (or, we
are willing to find a near-optimal solution), then commercial LP solvers
should work fine here. More problematic is that we are again making the
assumption that we know the future perfectly. Also, a multiperiod multi-
commodity flow problem can be relatively hard to solve.

We may incorporate uncertainty in our forecasts by using the same types
of dynamic programming approximations described for single commodity
formulations. Without repeating the algebra, it is not hard to show that the
multicommodity version of equation (4.16) is:

VetðRt,!tÞ ¼ max
x2�

X
k2K

X
i2I

X
d2D

cktid þ v̂vktþ�tid,iMtid

� �
xktid ð4:26Þ
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The slopes v̂vk are updated using the sample gradients of the resource con-
straint (4.22) when solving subproblem t.

We earlier showed that the use of linear approximations for single
commodity problems produced subproblems that involved nothing more than
simple sorts. Multicommodity problems are a bit more complex. We still
require that a resource be in state i to be acted on by a decision in Di, but we
now have the behavior that different types of resources in state i can be acted
on by decisions in Di. The problem reduces to a network which we illustrate in
Fig. 5. Note that when we use linear approximations, we can take the slopes of
the value function approximations and simply add these to the costs on the
coupling arcs, along with any cost that might exist on the decoupling arcs. The
resulting problem is a pure network.

This remains quite easy to solve, but suffers from all the problems we
described earlier with linear approximations. Furthermore, the use of upper
bounds to control the flows (especially repositioning decisions) becomes much
trickier. It is important to keep in mind that the artificial upper bounds yt are
deterministic, and must work reasonably well under different sample
realizations. The problem with these variables for multicommodity problems
is that they do not handle very well the opportunities for substitution
across resources. It might be preferable, for example, to have an upper
bound that cuts across commodities, but then we destroy our nice network
structure.

We can, instead, use separable nonlinear approximations just as we did
with single commodity problems. This would involve solving subproblems of

Fig. 5. Network problem produced by multicommodity flow problems with linear value

function approximations.
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the form:

VetðRt,!tÞ ¼ max
x2�

X
k2K

X
i2I

X
d2D

cktidx
k
tid

þ
X
t0>t

X
k2K

X
j2I

V̂
k

tþ1, jt0 ðR
k
tþ1, jt0 þ R

k

tþ1, jt0 ðxt,!tÞÞ ð4:27Þ

This problem is illustrated using Fig. 3. Unlike single commodity problems,
however, this subproblem is a bit more complicated. Whereas nonlinear value
functions produce nice network subproblems in the single commodity case,
the use of nonlinear value functions gives us (possibly integer) multicom-
modity network flow problems. To see why we get multicommodity flow
problems, we do not have to look any further than the constraints on the
decisions in equation (4.24). These constraints bundle flows of different types
of commodities. So why didn’t this cause a problem when we used linear
approximations? The reason was that the linear function approximation
allowed us to write Rk

tþ1, jt0 ðxt,!tÞ in terms of xtid directly and then use the
separability of the linear approximation. Nonlinear approximations mean that
the function is no longer separable in xtid , which destroys our structure.

The good news is that the multicommodity flow problems we have to solve
are not very large (i.e., a single time period), and if we are interested in integer
solutions, the LP relaxation almost always gives us integer solutions anyway.
This is where our dynamic formulation is much easier than solving the rolling
horizon formulation in Eqs. (4.21), (4.22), (4.23) and (4.24). One-time period
problems are much easier to solve than time-staged problems over even
modest planning horizons.

These techniques work quite well on both deterministic and stochastic
multicommodity flow problems. As with single commodity problems, we can
obtain integer solutions as long as we use piecewise linear value function
approximations. Table 4 demonstrates the effectiveness of the techniques on
both deterministic problems (compared against the results of an LP solver)
and stochastic problems (compared against deterministic rolling horizon
approximations). Again, we see that the techniques provide near optimal
solutions on deterministic problems, and results that significantly outperform
rolling horizon models.

There are other tricks and techniques associated with the use of value
function approximations for multicommodity flow problems. The interested
reader is referred to Topaloglu and Powell (2000).

4.1.3 Heterogeneous resources
Heterogeneous resource allocation problems arise when the resources are

relatively complex. These almost always arise when the resources are people,
and they often arise when the resources are relatively complex pieces of
equipment such as locomotives or airplanes. For example, in a driver
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management problem, the attribute of a resource might be:

a ¼

a1
a2
a3
a4

a5
a6

0
BBBBBBBB@

1
CCCCCCCCA
¼

Driver’s home domicile:
1 if driver represents a sleeper team: 0 otherwise:
The current=next terminal of driver r:
The arrival time of driver r at his current=next
terminal:

The cumulative driving time of the driver:
The number of days away from home:

0
BBBBBBBB@

1
CCCCCCCCA

When routing and scheduling individual drivers, the attribute vector can
become much more complex than this. These problems, however, are typically
solved under assumptions of complete information (deterministic models),
and are required to produce full schedules for individual drivers.

