Contents

CHAPTER 1

Introduction

A.G. de Kok and Stephen C. Graves
1. Introduction

2. Main business trends that created SCM
3. Outline of the volume 1

—_ N =

PART I Supply Chain Design

CHAPTER 2
Supply Chain Design and Planning — Applications of Optimization
Techniques for Strategic and Tactical Models

Ana Muriel and David Simchi-Levi 17

1. Introduction 17
Part I: Production/Distribution Systems

2. Introduction 19

3. Piece-wise linear concave costs 22

4. All-unit discount transportation costs 39
Part II: Pricing to improve supply chain performance

5. Introduction 65

6. Coordinating pricing and inventory decisions 66

7. Pricing models with production capacity limits 74

8. Computational results and insights 76
Part III: Supply chain design models

9. Introduction 77
10. The single-source capacitated facility location problem 78
11. A distribution system design problem 82
12. Conclusions 88
References 89
CHAPTER 3

Supply Chain Design: Safety Stock Placement and
Supply Chain Configuration
Stephen C. Graves and Sean P. Willems 95

v



Vi Contents

Introduction

Approaches to safety stock placement

Model formulation

Heavy industry and consumer packaged goods example
Supply-chain configuration

. Conclusion

References

AN N e

CHAPTER 4
Supply Chain Design: Flexibility Considerations
J.W.M. Bertrand

1. Introduction

2. Conceptual research on manufacturing flexibility

3. The flexible machine investment problem; volume
and mix flexibility

4. Resource flexibility, range, mobility, uniformity

and throughput time

Empirical research on flexibility

Supply chain flexibility

Design for supply chain flexibility

. Conclusion

References

% N o

CHAPTER 5
Design for Postponement
Jayashankar M. Swaminathan and Hau L. Lee

Introduction

Postponement enablers

Process standardization

Process resequencing

Component standardization
Related strategies and other benefits
. Conclusions

References

N U R W~

PART II Supply Chain Coordination

CHAPTER 6
Supply Chain Coordination with Contracts
Gé¢rard P. Cachon

1. Introduction
2. Coordinating the newsvendor

95

97
102
107
120
129
131

133

133
135

142

152
161
164
172
191
193

199

199
201
202
213
218
221
223
224

229

229
233



Contents Vil

3. Coordinating the newsvendor with price-dependent demand 257
4. Coordinating the newsvendor with effort-dependent demand 264
5. Coordination with multiple newsvendors 271
6. Coordinating the newsvendor with demand updating 285
7. Coordination in the single-location base-stock model 292
8. Coordination in the two-location base-stock model 297
9. Coordination with internal markets 312
10. Asymmetric information 316
11. Conclusion 329
References 332
CHAPTER 7
Information Sharing and Supply Chain Coordination
Fangruo Chen 341
1. Introduction 341
2. Value of information 343
3. Incentives for sharing information 377
4. Future research 410
References 413
CHAPTER 8§
Tactical Planning Models for Supply Chain Management
Jayashankar M. Swaminathan and Sridhar R. Tayur 423
1. Introduction 423
2. Notations used 427
3. Stationary and independent demand 428
4. Alternative demand assumptions 436
5. Generalizations 440
6. Applications 446
7. Conclusions and future directions 448
References 449

PART III Supply Chain Operations

CHAPTER 9

Planning Hierarchy, Modeling and Advanced

Planning Systems

Bernhard Fleischmann and Herbert Meyr 457

1. Types of supply chains 458
2. Supply chain planning 468



viil Contents

3. Advanced planning systems: General structure
4. Advanced planning systems: Particular systems
References

CHAPTER 10

Supply Chain Operations: Serial and Distribution
Inventory Systems

Sven Axsiter

Introduction

Different ordering policies

Serial systems

Order-up-to-S policies in distribution systems
Batch-ordering in distribution systems

. Conclusions

References

N

CHAPTER 11
Supply Chain Operations: Assemble-to-Order Systems
Jing-Sheng Song and Paul Zipkin

1. Introduction

2. One-period models

3. Multi-period, discrete-time models
4. Continuous-time models

5. Research on system design

6. Summary and future directions
References

CHAPTER 12

Planning Supply Chain Operations: Definition and
Comparison of Planning Concepts

Ton G. de Kok and Jan C. Fransoo

Introduction

The hierarchical nature of SCP

Constraints for SCOP

Mathematical programming models for supply chain planning
Stochastic demand models for supply chain planning
Comparison of supply chain planning concepts for general
supply chains

7. Summary and issues for further research

References

AR S e

480
508
519

525

525
528
536
541
551
554
556

561

561
563
567
575
590
592
593

597

597
608
618
626
633

655
667
671



Contents X

CHAPTER 13

Dynamic Models of Transportation Operations

Warren B. Powell 677
1. Operational challenges in transportation 682
2. A general modeling framework 698
3. Algorithmic strategies 707
4. Modeling operational problems 724
5. Implementation issues for operational models 752
6. Summary remarks 753
References 754

Subject Index 757



A.G. de Kok and S.C. Graves, Eds., Handbooks in OR & MS, Vol. 11
© 2003 Elsevier B.V. All rights reserved.

Chapter 1
Introduction

A.G. de Kok

Technische Universiteit, Eindhoven

Stephen C. Graves

Massachusetts Institute of Technology

1 Introduction

Supply Chain Management (SCM) has been a very visible and influential
research topic in the field of operations research (OR) over the course of the
last decade of the twentieth century. The problems and experiences that have
emerged from business practices have stimulated many researchers to
contribute to a deeper understanding about underlying phenomena and causal
relationships. Supply Chain Management has also served as an application
area, where existing OR methods and techniques have been applied to new
models for new problems, to new models for old problems that regained
attention and to existing models for old problems. In the last case we find that
progress has been made to extend existing results, stimulated by the apparent
need for such extensions.

One might naturally start a handbook on SCM with a definition of the term
Supply Chain Management. We have decided to resist this temptation as there
are already too many competing definitions, and we do not see value in
attempting to create a new definition or synthesize one from the current
contenders. SCM has developed into a notion that covers strategic, tactical
and operational management issues. We have made an attempt to structure
the area by means of the chapters in this handbook. By no means do we claim
to deal with all management issues commonly understood as being part of
Supply Chain Management. Nevertheless, we do believe that this handbook
covers a broad range of SCM issues that lend themselves to being formulated
and analysed with mathematical models.

As appropriate for an OR handbook, this volume focuses primarily on
supply chains as a context to apply OR methods and models. As a
consequence, we are concerned with the decision-making processes that arise
in SCM and are derived from managerial and economic considerations. In
particular, we investigate and explore how OR can support decisions in the
design, planning and operation of a supply chain. By doing so, we identify the

1



2 Introduction

richness of SCM as an OR application field, which promises another ‘Golden
Decade’ of research.

In this introduction we provide an overview of SCM as an OR application
area. Since many of the chapters in this handbook carefully position a
particular aspect of SCM in a business and economic context, we deliberately
restrict the introduction to a high-level of abstraction. This allows us to
discuss a number of relevant trends in the business environment that proved to
be the main impetus for the prospering of SCM during the last decade of the
twentieth century. The added value of such an overview should be to position
SCM in its business context and to provide a framework to understand and
position the subsequent chapters of this handbook in relation to each other.

2 Main business trends that created SCM

In this section we discuss the main business trends during the late eighties
and nineties of the twentieth century that provided the fertile soil from which
SCM developed.

2.1 Core competencies

Prahalad and Hamel (1990) argue that a number of companies have
achieved significantly better results than their competitors by focussing on
only a few competencies, so-called core competencies, and by outsourcing
other non-core activities to companies that have a core competence on those
activities. This reasoning has gained a lot of attention from large, highly
vertically-integrated companies, such as Philips Electronics, Unilever, P&G,
General Motors, etc. and has been adopted at a surprisingly fast pace.
Whereas implementation of a company-wide information systems, such as
an Enterprise Resource Planning (ERP) system, typically has taken three to
seven years within these large companies, the implementation of the core-
competency strategy has often been accomplished within one or two years.

In our effort to understand the success of the core-competency strategy in
terms of its adoption by global companies, we identify a number of circum-
stances that seem to characterize the late eighties business environment.

2.1.1 Short-term focus

In the Western economic world the eighties were a decade of relatively low
economic growth and high unemployment rates. In that climate a short-term
focus prevailed. The core-competency strategy allowed firms to increase their
return on investments (ROI) and related business performance indicators
almost instantaneously: outsourcing non-core competencies eliminated the
associated fixed cost in the denominator of ROI, which typically resulted in
increasing the ROI. The economic climate permitted big multinational
companies to outsource high-cost operations to companies with lower costs;
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for instance, companies with union operations and expensive labour contracts
would outsource these operations to non-union companies with more cost
flexibility. Thus, firms could substantially reduce not only fixed costs, but also
the variable product costs as well.

The first companies adopting the core-competency strategy showed
immediate improvements in their balance sheets, resulting in rapid increases
in their stock market value. Many companies decided to reap similar benefits
and started outsourcing, as well.

2.1.2  Technological improvements require high capital investments

By the end of the eighties, multinational companies with a tradition of
capital-intensive manufacturing, such as electronics, white goods, automotive
and consumer packaged goods, had invested for three decades in
manufacturing mechanization and automation. This process replaced labour
with capital, to the point that their capital-labour ratio approached that of
primary industries, such as chemicals and metals. In fact, most of these
vertically integrated companies found that more and more of the added value
from their manufacturing had shifted upstream in their supply chains, from
assembly to fabrication. Consequently, the investments required for further
improvements in labour productivity and process capabilities kept increasing.
A sector that was archetypical for such capital investment requirements was
the semiconductor industry that emerged in the early seventies and matured in
the eighties. Many multinational electronics manufacturers had their own
semiconductor division.

These capital investment requirements demanded a strategic assessment.
Most companies decided to concentrate on their brands, implying that they
concentrated on Marketing and Sales, and Research and Development of
their product portfolio as well as on Purchasing in order to leverage their
buying power. Upstream manufacturing activities were outsourced to
subcontractors. Interestingly, but logically, a number of these subcontractors
decided to consider manufacturing their core competence and started a
process of acquisitions that continues to date. In the electronics industry these
companies are currently called Electronics Manufacturing Services (EMS)
companies; in the semiconductor industry these companies are known as
foundries. Apparently it is possible for them to carry the burden of large
capital investments that could not be carried by the global multi-billion brand-
owners. A possible explanation can be found in the stock market, again. The
stock market analysts seem to have lower ROI expectations of these new
manufacturing conglomerates than of the brand-owners.

Whether the current situation with multinational brand-owners focussing
on Marketing and Sales, Research and Development, and Purchasing and
multinational ‘service companies’ focussing on manufacturing and logistics is
a stable economic equilibrium remains to be seen. In his thought-provoking
book Clockspeed, Fine (1998), provides empirical evidence of his theory
that the business environment shows a constant process of vertical integration
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and disintegration, stimulated by competition based on technological break-
throughs and fostered by internal inertia of large vertically-integrated companies.

2.1.3 SCM as core competence

In the early nineties a number of companies, such as Hewlett-Packard (HP),
recognized that SCM was one of their core competencies. Although HP was in
the test and measurement industry and the computer industry since the 1950’s,
by the early nineties the company had evolved from a business-to-business
company into a business-to-consumer company delivering PCs and printers
via a dealer network to the consumers. In parallel to concentration on
Research and Development (in particular software and printing technology),
Marketing and Sales, and outsourcing manufacturing, HP developed the skills
for ‘worldclass’ SCM. HP recognized that one of its key differentiators could
be to offer both speed of delivery and product diversity to the market, and that
this could be done without owning traditional manufacturing assets. Lee and
Billington (1993, 1995) discuss the main ideas behind the HP approach. They
introduce the term postponement in the SCM field, implying that product
diversity is created as close as possible to the consumer, thereby allowing for
efficiencies upstream in the supply chain. The postponement concept is
developed and explored in Chapter 5.

Another company that has made SCM its core competence is Dell. Prior to
Dell, PC manufacturers sold PCs through their dealer network, implying
substantial capital investments in inventory by the dealers and exposure to
obsolescence risk for the manufacturer. In contrast, Dell decided to sell direct
to the customer using the Internet as its marketing and sales channel. Dell is
then able to assemble to order each client’s PC, thereby eliminating the need
for final product inventory. The Dell business model requires that Dell’s
suppliers hold stocks of components in consignment at or near Dell’s assembly
factories. Thus Dell operates its supply chain with minimal inventories on its
books.

Whereas the above is a somewhat idealized description, Dell does operate
its supply chain with considerably less inventory than its competitors, while
providing customized products with short delivery lead times. The Dell
example should be considered a showcase of ‘worldclass’ SCM. It shows the
potential for operating low-inventory, high-flexibility and customized-product
supply chains. In many industrial sectors the potential must be huge, given the
fact that many sectors have much lower market diversity than the PC sector.

2.1.4 Relevance for Operation Research applied to supply chains

The disintegration of the brand-owning companies has led to an enormous
increase in the number of contractual relationships between brand-owners and
their subcontractors and suppliers, as well as between brand-owners and their
downstream channel partners. Contracts are the mechanisms by which the
brand-owner can leverage its buying power, yielding lower purchase prices,
higher product quality and greater delivery reliability and speed. As such, the
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careful design of contracts is paramount to the profitability of the brand-
owner. These contracts are also critical to assuring the sustainability of
the supplier or subcontractor, recognizing their need to obtain sufficient
economies of scale and scope. Furthermore, these contracts are essential
mechanisms for finding effective ways to spread the risk across a supply chain.
In Chapters 6 and 7 of this handbook supply chain contracts are extensively
discussed. Chapter 6 focuses on the design of contracts in general with an
emphasis on risk sharing, while Chapter 7 examines the design of contracts
with respect to sharing of demand and supply information.

The myriad of relationships between legally independent companies
operating a supply chain from commodities to consumers poses structurally
complex network design problems to each of these companies. Whereas
contractual relationships are one-to-one by definition, the network design
problem is a many-to-many problem. Apart from questions concerning
locations of factories and warehouses, tactical issues of safety stock
positioning, capacity slack positioning and transportation mode selection
have to be addressed. Operations research has wide applicability to
these issues, and has provided very useful decision support. In this volume,
Chapter 2 covers the application of optimization models and methods to
supply chain design. Chapter 3 discusses the strategic positioning of safety
stocks, while Chapter 4 focuses on investments in resources across the supply
chain so that a strategic trade-off between customer service, market diversity
and supply chain flexibility investments can be made.

2.2 The Bullwhip effect

One particular phenomenon that has attracted great attention in industry
and academia is the Bullwhip effect. In the late fifties Forrester (1958)
conducted experimental research that revealed that demand variations amplify
from link to link going upstream in the supply chain, i.e., from consumers to
raw materials. By means of simulation, he identified the root causes of this
variation amplification: information distortion and information delay.

Lee, Padmanabhan and Whang (1997) built upon and extended the ideas of
Forrester to identify common business practices that led to information
distortion and information delays. This paper stimulated a large amount of
work on understanding the phenomenon and developing counter measures.
This work drew upon and applied concepts from the OR literature, including
echelon stock concepts, inventory pooling and forecasting processes that
induced the best estimates of future demand. The latter seems obvious, but in
many situations incentives are not aligned between business functions,
yielding wishful thinking forecasts or target sales forecasts. Echelon stock
concepts and inventory pooling stimulated the implementation of Vendor
Managed Inventory (VMI) concepts.

The implementation and dissemination of these concepts improved the
overall knowledge base on Supply Chain Management. In general, one may
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conclude that communication of the Bullwhip effect and its root causes across
all business function has increased mutual understanding between different
business functions and between different companies. For many companies it
became clear that they were only one of the many players involved in the game
of satisfying the customer with a service or a product.

2.2.1 Relevance for Operations Research applied to supply chains

It is interesting to remark here that the Bullwhip effect is by now well
understood, yet it poses a challenging mathematical problem when incor-
porating the underlying dynamics into commonly studied multi-echelon
inventory management problems and multi-site production planning
problems. The main reason for this is the fact that the dynamics related to
the Bullwhip effect entail non-stationary random demands and dynamic
capacity availability amongst others, as well as analysis of transient processes.
Such non-stationary stochastic processes typically do not allow for a
straightforward and rigorous analysis. Still, the issue of non-stationarity must
be addressed. In this handbook first efforts are reported in several chapters. In
Chapter 2 the impact of non-stationarity on supply chain design and pricing is
discussed. Chapter 4 deals with the impact of non-stationarity on investments
in flexibility, i.e., slack resources. In Chapters 9 and 12 the rolling schedule
concept, commonly used in practice to deal with non-stationarities, is
discussed extensively. And in Chapter 13 dynamic models of transportation
operations are formulated and solved by a new generic method. Substantial
research efforts are required to provide models and methods that can be
applied to real-world problems.

2.3 Manufacturing as a global commodity

2.3.1 Final assembly is simple

Although capital has replaced quite a number of labour-intensive activities,
e.g. welding in automotive and printed circuit board mounting in electronics,
still a number of manual activities remain before a product can be delivered to
the customer. Most of these activities relate to the final assembly, test and
packaging of the product. For a while time manufacturers believed that even
these activities could be substituted by automation, giving birth to the concept
of Flexible Assembly Systems [cf. Suri, Sanders and Kamath (1993)], but soon
they discovered that such flexible systems are economically viable only in
complex assembly activities with very high requirements on consistent product
quality, or assembly activities that are no longer acceptable to be performed
by human beings. What remained was a collection of relatively simple labour-
intensive assembly activities, whose output quality could be controlled and
supported by the common-sense Japanese manufacturing concepts and
technology [cf. Chase, Aquilano and Jacobs (1999)], that have now been
embedded in best practice manufacturing.
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From this observation many companies concluded that their final assembly
activities could be outsourced as well, or that they could be treated as nomadic
activities, i.e., final assembly activities are started-up in a particular region of
the globe if labour is cheap and abandoned as soon as another region has
lower labour rates. This is an economically viable manufacturing concept
because the fixed investments for such facilities are perceived to be low and the
transportation costs for inbound and outbound shipments are thought to be low
relative to the other costs. Apart from labour rates, the reason for abandoning
final assembly activities in a region can be governmental support and incentives
from other regions that outweigh possible labour rate disadvantages.

The major impact of portable manufacturing is the geographical spread of
manufacturing activities. This has increased the complexity of physical
distribution activities, and hence the complexity of supply chain planning and
control activities. Where normally face-to-face contact enables fast and
informal communication, nowadays planners, schedulers, expediters, group
leaders and many others involved in supply chain activities have to rely on
information systems and formal communication. Furthermore, the location of
production is typically quite distant from the point of consumption or
demand; thus the logistics function is more complex.