The management of locomotives might require the following vector of
attributes:

a ¼

a1
a2
a3
a4
a5

a6

a7

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
¼

Number of axles:
H if it is a ‘high adhesion’ locomotive, L otherwise:
The horsepower class of the locomotive:
The tractive effort rating of the locomotive:
Days remaining until the next required maintenance

check:
The location where the locomotive should be
maintained:

The identity of the train the locomotive came in on:

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

Table 4
Performance of linear and nonlinear value function approxima-
tions against a deterministic rolling horizon procedure, from
Topaloglu and Powell, 2000

Percent of posterior optimal solution

Problem Linear Nonlinear Rolling horizon

Results of stochastic runs with varying number of locations
10 locations 86.14 96.96 93.17
20 locations 78.65 93.28 86.84
40 locations 74.13 92.21 86.89

Results of stochastic runs with varying compatibility patterns
Sub. matrix I 78.65 93.28 86.84
Sub. matrix II 80.59 95.40 90.87
Sub. matrix III 74.83 91.51 82.66
Sub. matrix IV 84.23 97.12

Results of stochastic runs with varying numbers of resources
100 res. 74.19 84.87 76.81
200 res. 78.65 93.28 86.84
400 res. 84.41 96.51 91.67
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These attribute vectors give a hint of the complexity that can arise when
solving real resource allocation problems.

When the attribute vector is more complicated than a simple class and
state, we refer to the problem as the heterogeneous resource allocation problem.
These problems can be placed in the context of multicommodity flow
problems by using the following observation. Let a ¼ ðas,adÞ where as

represent static elements of the attribute vector (elements which do not change
when a decision is made) and where ad captures the dynamic elements. In our
driver example, as ¼ ða1, a2Þ while a

d ¼ ða3, a4, a5, a6Þ: The static elements can
be concatenated and viewed as a single resource class (or commodity) while
the last four can be concatenated and viewed as a state variable. However,
these problems do not satisfy the structure of multicommodity flow problems
where the upper bound utid is keyed to the state of the resource.

Aside from this structural difference, the real difference between
multicommodity flow problems and heterogeneous resource allocation
problems is the size of the attribute space. In multicommodity problems,
a ¼ ðk,iÞ, so the number of possible attributes is probably close to jKj � jIj. If
we are managing intermodal containers, we might find jKj is between 10 and
50, whereas the number of locations, given by |I|, might be between 100 and
1000. This means that the total size of the attribute space might be as large as
50,000, but is typically about 5000. By contrast, a multidimensional attribute
vector can easily have millions of possible combinations. When this is the case,
the number of attribute vectors that actually occur are typically much smaller,
but we do not know in advance which ones will be used.

A deterministic formulation of the heterogeneous resource allocation
problem is given by:

max
X
t02T

ph
t

X
a2A

X
d2D

ct0adxt0ad ð4:28Þ

subject to, for t0 2 T ph
t :

X
d2Da

xt0ad ¼ Rt0a þ R̂Rt0a 8a 2 A ð4:29Þ

X
a2A

X
d2Da

xt0��tad,ad�t0a0 ðt
0 � �tad , a, dÞ ¼ Rt0a0 8a

0 2 A ð4:30Þ

X
a2A

xt0ad � ut0d ð4:31Þ

xt0ad � 0 ð4:32Þ
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where we adopt the convention that xt00ad ¼ 0 if t00< 0. This is a hard problem
as a result of its sheer size. For practical problems, it is virtually impossible to
generate the complete attribute space even for a single time period, not to
mention over all the time periods in a reasonable planning horizon.

Interestingly, this appears to be one of those problems, which seems to be
easier if we use stochastic techniques. So far, we have seen that stochastic
techniques can work quite well on deterministic problems. Applying the same
techniques we used previously, we find that our one-period problem becomes:

VetðRt,!tÞ ¼ max
x2�

X
a2A

X
d2Da

ctadxtad

þ
X
t0>t

X
a02A

V̂tþ1,a0t0 ðRtþ1,a0t0 þ Rtþ1,a0t0 ðxt,!tÞÞ ð4:33Þ

subject to equations (4.29), (4.32), adapted to a single time period.
We can use either linear or nonlinear value function approximations, and

we end up with the same basic subproblem structures as we did with multi-
commodity problems. For example, linear approximations reduce to networks
such as that illustrated in Fig. 5, whereas nonlinear approximations produce
subproblems that look like Fig. 3. The big difference arises because of the size
of the attribute space. When we are solving multicommodity problems, it is
normally the case that we would enumerate all possible values of K� I in
advance. This means that we would have a resource constraint for every
combination of k and i. As a result, we will get a dual variable for every
possible combination, and we will create a value function approximation for
every possible combination, which gets updated at each iteration.

With the heterogeneous case, we cannot generate every element in A.
Instead, we have to generate attributes dynamically. Let:

A
n
¼ The active attribute space that has been generated at iteration n:

We propose to use an increasing sequence An
� A

nþ1. This implies, however,
that for a given attribute a and decision d the attribute aMt,a,d may not have been
generated yet. We need an approximation of V̂t0a0 for attributes a

0 62 A
n. For

this purpose, we define:

Ai ¼ The set of attribute vectors that have a common geographical location
i 2 I .

�aai ¼ The attributes of an artificial resource in location i 2 I that will have
the best possible behavior in that location.

We want �aai to have the behavior of a resource that is at least as good as any
real resource. So, we assume that:

cð �aai, dÞ � max
a2Ai ,d2Da

cða, dÞ ð4:34Þ
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We refer to the attribute vector �aai as the ‘best attribute’ for location i.We could,
of course, simply define a single ‘best attribute’ that would apply system
wide, but it seemed clear to us that we could get much better results if we
tightened our bound by making it location specific. Note that it is not necessary
that �aai 2 A; if �aai 62 A, then �aai would simply be an empty resource bucket. What
is important is that we have one attribute which is always present, which
allows us to create a value function approximation which is an upper bound.
This ensures that we will not artificially avoid a decision just because we
underestimate the downstream value of the resource created by the decision.

To create an attribute vector where we ensure that the contribution out of
that attribute represents an upper bound over other attributes does not seem
to necessarily ensure that the value of the attribute (which includes not only
the immediate cost but also the downstream costs) is also an upper bound.
The following proposition establishes this result:

Proposition 4.1. [Powell et al. (2000a)] Assume that (4.34) holds and that
v0�aait � v0ta for a 2 Ai. Then:

vn�aait � vnta 8a 2 Ai

In other words, we can ensure that our estimate of the value of our ‘best
attribute’ is going to be better than the value of resources with other attributes
(at the same location).

This does not mean that any of these estimates are actually upper bounds
over what the values should be. But, decisions are relative, so this is an
important property.

The active attribute space, then, grows as the algorithm visits new states.
We can describe the process using:

A
n
t ¼ Set of attribute vectors that have been generated for time period t in

iteration n.
~AAn
tt0 ¼ Set of attribute vectors that are generated for time period t0 when

solving the subproblem for time period t.

Of course, the set ~AAn
tt0 may include elements that are already in An

t0 . Our active
attribute space is updated using:

A
nþ1
t0 ¼ A

n
t0 [
t<t0
A

n
tt0 ð4:35Þ

This algorithm has been applied to the management of drivers for a major
LTL trucking company. It scales easily to handle problems involving the
management of thousands of drivers moving tens of thousands of loads
between hundreds of different locations.
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4.2 Two layer resource allocation

In the previous section,market demands, tasks, requirements, or other expre-
ssions of serving an exogenous customer were all modeled as upper bounds,
which limited our ability to make money or otherwise generate positive
contributions. These upper bounds were expressed in the form utid for d 2 Ds,
representing a limit on our ability to execute a decision to serve a task at time t.
Generally, for a decision d 2 Ds to serve a demand, we normally assume that
ctid > 0, whereas decisions to reposition a resource to another state, given by
d 2 Dr, would incur a negative contribution. Implicit in this model is the
assumption that if we do not serve a task at time t, then the positive
contribution is lost. At no time do we ever make any decisions about the task
itself.

Two-layer problems arise frequently because as a rule, we often have to
make decisions about how a demand is satisfied. In the simplest case, we may
have to decide whether to serve a task now or later. This is the basic case of
demand backlogging. In truckload trucking, it is often the case that once we
decide to serve a customer, we simply move the load from origin to des-
tination. We only have to decide when to serve the load. In more complex
settings, we may have to decide how to serve the demand, which may have to
progress through a series of steps before being completed.

When we make the transition to problems with two or more layers, we need
to start distinguishing between important classes of resource layers. The first
is whether they are persistent or transient. A persistent resource stays in the
system when the decision is made to hold the resource. A transient resource
vanishes. A reusable resource stays in the system after it is acted on; if it
vanishes, it is not reusable or perishable (the term ‘perishable’ is awkward in
the context of transportation and logistics, and appears to be better suited for
consumer products).

A second critical dimension is whether the resource is active or passive. An
active layer can be modified using a set of decisions. A passive layer can only
work by coupling with other resource classes. A persistent, passive layer at a
minimum has the property of (possibly) staying in the system when the action
is to ‘do nothing’ but a more interesting class is one that stays in the system
even after it has been coupled and modified.

An example of these concepts arises in the case of a driver and a load. A
driver can reposition from one location to another without a load, or it can
move a load. Moving a load allows the driver to make money, but you cannot
act on the load by itself. But if you do not move the load, it just sits there
(although it may leave the system). If you do move the load, it vanishes from
the system. The load is a persistent, but not reusable class. The load becomes a
reusable class if the driver moves the load to a relay point, drops off the load,
and waits for another driver to pick it up.

We can turn this same example into a problem with two active layers.
Assume that when we move a driver we mean that we are moving a driver that
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is an employee of our company. If we run short on drivers, we can contract
out to another company to move the load, after which the driver becomes the
responsibility of the outside company. From the perspective of the resources
that we manage (our own drivers) it is as if we can move the load without a
driver. This would be a problem with two active layers.

We start in Section 4.2.1 with the simplest version of a two-layer problem
where only one layer is reusable (we can actually make decisions that change
its state) while the other is passive (demands that just sit there until they are
served). Section 4.2.2 then describes problems where the second layer is
reusable as well.

4.2.1 One reusable layer
Earlier, we introduced the notation that Rc represented the set of

(discrete) resources in class c (or, Rc is the vector of resources in class c).
This notation is especially useful when there are three or more classes of
resources (some complex problems might have four or five classes of
resources), since it saves us from creating an alphabet soup of variables to
describe the different resource classes. But when there are only two classes, it
is more convenient to use different variables for each layer. For this purpose,
we let:

Ltb ¼ The number of tasks with attribute vector b available at time t before
any new arrivals have been added.

B ¼ The space of possible task attributes, with element b 2 B.
Lt ¼ The vector of tasks that we know about at time t before any new

arrivals have been added.

This representation provides certain symmetry with the representation of
resources. However, it is also useful to define:

L ¼ The set of task types (for example, each task type might represent
an origin/destination combination).

Ltl ¼ The number of tasks of type l 2 L:

L can be viewed as an indexing of the task attribute space B. For our
purposes, the latter representation is more convenient.