2.3.2  Physical distribution is cheap

The outsourcing of the physical distribution function and its increased
impact on customer service have stimulated the emergence of third party
logistics (3PL)service providers, that take over the actual planning and control
functions involved in physical distribution from the Original Equipment
Manufacturers (OEM). By doing so, these 3PL service providers should be
able to improve the performance of the physical distribution function, while
leveraging scale to reduce physical distribution costs.

The emergence of 3PL service providers creates another interface between
two legally independent entities, i.e., the manufacturer (or supplier) and the
customer. This requires contractual relationships to assure performance. In
this context the difficulty lies in the fact that the 3PL provider indeed leverages
scale by engaging in several contractual relationships with OEMs, so that the
actual cost of a service towards each OEM cannot be separated from the costs
of services towards other OEMs. Typically 3PLs operate according to some
tariff structure combined with customer-specific rebates based on the power of
the customer. Issues related to the tariff structure 3PLs are discussed, amongst
other 3PL issues, in Chapter 2.

2.3.3  Relevance for Operations Research applied to supply chains

The complexity of planning and control of a geographically dispersed
supply chain, crossing multiple organizational boundaries, is huge and today
largely unsolved in practical terms. Though OR has contributed to the design
and planning of supply chains, there has been less success implementing the
control principles due to the lack of information systems that seamlessly
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connect the various organizational entities, so that full transparency of
information is achieved. Most supply chains still consist of informational
silo’s that exchange information periodically. The exchange of information is
at best imperfectly orchestrated, requiring quite some management attention.
Although companies like Cisco and Dell claim to have IT architectures that
provide such seamless integration, one should be aware that this relates only
to the integration with 1st tier suppliers. This OEM-1st tier supplier interface
is responsible for only a small portion of the added value created in the supply
chain, albeit that the cumulated value at this interface is almost 100% of the
final product cost.

The control principles underlying the planning and control of supply chains
are discussed in Chapters 9-13. The strategic and tactical issues involved in
asset management in geographically dispersed supply chains are discussed in
Chapters 3-5 and 8.

2.4 Information technology

2.4.1 Enterprise resource planning systems

From the mid-eighties onwards, company-wide implementation of
so-called Enterprise Resource Planning (ERP) systems was used as a means
to introduce new business processes. A lot of attention was paid to the
identification of best practices across the company and at other (competing)
companies. External consultants supported the implementation process. The
typical throughput time of such implementation projects ranged from two to six
years, depending on the size and the change management culture of the
company. During the nineties many horror stories were published in both
scientific journals and the media about the problems occurring during the ERP
implementation process. In many cases it was stated that the benefits obtained
from the implementation did not have much to do with the IT system itself, but
rather from improvements in business processes. Yet, it should be emphasized
here, that without the information and transaction processing capabilities of
ERP systems, global companies would not be able to operate effectively and
efficiently. Without ERP systems implemented across a globally operating
company, information would not be available for taking the appropriate
measures. On top of that, ERP software vendors have shown that software
standardization and maintenance is possible, even for such functionally and
architecturally complex systems. The core competence of ERP software
vendors, i.e., developing and maintaining standard software to support
business processes across a wide range of industrial and public sectors, requires
an investment in human resources, that individual companies cannot afford.

Enterprise Resource Planning systems are systems that enable the execution
of all business processes, such as order processing, invoicing, transportation,
warehouse picking, work order release and purchase order release. Enterprise
Resource Planning systems are transactional systems that also support
various decision-making processes, such as inventory management, production
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planning, forecasting, etc. This mixture of transactional system and decision-
support system makes it hard to define an ERP system in a rigorous manner.
The emergence of so-called Advanced Planning and Scheduling (APS) systems
that focus entirely on decision-support permits one to view the ERP systems
as being primarily the transactional I'T backbone of a company.

Enterprise Resource Planning systems are a ‘conditio sine qua non,” a
prerequisite for implementation of intra- and inter-company Supply Chain
Management. Enterprise Resource Planning systems in their role of
transactional backbone provide the required data about future sales plans,
customer orders, actual inventories and work-in-process, available resources
and cost and pricing information. However, ERP systems are not sufficient for
true inter-company SCM. SCM requires information exchange between ERP
systems of different companies. From an IT perspective this implies
standardization of interfaces and the associated data models. In the late
eighties initiatives such as EDIFACT focussed on exchanging transactional
data, such as invoices and purchase orders. Only recently the concept of
Collaborative Planning, Forecasting and Replenishment (CPFR) requires the
exchange of planning data, such as sales plans and production plans.
Technically speaking this is similar to the exchange of transactional data.
However, planning data contain information about a company’s strategy.
Most companies are quite reluctant to share this information with suppliers
or customers, since this data might, accidentally or not, be shared with
competitors. The problem of information privacy has not been resolved and it
is quite likely that it cannot be resolved.

2.4.2  Advanced planning systems

During the seventies and eighties OR applications led to the implemen-
tation of tailor-made Decision Support Systems (DSS) for supply chains.
Initially such DSSs were run on mainframes, but soon after the emergence of
the PC such applications were run on this platform. DSSs supported
production planning, inventory management and transportation planning.
The required inputs were downloaded from IT backbone systems and the
outputs were uploaded again, either manually or using an IT interface.
Companies such as Manugistics and Numetrix originate from the early
eighties. However, these DSSs never raised the same interest with top
management as ERP systems. Despite this, we should remark here that DSSs
are widely spread across all business function, yet not recognized as such.
Virtually any planner, product manager, R&D manager or controller, has
developed some sort of DSS with spreadsheet programs, such as Excel. In
particular, planning functions are often supported by homemade spread-
sheets. In many cases such spreadsheets support the planner in ‘solving’
extremely complex planning problems.

The lack of attention of top management with respect to DSSs changed
fundamentally in the early nineties when the notion of a DSS was replaced by
the notion of an APS. One of the keys to the initial success of APS software was
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the claim of the APS software vendors that they sold, similar to ERP software
vendors, standard software. Furthermore, APS software vendors were top
management-geared. Statements were made about the huge profits that could be
gained with the company-wide implementation of APS systems. In late 2001,
AMR Research concluded that the promises made were not realized and that
APS implementations were restricted to implementation of stand-alone
modules (e.g. production planning module and supply chain planning module)
instead of integrated APS suites supporting multiple business functions.

For OR researchers this conclusion did not come as a surprise. APS systems
are DSSs. Decision support requires a careful study of the business processes
to be supported, including all peculiarities. In most cases such peculiarities
translate into constraints on decision variables that make the problem to be
solved NP-hard, when assuming all relevant inputs are known, and even
impossible to formulate properly, when assuming some relevant inputs are
stochastic. As a consequence, to develop a DSS for such problems entails
careful engineering of tailor-made algorithms and requires very scarce human
resources. In Chapter 9 APS systems are discussed extensively. In all chapters
we will be confronted with the complexity of relevant SCM problems and
learn that many questions are left for further research. We should be aware
that the promises of APS software vendors led many top managers to believe
that all relevant SCM decision support problems can be routinely solved:
everything can be optimised, and there is no need for investments in problem-
driven research, as might be done by operations researchers.

Despite this scepticism, APS software vendors have drawn the attention of
top management to OR. Furthermore, APS software vendors are employers
of OR researchers, either directly or indirectly. APS software implementation
has given a boost to the development of solver engines based on LP and MIP,
requiring state-of-the-art scientific OR knowledge to solve large-scale
problems. Many researchers in stochastic OR filled in the gap left by the
leading APS software vendors related to addressing business issues under
uncertainty.

2.4.3 Internet and World Wide Web

A discussion on Information Technology related to SCM is not complete
without addressing the impact of the Internet and World Wide Web. The
World Wide Web enabled companies to reach out directly to consumers. In
fact, consumers have taken over in-company activities, such as order
configuration and order entry. Despite the meltdown of the New Economy,
sales over the Web contribute considerably to the revenue of many companies
and will increase in the future. The direct contact with consumers has allowed
firms to acquire individual consumer profiles. In turn, such profiles enable
improved forecasting of sales in parallel to mass customization (cf. Chapter 5).
Furthermore, with the consumer profiles, a firm can do dynamic pricing, so as
to set the right price for the right product, aimed at an increase in turnover
and a reduction in product obsolescence. In the business-to-consumer



Ch. 1. Introduction 11

markets, the World Wide Web has created the means to create many-to-many
markets, such as auctions.

In the business-to-business environment, the World Wide Web has
provided similar opportunities to reduce costs of customer service and
purchase order processing, and to reach out to new customers. The Web has
also made it possible to share information across companies during joint
R&D projects. But most importantly, the Internet has created a low-cost
standard public IT infrastructure that enables communication around the
globe. Problems of information security have been addressed by applying
methods from cryptography. The remaining problem is the problem of
standardized messages and interfaces. In that sense the problems mentioned
above in relation to EDI still stand. Much effort is put into making progress
here by developing voluntary standards, such as XML, and companies join in
consortia developing the required standards, such as RosettaNet.

The above clearly shows that much more effort is needed to create a
seamless, secure and low-cost IT infrastructure, yet principally IT need not
hamper SCM improvements.

2.4.4  Relevance for Operations Research applied to supply chains

Most interesting problems in OR require a substantial amount of data,
either due to structural complexity or due to uncertainty for which the
probability distribution of random variables and processes must be deter-
mined or validated. One might say that only during 1990s has the required
data been available at a reasonable cost in time and effort. The implemen-
tation of ERP systems, implying centralized databases and data warehouses,
made access to detailed transaction data possible.

The Internet has been important in particular for the implementation of
SCM. Supply Chain Management implies in many cases that information
must be exchanged between different organizations and companies. Nowadays
this can be done at low cost and with high security. Exchange of data through
the Internet also occurs when an OR application is offered as a service.
Typically the application is hosted at a server. Customers using the service
have to send their input data to this server and receive output data after
processing. Application Service Providers (ASP) often have their roots in OR.
The OR research discussed in this handbook is likely to be incorporated in
such services in the near future.

3 Outline of the volume

This volume consists of three parts. Part I deals with Supply Chain Design.
In Chapter 2, Muriel and Simchi-Levi discuss the optimal location of
warehouses and factories as well as some tactical problems related to pricing
and integrated production, inventory and transportation policies. These
models yield the infrastructure from which Chapter 13 departs to develop
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operational transportation policies. In Chapter 3, Graves and Willems discuss
various strategic and tactical issues that must be addressed when deciding on
investments in inventory capital to hedge against uncertainty. Also the issue of
supplier selection in the context of the trade-off between supplier flexibility
and variable material costs is discussed in detail. Chapter 4 by Bertrand
provides an overview of the literature on flexibility in the context of Supply
Chain Design. The literature review reveals that most of the flexibility
concepts from the literature do not provide insight into the issue of allocation
of assets across the supply chain, so that flexibility is created at the right links.
Bertrand proposes a modelling framework that addresses this issue. This
modelling framework shows a close resemblance with the modelling concepts
from the design of contracts, which are reviewed in Chapters 6 and 7. Part I
closes with Chapter 5, where Swaminathan and Lee examine the relationship
between product and process design and Supply Chain Design. One key
notion is postponement, which we briefly addressed above.

Part II deals with Supply Chain Coordination. In this context coordination
refers to the design of contracts between suppliers and buyers, as well as the
information that is exchanged between them. The different incentives of
supplier and buyer are formalized in a game—theoretic context, showing that
without proper incentive schemes the supply chain becomes inefficient in
comparison to a supply chain with centralized control. Relatively simple
models reveal fundamental insights on Supply Chain Coordination and
already have had a great impact in the business practice of today. In Chapter
6, Cachon focuses on contracts that allow for various kinds of transfer
payments and identifies conditions under which such transfer payments yield a
properly coordinated supply chain. In Chapter 7, Chen studies the value of
information exchange and sharing. By comparing alternatives for sharing
information between the links in the supply chain, we obtain insights about
which information is most valuable and under what circumstances. The results
from Chapters 6 and 7 provide inputs in terms of costs and prices, as well as
available information, for the coordination of the supply chain. Still, many
other parameters are required to execute the supply chain. In Chapter 8,
Swaminathan and Tayur provide a framework for understanding the role of
tactical planning parameters, such as forecast accuracy, mean and variance of
lead times and capacity utilization. They also emphasize the issue of the
structural complexity of a supply chain. Real-world problems have such an
enormous structural complexity that there is hardly any hope for solving them
cleanly with a closed-form formula. Thus, Swaminathan and Tayur propose
alternative routes to cope with this complexity.

The complexity of SCM becomes even more apparent in Part 111, which is
dedicated to Supply Chain Operations. In Chapter 9, Fleischmann and Meyr
provide an overall Supply Chain Planning (SCP) framework. This framework
shows the hierarchical nature of real-world SCM and further reveals the
structural complexity already discussed by Swaminathan and Lee. The SCP
framework provides the means to assess the state-of-the-art of Advanced
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Planning and Scheduling systems. In Chapter 10, Axsater discusses the progress
made during the nineties with respect to the analysis of multi-echelon serial and
divergent inventory systems. The fact that the structure of the optimal policy
for divergent systems remains unknown, even for the most benign random
demand processes, motivates the development and analysis of various control
policies. As discussed above, Dell has introduced a new business model in the
consumer market that was normally only used in business-to-business
environments, i.e., Assemble-To-Order. This revitalized the interest in the
models that describe the control of inventories in such an environment. Song
and Zipkin report in Chapter 11 on the substantial progress made in this area.
Following up on Chapter 9, De Kok and Fransoo discuss Supply Chain
Operations Planning (SCOP) applied to arbitrary multi-echelon inventory
systems, i.e., many-to-many relationships between items (links) to be
controlled. They propose a framework that enables the assessment of the
feasibility of supply chain control concepts proposed in the literature and
provide some quantitative results that reveal the counter-intuitive behaviours
of such systems. Finally, Chapter 13 discusses the role of the logistics service
providers for effective Supply Chain Management. Powell presents a general
framework (vocabulary) for modelling a wide range of problems that arise
when dealing with transportation optimization under uncertainty in demand,
pricing, etc. The models emerging from this framework are tackled with a
generic method, called adaptive dynamic programming. The underlying idea is
the concept of incomplete states and approximate value functions that allow for
the development of approximation methods. Some test problems show
promising results. Powell also addresses issues of data quality that are relevant
for all problems discussed in this handbook.
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1 Introduction

In recent years, there has been renewed interest in the area of logistics
among both industry and academia. A number of major forces have con-
tributed to this trend. First, industry has realized the magnitude of savings
that can be achieved by better planning and management of complex logistics
systems. Second, many companies have started breaking traditional orga-
nizational barriers leading to the cooperation among different functional
departments, and thus expanding the scope and size of these systems. At
the same time, information and communication systems have been widely
implemented and provide access to data from all components of the supply
chain. Finally, deregulation of the transportation industry has led to the
development of a variety of transportation modes and reduced transportation
costs, while significantly increasing the complexity of logistics systems.

These developments call for the implementation of optimization based
Decision Support Systems that take into account the interaction between the
various levels of the logistics network, and utilize the wealth of available
information.

Unfortunately, like many other complex business systems, logistics and
supply chain management problems are not so rigid and well defined that they
can be entirely delegated to computers. Instead, in almost every case, the
flexibility, intuition, and wisdom that are unique characteristics of humans are
essential to effectively manage the systems. However, there are many aspects
of these systems which can only be effectively analyzed and understood with
the aid of a computer. It is exactly this type of assistance which Decision
Support Systems are designed to provide. As the name implies, these systems
do not make decisions. Instead, they assist and support the human decision-
maker in his or her decision making process.

17



18 A. Muriel and D. Simchi-Levi

Within the various disciplines that make up supply chain management,
optimization based Decision Support Systems are used to address a wide
range of problems, from strategic problems like logistics network design, to
tactical problems like the coordination of inventory and transportation
decisions, all the way through day-to-day operational problems like
production scheduling, delivery mode selection, and vehicle routing. The
inherent size and complexity of many of these problems make optimization
based Decision Support Systems essential for effective decision making.
Indeed, optimization based Decision Support Systems have been used
extensively in the last few years to radically improve logistics and supply chain
efficiencies.

This chapter describes optimization models that effectively address
the coordination of various decisions concerning the planning and design of
the supply chain, and are promising foundations for the development of
Decision Support Systems in this field. The chapter is divided into three parts,
each of which focuses on a different problem area:

Production|/Distribution Systems: Part 1 introduces models which are
designed to help determine the appropriate production, inventory,
and transportation policies for a set of manufacturing plants, warehouses
and retailers. Given plant, warechouse and retailer locations, production,
inventory and transportation costs, as well as demand forecasts for each
retail outlet, the objective is to determine policies which minimize system-
wide costs. As we demonstrate, realistic production and transportation cost
functions that exhibit economies of scale make solving these problems
challenging.

Of course, forecast demand is not enough to determine an effective
inventory policy; uncertainty in demand also needs to be incorporated
in the analysis. In practice, this is typically done by decomposing
the problem into two parts: The first is identifying an inventory policy
that balances holding and fixed costs assuming forecast demand over a
given planning horizon, see Stenger (1994). The second is determining
safety stock levels and incorporating these in the inventory level that
should be maintained at the beginning of each period. Thus, the models
analyzed in this part of the chapter help optimize inventory decisions
associated with the first part of the decomposition approach used in
practice.

Pricing to improve Supply Chain Performance: Dynamic pricing techniques
such as yield management have been successfully applied to a variety of
industries, e.g., airlines or rental car agencies, with a focus on those that
have perishable inventory. In Part II of this chapter, we extend dynamic
pricing techniques to a more general supply chain setting with non-
perishable inventory. Specifically, we consider pricing, production, and
inventory decisions simultaneously in a finite and an infinite horizon single
product environment. The objective is to maximize profit under conditions
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of periodically varying inventory holding and production costs, and price-
sensitive, stochastic demand.

Unfortunately, concepts such as convexity or k-convexity, that have
been proven effective for classical inventory models, are not applicable for
supply chain models with general, price-dependent, stochastic demand
processes. Thus, to analyze models that incorporate pricing decisions, we
introduce the notion of symmetric k-convex functions. This notion allows
us to characterize the structure of the optimal policy for finite and infinite
horizon, single product, periodic review models with general price-
dependent stochastic demand functions.

Interestingly, we demonstrate that dynamic pricing strategies have the

potential to radically improve supply chain performance. Indeed, the
computational results reported in Part Il suggest that companies that
experience variability in demand curves or have limited production capacity
may significantly benefit from dynamic pricing.
Logistics Network Design: Network configuration may involve issues
relating to plant, warehouse and retailer location. These are strategic
decisions since they have a long-lasting effect on the firm. In Part III of this
chapter, we concentrate on the following key strategic decisions:

1. determining the appropriate number of warehouses,

2. determining the location of each warehouse,

3. determining the size of each warehouse, and

4. determining which products customers will receive from each
warehouse.