If we want to make a decision to serve a task, we let Ds ¼ L represent our
set of possible types of tasks. Ltl is the number of tasks of type l at time t
(some readers will prefer to use the variable utl to be the number of tasks of
type l, since this variable later serves as an upper bound). For each task type in
L, there is a corresponding decision in Ds to serve a task of that type. For a
decision d 2 Ds there is a task type ld 2 L, which means we can write
Lldt ¼ Ldt for d 2 D

s. The number of resources we can assign to a task, then, is
limited by:

xtad � Ldt ð4:36Þ
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while resources limit us through the flow conservation constraint:

X
d2D

xtad ¼ Rta ð4:37Þ

Equations (4.36) and (4.37) express the impact of resources and tasks on
decisions. When we implement decision d, the impact on the resource is
expressed through the modify function, while the impact on the task is that it
leaves the system. The evolution of the resource state variable is given by
equation (2.3). We can in principle use the same equation for the tasks, but the
simplicity of our tasks encourages us to use simpler notation. We assume that
if we act on a demand it leaves the system. A demand that is not acted on may
also leave the system (a customer refusal). For this reason, we define:

Lh
tt0 ¼ The number of tasks that we knew about at time t which were

actionable at time t0 which were held at time t. Tasks which are not
held include those that were served or which independently left the
system.

We would normally assume that Lh
tþ1,t0 ¼ Lh

tt0 for t
0 > t, meaning that if a task

is not actionable at time t, it should still be in the system at time t0. But our
representation allows for order cancellations. This notation allows us to write
the task dynamics as:

Ltþ1,t0 ¼ Ltt0 þ L̂tt0 þ Lh
tt0 ð4:38Þ

where L̂tt0 , just as with R̂Rtt0 , represents the tasks that first become known at
time t and which are actionable at time t0.

The pair ðRt,LtÞ, now gives the resource state of our system. We emphasize
that this is our incomplete resource vector, since Rt and Lt do not include new
resources and tasks that arrive in the system at time t. We can use the same
dynamic programming recursion and approximations that we used with a
single resource layer earlier by simply replacing Rt with ðRt,LtÞ. Using our
dynamic programming approximations, we would have to solve:

VetðRt,Lt,!tÞ ¼ maxx2XCtðx,Rt,LtÞ þ V̂tþ1ðRtþ1ð!tÞ,Ltþ1ð!tÞÞ ð4:39Þ

which we would solve subject to constraints (4.36) and (4.37), as well as the
system dynamics (2.3) (the updating of the number of resources) and (4.38)
(the updating of the number of tasks).

To solve (4.39) we can resort to the tricks we used for the one-layer problem.
Assume, for example, that we want to work with a linear approximation.
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We would simply write:

VetðRt,Lt,!tÞ ¼ maxx"XCtðx,Rt,LtÞ þ v̂vRtþ1Rtþ1ð!tÞ þ v̂vLtþ1Ltþ1ð!tÞ

ð4:40Þ

We would estimate v̂vR and v̂vL by using the dual variables on the constraints
(4.37) and (4.36), and applying our standard smoothing techniques.

When the tasks are a passive layer, it is not unreasonable to use the
approximation v̂vL¼ 0. This means that we try to cover a task at time t, but if
we cannot, we simply hold it until time tþ 1 and hope to cover it then. Table 5
shows the results of experiments using a nonlinear approximation on a
resource allocation problem where tasks have time windows (but where we use
v̂vL ¼ 0) and problems where tasks must be served at a point in time, where
both experiments are run on datasets without any uncertainty (which allows
us to get tight bounds using an LP solver). The results indicate (on these
deterministic datasets) that we are obtaining virtually optimal solutions when
the time windows are tight (a true one-layer problem) whereas we are one or
two percent below optimal when we use v̂vL ¼ 0.

To test the value of using both resource and task gradients we need to
work on a problem where both resource and tasks may be held before
being assigned, where we can also readily obtain optimal solutions, at least
in the form of posterior bounds. (Posterior bounds are computed by
finding the optimal solution after all the information becomes known.)
A problem that readily lends itself to this test is the dynamic assignment
problem. The dynamic assignment problem involves the assignment of
resources and tasks over time, but where once a resource is assigned to a task,
they both vanish from the system. But, if a resource or task is not assigned in
time period t, they are available in time period tþ 1. The decision to assign a
resource or a task now has to take into account the value of the resource or
task in the future.

The dynamic assignment problem is a special version of a two-
layer problem, where we arbitrarily designate the ‘resources’ as the active

Table 5
Performance of nonlinear approximation on problems where tasks have nonzero time
windows (two-layer problem) and tight time windows (true one-layer problem)

Number of
locations

With time windows Without time windows

Horizon length Horizon length

15 30 60 15 30 60

20 99.0% 99.2% 99.5% 100.00% 100.00% 100.00%
40 98.2% 98.4% 98.9% 100.00% 99.99% 100.00%
80 97.5% 97.0% 97.6% 99.99% 100.00% 99.99%
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resource layer, while tasks are the passive layer. An important application
is the load-matching problem of truckload trucking, where we have to assign
drivers to loads. Over time, drivers become available and loads are called in.
After a driver is assigned to a load, both ‘vanish’ from the system.

What makes the dynamic assignment problem special is that it is easy to
solve the problem after all the resources and tasks become known to get a
tight upper bound. In contrast with our earlier resource allocation problem,
this is a problem where a myopic solution is not only interesting, it is what is
normally done in practice. Experiments were run on 20 deterministic and 20
stochastic datasets, comparing a myopic solution (v̂vR ¼v̂vL ¼ 0), against
algorithms with just resource gradients (v̂vL ¼ 0) and algorithms using both
resource and task gradients. The results are shown in Table 6, which suggest
about a three to four percent improvement by adding in task gradients. We
would conclude that while the improvement is not dramatic, it is certainly
significant.

4.2.2 Two reusable layers
Consider the problem of moving a boxcar loaded with freight from origin

to destination to serve the customer. This process occurs in a series of steps.
When the boxcar is pulled from the shipper’s dock, it is pulled to a yard where
it is added to a block, which represents a set of cars that will move together
over one or more trains. When a train moves, it pulls a set of blocks, which
share a common segment (a common intermediate destination). When the
block reaches its destination, it is probably the case that some of the cars have
also reached their destination, but others may have to continue on. These cars
are pulled out and added to a new block, which again will move over one or
more trains before again reaching a new, intermediate destination.

Locomotives, of course, pull trains. Thus, to move a set of cars from one
location to another, it is necessary to couple the cars together, move them to
an intermediate destination (the destination of the block) and then uncouple
them. Both the locomotive and the boxcars stay in the system. The
locomotives have to be allocated to new trains, and decisions have to be made
about how to route the boxcars. Thus, both are active resources.

Two-layer problems arise in other settings. Truckload motor carriers have
to manage drivers and loaded trailers. Once a driver picks up a load, it may be

Table 6
Results of value function approximations for deterministic and
stochastic experiments expressed as a percent of the posterior
optimal solution. Each statistic is an average over 20 datasets

Type of
experiment

Myopic Resource
gradients

Resource and
task gradients

Deterministic 88.4 93.4 97.5
Stochastic 86.6 89.2 92.8
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necessary to move the load to a terminal where it is stored for a few days
waiting for its final delivery appointment. The driver will be assigned to a new
load, and at a later point a new driver will come in to pick up the original load.
As with the boxcars, at the end of the first move, both the driver and the load
remain in the system.

A third-party logistics provider also faces two-layer problems if they have
the responsibility for moving and storing product, as well as managing the
driver. It is necessary to load up the driver’s vehicle, move the product, store
the product, and continue to manage the driver.

The modeling of a two-layer problem is virtually equivalent to the modeling
of a two-layer problem with a single reusable layer (but where both layers are
persistent). All we need to do is change the system dynamics so that both
layers are handled in the same way. So, instead of using the simple task
dynamics of Eq. (4.38), we would model tasks using Eq. (2.3). Basically, the
reader has to understand that when we face a true two-layer problem,
whatever we do for the so-called ‘resource layer’ is the same as what we have
to do for the ‘task layer.’ We have to capture not only the value of the resource
in the future, but also the value of the task.

4.3 Multiple layers

Real problems are invariably even more complicated than the problems
that we have addressed. For example, a driver has to use a tractor to pull a
trailer to pick up a load of freight. Furthermore, we may need pallets or
special loading equipment to help handle the load. A locomotive needs both
fuel and a crew to pull boxcars with freight. A chemical products company has
to specifically manage the driver, tractor, trailer, chemical product, and the
customer tank (a five layer problem).

Multilayer problems are inherently complex, so it is especially important to
adopt elegant, compact notation. Our earlier modeling framework introduced
the concept of resource classes CR, where Rc

t is the vector of resources in class
c, and Ac is the attribute space for class c. Resource layering helps us handle
the problem when decisions have to be made for resources that are coupled
together. For example, a locomotive attached to an inbound train is quite
different than the same locomotive that is not attached to an inbound train.
The delivery that can be made by a particular driver, tractor, and trailer
depends on the characteristics of all three.

One challenge faced by multilayer problems is that of solving a single
period subproblem. Two-layer problems have the fundamental structure of
transportation problems and assignment problems. Three-layer problems are
much harder to solve.

It is perhaps not surprising that multilayer problems are often (but not
always) solved as sequences of two-layer problems. In an LTL carrier, one
person will manage drivers, another will plan the loading of trailers, and a
third makes sure that the tractor pools are adequate. In railroads, distinctly

Ch. 13. Dynamic Models of Transportation Operations 745



different groups manage all locomotives, boxcars, and crews. But, a truck
dispatcher has to manage drivers (with their tractors), trailers, and loads.

4.4 Bundling

Up to now, we have assigned resources to tasks with the tacit assumption
of one resource per task. These are called ‘one-to-one’ problems, and
arise when we have to assign a driver to pull a load, or the assignment
of a boxcar to a customer order. But it is often necessary to consolidate
freight into a single container. In this section, we consider two special cases.
The first involves the batching of dozens, or even hundreds, of shipments on a
single trailer going between two of points. In the second, we address the
problem of clustering tasks with different characteristics. This might arise
when putting orders together with different delivery dates, or with different
final destinations (otherwise known as the vehicle routing problem).

4.4.1 Batch dispatching
The simplest batch dispatching problem arises in LTL trucking where

shipments accumulate at a terminal until there is enough to satisfy the criteria
for sending the truck. In most problems, the arrival rate of shipments is not
constant over time. For example, at an end of line terminal, arrivals occur
primarily in the evening, as shipments are unloaded from trucks that were in
the city during the day. Most of the time, the dispatch rule is pretty simple. It
is either ‘dispatch when full’ or a variation such as ‘dispatch when full, but no
later than a cutoff time,’ where the cutoff time ensures that the carrier can
make service. The challenge always arises when there is no more freight
and the truck is only partially full. While all carriers focus on service, any
carrier will have difficulty sending a truck over a long distance when it is only
20% full.