We therefore assume that plant and retailer locations will not be changed.
The objectiveis to design or reconfigure the logistics network so as to minimize
annual system-wide costs including production and purchasing costs,
inventory holding costs, facility costs (storage, handling, and fixed costs),
and transportation costs, subject to a variety of service level requirements.

PART I: PRODUCTION/DISTRIBUTION SYSTEMS
2 Introduction

In the last decade many companies have recognized that important
cost savings and improved service levels can be achieved by effectively
integrating production plans, inventory control and transportation policies
throughout their supply chains. The focus in this and the following two
sections is on planning models that integrate decisions across the supply chain
for companies that rely on third party carriers.

The models described in these sections are motivated in part by the great
development and growth of many competing transportation modes, mainly as
a consequence of deregulation of the transportation industry. This has led to a
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significant decrease in transportation costs charged by third party distributors
and, therefore, to an ever-growing number of companies that rely on third
party carriers for the transportation of their goods.

One important mode of transportation used in the retail, grocery and
electronic industries is the LTL (Less-than-TruckLoad) mode, which is
attractive when shipment sizes are considerably less than truck capacity.
Typically, LTL carriers offer volume, or quantity, discounts to their clients to
encourage demand for larger, more profitable shipments (Fig. 1).

Volume discounts can be of two types: (1) incremental discounts, which can
be modeled as a piece-wise linear concave function of the quantity shipped,
and (2) all-unit discounts, which, as we demonstrate later, result in the
piece-wise linear continuous function depicted below. These cost functions are
supported by the industry standard transportation rating engine, called
CZAR (Southern Motor Carrier’s Complete Zip Auditing and Rating engine),
which most LTL carriers use.

Similarly, production costs can often be approximated by piece-wise linear
and concave functions in the quantity produced, e.g., set-up plus linear
manufacturing costs. These economies of scale motivate the shipper to
coordinate the production, routing and timing of shipments over the
transportation network to minimize system-wide costs. In what follows, we
refer to this general problem as the Shipper Problem.

This planning model, while quite general, is based on several assumptions
which are consistent with the view of modern logistics networks. Indeed, the
model deals with situations in which all facilities are part of the same logistics
network, and information is available to a central decision-maker whose
objective is to optimize the entire system. Thus, distribution problems in the
retail and grocery industries are special cases of our model where the logistics
network does not include manufacturing facilities.

The model also applies to situations in which suppliers and retailers are
engaged in strategic partnering. For instance, in a Vendor Managed Inventory
(VMI) partnership, point-of-sales data is transmitted to the supplier, which is

Incremental Discounts All-Unit Discounts

Cost ¢ Cost 4

» N - N

Quantity Quantity

Fig. 1. Common LTL quantity discount cost structures.
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responsible for the coordination of production and distribution including
managing retail inventory and shipment schedules. Hence, in this case, the
model includes manufacturing facilities, warehouses and retail outlets.

Related models analyzing the distribution problem from the carriers point
of view are discussed in Farvolden, Powell, and Lustig (1993) and Farvolden
and Powell (1994). The first paper develops a fast algorithm for solving large-
scale linear programming multi-commodity network flow problems with
capacity constraints. The second suggests a heuristic strategy for the problem
of determining the number of vehicles the carrier should use in different
links of the service network. For a survey of the practical challenges faced by
LTL carriers in the design and management of their networks and various
solution approaches, the reader is referred to Crainic and Laporte (1997),
Crainic and Roy (1992), Braklow, Graham, Hassler, Peck, and Powell (1992),
Powell and Sheffi (1989), Powell (1986), Crainic and Rosseau (1986) and
Chapter 13 of this handbook.

For completion, we briefly review other commonly used transportation
and/or distribution models. Models integrating inventory control policies and
vehicle-routing strategies have been analyzed extensively in the literature.
See Bramel and Simchi-Levi (1997), Anily and Bramel (1999) and Toth and
Vigo (2001) for recent reviews on vehicle routing and inventory/routing
problems. These models are quite different from the models analyzed here due
to the structure of the transportation cost and the fact that most of them
assume that the shipper operates its own fleet of vehicles. This is also the case
for the model recently studied by Lee, Centikaya, and Jaruphongsa (2000),
which focuses on the coordination of inventory replenishments and dispatch
schedules at a warehouse that serves a single retailer. The warehouse
orders incur a fixed cost and the outbound transportation cost function
consists of a fixed cost per delivery plus a cost per vehicle dispatched. More
general piece-wise linear transportation costs, which include both the ones
studied below and those just mentioned, have been considered in Croxton,
Gendron and Magnanti (2000a) to model the selection of different
transportation modes and shipment routes in merge-in-transit operations. In
this case, a set of warehouses coordinates the flow of goods from a number
of suppliers to multiple retailers with the objective of reducing costs through
consolidation.

Finally, a new trend in distribution management is the acquisition of TL
(TruckLoad) transportation services through auction; see Caplice (1996).
Specifically, various transportation exchange sites link together shippers, third
party logistics intermediaries and carriers, and allow for economic efficiencies
through an auction or bidding process. Depending on the exchange, either the
carriers bid and the shipper assigns carriers to individual shipments, or the
shippers bid and the carrier selects the shipments to serve. In the former case,
the carrier must select the set of loads on which to bid, determine the
appropriate bidding cost, and be prepared to adjust in real time its current
operations to accommodate the new loads. Given the bidding costs, the
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shipper must determine the cost minimizing assignment of carriers to loads.
In the latter case, the carrier must determine which loads and prices to
accept and how to adjust its operations to service these loads while max-
imizing profitability. Examples of shippers that allow carriers to bid on trans-
portation loads include companies such as Sears Roebuck, Ford Motor
Company, Wal-Mart and K-Mart, see de Vries and Vohra (2000). The liter-
ature on combined value auctions is rapidly growing, see e.g., DeMartini,
Kwasnica, Ledyard, and Porter (1999), Rothkopf, Peke¢, and Harstad
(1998), Ledyard (2000), Ledyard, Olson, Porter, Swanson, and Torma
(2000), Sandholm (1999, 2000), Fujishima, Leyton-Brown, and Shoham
(1999), Leyton-Brown, Shoham, and Tennenholtz (2000), Kelly and Steinberg
(2000).

The following sections describe our modeling approach and results for the
Shipper Problem under each of the two common transportation cost functions
described above.

3 Piece-wise linear concave costs

In this section, we focus on the Shipper Problem under piece-wise linear and
concave production and transportation costs, and use properties resulting
from the concavity of the cost function to devise an efficient algorithm.

The objective of the shipper is to find a production plan, an inventory
policy and a routing strategy so as to minimize total cost and satisfy all the
demands. Backlogging of demands may be allowed, incurring a known
penalty cost which is a function of the length of the shortage period and the
level of shortage. In this case, four different costs must be balanced to obtain
an overall optimal policy: production costs, LTL shipping charges, holding
costs incurred when carrying inventory at some facility and penalty costs for
delayed deliveries.

Chan, Muriel, and Simchi-Levi (1999) formulate this tactical problem as a
concave cost multi-commodity network flow problem. Unfortunately, most of
the literature on network flows is devoted to the analysis of minimum-cost
network flow problems for which the cost is a linear function of the amount
shipped on an arc, see Ahuja, Magnanti, and Orlin (1993). In practice,
however, situations in which there is a set-up charge, or a discount due to
economies of scale give rise to concave cost functions. In this case, an
exhaustive search of all extreme points would provide an optimal flow, since a
concave function achieves its minimum at an extreme point of the convex
feasible region. However, such an approach is impractical for all but the
simplest of problems. This, of course, is not surprising since the fixed-charge
network design model, in which the cost of using an edge is simply a fixed
charge independent of the quantity shipped, is a special case of the concave-
cost network flow problem and is NP-Complete, see Johnson, Lenstra,
and Rinnooy Kan (1978). Consequently, the exact algorithms that have been
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developed are either valid only for networks with special structures or run in
exponential time in the general case.

For instance, Zangwill (1968) is one of the first authors to analyze the
minimum-concave-cost problem. He presents an algorithm with complexity
O(an®), for acyclic networks with a single source (or a single destination), a
arcs, n nodes, and d+ 1 destinations (or sources in the single destination case).
This algorithm can also be applied to the multi-commodity case, again with
either a single source or a single destination, since the problem can be reduced
to a single-commodity network flow problem. For the general single-
commodity minimum-concave-cost problem, Erickson, Monma, and Veinott
(1987) develop a dynamic-programming procedure, called the send-and-split
method. The algorithm runs in polynomial time for planar networks in which
all demand nodes lie in a bounded number of faces. When the underlying
network enjoys the strong-series-parallel property, Ward (1999) develops a
polynomial time algorithm to solve the multi-commodity network flow
problem with aggregate concave cost. This appears to be the first algorithm to
solve the problem in polynomial time.

While all algorithms mentioned above are exact and share a dynamic
programming approach, Falk and Soland (1969) and Soland (1971) present
branch and bound heuristics based on approximations of the concave
functions by linear ones. Gallo and Sodini (1979) find local optimality
conditions for the concave-cost multi-commodity network flow problem on
uncapacitated networks, and propose a vertex following algorithm to
determine the local minima. Yaged (1971) proposes a different method
to find local optima; in this case, the point satisfying the Kuhn-Tucker
conditions is found by a successive-approximation, fixed-point algorithm.
The quality of the local optimum can be improved by using stronger
optimality conditions and a greedy-type algorithm; see Minoux (1989)
and Guisewite and Pardalos (1990) for a survey of results and solution
techniques.

Balakrishnan and Graves (1989) consider a multi-commodity network flow
problem, very similar to the one analyzed in this section, in which the arc costs
are piece-wise linear concave functions. They develop a composite algorithm
that combines good lower bounds and effective heuristic solutions based on
solving the Lagrangian relaxation of a specific formulation of the problem.
Similarly, Amiry and Pirkul (1997) use a Lagrangian decomposition of the
same problem to obtain slightly tighter bounds. However, as for fixed-charge
network problems [see Gendron and Crainic (1994)], Muriel and Munshi
(2002) show that the lower bounds generated by these Lagrangian relaxation
and decomposition methods are no better than that provided by the linear
programming relaxation of the problem, in both capacitated and
uncapacitated networks.

Finally, we must point out that the multi-commodity network flow problem
with piece-wise linear concave costs generalizes the fixed-charge network
design problems that arise in various applications in telecommunications,
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transportation, logistics and production planning, see, e.g., Magnanti
and Wong (1984), Balakrishnan, Magnanti, and Mirchandani (1997),
Balakrishnan, Magnanti, Shulman, and Wong (1991), Gavish (1991) and
Minoux (1989). These models have been extensively studied, especially in the
telecommunications literature in the context of the network loading problem.
In this case, capacitated facilities are to be installed on edges of a tele-
communication network to support prescribed point-to-point demand flow,
see for instance Stoer and Dahl (1994) or Bienstock, Chopra, and Giinliik
(1998). For a review, we refer the reader to Gendron, Crainic, and Frangioni
(1999). A common approach used to solve these network design problems is
Lagrangian relaxation, together with dual ascent, subgradient optimization
and/or bundle methods to optimize the Lagrangian dual. Crainic, Frangioni,
and Gendron (1999) report on the performance of different relaxations and
dual optimization methods.

In what follows, we first incorporate the time dimension into the model by
constructing the so-called expanded network. This expanded network is used
to formulate the Shipper Problem as a set-partitioning problem. The
formulation is found to have surprising properties, which are used to develop
an efficient algorithm and to show that the linear programming relaxation of
the set-partitioning formulation is tight in certain special cases (Section 3.4).
Computational results, demonstrating the performance of the algorithm on a
set of test problems, are reported in Section 3.5.

3.1 The LTL shipper model

Consider a generic transportation network, G = (N, 4), with a set of
nodes N representing the suppliers, warehouses and customers. Customer
demands for the next T periods are assumed to be deterministic and each
of them is considered as a separate commodity, characterized by its
origin, destination, size and the time period when it is demanded. Our
problem is to plan production and route shipments over time so as to satisfy
these demands while minimizing the total production, shipping, inventory and
penalty costs.

A standard technique to efficiently incorporate the time dimension into the
model, see for instance, Farvolden et al. (1993), is to construct the following
expanded network. Let t|,75,...,7T7 be an enumeration of the relevant
time periods of the model. In the original network, G, each node i is replaced
by a set of nodes iy, #,...,ir. We connect node i, with node j, if and only if
7, — 7, 1S exactly the time it takes to travel from i to j. Thus, arc i, — j,
represents freight being carried from i to j starting at time t,, and ending at time
7,. We call such arcs shipping links. In order to account for penalties associated
with delayed shipments, a new node is created for each commodity and serves
as its ultimate sink. For a given commodity, a link between a node representing
its associated retailer at a specific time period, and its corresponding sink
node, represents the penalty cost of delivering a specific shipment in that time
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Simple Scenario Associated Expanded Network
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Fig. 2. Example of expanded network.
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period, and is called penalty link. Finally, we add links (i, i;+;) for
[=1,2,...,T — 1, referred to as inventory links. Let Gr = (V,E) be the
expanded network. Figure 2 illustrates the expanded network for a simple
scenario where the shipping and inventory costs have to be balanced over a
time horizon of just three periods and shortages are not allowed. For
simplicity, we assume that travel times are zero.

Observe that, using the expanded network, the shipper problem can be
formulated as a concave-cost multi-commodity network flow problem.
Production decisions can be easily incorporated into this model. For this
purpose, in the expanded network, each production facility at a specific time is
represented by two nodes connected by a single link whose cost represents
the concave (e.g., set-up plus linear) manufacturing costs. This link is not
different from the shipping links in our original model and, consequently, we
can restrict the discussion, without loss of generality, to the pure distribution
problem.

3.2 A set-partitioning approach

To describe our modeling approach, we introduce the following notation.
Let £ ={1,2,..., K} be the index set of all commodities, or different demands
with fixed origin and destination, and let wy, k=1,2,...,K, be their
corresponding size. For instance, commodity k = 1 may correspond to a
demand of w; = 100 units that needs to be shipped from a certain supplier to
a certain retailer and must arrive by a particular period of time or incur
delay penalties. Let the set of all possible paths for commodity k be P, and let
¢,r be the sum of inventory and penalty costs incurred when commodity & is
shipped along path p € P. Observe that the shipping cost associated with a
path will depend on the total quantity of all commodities being sent along
each of its shipping links and, consequently, it can’t be added to the path cost
a priori. Thus, each shipping edge, whose cost must be globally computed,
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needs to be considered separately. Let the set of all shipping edges be SE and
for each edge ¢ € SE, let z, be the total sum of weight of the commodities
traveling on that edge.

We assume that the cost of a shipping edge ¢, e € SE, of the expanded
network Gp(V, E), is F.(z.), a piece-wise linear and concave cost function which
is non-decreasing in the total quantity, z,, of the commodities sharing edge e.
As presented in Balakrishnan and Graves (1989), this special cost structure
allows for a formulation of the problem as a mixed integer linear program.
For this purpose, the piece-wise linear concave functions are modeled
as follows. Let R be the number of different slopes in the cost function,
which we assume, without loss of generality, is the same for all edges
to avoid cumbersome notation. Let Mg‘l, M!, r=1,...,R, denote
the lower and upper limits, respectively, on the interval of quantities
corresponding to the rth slope of the cost function associated with edge e. Note
that M? = 0 and MX can be set to the total quantity of all commodities that
may use arc e. We associate with each of these intervals, say r, a variable cost
per unit, denoted by o), equal to the slope of the corresponding line segment,
and a fixed cost, f;, defined as the y-intercept of the linear prolongation of that
segment. See Fig. 3 for a graphical representation. Observe that the cost
incurred by any quantity on a certain range is the sum of its associated fixed
cost plus the cost of sending all units at its corresponding linear cost. That is,
we can express the arc flow cost function, F,(z,), as

Fe(Ze) :fgr + Ol;Ze’

if z, € (M!~!, M!]. Clearly,
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Fig. 3. Piece-wise linear and concave cost structure.
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Property 1. The concavity and monotonicity of the function F, implies that,

lLal>a?2> ... >af >0,

2.0 ffel <er < .- <feR,

3. Fo(ze) = min,—i___g{f] + &) z.}. The minimum is achieved at a unique
index s, unless z, = M, in which case the two consecutive indexes s and
s+ 1 lead to the same minimum cost.

We are now ready to introduce an integer linear programming formulation
of the Shipper Problem for this special cost structure. Recall that z, denotes
the total flow on edge e and let z, be the quantity of commodity & that
is shipped along that edge. For all ee SE and r=1,..., R define the
interval variables,

ro__ 19 leFe(Mg_laMg]a
¢ 10, otherwise,

and, in addition, for every k, k € I, let the quantity variables be

. —1 -
o) ek if zoe (M7, M]],
ek — h :

0, otherwise.

In order to relate these edge flows to path flows we define, for each ¢ € SE
and p € U,{;l Py,

5 =

{ 1, if shipping link e is in path p,
»

0, otherwise.
Finally, let variables

] I, if commodity k follows path p in the optimal solution
Yrk 0, otherwise,

for each ke K and p € P,. These variables are referred to as path
flow variables. Observe that defining these variables as binary variables
implies that for every commodity k£ only one of the variables y,. takes
a positive value. This reflects a common business practice in which
each commodity, that is, items originated at the same source and destined
to the same sink in the expanded network, is shipped along a single path.
These integrality constraints are, however, not restrictive, as pointed out
in Property 2 below, since the problem is uncapacitated and the cost functions
concave.

In the Set-Partitioning formulation of the LTL Shipper Problem, the
objective is to select a minimum cost set of feasible paths. Thus, we
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formulate the LTL shipper problem for piece-wise linear concave edge
costs as the following mixed integer linear program, which we denote by
Problem P.

Problem P: Min Z Z VpkCpk + Z XR: |: L Xy o, (ZK: zgk):|
k=1

=1 pePy eeSE r=1

S.t.