For regional carriers, there are typically very few options for routing
freight. Some trucks will go directly from one city to another, carrying
only freight between those two cities. A few carriers work exclusively this
way, but this operating concept is impossible to grow past a dozen or so
terminals. As a rule, most freight has to be handled through a single
distribution facility. If a truck is not full enough to send through the facility,
either the carrier has to send the truck partially loaded, or hold the freight
until the next cycle.

Long haul carriers have more options. A trailer at an origin end of
line, such as Boston, may be loading shipments to carry to a distribution
center (or break bulk) at a destination region such as Texas. If there is not
enough freight to fill the trailer, the carrier has the option of filling the trailer
with freight and moving the trailer (either full or partial) but only to the
nearest distribution center (sometimes called the ‘origin break bulk) that
would be in the northeast. There, the freight may be completely or partially
sorted onto trailers that leave to many other terminals.
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Efforts have been made to formulate the problem of determining where to
send trucks as integer programming models. Even static models of regional
carriers can be intractably large, and optimal algorithms have not proven
effective. Local search heuristics for optimizing static networks have been
effective, and in particular, local search heuristics that work interactively with a
planner have been widely adopted. But, even heuristic optimization models
for the dynamic case have not been effective. Simulation models, which use
simple policies to determine when a truck should be dispatched, remain the
only effective tool in engineering practice, and we are not aware of any serious
progress toward optimizing dynamic problems.

In this section, we again focus on dynamic problems and illustrate how the
techniques that we have presented earlier for resource allocation problems can
again be effective in this setting. As before, our solution approach will be one
that solves a sequence of relatively simple problems by stepping through time.
We can use either a simple myopic rule, or apply our adaptive dynamic
programming techniques [see Papadaki & Powell, to appear]. We consider only
the case of dispatching trucks over a single link, but we allow ourselves to
consider the case where there are different types of customers. This is
particularly important in LTL trucking, where there are high and low priority
customers, as well as customers who have been waiting different lengths of time.
Finally, we do not assume steady state behavior.

Model parameters

K ¼ Set of customer classes.
cd ¼ Cost of dispatch a vehicle.
ci
h
¼ Holding cost of class i per time period per unit product.

ch ¼ (c1
h, c2

h, . . . ,cK
h)

K ¼ Service capacity of the vehicle, giving the total number of
customers who can be served in a single dispatch.

Activity variables

Rtk ¼ Number of customers in class k waiting at time t before new
arrivals have been added.

Rt ¼ (Rtk)k2k
R̂t ¼ Vector random variable giving the number of arrivals in time t of

each type of customer.
Rþt ¼ Rt þ R̂Rt.

Decision variables

xtk ¼ The number of customers in class k who are served at time t.
Xp

t ðR
þ
t Þ ¼ Decision function giving the vector xt as a function of the complete

resource vector Rþt .
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We define a family of decision functions ðXp
t Þp2�. It is useful for us to define

an indicator variable zt ¼ 1 if a vehicle is dispatched and 0 otherwise. We let
Zt(xt) be a decision function where Zt ¼ 1 if

P
k2k xtk > 0, and 0 otherwise.

Note that we are assuming that there is at most one dispatch per time period
(since time periods can be made smaller, this does not pose a significant
limitation).

Our one period cost function is given by:

CtðRt, R̂Rt, xtÞ ¼ cdZtðxtÞ þ chðRþt � xtÞ

The objective function is now given by:

FðS0Þ ¼ min
p2�

E
XT�1
t¼0

CtðR
þ
t ,X

p
t ðR

þ
t ÞÞ

( )

We follow our standard methodology and propose to solve the dynamic
programming approximation:

VetðRt,!tÞ ¼ min
xt

CtðR
þ
t , xtÞ þ V̂

n

tþ1ðR
þ
t ð!tÞ, xtÞ ð4:41Þ

The simplest approximation, which is also surprisingly effective, is to use a
linear approximation:

V̂tðRtÞ ¼ v̂vtRt ð4:42Þ

These batch processes are not linear programs, so we do not have access to
dual variables. But, we can use finite differences. Let:

~vvkt ¼ VetðRt þ ek,!Þ � VetðRt,!Þ

where ek is a jKj-dimensional vector with a single 1 in the kth element
(when there are a lot of product classes, it is fairly easy to devise schemes
to approximate ~vvtk using derivatives for only a few product classes). As
before ~vvtk is a statistical estimate, and we perform smoothing to find the
approximation v̂vtk.

Solving equation (4.41) using a linear value function approximation is
pretty easy. If we assume that zt ¼ 1 (meaning that we are going to dispatch
the vehicle), then finding the optimal xt is usually a simple sort. In fact, it is
possible to show that the simple rule of putting the most valuable products in
the truck is the best. This means that we really only have to calculate (4.41) for
zt ¼ ð0,1Þ and find the best value.

The steps of the algorithm are given in Fig. 6.
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Table 7 summarizes the results of a series of experiments where the linear
approximation was tested on a problem with a single customer class. For this
special case, it is possible to solve the optimality recursion using standard
backward dynamic programming techniques. Table 7 shows the relative error
over the optimal using between 25 and 200 iterations. Also shown is the
performance of a myopic, ‘go-when-filled’ policy where the vehicle is not held
more than time � (where � was optimized for each dataset). Three classes of
datasets were tested, reflecting the difference between the holding cost ch and
the per customer dispatch cost cd/K. The results suggest that the heuristic
provides near-optimal performance. Most significantly, there is no difficulty
extending it to problems with many customer classes.

It is important to emphasize that since most companies dispatch trucks
using myopic rules, a heavily engineered myopic policy can do a superb job
of mimicking the real world. These policies will be more sophisticated than

Step 1 Given R0 : Set V̂V0
t ¼ 0 for all t: Set Rn

0 ¼ R0 for all n: Set n ¼ 1 t ¼ 0:

Step 2 Choose random sample ! ¼ ð!0 !1 . . .!T�1Þ:

Step 3 Calculate

znt ¼ arg min
zt2f01g

czt þ ch � ðRn
t þ R̂Rn

t � ztXðR
n
t þ R̂Rn

t ÞÞ þ ðv̂v
n
t Þ � ðR

n
t þ R̂Rn

t � ztXðR
n
t þ R̂Rn

t ÞÞ

n o
and

Rn
tþ1 ¼ Rn

t þ R̂Rn
t � ztXðR

n
t þ R̂Rn

t Þ

Then define:

~VVn
t ðR

n
t Þ ¼ min

zt2f01g
cdzt þ ch � ðRn

t þ R̂Rn
t � ztXðR

n
t þ R̂Rn

t ÞÞ þ ðv̂v
n
t Þ � ðR

n
t þ R̂Rn

t � ztXðR
n
t þ R̂Rn

t ÞÞ

n o
Step 4 Update the approximation as follows. For each k ¼ 1 . . . m let:

~vvnkt ¼
~VVn
t ðR

n
t þ ekÞ � ~VVn

t ðR
n
t Þ

where ek is an jKj-dimensional vector with 1 in the kth entry and the rest zero.

Fig. 6. Adaptive dynamic programming algorithm for the batch dispatch problem.

Table 7
Fractional error of total cost with respect to the optimal cost
[from Papadaki & Powell, to appear]

Method: Linear Linear Linear Linear DWF-TC

hold/dispatch Number of iterations

cost (25) (50) (100) (200)

ch > cd=K 0.077 0.060 0.052 0.050 0.774
ch^cd=K 0.048 0.033 0.023 0.024 0.232
ch < cd=K 0.030 0.022 0.017 0.016 0.063

Average 0.052 0.038 0.031 0.030 0.356
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even an optimized ‘go-when-filled’ strategy such as that illustrated in Table 7.
From a modeling perspective, the issue is not so much whether a dynamic
programming approximation will outperform a myopic heuristic. Of much
greater significance is whether the model will yield good, realistic results
without the heavy engineering.

4.4.2 Clustering
The second type of batching involves the clustering of resources together.

We might have to group several locomotives to pull one train, two or three
‘pups’ to be pulled by one tractor, or the clustering of several deliveries onto
one delivery vehicle. All of these problems involve a function that is
nonseparable in the set of resources that are being bundled together.
Locomotives may be attached together, so if we assign one locomotive to a
train, we generally need to assign the other locomotives that the first locomo-
tive may already be attached to. Pups need to be matched based on weight and
service requirements. Deliveries should be grouped that form an efficient
vehicle tour.

The general clustering problem can be expressed using a contribution
function Ct(xt) which is a nonlinear, nonseparable function of the decision
vector xt. Fortunately, most problems are not quite this general. Let Rt be our
vector of active resources (our trucks), and let L be the passive resource layer
that we are coupling to (our deliveries, or tasks). We let Rta be the number of
resources with attribute a, and we let ul be the size of each task, expressed in
the same units as the resources (we may let Rta be the capacity of the vehicles,
and ul be the size of each task). In many routing and scheduling problems,
each individual vehicle r 2 R will have its own unique attribute vector ar, in
which case Rta would always refer to a single vehicle (but, this is not always
the case). We let xtal be the number of resources of type a that are being
coupled to task l. Thus, we would have both a flow conservation constraint on
the resources:X

l2L

xtal ¼ Rta 8 a 2 A, ð4:43Þ

and a coupling constraint:X
a2A

xtal � utl 8l 2 L ð4:44Þ

Let xtl ¼ ðxtalÞa2A be the vector of decisions describing the assignment of
resources with attribute a to task l 2 L. Now let ctlðxtlÞ be the cost of assigning
a vector of resources xtl to task l. This allows us to write:

CtðxtÞ ¼
X
l2Lt

ctlðxtlÞ ð4:45Þ
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It is, of course, a nice simplification when we can write ctlðxtlÞ ¼P
l2L ctalðxtalÞ which is to say, a separable function across resources. This

might be the case when assigning several locomotives to a single train, or
two or three pups to the same tractor. But, it is not going to be true when
assigning multiple deliveries (or pickups) to the same vehicle, since the total
cost depends on the tour that can be formed to complete the pickups. [Just
the same, a separable approximation is the basis of a popular vehicle routing
algorithm, Fisher and Jaikumar (1981), as well as research in routing,
Bramel and Simchi-Levi (1995).] For this reason, researchers find that they
have to dynamically find the actual tour, even if it will change as new
information arrives [Gendreau et al. (1999), Regan et al. (1998)]. These
problems can be solved with any of a host of vehicle routing algorithms
[Laporte (1992), Fisher (1995)]. As of this writing, it is not known whether
precise routing and scheduling outperforms a good approximation when
demands are highly dynamic. For example, Powell, Towns and Marar
(2000b) show that for the load matching problem of truckload trucking
(a form of dynamic assignment problem), a solution that uses a discounted
approximation of the future (which is neither an optimal myopic solution,
nor an attempt to optimize over the entire horizon) outperforms optimal
myopic solutions in a dynamic setting.