Y oyw=1, Vk=12,. K, (3.1
PEP

> 8 ypwi = Z 2, YeeSE, k=1,... K, (3.2)
pEPk r=1

o < wix,, Ve, r,k, (3.3)
K

<M)x,, VeeSE,r=1,...,R, 3.4)

k=1

K

>y =M'x,, YeeSE.r=1,....R, (3.5)
k=1

R

Y ¥, <1 VeeSE, (3.6)
r=1

v €1{0,1}, Vk=1,2,...,K,and p € Py, 3.7

x,€{0,1}, VYee SE,andr=1,2,...,R
2, >0, Yee SE,Vk=1,2,...,K
andr=1,2,...,R. (3.8)

In this formulation, constraints (3.1) ensure that exactly one path is selected
for each commodity and constraints (3.2) set the total flow on an edge e to
be equal to the total flow of all the paths that use that edge. Constraints
(3.3)(3.6) are used to model the piece-wise linear concave function.
Constraints (3.3) specify that if some commodity k is shipped on edge e
using cost index r, the associated interval variable, x7, must be 1. Constraints
(3.4) and (3.5) make sure that if cost index r is used on edge e, then the
total flow on that edge must fall in its associated interval, [M!~!, M!].
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Finally, constraints (3.6) indicate that at most one cost range can be selected
for each edge.

Let Z* be the optimal solution to Problem P. Let Zg and Zg be the
optimal solutions to relaxations of Problem P where the integrality constraints
of interval (x) and path flow (y) variables, respectively, are dropped.
A consequence of Property 1 is the following result.

Property 2. We have,
7" =Zp, = Zg,.

To find a robust and efficient heuristic algorithm for Problem P, we study
the performance of a relaxation of Problem P that drops integrality and
redundant constraints. Although constraints (3.3) are not required for a
correct mixed-integer programming formulation of the problem, we keep
them because they improve significantly the performance of the linear
programming relaxation of Problem P. In fact, Croxton, Gendron and
Magnanti (2000b) show that, without them, the linear programming
relaxation of this model approximates the piece-wise linear cost functions
by their lower convex envelope. Furthermore, keeping these constraints
makes constraints (3.4)—(3.6) redundant in the correct mixed-integer
programming formulation, as a direct consequence of Property 1 part 3,
and in the linear programming relaxation of problem P as well, as Lemma
3 below shows. This will be useful to considerably reduce the size of the
formulation of the problem, while preserving the tightness of its linear pro-
gramming relaxation.

Let Problem PX, be the linear program obtained from Problem P by
relaxing the integrality constraints and constraints (3.4)—(3.6). That is,

K
Problem PX, : MmZ Zy/’kcf’/‘ + Z Z |: XL+ (Zz k>:|
—1 pePy ¢eSE r=1 k=1
s.t. (3.1)-(3.3)
Yok =0, Vk=1,2,...,K,and p € Py,
x, >0, YVee SE,andr=1,2,...,R
2, >0, Yee SE,Vk=1,2,....K

andr=1,2,...,R

Chan et al. (1999) prove the following.
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Lemma 3. The optimal solution value to Problem PX, is equal to the optimal
solution value to the linear programming relaxation of Problem P.

3.3 Structural properties

To analyze the relaxed problem, we start by fixing the fractional path flows
and study the behavior of the resulting linear program. Let y = (y,x) be the
vector of path flows in a feasible solution to the relaxed linear program,
Problem PX,.

Observe that, given the vector of path flows p, the amount of each
commodity sent on each edge is known and, thus, Problem PX, can be
decomposed into multiple subproblems, one for every edge. Each subproblem
determines the cost that the linear program associates with the corresponding
edge flow. We refer to the subproblem associated with edge e as the Fixed-
Flow Subproblem on edge e, or Problem FF7.

Let the proportion of commodity k shipped along edge e be

Yok = Y 85 ypk-

PEP

Using Eq. (3.2), the equality Zle 2! = WrYer must clearly hold; that is, the
sum of all the flows of commodity k on the different cost intervals on edge e
must be equal to the total quantity, wiy.., of commodity k that is shipped on
that edge.

For each edge e, the total shipping cost on e, as well as the value of the
corresponding variables z/, and x, that Problem PX, associates with the
vector of path flows y, can be obtained by solving the Fixed-Flow Subproblem
on edge e:

R K
Problem FFy : Min Z |: UX, 4o, Z ZZk:|
k=1

r=1

s.t.
Zp <wx, Vk=1,....K,andr=1,...,R, (3.9)
R
Yz =wive. Vk=1,....K, (3.10)

1
2, >0, Vk=1,...,K,andr=1,...,R,
x>0, Vr=1,...,R
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Let C*(y)=C*(Vel, ..., Yex) be the optimal solution to the Fixed-Flow
Subproblem on edge ¢ for a given vector of path flows y, or, equivalently, for
given corresponding proportions y,i, ..., Y.k, of the commodities shipped on
that edge.

The following Theorem determines the solution to the subproblem.

Theorem 4. For any given edge e € SE, let the proportion y . of commodity k to
be shipped on edge e be known and fixed, for k = 1,2,...,K, and let the
commodities be indexed in non-decreasing order of their corresponding
proportions, that is,

Vel SVe2 = ... = Vek-

Then, the optimal solution to the Fixed-Flow Subproblem on edge e is

K K
Cr(Vels s ve) = ) Fo <Z Wi) [Vek — Ver—1], (.11
= \i=k

where 9. =0.

Intuitively, the above Theorem just says that in an optimal solution to the
Fixed-Flow Subproblem associated with any edge e, fractions of commodities
are consolidated to be shipped at the cheapest possible cost per unit. At
first, a fraction y.; of all commodities 1,2,..., K is available. Thus, these
commodities get consolidated to achieve a cost per unit of F,(ZX_ wy)/
2K | wi, i.e., the cost per unit associated with sending the full K commodities
on that edge, and the available fraction y,; is sent incurring a cost of
Yer Fo(ZX_ wy). At that point, none of commodity 1 is left and a fraction
(YVe2—Ve1) 1s the maximum available simultaneously from all commodities
2,3,...,K. Again these commodities get consolidated and that fraction,
(Ye2—VYe1), from each commodity is sent at a cost (Yer — Ve)Fe(Zh_, wi).
This process continues until the desired proportion of each commodity has
been sent.

A generalization of this result to capacitated networks has recently been
derived, see Muriel and Munshi (2002).

3.4 Solution procedure

Theorem 4 provides a simple expression of the cost that the relaxed
problem, Problem PR, assigns to any given fractional path flows and thus it
allows for the efficient computation of the impact of modifying the flow in a
particular path. This is the key to the algorithm developed in this section.
Indeed, the algorithm transforms an optimal fractional solution to the linear
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program PR, into an integer solution by modifying path flows, choosing
for each commodity the path that leads to the lowest increase in the objective
of the linear program.

3.4.1 The linear programming based heuristic

Step 1: Solve the linear program, Problem PX,. Initialize k= 1.

Step 2: For each arc compute a marginal cost which is the increase
in cost incurred in the Fixed-Flow Subproblem by augmenting the
fractional flow of commodity k to 1. Note that this is easy to compute
using Theorem 4.

Step 3: Determine a path for commodity k& by finding the minimum cost
path on the expanded network with edge costs equal to the marginal costs.

Step 4: Update the flows and the costs on each link (again employing
Theorem 3.4) to account for commodity k being sent along that path.

Step 5: Let k=k+ 1 and repeat steps (2)—~(5) until k =K+ 1.

Evidently, the effectiveness of this heuristic depends on the tightness of
the linear programming relaxation of Problem P. For this reason, we study the
difference between integer and fractional solutions to Problem P. Chan et al.
(1999) show that in some special cases an integer solution can be constructed
from the optimal fractional solution of Problem PR, without increasing its
cost. In particular, using Theorem 4, they prove the following result.

Theorem 5. In the following cases:

1. Single period, multiple suppliers, multiple retailers, two warehouses,

2. Two periods, single supplier, multiple retailers, single warehouse,

3. Two periods, multiple supplier, multiple retailers, single warehouse
using a cross-docking strategy,

4. Multiple periods, single supplier, single retailer, single warehouse that
uses a cross-docking strategy.

The solution to the linear programming relaxation of problem P is the optimal
solution to the shipper problem. That is,

7t =77

Furthermore, in the first three cases, all extreme point solutions to the linear
program are integer.

The cross-docking strategy referred to in the last two cases, is a strategy in
which the stores are supplied by central warehouses which do not keep any
stock themselves. That is, in this strategy, the warehouses act as coordinators
of the supply process, and as transshipment points for incoming orders from
outside vendors.

The Theorem thus demonstrates the exceptional performance of the linear
programming relaxation, and consequently of the heuristic, in some special
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cases. A natural question at this point is whether these results can be
generalized. The answer is no in general. To show this, Chan et al. (1999)
construct examples with a single supplier, a single warehouse and multiple
retailers and time periods, for which

Z*

ﬁ — 0Q,

as the number of retailers and time periods increases.

Lemma 6. The linear programming relaxation of Problem P can be arbitrarily
weak, even for a single-supplier, single-warehouse, multi-retailer case in which
demand for the retailers is constant over time.

It is important to point out that the instances in which the heuristic solution
is found to be arbitrarily bad are characterized by the unrealistic structure of
the shipping cost. In these instances, the shipping cost between two facilities is
a pure fixed charge (regardless of quantity shipped) in some periods, linear
(with no fixed charges) in others, and yet prohibitively expensive so that
nothing can be shipped in the remaining periods. The following examples
illustrate this structure.

Example of weak linear programming solution: Consider a three-period single-
warehouse model in which a single supplier delivers goods to a warchouse
which, in turn, replenishes inventory of three retailers over time. The
warehouse uses a cross-docking strategy and, thus, it does not keep any
inventory. Let transportation cost be a fixed charge of 100 for any shipment
from the supplier to the warehouse at any period. Transportation from the
warehouse to retailer i, i = 1,2, 3 is very large for shipments made in period
i (in other words, retailer i cannot be reached in period i) and negligible
for periods j # i. Let inventory cost be negligible for all retailers at all
periods, and let demand for each retailer be 0 units in periods 1 and 2 and 100
units in period 3.

Observe that, in order to reach the three retailers, shipments need to be
made in at least two different periods. Thus, the optimal integer solution
is 200. However, in the solution to the linear program 50 units are sent to each
of the ‘reachable’ retailers in each period, and a transportation cost of
50 is charged at each period (as stated in Theorem 4, since only a fraction of
1/2 of the commodities is sent on any edge, exactly that fraction of the fixed
cost is charged). Thus, the optimal fractional solution is 150 and the ratio of
integer to fractional solutions is 3/2.

In this instance, even if fractional and integer solutions are different, the
linear programming based heuristic generates the optimal integer solution.
However, we can easily extend the above scenario to instances for which the
difference between the solution generated by the heuristic and the optimal
integer solution is arbitrarily large.
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Example of weak heuristic solution: For that purpose, we add n new periods to
the above setting. In period 4, the first of the new periods, the cost for shipping
from supplier to warehouse is linear at a rate of 1/3 and the cost for shipping
from the warehouse to each of the 3 retailers is 0. On all the other n—1 periods
the cost of shipping is very high and thus no shipments will be made after
period 4. Inventory costs at all retailers and all periods are negligible. Demand
for each of the three retailers at each of the new n periods is 100, while demand
during the first 3 periods is 0. It is easy to see that the optimal integer and
fractional solutions are identical to those in the 3-period case, with costs of
200 and 150, respectively. However, the heuristic algorithm will always choose
to ship each commodity in period 4, since the increase in cost in the
corresponding path would be 1/3 x 100 while it is at least 50 in any of the first
3 periods. Thus, the total cost of the heuristic solution is 1/3 x 100 x n and the
gap with the optimal integer solution arbitrarily large.

The following section reports the practical performance of the algorithm on
a set of randomly generated instances.

3.5 Computational results

The computational tests carried out are divided into three categories:

1. Single-period layered networks.
2. General networks.
3. Multi-period single-warehouse distribution problems:

o Pure distribution instances.
¢ Production/distribution instances.

The first two categories are of special interest because they allow us
to compare our results with those reported by Balakrishnan and Graves
(1989), henceforth B&G (1989). The third set of problems models practical
situations in which each of the retailers is assigned to a single warehouse
and production and transportation costs have to be balanced with inventory
costs over time.

In the three categories the tests were run on a Sun SPARC20 and CPLEX
was used to solve the linear program, Problem PR, using an equivalent
formulation where path flow variables are replaced by flow-balance
constraints. During our computational work, we observed that the dual
simplex method is more efficient than the primal simplex method in solving
these highly degenerate problems, an observation also made by Melkote
(1996). This is usually the case for programs with variable upper bound
constraints, such as our constraints z;, < wix,. We should also point out
that most of the CPU time reported in our tests is used in solving the
linear program. Thus, to enhance the computational performance of our
algorithm and increase the size of the problems that it is capable of
handling, future research focused on efficiently solving the linear program is
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needed. For instance, the original set-partitioning formulation, Problem
PR, could be solved faster using column generation techniques. In these
tests, however, we focused on evaluating the quality of the integer solutions
provided by the heuristic and the tightness of the linear programming
relaxation.

We now discuss each class of problems and the effectiveness of our
algorithm.

3.5.1 Single-period layered networks

B&G (1989) present exceptional computational results for single-
period layered networks. In these instances, commodities flow from the
manufacturing facilities to distribution centers, where they are consolidated
with other shipments. These shipments are then sent to a number of
warehouses, where they are split and shipped to their final destinations. Thus,
every commodity must go through two layers of intermediate points:
consolidation points, also referred to as distribution centers, and breakbulk
points, or warehouses.

To test the performance of our algorithm and to compare it with that of
B&G (1989), we generated instances of the layered networks following the
details given in their paper. In this computational work, five different problem
classes, referred to as LTL1-LTLS5, are considered.

Table 1 shows the sizes of the different classes of problems. For each of
these classes, the first column (B&G) of Table 2 presents the average ratio
between the upper bounds generated by the heuristic proposed by B&G (1989)
and a lower bound on the optimal solution, over 5 randomly generated
instances. The numbers are taken from their paper. We do not include,
though, their average CPU times because the machines they use are
completely different than ours and, in addition, they do not report total
computational time for the entire algorithm. The second and third columns
report the average deviation from optimality and computational performance
of the Linear Programming Based Heuristic (LPBH) over 10 random

Table 1
Test problems generated as in Balakrishnan and Graves (1989)
Number of Problem class
nodes

LTLI1 LTL2 LTL3 LTL4 LTLS
SOURCE 4 5 6 8 10
CONSOLIDN 5 10 12 15 20
BREAKBULK 5 10 12 15 20
DESTN 4 5 6 8 10
Arcs 42-47 131-141 190-207 309-312 358-372

Commodities 10 20 30 50 60
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Table 2

Computational results for layered networks
Problem  B&G LPBH

class

LB/UB (%)  LP/Heurisitic (%)  Avg. CPU time (sec)

LTL1 99.8 100 1.04
LTL2 100 100 7.94
LTL3 99.6 100 20.74
LTL4 99.1 100 55.72
LTL5 99.5 100 100.48

Balakrishnan and Graves results (B&G) versus those of our Linear Programming
Based Heurisitic (LPBH).

Table 3
Computational results for general networks
Problem class  Size B&G LPBH
No. of No. of No. of LB/UB LP/Heuristic Avg. CPU
nodes arcs comm. (%) (%) time (sec)
GENI1 10 47-54 10 99.9 100 2.18
GEN2 15 109-136 20 98.7 99.53 24.04
GEN3 20 196-235 30 98.4 99.88 139.83
GEN4 30 364-428 50 96.2 98.59 1313.06
GENS 40 340-370 60 98.5 99.98 159.57

Balakrishnan and Graves results (B&G) versus those of our Linear Programming Based Heuristic
(LPBH).

instances, for each of the problem classes. In all of them, our algorithm finds
the optimal integer solution; furthermore, the solution to the linear program in
the first step of our algorithm is integer, providing the optimal solution to the
problem.

Of course, since in all the previous instances the linear program provided
the optimal integer solution, the performance of our procedure has not really
been tested. In the following subsections we present computational results for
problem classes in which the solution to the linear program is not always
integer.

3.5.2 General networks

In this subsection, we report on the performance of our algorithm on
general networks, in which every node can be an origin and/or a destination,
generated exactly as they are generated by B&G (1989). These results together
with those of B&G (1989) are reported in Table 3. In this category,
B&G (1989) consider five different problem classes, referred to as
GENI,...,GENS, and generate five random instances for each of them.
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We, in turn, solve 10 different randomly generated instances for each of the
problem classes. Again, we do not include their average CPU times due to the
reasons mentioned above.

3.5.3  Multi-period single-warehouse distribution problems

Here we consider a single-warehouse model where a set of suppliers
replenishes inventory of a number of retailers over time. We test two different
types of instances: pure distribution instances in which the routing and timing
of shipments are to be determined, and production/distribution instances
in which the production schedule is also integrated with the transportation
and inventory decisions.

Pure distribution instances. We assume that shortages are not allowed and
analyze three different strategies:

1. Classical inventory/Distribution strategy: Material flows always from
the suppliers through a single warehouse where it can be held as
inventory.

2. Cross-docking strategy: All material flows through the ware-
house where shipments are reallocated and immediately sent to the
retailers.

3. A distribution strategy that allows for direct shipments: Items may be
sent either through the warehouse or directly to the retailer. The
warehouse may keep inventory.

For each strategy, we analyze different situations where the number of
suppliers is either 1, 2, or 5, the number of retailers is 10, 12, or 20 and
the number of periods is 8 or 12. For each combination of the number of
suppliers, retailers and periods presented in Table 6, 10 instances are
generated. The retailers and suppliers are randomly located on a 1000 x 1000
grid, while the warchouse is randomly assigned to the 400 x 400 subgrid
at the center. Demand is generated for each retailer—supplier pair at
each time period, except for the cases with five suppliers in which each
of these pairs has an associated demand with probability 1/3. These
demands are generated from a uniform distribution on the integers in the
interval [0, 100).

All suppliers and retailers are linked to the warechouse and the
distance associated is the corresponding Euclidean distance between the
nodes of the grid. In the case of a Distribution Strategy that Allows for
Direct Shipments, shipping edges from each of the suppliers to each of the
retailers are added. The holding costs per unit of inventory are different at
the warehouses and retailer facilities and are presented in Table 5. All
holding costs at the suppliers are set to zero. Two shipping-cost functions,
representing cost per item per unit distance, are considered: The first is
assigned to shipments from the suppliers to the warehouse. The second is
incurred by the material flowing from the warehouse to the retailers. The
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cost function (dollars per mile per unit) associated with direct shipments is
equal to that of shipments from the warehouse to a retailer. Both functions
have an initial set-up cost for using the link and three different linear
rates depending on the quantity shipped, see Table 4. However, the ranges
to which those linear costs correspond are different for the different
Problem classes. This is done so that, in an optimal solution, shipments are
consolidated and thus the concave cost function plays an important role in
the analysis. These ranges and the corresponding problem classes are
presented in Table 5.

Observe, see Table 6, that in most of the instances tested, the linear
program is tight and it provides the optimal integer solution. Only in three
out of the 150 instances generated, the solution to the linear program is
not integer and, in such cases, our algorithm finds a solution which is within
0.8% from the optimal fractional solution.