Most efforts in the literature have focused on solving the problem
myopically, which means forming vehicle tours using the vehicles and customer
demands that are known at time t [see, for example, Gendreau et al. (1999) and
Regan et al. (1998)]. This means solving sequences of problems of the form
minxCt(xt) using a vehicle routing algorithm. A significant challenge in this
setting is the computational problem of solving a VRP under the pressure of
time-staged demands, which limit the amount of time we have to actually
solve the problem. We are not aware of efforts to solve VRPs using
deterministic forecasts of future demands, which not only makes the problem
much larger, but also creates other practical challenges (if the forecast is an
expectation, we face the problem of routing an integer vehicle to pick up an
expectation of the customer demand, which will typically not be either feasible
or realistic).

We can approach the dynamic vehicle routing problem using the
same strategies as we have reviewed for other resource allocation problems.
We can solve the problem myopically, or incorporate value function
approximations, which are estimated through adaptive learning. There is
very recent research into using neurodynamic programming methods
[Secomandi (2000, 2001)], but this work considers only a single vehicle. A
challenge in designing value function approximations for dynamic VRPs is
both the large size of the attribute space, and the complexity of the true value
function. It is not clear that the simple linear or separable, nonlinear
functional approximations that we introduced earlier will be successful. Also,
many problems have some degree of advance information. We do not know at
what point a myopic model, using advance information outperforms an
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adaptive, dynamic programming model. All of these are open research
questions.

Dynamic vehicle routing problems exhibit other characteristics unique to
the problem class. Many (but not all) vehicle routing problems require
forming complete tours where the driver terminates at the depot at the end of
the day. In a dynamic setting, it is possible to require that any tour always
terminates at the depot, or to form tours that are not complete (at time t),
responding to new demands as they arise. Furthermore, it may be necessary to
form tours that do not serve all the customers at time t. For example, it may
make sense to hold off on picking up a request from a customer in a part of
town where there are no other requests to be served (right now), in the hope
that other calls will come from that part of town, allowing the vehicle to serve
several customers at once.

Thus, the decision to form a tour at time t may leave some customers
unserved (consider the dynamic assignment problem above), and may
produce a tour that leaves a vehicle at a location other than its home depot
at some point during the day (requiring us to complete its tour at a later
time). We may not serve all the customers at time t, also requiring us to
think about the impact of forcing some deliveries until later in the day. We
could use a myopic model that tries to cover only the deliveries we know
about, using only the vehicles we know about. We would require this model
to cover all deliveries with tours that always finish at the depot, or cover
only some of the deliveries, with a tour that does not finish at the tour. The
myopic model could be expanded by the use of simple rules, such as ‘do not
deliver to a part of town unless there are at least three orders, or unless it is
after 3pm.’ We could use a rolling horizon model by optimizing the problem
using a mixture of known and forecasted demands. Or we could resort to
our adaptive dynamic programming techniques. The last approach would
require that we devise an effective approximation strategy, and a method for
estimating and updating the function.

5 Implementation issues for operational models

It is easy to draw the conclusion from our presentation that the important
issue in modeling freight transportation is designing models and algorithms
that account for information that is not yet known. In practical imple-
mentations, the real issue tends to be in the form of bad data, which could
otherwise be described as data that is not yet known, but should be. The
problem is that we do not know in advance what data is bad, but we do know
when we do not like a solution.

A byproduct of capturing the organization and flow of information is
that it produces models where the original problem is broken into a
number of pieces. Modeling the evolution of information over time produces
models that are solved sequentially over time (rather than one big model
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over time). Modeling the organization of information and decisions
produces a multiagent structure that further breaks the problem into
subproblems. Not only are these subproblems much easier to solve, they are
a lot easier to diagnose. That is, if the model recommends a decision that is
not what a dispatcher would do, it is a lot easier to determine if the problem
is data, model, algorithm or software.

We are not aware of any formal research into the modeling and algorithmic
issues of dealing with bad data, but this is one of the characteristics
of operational models that is markedly different than planning models.
In a planning setting, we generally assume the data is fine, and we rarely have
operations people looking over our shoulder criticizing the solution. Just as
important, the precise solution (how the freight is moving) is less important
than aggregate performance statistics.

In an operational setting, dispatchers typically already know what they
would do, and if the model disagrees, then you face the challenge of trying to
find out whether the discrepancy is because of a problem or if the model is
simply displaying intelligence.

6 Summary remarks

Problems in freight transportation and logistics cover a range of
problem classes, most of which can be characterized by dynamic information
processes. In this chapter, we provide an overview of the most important
operational settings, and provide a notational framework that captures
most of these problems. We then summarize four major classes of algo-
rithms, each based on different classes of information that can be used to
solve these problems. Finally, we illustrate these algorithms in the context of
some of the major problem classes. We made a point of avoiding detailed
descriptions of models that are unique to specific modes (such as the blocking
problem of railroads, or crane scheduling for intermodal ports), preferring
instead to provide foundational models that could be adapted to different
settings.

The design of models and algorithms for dynamic problems is relatively
immature compared to the extensive body of research on deterministic
problems. Not only are the models of physical operations quite young, there
has been surprisingly little formal research on costing models, and virtually no
research (that we are aware of) governing the design of information systems
(which ultimately is what really controls operations).
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