Production/distribution instances. This section demonstrates the effectiveness

of the algorithm when applied to production/distribution systems, i.e., systems

Table 4
Linear and set-up costs used for all the test problems

Type of arc al o? o Set-up

Supplier—warehouse 0.15 0.105 0.084 25
Warehouse-retailer 0.25 0.20 0.16 10

Table 5
Inventory costs and different ranges for the different test problems
Problem Inventory cost Supplier—warehouse cost Warehouse—retailer cost
class
Warehouse Retailer Range 1 Range 2 Range 1 Range 2
I1 5 10 800 1500 200 400
12 300 600
13 300 600
14 10 20 1000 2000 150 300
I5 200 400
16 200 400
Cl 10 20 800 1500 200 400
C2 300 600
C3 300 600
C4 10 20 1000 2000 150 300
C5 200 400
C6 200 400
Dl 10 20 500 1000 150 300
D2 200 400

D3 200 400
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Table 6
Computational results for a single warehouse
Strategy Problem Number of Number of Number of LP/Heuristic CPU
class suppliers stores periods (%) time (sec)
Classical I1 1 10 12 100 65.21
inventory/ 12 2 100 187.37
distribution I3 5 100 163.23
strategy 14 1 20 8 99.946 83.5
I5 2 100 210.51
16 5 99.953 200.68
Cross-docking Cl 1 10 12 100 60.0
strategy C2 2 100 174.13
C3 5 100 159.06
C4 1 20 8 100 79.73
C5 2 100 202.83
Co6 5 100 186.0
Direct D1 1 12 8 100 51.23
shipments D2 2 100 165.83
allowed D3 5 99.921 117.27

in which one needs to coordinate production planning, inventory control and
transportation strategies over time. For that purpose, we consider the same set
of problems, I1-13, as in the Classical Inventory/Distribution Strategy described
in the previous section and add production decisions at each of the supplier
sites. This is incorporated into the model as explained in Section 3.1.

We consider a fixed set-up cost for producing at any period plus a certain
cost per unit. The set-up cost is varied in the set {50, 100, 500, 1000} and the
linear production cost is set to 1. Inventory holding rate at the supplier site
(after production) is set to half of that at the warehouse. For the 60 different
instances generated, the linear programming relaxation gave an integer
solution every time.

4 All-unit discount transportation costs

In this section, we study coordination of production, inventory and
transportation activities under the all-unit discount transportation cost
structure. Specifically, this cost function, described in Fig. 4, implies that if O
units are shipped, the transportation cost function is

0, ifo=0,

c, if0< Q< M,
_ Ot]Q, ifM1§Q<M2,
G(Q) o OZQQ, if M, < Q < M3,

)

K
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Cost

0 Mi M2 M3 Quantity

Fig. 4. All-unit discount cost structure.

where a; > o, > -+ > 0 and a;M; = ¢. Thus, ¢ is a minimum charge for
shipping a small volume, i.e., ¢ is the total cost when the number of units
shipped is no more than M. Interestingly, in practice, when the shipper is
planning to ship Q units, M; < Q < M, |, the cost is calculated as

F(Q) = min{G(Q), G(M 1)} = min{e;Q, iy 1 My}

That is, if the order quantity is greater than a certain value, the shippers pay as
if they were shipping M, units. This is called in the industry shipping Q but
declaring M, .

This commonly used practice implies that the true transportation cost
function, F(-), has the structure described by the solid line in Fig. 5. As the
dashed lines indicate, the associated solid lines originate at point (0, 0).

We refer to such cost functions as modified all-unit discount cost functions.
Notice that such a cost function satisfies the following properties:

(p1) it is a non-decreasing function of the amount shipped,
(p2) the cost per unit is non-increasing in the amount shipped.

As indicated in the next section, these two properties are sufficient to derive
the results presented below.

To justify considering this cost function, we should point out again that
most LTL carriers use an industry standard transportation rating engine
called CZAR (Southern Motor Carrier’s Complete Zip Auditing and Rating
engine). This engine allows the shipper to find the transportation cost of every
shipment, which is a function of the source, destination, product class and
discount. The carrier and the shipper contractually agree on the product class
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Fig. 5. Modified all-unit discount cost structure.

(typically class 100) and on the level of discount which implies that the shipper
will pay only a given fraction, say 90%, of the cost generated by the rating
engine. Now, given this input, the transportation cost as a function of the
amount shipped enjoys the structure of the cost function described in our
model.

The lack of concavity in this case significantly increases the complexity
of the problem. For this reason, our approach is to pursue a better
understanding of the problem by considering two simple scenarios: (1) the
Single-item Lot Sizing Problem, in which a single retailer places orders from
a warehouse to satisfy its demand over time, and (2) the Single-warehouse
Multi-retailer Problem, in which the warehouse orders from an outside
supplier and replenishes inventory of a number of retailers.

4.1  The single-item economic lot sizing problem

The Single-item Economic Lot Sizing Problem can be stated as follows:
A facility, possibly a warehouse or a retail outlet, faces known demands
over a finite planning horizon. At each period, the order cost function (or
transportation cost function in our application) and the holding cost func-
tion are given and they can be different from period to period. Backlogging
is not allowed. The objective is to decide when and how many units to order so
as to minimize total ordering and holding costs over the finite horizon without
any shortages.

The Single-item Economic Lot Sizing Problem, initially analyzed by
Wagner and Whitin (1958), has recently been the subject of intensive
research. Most of the work has focused on ordering (or transportation) costs,
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which are assumed to be concave in the amount ordered. For instance,
Aggarwal and Park (1993), Federgruen and Tzur (1991) and Wagelmans,
Van Hoesel, and Kolen (1992) have shown that it is possible to take advan-
tage of the special cost structure of the model and use it to develop fast,
exact, algorithms. A few authors have considered more general cost
structures. Federgruen and Lee (1990) consider both ‘all-unit’ (different
from the one considered here) and incremental discount cost structures.
Specifically, in the case of ‘all-unit’ discount cost structures the authors
characterize structural properties of optimal solutions that lead to the
development of a polynomial time algorithm. However, it is easy to show
that these properties do not hold in our case. Shaw and Wagelmans (1998)
and Van Hoesel and Wagelmans (2001) develop pseudopolynomial and
approximation algorithms for more general capacitated versions of the
Economic Lot Sizing problem. Specifically, Shaw and Wagelmans (1998)
develop an algorithm that solves the problem with general piece-wise
linear cost functions to optimality in time proportional to the average
demand and the square of the number of time periods, but is independent
of the capacity limit. Thus, this algorithm can be used to solve the
Economic Lot Sizing problem with modified all-unit discount cost function.
Van Hoesel and Wagelmans (2001) develop a fully polynomial approxi-
mation scheme for the capacitated Economic Lot Sizing problem which
only requires monotonicity of the ordering cost function. In this case,
the complexity of the algorithm is proportional to the number of time
periods, the logarithm of total demand and the logarithm of the sum of
the capacity limits for each period. This dependency on the capacity limit
make the algorithm inappropriate to solve the uncapacitated problem
considered here.

In approaching the Single-Item Economic Lot Sizing Problem with
modified all-unit discount costs, the first challenge is to determine its
complexity. Chan, Muriel, Shen, and Simchi-Levi (2002) show that the
2-partition problem can be reduced to a single-item lot sizing problem with
non-stationary modified all-unit discount ordering cost functions that have a
bounded number of breakpoints. A similar reduction procedure can be
performed in the case of holding and ordering cost functions that do not
change over time, but the number of breakpoints in the cost function grows
with the number of items in the 2-partition problem. In either case, since the
2-partition problem is NP-hard, see Karp (1972) and Garey and Johnson
(1979), we have the following result.

Theorem 7. The Single-item Economic Lot Sizing Problem with modified
all-unit discount ordering cost functions is NP-hard.

The theorem thus suggests that research on this problem should be focused
on identifying easily implementable policies with an attractive worst-case
performance. One such class of policies is the class of Zero-Inventory-Ordering
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(Z10) policies, in which a retailer orders only when its inventory is down
to zero. It is well known that the best ZIO policy can be found in O(7?)
time using a shortest path algorithm [see Bramel and Simchi-Levi (1997),
pp. 166—-167]. The question, of course, is how far can the cost of the optimal
Z10 policy be from the cost of the optimal policy? This question is answered
in the next subsection.

4.1.1 Worst-case analysis of ZIO policies

Consider a single facility facing time varying demand for the next T
periods. Demand in period ¢, t = 1,2,..., T, is known and denoted by d,. A
holding cost, at a rate s, >0, is charged on all items carried over from period ¢
to period t + 1, t = 1,2,...,T—1. Let F(Q) be the ordering cost associated
with an order of size Q placed at the beginning of period . We assume that the
ordering cost function F,(-) belongs to the class of modified all-unit discount
cost functions.

The objective is to determine when to order and how many units to order so
as to minimize ordering and holding costs over the planning horizon, without
any shortages. In what follows we refer to this problem as the lot sizing
problem, with Z* being the cost of the optimal strategy. That is, Z* is the
minimum system-wide cost, associated with the best inventory ordering
strategy for the lot sizing problem. In addition, we let Z#'© be the cost of the
best Z10 policy and, given a particular inventory ordering policy S, we denote
its associated cost by Z(S).

We start by identifying structural properties of the solutions to the lot
sizing problem.

Given any feasible policy S, let R be the number of orders placed over the
horizon and let ¢; be the jth period in which an order is placed, j=1,2,..., R
In what follows, we assume without loss of generality that orders are used to
satisfy demand in a first-in-first-out basis. Thus, the order placed at period ¢
covers a portion of demand at a certain period s;, full demand dj i+
dgo + -+ +dyp—1 of the consecutive periods s; + 1,s5; + 2,...,8 +r;— 1,
and a portlon of the amount demanded at the following penod s; + r;, for
j=12,...,T and some r; € {0,1,..., T—s;}. Obviously, s; is the first period
whose demand is not fully covered, i.e., satisfied, by orders placed in periods
previous to ;.

Given policy S, let Q; be the quantity ordered at period ¢, for
Jj=1,2,..., R, and let TC; denote the cost per unit associated with that order.

In the remamder of thlS subsection, we consider the ordering cost at each
period to be distributed evenly among the quantlty ordered. That is, each unit
of demand satisfied from the order of Q; units in period ¢; is assumed to have
an ordermg cost of TC;=[(F,(Q)))/Q)]. Finally, let H; be the cost of holding
one item in inventory from period #; to t; .

That is, H; = hy, + hyo1 + -+ +hypr — 1.

Some of the parameters just introduced are associated with a particular
policy S, and their values vary from policy to policy. For simplicity, we drop
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the correspondence to the specific policy, except when we refer to the optimal
policy. In this case, parameters associated with the optimal policy, S*, are
indicated by adding an * to the notation.

Lemma 8. Given any feasible policy S, there exists a feasible policy with lower
or equal cost satisfying the following properties,

1. Forallj,j=1,2,...,R—1,s;<t;,; that is, the first period the jth order
is consumed is earlier than the time the (j+ 1)th order is placed.

2. If si+r;>t; 1 then TC; + H; > TC; . y; that is, if the order at t; covers
demands occurring after the next order has been placed, at per zod Lt
then the cost per unit associated with ordering and holding those units in
inventory in the earlier period must be higher.

Proof. Suppose that the current policy S does not satisfy the first property;
that is, there exists an ordering period j such that s;>1¢;, . Since both the
orders at periods #; and ;. cover demand occurring on or after period
141, the two orders can be combined and placed in either #; or #;. ;, whichever
leads to the overall lower cost. The total cost associated with ordering
the combined quantity and holding the units in inventory until period #; ;| is
no more than

(Q; + Qi) MIn{TC; + H;, TCj11} < Q((TC; + Hj)) + Qi1 TCjy1,

which is the cost associated with ordering those quantities and holding the
units in inventory until period #;4; in the current policy S. Since all other
costs remain the same when combining the orders, the above argument shows
that we can always obtain a policy with lower or equal cost satisfying the
property.

Similarly, we can show that if s;4+r;>¢,, and TC; + H; < TC;, the
quantity ordered at period #;,; could be added to the order at period ¢;
without increasing cost, which proves the second property. I

To prove the worst-case result, we break up the quantity Q; ordered at
period 7, j = 1,2,..., R, when following a policy S that satisfies the properties
in Lemma 3, in two:

0; = 0; + (1 —a)0;,

where o;0;, 0 <a; <1, denotes the portion of the jth shipment that is used to
satisfy demands from some time s; < 7, until the (j+ 1)th order is placed.
Similarly, (1—«;)Q; is the quantity destined to satisfy demands on or after
period ¢,
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Following this notation, the total cost associated with an optimal policy S*
can be written as

R
Z* = Z(8*) = TCta; QF + Y (TCE + H (1 — e )OF |
Jj=2

+ TCar OF) + H, (4.1)

where H* denotes the total inventory cost incurred by policy S* minus the cost
of carrying, for each j = 1,2,..., R—1, the portion of demand ordered in
period ¢F but used no earlier than s from period 7} to period ¢f,,. That is,
H* =total holding cost — Z, | H*(l —af)Or. '

Let S* be an optimal solutlon Wthh satisfies the conditions in
Lemma 8. We construct a ZIO policy, S, by modifying the optimal policy
S* as follows.

4.1.2  Transformation procedure

Step 0: Let S=5*.

Step 1: Find the smallest index k, such that «;_;<1; that is, 7, is the
earliest period in which an order is placed before inventory has been fully
depleted.

Step 2: Either,

e Combine 1: move (1 —ay_1)Q)_; from the order at period #,_; to
that at period ¢, or,

o Combine 2: move o, Q, from the order at period 7, to that at period
tr—1 and (1—a;)Q; from the order at period #; to that at period
lie 41,

whichever results in a lower cost.

Step 3: If combining orders in Step 2 causes the second property in Lemma 8 to
be violated, combine orders without increasing total cost, as shown
in the proof of the Lemma, until the current policy satisfies the condition.

Step 4: Let S be the new policy. If all periods in policy § satisfy the ZIO
property, then S = S. Otherwise, repeat Steps 1 to 3.

See Figs. 6-8 for illustration of the Combine procedures. Observe that
Z(S) = 779 since Z“'© denotes the best solution value among all ZIO
policies. Thus, to bound the worst-case performance of Z#'© it suffices to
study the ratio [Z(S)/Z(S*)].

Note that, at each iteration of the transformation procedure, if the ZIO
property is not satisfied at a certain period ¢ in the current policy S, then it was
not satisfied in S* either. Hence, for each period 7, considered at combining
step k (Step 2 with index k) there exists an index j > k, such that in the optimal
solution, S*, the order at period # = ¥ is placed before all earlier inventory
has been used. '
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Fig. 7. Policy obtained when Combine 1 is performed.
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Fig. 8. Policy obtained when Combine 2 is performed.

The following three lemmas demonstrate that, at each iteration of Step 2,
the increase in cost accrued can be bounded.
Lemma 9. The increase in cost at combining step k is not more than

1. TC(1 —ay_1)Q—_1 if Combine 1 is executed.
2. (TCi_1+ Hi_—TCp)a,Qy if Combine 2 is executed.
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This result is a consequence of properties (pl) and (p2) of the cost
function. Thus, at each iteration of Step 2 in the Transformation Procedure,

the increase in cost from the original policy S* to the current policy S is no
more than

Min{TCi(1 — ax—1)OQs—1, (TCr—1 + Hr—1 — TCr)ox Ok}

This increase in cost can be bounded using the following result.

Lemma 10.

. 1
min(A4a, BB) < g(A(oz + B) 4+ Ba), forall B,A,a,8>0.

Proof.

min(Ae. Bf) < o — B+ max(w, ) Bﬁ+2max(oz,ﬁ) —a+B

3 max(a, B) 3 max(a, B) Ae.

Note that
{ — B+ max(e, B)} B < max(a, fa,
and
{2max(a, B) — ¢ + Bla < (o + B)max(a, B).

Hence it follows that
1
min(Awa, BB) < 3 (B + A(a + B)). [ |

Lemma 11. At each iteration of combining step k, the increase in cost is no more
than one third of the corresponding jth term, i.e., j such that ty = t}, in the
expression of the optimal cost, Equation (4.1). That is,

Min{TCi(1 — aj—1)Qs—1,(TCj—1 + Hi—1 — TCi)ex Or}

1
=< 3 I:(TC;“_I + Hj*_l)(l - q;’k—l)Q;k—l + TC]%O[J% }k]'
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Proof. The increase in cost in the combine step associated with the kth order
is no more than,

min{7TCi(1 — ox—1)Qs—1, (TCr—1 + Hi—1 — TCr)ox Q).

Let A:Qk—l(l_ak—l)a B=Qkock, o= TCk and ,3= TCk_1 +H/<_1—Tck and
apply Lemma 10 to get,

min{TCk(l — 1) Ok—1, (TC—y + Hi—y — TCi)or O}

[(TCA 1+ Hi)(1 — aj—1) Qi1 + TCray O]

w|>—w|

[(TC* + HE (= af 0L, + TCrar 05 |-

The last inequality is easy to show by comparing the current solution S with
the optimal solution, S*, and realizing that:

1. The two solutions are identical from period 7 = 7 onwards, since the
orders placed on those periods have not been modlﬁed in previous
iterations. Thus, TCro;. Q) = TCrafQf. In addition, observe that the
demand on or after period #; not Covered by those orders must be
satisfied with units from the previous order in both solutions; that is,

(1 —ok—1)Qk-1 = (1 — af_1)Q}k_1

2. fry =t and the quantity ordered at that period may have been
increased in the previous iteration leading to TCr_; + Hp_ | <
TCH +H} [ |

This proves that Z(S) < (4/3)Z*, since the index j is strictly increasing in
the number of iterations performed and the sum of those terms for all j is no
larger than the optimal value, Z*. Thus,

Theorem 12. For every instance of the lot sizing problem, i.e., the Single-item
Economic Lot Sizing Problem with modified all-unit discount cost function,
we have

7210 _ 4 7
_3 b

and this bound is tight.

It remains to show that the bound is tight. This is proved by constructing
instances for which the worst-case ratio converges to 4/3.

Lemma 13. There exist instances of the lot sizing problem for which the ratio
7419 7% is arbitrarily close to 4/3.



Ch. 2. Supply Chain Design and Planning 49

Proof. Consider an Economic Lot Sizing problem where demands of d; =46
for period 1 and d, =2 for period 2 must be satisfied. There is no charge for
carrying inventory from one period to the next. The ordering cost is described
by a different modified all-unit discount cost function for each period. In
period 1, there is a fixed charge of 2 for any shipment of size no greater than
1 and a rate of 2 per unit for all other shipments. The cost function in period
2 is linear with a rate of 1 per unit.

In the optimal solution to this instance of the lot sizing problem, 1 unit is
ordered at period 1 and 1+ § units at period 2, with a total cost of Z* =34 6.
However, the best ZIO policy consists of ordering § units at period 1 and 2
units at period 2, with a total cost of 7710 — 4. Hence,

z4o 4 4

We note that the only properties of the modified all-unit discount cost
function used in Chan et al. (2002) to prove Theorem 12 are that it is non-
decreasing in the quantity shipped and that the cost per unit is non-increasing
in that quantity, i.e., properties (pl) and (p2). Hence, the theorem holds true
for any transportation function satisfying those properties. In a similar way,
holding costs can be generalized to be any function of the quantity held that
satisfies those two properties.

Observe also that the example developed in Lemma 13, which shows that
the worst-case bound is tight, makes use of different ordering cost functions
for the two periods. This suggests that it may be possible to improve
the worst-case bound when the ordering cost function does not vary over time.
Indeed, in that case, Chan et al. (2002) again transform an optimal policy
which satisfies the properties developed in Lemma 8 into a ZIO policy and
show that the increase in cost due to the transformation is no more than 1/4.6
times the cost of the optimal policy.

Theorem 14. For every instance of the lot sizing problem in which the ordering
cost function is the same for all periods in the planning horizon, we have

56 .,

ZZIO < AR

~ 4.6

A natural question at this point is whether the worst-case bound
(Z%419)7Z*) < (5.6/4.6) ~ 1.217 is tight. Although this question is still open,
Chan et al. (2002) describe instances of the problem for which the ratio of the
solution generated by the heuristic to the optimal solution converges to

1/[2(v/2 — 1)] = 1.207.
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Lemma 15. There exist instances of the lot sizing problem with a stationary
ordering cost function for which the ratio Z“'°|Z* is arbitrarily close to

1/2(V2 = 1)),

4.1.3  Computational results

To complete our study, we need to analyze the empirical performance of the
best Z10 policy. The objective is to answer two major questions: (i) How far is
the cost of the best ZIO policy from that of an optimal one for various test
problems? (i) What are the advantages of using the ZIO policy compared to
known pseudo-polynomial time algorithms that can generate optimal solutions
to the problem? How does the performance of the best ZIO policy compare
with that of polynomial approximation algorithms based on these exact
pseudo-polynomial algorithms?

To answer these questions, we evaluate the performance of the best ZIO
policy, from total cost and speed points of view, relative to that of the best, to
our knowledge, exact algorithm. The exact algorithm is based on a dynamic
programming approach developed by Shaw and Wagelmans (1998), whose
running time is only linearly dependent on the magnitude of the data. More
specifically, the procedure has complexity O(T>gd), where T is the number of
periods, g is the average number of linear pieces required to represent the cost
function and d is the average demand. This algorithm can be applied to the
Economic Lot Sizing problem with any type of piece-wise linear ordering cost
functions.

We consider four different classes of instances representing a variety of
problem sizes, as described in Table 7. For each of these classes, we generated 10
random instances of the Economic Lot Sizing problem with modified all-unit
discount transportation costs. Demand at each period was generated from a
normal distribution with the mean and standard deviation given in Table 7. The
transportation cost functions considered in each case are described in Table 8.
They do not change over time. Holding costs are generated according to a
uniform distribution in the interval [0.2,0.7].

Table 9 exhibits, for each of the problem classes, the average and maximum
ratios of the cost of the best ZIO policy to that of the optimal cost, and
the average computation time in seconds for both the heuristic and

Table 7

Sizes of the different problem classes

Problem  Number of  Number of Average  Standard
classes periods transportation cost demand  deviation

function breakpoints

Class 1 10 4 40 20
Class 2 12 4 300 100
Class 3 12 8 1500 500
Class 4 12 8 6000 800
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Table 8
Transportation cost functions considered for the different problem classes
Cost interval 1 2 3 4 5 6 7 8
Class 1 breakpoint 0 40 80 120
fixed cost 40 0 80 0
slope 0 1 0 0.6667

Class 2 breakpoint 0 300 600 900
fixed cost 600 0 1200 0

slope 0 2 0 1.3333
Class 3 breakpoint 0 1500 3000 4500 6000 7500 9000 10,500
fixed cost 2250 0 4500 0 6000 0 7200 0
slope 0 .5 0 1 0 0.8 0 0.6857
Class 4 breakpoint 0 1000 5000 10,000 15,000 20,000 25,000 30,000
fixed cost 2500 0 12,500 0 18,750 0 23,4375 0
slope 0 25 0 1.25 0 0.9375 0 0.78125

Table 9
Computational results showing the performance of ZIO policies
Problem  Average Maximum  Average exact  Average
classes ratio Z#1°/z*  ratio algorithm’s heuristic’s
CPU time CPU time
Class 1 1.0104 1.0344 0.12 < 0.01
Class 2 1.0044 1.0179 1.13 < 0.01
Class 3 1.0029 1.0080 10.14 <0.01
Class 4 1.0001 1.0004 42.71 < 0.01

exact algorithms (using a Sun Workstation Ultra 1). We should point out that
in order to solve Class 4 problems to optimality, we had to incor-
porate a dynamic memory allocation subroutine in Shaw and Wagelmans’
algorithm.

These computational results indicate that the restriction to ZIO policies is
especially effective when average demand size is high: As demand size grows,
the relative error decreases while the time to find the best ZI1O policy remains
negligible, less than 0.01 sec in all cases. The running time of Shaw and
Wagelmans’ algorithm, on the other hand, increases drastically as a function
of the demand size.

We thus conclude that restricting the search to ZIO policies allows us to
deal effectively with cases of large demands and numerous breakpoints in the
transportation cost function. These are exactly the cases for which the exact
algorithm becomes computationally expensive. Indeed, this is an important
issue because many hierarchical planning models for multi-item, multi-stage
logistics systems are solved via Lagrangian Relaxation. Using this technique,
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the problem is typically decomposed into many lot-sizing problems, each of
which needs to be solved for numerous combinations of the Lagrangian
multipliers. See Federgruen and Tzur (1991) for a discussion of the
relationship between the classical Economic Lot Sizing problem and multi-
item, multi-stage production problems.

An alternative approach to efficiently solve the Economic Lot Sizing
problem when demands are large is to scale the demands by a certain factor,
use the exact algorithm by Shaw and Wagelman’s on the scaled demands and
transform the solution to accommodate the original demands. We refer to this
procedure as the scaling algorithm. In what follows we compare the
performance of such a heuristic procedure with the performance of the best
Z10 policy. To implement the scaling algorithm, we divide the period
demands by a selected scaling factor and round up to ensure feasibility in the
original problem. In addition, once the solution to the Economic Lot Sizing
problem with scaled demands has been found, a solution to the problem with
the original demands is found by multiplying the order quantities by the
scaling factor and using the following routine to remove the excess quantity
ordered as a consequence of rounding up.

Let R be the number of ordering periods in which an order is placed in the
scaled solution and let #; denote the kth such period and Q, the quantity
ordered. In addition, let D, _r denote the total demand, and Q, _r be the total
quantity ordered, from period ¢, through the end of the horizon. Starting with
k = R and moving backwards in time in the set of ordering periods do: if
Qlk,T > Dl/nT then set Qlk = Qlk - (Qlk,T - ka,T)'

We tested 10 instances randomly generated according to a normal
distribution with a mean demand of 60,000 units and standard deviation 8000
units. Table 10 shows the average performance results for both the ZIO policy
and the solution generated by the scaling algorithm for different scaling
factors.

Clearly, the ability of the scaling algorithm to provide solutions close to the
optimal solution depends on the magnitude of the scaling factor and the
solution deteriorates rapidly as the factor grows. Even for large scaling
factors, the computational time to find the best ZIO policy is significantly
lower than that to run the scaling algorithm.

Table 10
Computational results comparing the performance of ZIO
policies with that of the scaling algorithm

Policy Z10 Scaling algorithm

Scaling factor 100 1000 10,000
Average relative error 0.02% 0% 0.01% 0.89%
CPU time 0.003 3.4 0.35 0.037
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4.2 The single-warehouse multi-retailer problem

In this section, we study a class of multi-period distribution problems with
transportation cost structures that model both the incremental and all-unit
discount cost functions. Specifically, we consider a classical inventory—
distribution model in which a single warehouse receives inventory from a
single supplier and replenishes the inventory of n retailers. In these situations,
shipments from the supplier to the warehouse are often delivered by
TruckLoad (TL) carriers whose costs can be approximated by piece-wise
linear concave functions. Henceforth, we assume that the transportation cost
function from the supplier to the warehouse is of the incremental discount
type. Of course, this function may also include piece-wise linear concave
production costs. By contrast, since shipment sizes from the warehouse to a
retailer are relatively small, these shipments are typically delivered by LTL
carriers whose costs follow the modified all-unit discount cost structure. The
objective is to find an optimal shipment plan that exploits the quantity
discount effect and, at the same time, controls the inventory holding cost at
the retailers end.

We assume that shortages and backlogging are not allowed either at the
warehouse or at the retailers. Furthermore, we assume that the warehouse
uses a common logistic strategy, referred to as cross-docking, in which the
warehouse acts merely as a coordinator of the supply process, and as a
transshipment point for incoming orders from the supplier, but does not hold
any stocks. Extensions to systems with central stock are discussed at the end
of this subsection.

Observe that the Single-Warehouse Multi-Retailer Problem described here
can also be used to model the joint replenishment problem, see Joneja (1990). In
this problem, a single facility replenishes a set of items over a finite horizon.
Whenever the facility places an order for a subset of the items, two types of
costs are incurred: A joint set-up cost and an item-dependent set-up cost. The
objective in the joint replenishment problem is to decide when and how many
units to order for each item so as to minimize inventory holding and ordering
costs over the planning horizon. Evidently, the concave fixed-charge ordering
cost functions in this problem are a special case of the modified all-unit
discount cost functions. Since the joint replenishment problem is NP-hard, see
Arkin, Joneja, and Roundy (1989), the Single-Warehouse Multi-Retailer
Problem is also NP-hard, even if all transportation cost functions are concave.

An interesting question is whether it is NP-hard for a single, or fixed
number of retailers. This question was answered in the previous section where
we show that a special case of our problem, in which a single retailer is
replenished by a single warehouse with zero transportation cost for shipments
to the warehouse and modified all-unit discount transportation costs for
shipments to the retailer, is NP-hard. Thus, the Single-Warehouse Multi-
Retailer Problem described above is NP-hard even for a fixed number of
retailers.
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Let n be the number of retailers served by the warehouse and 7T be the
length of the planning horizon under consideration. For each t=1,2,..., T,
we let K/(-) be the piece-wise linear concave transportation cost function
associated with shipping items from the supplier to the warechouse at time .
Similarly, for each i=1,2,...,n and t=1,2,..., T, we denote by K/(-) the
modified all-unit discount transportation cost function associated with
shipping items from the warehouse to retailer i at time 7. Finally, for each
i=1,2,...,nand t=1,2,..., T, let h§ denote the cost of holding an item at
retailer i at the end of period #, and d! the demand of retailer / at time 7.

Again, our objective is to find the size and timing of shipments so as to
minimize total transportation and inventory costs while satisfying all demands
without shortages. In what follows, we will refer to this problem as the Single-
Warehouse Multi-Retailer Problem. Let Z* be the optimal solution to the
Single-Warehouse Multi-Retailer Problem and for any heuristic H, let Z be
the cost of the solution generated by heuristic H.

We first show that unless P = NP, it is not possible to develop an algorithm
that runs in polynomial time and generates, for any instance of the problem, a
solution which is within a factor of O(logn) from optimality.

Theorem 16. Suppose there exists a y > 0 and a polynomial time heuristic, H,
for the Single-Warehouse Multi-Retailer Problem such that for all instances

ZH

% = ylogn,

then P = NP.

Proof. The proof is based on showing that the set covering problem can be
reduced to the Single-Warehouse Multi-Retailer Problem. It is well known,
see Feige (1998) or Arora and Sudan (1997), that there is no polynomial time
algorithm for the set-covering problem with worst-case bound better than
ylogn, for y > 0, unless P = NP.

Consider an instance of the set covering problem: min(X7", x; : Ax > 1),
where A=(a;y) is a nxm 0-1 matrix. It can be reduced to the Single-
Warehouse Multi-Retailer problem with n retailers and m+1 periods as
follows. Let

‘ M(S(X) if [ 0 .
Ki(x) = o foralliand r=1,2,...,m;
0 if aj; = 1
K" (x) = M8(x) for all i;

Kj(x)=68(x) fort=1,2,....,mm+1;
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) 0 ifr=1,2,...,m, )
d, = . for all i;
1 ift=m+1,

h’,' =0 foralliz¢,

where M is some large number no less than m, and 8(x) =1 when x > 0, and 0
otherwise.

The high set-up cost at time m + 1 forces retailers to order in earlier
periods. In addition, an order for retailer 7 is placed at time ¢ only if a;,=1,
since there is a large fixed cost associated with shipments in periods in
which a;,=0. Thus, finding the best inventory ordering policy in this situation
is equivalent to finding the minimum number of ordering periods, which
is determined by clustering retailers that will be served together at a
certain time. |

This shows that the Single-Warehouse Multi-Retailer Problem contains
the set covering problem as a special case and, consequently, that there is no
polynomial time algorithm with a fixed worst-case bound. Thus, Chan,
Muriel, Shen, Simchi-Levi, and Teo (2002) focus on simple policies that can be
found in pseudo-polynomial time and provide a solution that is within a
certain fixed percentage from optimality. In particular, they consider ZIO
policies in which orders are placed only at times when on-hand inventory has
been fully depleted. Let Z“'© be the cost associated with the optimal ZIO
policy. Using arguments similar to those presented in Section 4.1, Chan et al.
(2002) show the following results.

Theorem 17. For every instance of the Single-Warehouse Multi-Retailer
Problem, we have

ZZIO <iZ*
-3 5

and this bound is tight.

In practice, the ordering cost function does not vary from period to
period, i.e., for all 7, K[(-) = Ko(-) and K/(-) = Ki(-), i=1,2,...,n. In this
case, Chan et al. (2002) show that the worst-case ratio of the cost of the
solution generated by the algorithm to the optimal cost is no more than
(5.6/4.6) ~ 1.22. That is,

Theorem 18. For every instance of the Single-Warehouse Multi-Retailer
Problem in which the transportation cost functions are stationary, we have

5.6
7210 20 S
4.6
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The optimal ZIO policy can be found in polynomial time for any fixed
number of retailers using the algorithm presented below. Not surprisingly,
however, the computational complexity of this method grows exponentially as
the number of retailers increases. To overcome this problem, we subsequently
propose a linear programming based heuristic that runs in polynomial time.
This algorithm is shown to be very efficient in our computational study.

4.2.1 Optimal ZI10 policy

When the number of retailers is fixed, we can find the best ZIO policy in
time which is polynomial in 7 and exponential in the number of retailers 7, by
formulating an associated shortest path problem.

Let T={1,2,..., T+ 1} be the set of different time periods, where T+ 1 is
used for notational convenience. Let N={1,2,...,n} be the set of retailers.
Construct an acyclic graph G =(V, 4), where

={u=V(u,....u)u; €eT,i=1,....ny =T xT x --- xT,

n times

A="{u,...,u,) = (vi,...,v)|vi > u; foralli

there is at least one component i such that u; < v; for every i with u; < v; we
have u; = ming;_ > . ,yu; = u (i.e., all the components that changed had the
same value, u)}.

Given an arc (uy,...,u,) = (vi,...,v,), or # — v, let k be the number of
components that are different in # and v, and I={ij, i, ..., i} be the set of
indices of those components; that is, for /=1,2,...,k, i is such that u;, < v
Observe that k>1 and by construction u;, =u;, = --- =u;,, =u. The arc
u — v represents ordering at period u to satisfy demands of each retailer i,
[=1,2,...,k, from period u through v; — 1. Thus, the cost associated with
this arc is the cost of ordering those units at period u and holding them in
inventory until their consumption. Specifically, the cost of this arc is

KO (dllllh + dlllzl + o+ dzf,;,/‘) + Cll + Ciz ot e+ ClA

u,viy u,vi, u,vi,

where,

e d'  is the total demand faced by retailer i from period u to v—1;

"y

o Ki(d) ", dl‘fv + e+ dl, ) is the cost of shipping d;!, + dli’vz + -
+d” unlts from the suppher to the warechouse at t1me u; and,

. C’ 1s total shipping and holding costs for retailer i if we order at
perlod u to cover the demands in periods w,u+1,...,v—1, ie.,
Cl,=Kidl)+ Y- hid!

t+1v*
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It is easy to see that the shortest path from (1,1,...,1) to
(T+1, T+1,...,T+1) in G=(V, A) corresponds to finding the best ZIO
policy.

To illustrate our method, consider the following example with a single
warechouse and two retailers. In this case, G has nodes (ij) for
i,j=1,2,...,T+ 1 and three different types of arcs:

Type a : (i,)) — (i, k) Vi>jand k > j,
Type b : (i,)) — (k,j) Vi<jand k > i,
Type c: (i,i) — (k,j)) Vk >iand [ > i,

The cost of a type a arc is Kj(dzk) + Czk, while the cost of a type b arc is
9 k)C—|-C .- Finally, the cost of a type ¢ arc equal to Ki(d! +d7)+
+ il
Observe that a path in this network, G, can be interpreted as a feasible
solution to the One-Warchouse Multi-Retailer Problem. Indeed, type «
(resp. b) arcs correspond to the situation when only retailer 2 (resp. 1) places
an order at a specific time period, whereas type ¢ arcs correspond to situations
in which both retailers place an order. Figure 9 provides an example of the
network when T'=4. The path depicted in this figure corresponds to the

OO OO

®

SENCENOENS

Type a arc

Type b arc

© ©
©

Type c arc

©

) e 6

Fig. 9. An example of the shortest path algorithm.
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following ordering strategy. Retailer 1 orders in periods 1, 3 and 4 while
retailer number 2 orders in periods 1, 2 and 4.

The shortest path algorithm runs in time O(|V]|log|V|+ |A]),
where |V| = O((T + 1)"), |A| = O(T)*"), where n is the number of retailers.
The first term,O(|V|log|V]), bounds the complexity of constructing the
network and the second, O(]4]), is the time to find the shortest path on a
topologically sorted network. Unfortunately, this exact algorithm grows
to be computationally expensive as the number of retailers increases. Thus,
the next step is to develop a heuristic that finds a good ZIO policy in
polynomial time.

4.2.2  Linear programming based algorithm

We introduce a linear programming based heuristic that generates close-to-
optimal ZIO policies and, thus, effective solutions to the Single-Warehouse
Multi-Retailer Problem.

We start by formulating the problem of finding an optimal ZIO policy as
an integer program. The algorithm is based on solving the linear programming
relaxation of the resulting model and transforming the fractional solution
obtained into an integer solution in a similar spirit to that of the algorithm
presented in Section 3 for the Shipper Problem with piece-wise linear
concave costs.

The piece-wise linear concave costs associated with shipments from the
supplier to the warehouse are modeled as in Section 3.1, see Fig. 3. In this
case, we have only T concave shipping arcs, representing shipments from
supplier to warehouse at each period of time. Thus, the more general index e
in the model in Section 3.1 will be substituted by 7. let Q" denote the
warehouse order at time 7. We can express associated transportation cost,
Ki(0Y), as K§(Q%) =7 + ot QY where r is such that 0¥ e (M=, M"].

We define the following variables (analogous to the interval and
quantity variables introduced in Section 3.1). For each r=1,2,..., T and
r=1,2,..., R, let

Y = 1, if 0% e (M~ M]]
©710, otherwise.

For each retailer i=1,2,...,n, and periods 1 <t<k<T, let Zik =quantity

ordered by retailer 7 at time ¢ to satisfy demand at period k > ¢ and

i _ | Zhs if O} e (MY, M]]
tk 0, otherwise,

foreach r=1,2,..., R. In what follows we refer to the X variables as interval
variables and to the Z variables as quantity variables.
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In order to model ordering and inventory costs at the retailer level, we
consider a dummy period T+ 1 and define for each retailer i=1,2,...,n and
periods 1 <t<k<T+1, ¢} =total cost of ordering at perlod t to satlsfy
demand for periods ¢ through k—1 and holding the units in inventory until
their consumption. That is,

,k_K’(Zd‘) +§hj(z a”)

I=j+1

Observe that a ZI1O policy for retailer i can be interpreted as a path from 1
to T+ 1 on a network with nodes {1,2,...,7+1} and arcs (¢, k), for
1 <1<k<T+1, with associated cost ¢/,. In what follows we refer to this
network as the ith retailer’s network or G.,.

Thus, to calculate ordering and inventory costs at retailer i we formulate a
shortest path model on G; using variables

' 1, if an order is placed by retailer i at time ¢
Y, = to satisfy demands for period 7 through k£ — 1,
the
0, otherwise,

and flow conservation constraints. We refer to ¥'=(Y},) as the vector of path
flows.
The best ZI1O policy can be found by solving the following integer program.

T R n T T+1
Problem SW : MinZZ|:f,Xr+ot ZZ ,k:| +ZZ Z Y

t=1 r=1 i=1 k= i=1 t=1 k=t+1

S.t.

" = d, Vi=1,2,...,R, i=1,2,....,nand 1 <t<k<T

K

(4.2)
R T+1 ]
Y Zi=d Y Y, VI<i<k<T, i=12...n (4.3)
r=1 I=k+1

1 ifl=1
Y Y=Y v = —1 if l=T+1 Vi=12....n, (4.4)

Ji1 Ji<l ifl</l<T
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">0 Vr=1,2,...,R i=12,....,n and 1<t<k<T
X;ef{0,1} vr=1,2,...,R and ¢=12,....T
Y, e{0,1} Vi=1,2,....n and 1<t<k<T+]1.

The first set of constraints, (4.2), specifies that if some quantity is ordered at
time ¢ by any retailer and shipped on interval r of the transportation cost
function then the associated interval variable, X, must be 1. These, together
with the integrality of the X variables, are the only constraints needed to
model the piece-wise linear concave costs, since Lemma 3 in Section 3 can
easily be extended to this formulation. Obviously, constraints (4.2) could be
aggregated for all k. However, this would considerably weaken the linear
programming relaxation of problem SW. Eq. (4.3) guarantees that if a
positive amount is shipped to retailer i at time ¢ to satisfy demand at the
retailer at period k then the retailer must order at period ¢ to cover demands
for period ¢ through some /—1>k. Observe that these constraints (4.4)
correspond to finding, for each retailer i, a path from 0 to 7T+ 1 on the
retailer’s network, G..

Unfortunately, solving this integer program is computationally intractable
for all but small size problems. To overcome this difficulty, we observe the
great similarity between this formulation and that of the Shipper Problem
under piece-wise linear concave costs in Section 3 and make use of the
structural properties derived there, namely Theorem 4. This allows us to
develop a polynomial time heuristic that finds an effective ZIO policy based on
the solution to the linear programming relaxation of Problem SW. Theorem 4
will be extensively used by the algorithm in order to compute the increase in
costs in the solution to the linear program when the vector Y is modified in the
search for an integer solution.

Of course, the effectiveness of such a heuristic depends on the strength of
the linear programming relaxation of Problem SW. Let Z*” be the optimal
solution value of the linear programming relaxation of Problem SW.
Recently, Shen, Simchi-Levi, and Teo (2000) applied randomized rounding
techniques and a novel way to approximate the piece-wise linear concave cost
functions to prove the following result.

Theorem 19. For every instance of the Single-Warehouse Multi-Retailer
Problem we have,

ZMP < 8(log2 + log T + logn)Z* /3.

Observe that Theorem 16 implies that for any polynomial time heuristic H
for the Single-Warehouse Multi-Retailer Problem and any y > 0, there exists
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an instance of the problem such that Z¥ > [ylogn]Z*, unless P=NP. This,
together with Theorem 19, implies that for that instance,

zH 3ZEP
— > 7> .
ylogn ~ 8(log2 +1log T + logn)

Thus, the lower bound developed in Theorem 19 is the best possible bound on
the optimal solution of the Single-Warehouse Multi-Retailer Problem unless
P=NP.

We are now ready to present the algorithm for the Single-Warehouse
Multi-Retailer Problem.

Linear-programming based algorithm:

Step 1: Solve the linear programming relaxation of problem SW. Let
Y*=(Y t’,\) be the optimal solution. Initialize i=1.

Step 2: For each arc t — k, 1 <t <k < T +1, in network G; compute a

marginal cost, ¢}, as follows. The marginal cost is the total increase in

cost in the solution to the linear program incurred when augmenting the

flow on that arc from the fractional Y;k to 1. That is,

i i PN
Crke = er + (1 - Xt,k)cr,k»

where Wi is the increase in transportation cost to the Warehouse
resulting from modifying flow in the linear program from Y’ to 1. This
cost increase can be easily calculated using Theorem 4.

Step 3: Determine the ordering epochs of retailer i by finding the minimum
cost path from 1 to T+ 1 on network G; with edge costs equal to the
marginal costs.

Step 4: Update the amount and costs of warechouse orders at each period to
account for retailer /’s ordering strategy. Costs are updated using
Theorem 4.

Step 5: Let i=i+ 1 and repeat steps (2)—(5) until i=n—+ 1.

4.2.3  Computational results

We test the performance of the linear programming based algorithm
in terms of both computational time and relative deviation from the optimal
Z10 policy. For this purpose we apply the algorithm to two types of problems.
The first is the Single-Warehouse Multi-Retailer Problem with retailer
ordering cost represented by the modified all-unit discount cost function. The
second is the Single-Warehouse Multi-Retailer Problem with concave
ordering cost functions for the retailers. Of course, in both type of problems,
warehouse ordering cost is a piece-wise linear concave function. Observe that
there exists an optimal ZIO policy in the concave case (Type 2) and thus an
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optimal integer solution to Problem SW is optimal for the associated Single-
Warehouse Multi-Retailer Problem.

Type 1 Instances. We consider four problem classes corresponding to 5, 25, 50
and 100 retailers. The planning horizon is 12 periods and demands for
each retailer are generated from a normal distribution with mean 100 and
standard deviation 20. Holding costs are randomly generated in the interval
[0.1,0.6]. Supplier—Warehouse transportation costs are described by piece-
wise linear concave functions with either 3 or 5 breakpoints between 0 and the
maximum amount that could possibly be ordered from the supplier to satisfy
retailer demands. These breakpoints and some initial fixed costs and slopes
are given in Table 11. We consider the breakpoints fixed and randomly vary
fixed costs and slopes over time by multiplying the initial values by a
parameter generated from a uniform distribution on the interval (0.5, 3).
Similarly, the warehouse—retailer transportation cost function for a particular
retailer is a modified all-unit discount function with either 5, 6 or 7
breakpoints and again fixed costs and slopes are randomly varied (in the same
manner) over time. Observe that it is enough to specify the breakpoints and
the fixed cost of the first interval to construct the entire all-unit discount cost
function. The breakpoints are given in Table 12 and the initial fixed cost on
the first interval is randomly generated according to a uniform distribution on
the interval (50, 500).

Table 13 shows, for each problem class, the average computation time of
the linear programming based algorithm over 200 instances generated. For
this moderate-size instances tested, the optimal ZIO policy can be calculated
by solving the integer program, Problem SW, and used to evaluate the
performance of the heuristic solution. The associated average computation
times are given in the fourth column of Table 13. The cost of the optimal ZIO
policy obtained is compared to the heuristic solution in the last two columns:
The first column reports the average ratio for cases in which the solution to
the linear programming relaxation of Problem SW was not integer. The
second reports the average over all problems tested.

Table 11

Concave transportation cost functions considered in Type 1 Instances

Cost interval 1 2 3 4 5 6
breakpoint 0 1000 3000 12,000

5-25 retailers  fixed cost 500 1000 1750 2350
slope 1 0.5 0.25 0.2
breakpoint 0 6000 10,000 20,000 35,000 50,000

50 retailers fixed cost 550 9550 10,590 13,190 17,090 20,990
slope 1.5 1.24 0.98 0.72 0.46 0.2
breakpoint 0 12,000 20,000 40,000 70,000 100,000

100 retailers fixed cost 700 2780 5380 10,580 18,380 26,180
slope 1.5 1.24 0.98 0.72 0.46 0.2
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Table 12

Breakpoints associated with the all-unit discount cost functions in Type 1 Instances

Cost interval 1 2 3 4 5 6 7

7 breakpoints 200 300 450 600 750 900 1050
6 breakpoints 200 300 450 750 900 1050

5 breakpoints 200 400 650 850 1000

Table 13

Computational results for all-unit discount warehouse—retailer costs (Type 1)

Problem Number of CPU time CPU time Frequency of Z//z%?10  zH ;7710

class retailers (sec) with IP (sec) fractional fractional all cases
solution cases

Class 1 5 ~0 3 4/200 1.010 1.0002

Class 2 25 ~0 27 5/200 1.013 1.0004

Class 3 50 2 124 3/200 1.037 1.0006

Class 4 100 23 507 2/200 1.025 1.0003

Type 2 Instances: Here we study the performance of the linear
programming based algorithm for instances in which all the transportation
costs are piece-wise linear and concave.

We again consider different problem classes, with normally and
independently, identically distributed retailer demands with mean 100 and
standard deviation 20, and generated 10 instances for each class. Holding
costs are set to 0.2 per unit per period. The piece-wise linear concave
transportation costs considered have three price breaks (i.e., four segments
with different slope) in the range from 0 to the maximum possible demand
that could be satisfied using that link. Associated fixed cost and variable costs
are randomly generated over time, as in the Type 1 instances, by multiplying
the initial values given in Table 14 by a parameter uniformly distributed
in (0.5, 5).

Table 15 describes the six problem classes tested and reports the average
computation time and the average ratio of heuristic to optimal solutions over
the five instances tested for each class. We observe that, in all the instances
tested, the solution to the linear programming relaxation coincides with the
optimal integer solution.

4.2.4 Extension to system with central stock

The bounds on the performance of ZIO policies developed can be easily
extended to a more general distribution problem with central stocks, in which
the warehouse is allowed to carry inventory. To show this, we observe that,
since the transportation charges from supplier to warehouse are concave, it is
optimal for the warehouse to follow a ZIO policy. Thus an order, Q% > 0,
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Table 14

Initial concave transportation cost functions considered in Type 2 Instances

Cost interval 1 2 3 4
breakpoint 0 1000 3000 12,000

Supplier—warehouse fixed cost 500 1000 1750 2350
slope 1 0.5 0.25 0.2
breakpoint 0 200 400 800

Warehouse-retailer fixed cost 100 200 400 480
slope 1.5 1 0.5 0.4

Table 15

Computational results for concave transportation costs on all links (Type 2)

Problem Number of Number of CPU time ZH ) 7710

class periods retailers (sec) =zZ")z*

Class 1 6 5 ~0 1

Class 2 12 5 1 1

Class 3 6 10 ~0 1

Class 4 12 10 4 1

Class 5 6 25 2 1

Class 6 12 25 5 1

placed by the warehouse in period x, will cover all of the retailers’
orders from a certain period a(x)>x to a period b(x)>a(x) and can be
expressed as

n  b(x)

=Y > 0.

i=1 t=a(x)

In this way, each order placed by the retailers in periods a(x) through b(x) is
associated with the warehouse order at time x. Using this observation, the
proofs of Theorem 12 and Theorem 14 follow in much a similar way as for the
original case.

To put this extension in perspective, it is appropriate to point out that
the model with central stock is directly related to the seminal work of
Roundy (1985). In his work, Roundy analyzed the Single-Warehouse
Multi-Retailer model with concave ordering cost functions, infinite time
horizon and constant demand rates. For this problem, Roundy shows that
Power-of-Two policies, which belong to the class of ZIO policies, are highly
effective. Our results indicate that in the case of a finite horizon, time varying
demand and modified all-unit discount costs, ZIO policies are very effective as
well. Indeed, by restricting the solution set to ZIO policies we can obtain a
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solution whose cost is no higher than 4/3 times the optimal cost and this bound
is tight. If the transportation cost functions do not change from period to
period, then there exists a Z1O policy whose cost is no higher than 5.6/4.6 times
the optimal cost. Unfortunately, finding the optimal ZIO policy in our case is an
NP-hard problem. This is in contrast to the model analyzed by Roundy where
finding the best Power-of-Two policy can be done very efficiently.

PART II: PRICING TO IMPROVE SUPPLY CHAIN
PERFORMANCE

5 Introduction

In recent years, scores of retail and manufacturing companies have started
exploring innovative pricing strategies in an effort to improve their operations
and ultimately the bottom line. Firms are employing methods such as
dynamically adjusting price over time based on inventory levels or production
schedules as well as segmenting customers based on their sensitivity to price
and lead time.

For instance, no company underscores the impact of the Internet on
product pricing strategies more than Dell Computers. The exact same product
is sold at different prices on Dell’s Web site, depending on whether the
purchase is made by a private consumer, a small, medium or large business,
the federal government, an education or health care provider. A more careful
review of Dell’s strategy, see Agrawal and Kambil (2000), suggests that even
the price of the same product for the same industry is not fixed; it may change
significantly over time.

Dell is not alone in its use of a sophisticated pricing strategy. Consider:

e Boise Cascade Office Products sells many products on-line. Boise
Cascade states that prices for the 12,000 items ordered most frequently
on-line might change as often as daily [Kay, 1998].

e Ford Motor Co. uses pricing strategies to match supply and demand
and target particular customer segments. Ford executives credit the
effort with $3 billion in growth between 1995 and 1999 [Leibs, 2000].

These developments call for models that integrate production decisions,
inventory control and pricing strategies. Such models and strategies have the
potential to radically improve supply chain efficiencies in much the same way
as revenue management has changed the airline industry, see Belobaba (1987)
or McGill and Van Ryzin (1999). Indeed, in the airline industry, revenue
management provided growth and increased revenue by 5%, see Belobaba,
1987. In fact, if it were not for the combined contributions of revenue
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management and airline schedule planning systems, American Airlines [Cook,
2000] would have been profitable only one year in the decade beginning in
1990. In the retail industry, to name another example, dynamically pricing
commodities can provide significant improvements in profitability, as shown
by Gallego and van Ryzin (1994).

The coordination of pricing, production and distribution decisions is
consistent with recent efforts in industry to cut across traditional organizational
barriers. Indeed, in most companies, pricing and promotional decisions are
typically made by marketing and sales units within the company, usually with
very little regard to the impact of these decisions on supply chain performance.
However, as observed earlier, more and more companies are exploring
innovative pricing strategies in an effort to boost their profit and improve
supply chain efficiencies. Thus, models similar to those described in the
following sections are clearly important in supporting this new trend.

6 Coordinating pricing and inventory decisions

Many papers address the coordination of replenishment strategies and
pricing policies, starting with the work of Whitin (1955) who analyzed the
celebrated newsvendor problem with price-dependent demand. For a review,
the reader is referred to Eliashberg and Steinberg (1991), Petruzzi and
Dada (1999), Federgruen and Heching (1999) or Chan, Simchi-Levi, and
Swann (2001).

To date, the literature has confined itself mainly to either: (i) models
with variable ordering costs but no fixed costs; (ii) models in which inventory
cannot be carried over from one period to the next; or (iii) models in
which replenishment decisions are made only at the beginning of the
planning horizon, see Federgruen and Heching (1999). Recently, however,
Chen and Simchi-Levi (2002a,b) analyzed a fairly general inventory/pricing
model. Specifically, Chen and Simchi-Levi (2002a) consider a finite horizon,
periodic review, single product model with stochastic demand. Demands
in different periods are independent of each other and their distributions
depend on the product price. Pricing and ordering decisions are made at the
beginning of each period, and all shortages are backlogged. The ordering cost
includes both a fixed cost and a variable cost proportional to the amount
ordered. Inventory holding and shortage costs are convex functions of the
inventory level carried over from one period to the next. The objective is to
find an inventory policy and pricing strategy maximizing expected profit over
the finite horizon.

The model is similar to the model analyzed by Federgruen and Heching
(1999), except that the latter assumes that the ordering cost is proportional to
the amount ordered and thus does not include a fixed cost component. In
addition, the demand function is assumed to be a linear function of the price,
see Lemma 1 in Federgruen and Heching (1999).
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The paper by Thomas (1974) also considers a model similar to the one
by Chen and Simchi-Levi (2002a), namely, a periodic review, finite horizon
model with a fixed ordering cost and stochastic, price-dependent demand.
The paper postulates a simple policy, referred to by Thomas as (s, S, p),
which can be described as follows. The inventory strategy is an (s,.S)
policy: If the inventory level at the beginning of period 7 is below the reorder
point, s,, an order is placed to raise the inventory level to the order-up-to
level, S,. Otherwise, no order is placed. The price, p, depends on the
initial inventory level at the beginning of the period. Thomas provides a
counter example which shows that with a ‘few prices’ (i.e., when price is
restricted to a discrete set) this policy may fail to be optimal. Thomas goes
on to say:

If all prices in an interval are under consideration, it is conjectured that an
(s, S, p) policy is optimal under fairly general conditions.

In Section 6.1, we review the main assumptions of the model analyzed
by Chen and Simchi-Levi (2002a). In Section 6.1.1 we characterize the optimal
inventory and pricing policies for additive demand functions. We show
that in this case the policy proposed by Thomas is indeed optimal. In
Section 6.1.2 we analyze general demand functions which may be non-additive.
We demonstrate that in this case the profit-to-go function is not necessarily
k-concave and an (s, S, p) policy is not necessarily optimal. We introduce the
concept of symmetric k-convex functions and apply it to provide a
characterization of the optimal policy. In Section 6.2 we extend the
results obtained by Chen and Simchi-Levi (2002a) for the finite horizon
model to the infinite horizon case under both discounted and average cost
criteria. Finally, in Section 6.3 we apply the results to the model with
zero fixed-cost and illustrate that the techniques developed in Chen and
Simchi-Levi (2002a,b) allow to extend the results of Federgruen and Heching
to more general demand processes.

6.1 The finite horizon model

Consider a firm that has to make inventory and pricing decisions over a
finite time horizon with 7 periods. Demands in different periods are
independent of each other. For each period ¢, t=1,2,...,T, let d, be the
demand in period ¢, p, the selling price in period ¢, and p,, p, are lower and
upper bounds on p,, respectively. o

Chen and Simchi-Levi (2002a) concentrate on demand functions of the
following form:

Assumption 20. For t=1,2,..., T, the demand function satisfies

dy = Dy(ps, &) := a,Dy(p;) + B, (6.1
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where &, = (a4, B;), and o4, B; are two random variables with E{o;} =1 and
E{B;} = 0. The random perturbations, ¢,, are independent across time.

Observe that, by scaling and shifting, the assumptions Ef{«,} =1 and
E{B;} =0 can be made without loss of generality. A special case of this
demand function, the additive demand function, is analyzed in Section 6.1.1.
In this case, the demand function is of the form d; = D,(p) + B;. This implies
that only B, is a random variable while o, = 1. In Section 6.1.2 we analyze the
general demand functions (6.1). Observe that a special case of the model
analyzed in Section 6.1.2 is a model with the multiplicative demand function.
In this case, the demand function is of the form d; = «,D;(p), where ¢, is a
random variable. Finally observe that special cases of the function D,(p)
include D,(p) = b, — a;p (a; > 0, b, > 0) in the additive case and D,(p) = a,p~""
(a, > 0, b; > 1) in the multiplicative case; both are common in the economics
literature [see Petruzzi & Dada, 1999].

Chen and Simchi-Levi (2002a) assume the following.

Assumption 21. Forallz,r=1,2,..., T, the inverse function of D,, denoted by
D7 !, is continuous and strictly decreasing. Furthermore, the expected revenue

R/(d) :=dD;'(d)

is a concave function of expected demand d.

The assumption thus implies that expected demand is a monotone
decreasing function of price, an assumption satisfied by many products, except
perhaps for some luxury products, see Federgruen and Heching (1999). Both
the monotonicity and concavity assumptions are satisfied by many demand
functions that are common in the marketing or economics literature.

Let x, be the inventory level at the beginning of period ¢, just before placing
an order. Similarly, y, is the inventory level at the beginning of period ¢ after
placing an order. The ordering cost function includes both a fixed cost and a
variable cost and is calculated for every ¢, r=1,2,...,T, as

kid(ve — x1) + ¢i(ye — x1),

where

1, ifu>0,
8(u) == :0, otherwise.

As is common in standard inventory management models, we assume that the
fixed cost, k,, is a non-increasing function of time.

Unsatisfied demand is backlogged. Let x be the inventory level carried over
from period ¢ to period 7+ 1. Since we allow backlogging, x may be positive or
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negative. A cost h,(x) is incurred at the end of period ¢ which represents
inventory holding cost when x > 0 and penalty cost if x < 0. The following
assumption is common to most inventory models.

Assumption 22. For each ¢, t=1,2,..., T, h(x), is a convex function of the
inventory level x at the end of period 7.

The objective is to decide on ordering and pricing policies so as to maximize
total expected profit over the entire planning horizon. That is, the objective is
to choose y, and p, so as to maximize

T
E —kid(y: — x1) — ¢:(yr — x1) — hi(xi1) + piDi(prs €0) ¢ (6.2)

t=1

where x.41 =y — Di(ps, &)

Denote by v,(x) the profit-to-go function at the beginning of time period ¢
with inventory level x. A natural dynamic program for the above
maximization problem is as follows. For =7, T—1,...,1,

vi(x) =¢x+  max  —k(y —x)+fi(y.p), (6.3)
VEXDZPZp

where

Jiy.p) = —c;y + E{pDi(p, &) — h(y — Dy(p, &) + vi1(y — Di(p, €))},
(6.4)

and vy = 0. Let
pi(y) € argmaxg ..., fi(y, p)- (6.5)

Then
V,(X) =X+ 1}:13:3( - kr5()/ - X) +fl(yﬂpl(y))

We now relate our problem to the celebrated stochastic inventory control
problem discussed by Scarf (1960). In that problem, demand is assumed to be
exogenously determined, while in our problem demand depends on price.
Other assumptions regarding the framework of the model are similar to those
made by Scarf (1960).

For the classical stochastic inventory problem, Scarf (1960) showed that an
(s, S) policy is optimal. In this policy, the optimal decision in period ¢ is
characterized by two parameters, the reorder point, s,, and the order-up-to
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level, S,. An order of size S,—x, is made at the beginning of period ¢ if the
initial inventory level at the beginning of the period, x,, is smaller than s,.
Otherwise, no order is placed.

To prove that an (s, S) policy is optimal, Scarf (1960) uses the concept of
k-convexity.

Definition 23. A real-valued function f'is called k-convex for k> 0, if for any
z>0, b>0 and any y we have

k+f(2+y)Zf(y)+20’(y)—f(y—b))- (6.6)

A function f'is called k-concave if —f'is k-convex.

For the purpose of the analysis of problem (6.3), Chen and Simchi-Levi
(2002a) find it useful to introduce another, yet equivalent, definition of
k-convexity."

Definition 24. A real-valued function f'is called k-convex for k > 0, if for any
xo < x; and A €0, 1],

S = 2)x0 + Ax1) < (1 = A)f (x0) + Af (x1) + Ak. (6.7)

Proposition 25. Definitions 23 and 24 are equivalent.

Definition 24 emphasizes the difference between k-convexity and traditional
convexity (which is also 0-convexity). It is clear from this definition that one
significant difference between k-convexity and traditional convexity is that
(6.7) is not symmetric with respect to xy and xj.

It turns out that this asymmetry is the main barrier when trying to
identify the optimal policy to problem (6.3) for non-additive demand
functions. Indeed, in Section 6.1.2 we indicate that the profit-to-go
function is not necessarily k-concave and an (s, S, p) policy is not necessarily
optimal for general demand processes. This motivates the development of
a new concept, the symmetric k-concave function, which allows Chen and
Simchi-Levi (2002a) to characterize the optimal policy in the general
demand case.

However, under the additive demand model analyzed in Section 6.1.1, this
concept is not needed. Specifically, Chen and Simchi-Levi (2002a) prove that
for additive demand processes, the profit-to-go function is k-concave and
hence the optimal policy for problem (6.3) is an (s, S, p) policy, precisely the
policy conjectured by Thomas (1974).

! Professor Paul Zipkin pointed out to us that this equivalent characterization of k-convexity has
appeared in Porteus (1971).
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6.1.1 Additive demand function
In this section, we focus on additive demand functions, i.e., demand
functions of the form

dt = Dt(Pz) + ,31,

where B, is a random variable.
To characterize the optimal policy in this case, Chen and Simchi-Levi
(2002a) prove the following property.

Lemma 26. Suppose there is a finite value p(y) that maximizes (6.5) for any
value of y. Then, y—D/(p[y)) is a non-decreasing function of y.

The lemma thus implies that the higher the inventory level at the beginning
of time period ¢, y,, the higher the expected inventory level at the end of
period t, y,—D,( p(y,)). Using this property, together with the new definition of
k-convex functions, see Definition 24, Chen and Simchi-Levi (2002a) prove,

Theorem 27. For any t, t=T,T—1,...,1, we have

a. (v, pA»)) and v.(x) are k-concave.

b. There exist s, and S, with s, < S, such that it is optimal to order S,—x;,
and set the selling price p,=p/S,) when x; <s,, and not to order
anything and set p, = p.x,) when x,> s;.

The theorem thus implies that the (s, S, p) policy introduced by Thomas
(1974) is indeed optimal for additive demand processes. An interesting
question is whether p,(») is a non-increasing function of y. Unfortunately, this
property, which holds for the model with no fixed cost, see Section 6.3, does
not hold for our model.

Proposition 28. The optimal price, py) is not necessarily a non-increasing
Sfunction of y.

6.1.2 General demand functions

In this section, we focus on general demand functions (6.1). Our objective
in this section is two-fold. First, we demonstrate that under the general
demand functions, v,(x) may not be k-concave and an (s, S, p) policy may fail
to be optimal for problem (6.3). Second, we characterize the structure of the
optimal policy for the general demand functions (6.1).

Specifically, the Lemma 29, proved in Chen and Simchi-Levi (2002a),
illustrates that the profit-to-go function is not k-concave in general.

Lemma 29. There exists an instance of problem (6.3) with a multiplicative
demand function and time independent parameters such that the functions
Jfr—1(v, pr—1(»)) and vy_1(x) are not k-concave.
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Of course, it is entirely possible that even if the functions f,(y, p(y)) and
v/x) are not k-concave for some period ¢, the optimal policy is still an (s, S, p)
policy. The Lemma 30, proved in Chen and Simchi-Levi (2002a), shows that
this is not true in general.

Lemma 30. There exists an instance of problem (6.3) with multiplicative demand
functions where an (s, S, p) policy is not optimal.

To overcome these difficulties, Chen and Simchi-Levi (2002a) propose a
weaker definition of k-convexity, referred to as symmetric k-convexity:

Definition 31. A real-valued function f'is called sym-k-convex for k > 0, if for
any xg, x; and A € [0, 1],

S = Mxo + 2x1) < (1 = A)f (x0) + Af (x1) + max{i, 1 —a}k.  (6.8)
A function f'is called sym-k-concave if —f is sym-k-convex.

Observe that k-convexity, and hence convexity, is a special case of sym-k-
convexity. Interestingly, our analysis of sym-k-convex functions reveals that
these functions have properties that are parallel to those of k-convex
functions, see Bertsekas (1995). Specifically, based on properties of these
functions, Chen and Simchi-Levi (2002a) prove the following results.

Theorem 32. For any t, t=T,T—1,...,1, we have

a. f,(y,py)) and v(x) are sym-k-concave.

b. There exists s, and S, with s; < S; and a set A, C [s;, (s; + S;)/2], such
that it is optimal to order S,—x, and set p,=p/S;) when x; < s, or when
X; € A, and not to order anything and set p, = p,(x;) otherwise.

Theorem 32 thus implies that an (s, S, 4, p) policy is the optimal policy for
problem (6.3) under general demand processes. In such a policy, the optimal
inventory strategy is characterized by two parameters s, and S, and a set
Ay C 51, (s, + S1)/2], possibly empty. When the inventory level, x,, at the
beginning of period ¢ is less than s; or if x; € A, an order of size S,—x; is made.
Otherwise, no order is placed. Thus, it is possible that an order will be placed
when the inventory level x, € [s,, (s, + S;)/2], depending on the problem
instance. On the other hand, if x; > (s; +S;)/2 no order is placed. Price
depends on the initial inventory level at the beginning of the period.

6.2 The infinite horizon case

The finite horizon models analyzed in the previous section are clearly
appropriate for products with short life cycles, e.g., personal computers (PC),
printers or fashion items. However, these models are less appropriate for
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products with long life cycles, e.g., non-fashion items. In this case, it is
important to characterize the optimal policy in the infinite horizon case.

We thus consider a model similar to the one analyzed in the previous
sections except that in the infinite horizon case all parameters are assumed to
be time independent. Of course, it is tempting to try and extend the results of
Theorem 32, which establishes the optimality of an (s, S, 4, p) policy for the
finite horizon general demand model, to the infinite horizon case. Surprisingly,
Theorem 33, proved in Chen and Simchi-Levi (2002b), shows that this
intuition can be misleading.

Theorem 33. A stationary (s, S, p) policy is optimal for both the additive demand
model and the general demand model under average and discounted cost criteria.

Thus, the theorem suggests that in the infinite horizon case, the optimal
policy is an (s, S, p) policy, independent of whether demand is additive or not.
Interestingly, our proof of the optimal policy for the general demand model is
based on two key results: The first is that the long-run average (or discounted)
profit function is symmetric k-concave, suggesting that a stationary (s, S, 4, p)
policy is optimal. Surprisingly, our second result shows that in the infinite
horizon case the set 4 is an empty set.

6.3 Special case: zero fixed-cost

The results described in the previous sections also apply to the special case
in which the ordering cost function includes only variable but no fixed cost,
ie., k,=0 for all ¢, r=1,...,T. Indeed, by Theorem 32, the functions v,
and f(v,pAy)), t=1,2,...,T, are symmetric 0-concave, and hence, from
Definition 31, they are concave. Furthermore, and unlike the model with fixed
cost, in this case, Chen and Simchi-Levi show that p,(y) is a non-increasing
function of y. Thus,

Corollary 34. Consider problem (6.3) with zero fixed-cost and general demand
Sfunctions (6.1). In this case, a base-stock list price policy is optimal.

The base-stock list price policy is a policy described by Federgruen and
Heching (1999). Here, in each period the optimal policy is characterized by an
order-up-to level, referred to as the base-stock level, and a price which
depends on the initial inventory level at the beginning of the period. If the
initial inventory level is below the base-stock level, an order is placed to raise
the inventory level to the base-stock level. Otherwise, no order is placed, and a
discount price is offered. This discount price is a non-increasing function of
the initial inventory level.

Thus, Corollary 34 extends the results of Federgruen and Heching (1999) to
more general demand processes. Indeed, Federgruen and Heching analyzed the
zero fixed-cost model both in the finite horizon and infinite horizon cases. A key
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assumption in their paper implied by their Lemma 26 is that the demand
function, d,, is a linear function of the price. Corollary 34 suggests that this
policy holds under much more general assumptions on the demand process.

7 Pricing models with production capacity limits

Very few pricing models have explicitly considered production
capacity limits. One exception is the work by Chan et al. (2001) who analyzed
partial update strategies, namely Delayed Production and Delayed Pricing
strategies. In the first, decisions about the pricing policy are determined at the
beginning of the planning horizon while production and inventory decisions
are made period by period. Thus, in this case, the planner uses periodic
production and inventory decisions as tools to better match supply and
demand. In a Delayed Pricing strategy, on the other hand, decisions about
production levels are made at the beginning of the planning horizon while
pricing and inventory decisions are made period by period.

The following examples, see Chan et al. (2001), illustrate situations under
which the two planning strategies are appropriate.

1. A retailer whose primary distribution channel is through catalogs,
determines prices in advance in order to advertise and print catalogs.
Production decisions are determined period by period, based on
demand distribution in present and future periods as well as inventory
from previous periods.

2. A supplier faces non-stationary demand and initially determines
period prices to better match expected demand and supply in each
period. The supplier contracts with a manufacturer over a time
horizon, offering the manufacturer these fixed prices in advance for
planning purposes, but allowing orders to be placed in each period
due to the manufacturer’s high inventory holding cost and
unpredictable demand. The supplier adjusts production in each time
period based on previous inventory and expected orders.

3. A manufacturer needs to determine a procurement strategy at
the beginning of the year for the next 12 months. For this purpose, the
manufacturer decides a priori on her monthly production levels and
commits the supplier to deliver components just-in-time. The
manufacturer sells products over the phone and web and determines
price in each period so as to set the demand level to approximately
match production and to clear previous inventory.

These examples demonstrate the two planning models described
earlier. In the first two examples, the firm determines prices for a planning
horizon a priori and makes production decisions based on the state of the
system and future demand. The firm varies production levels based on
inventory left over from previous periods as well as current and future demand.
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The third example illustrates the second planning model. The manufac-
turer plans production at the beginning of the horizon but makes the
price decision on a period by period basis. In this case, price can be used as
a market clearing mechanism to deal with inventory from previous periods.

In the examples described above, it may be profitable to set aside
inventory to satisfy future demand, even if the decision means losing sales
in the current period. Although choosing to lose sales may seem counter
to making profit, the inventory set aside is likely to generate a larger
income in the future. This would typically occur if the price in the future
is higher or if the future production costs were high. This is the intuition behind
the concept of ‘Save-Up-To Level’ which we will introduce below.

Consider now a Delayed Production strategy in which pricing decisions
have already been made at the beginning of the horizon. The challenge
is to identify properties of the optimal production and inventory policy
such that the firm maximizes expected profit. Specifically, consider a
production-inventory model in which demand in period ¢ depends on price
according to a general stochastic demand function D,(p;, &,(p;)) where &,(p;)
is a random variable with a known distribution. Let P be the price
vector chosen at the beginning of the horizon, that is, P = {p,ps, ...,p7}
where T is the length of the planning horizon.

The production facility has a limited capacity, ¢,, t=1,2,..., T, prod-
uction cost includes only a variable component but no fixed cost, and
inventory holding cost is charged on inventory carried from one period to
the next. All parameters are time dependent. Finally, shortages are lost
and demand does not have to be satisfied even if inventory exists; that is,
the decision-maker may decide to forgo immediate revenue for potentially
higher revenue in the future.

Chan et al. (2001) prove the following result.

Lemma 35. Given a vector of prices P, there exists an optimal policy for the
Delayed Production strategy with an optimal order-up-to level, yi, and an
optimal save-up-to level, S¥.

Thus, at the beginning of time period ¢, the amount produced, X,
should raise the available inventory to the optimal order-up-to level, Y, or as
close as possible to it if the production capacity constraint is reached
(i.e., X, =gq,). The save-up-to level, S*, is the amount that should be saved in
period  to satisfy demand in future periods even if sales are lost in the current
period. Observe that the Lemma implies that both the order-up-to and the
save-up-to policies are independent of the inventory level at the beginning of
the period, 7,_;.

Of course, the Lemma also applies to the special case in which the
decision-maker adopts a fixed price policy, i.e., a policy in which the product
is sold for the same price in all time periods. In this case, the Lemma allows
the decision-maker to determine the best production-inventory policy
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maximizing expected profit for a given fixed price policy. Thus, a search on all
possible prices determines the optimal fixed price.

Consider now the Delayed Pricing policy in which production quantities,
X,, are determined at the beginning of the horizon. The objective is to
determine a pricing policy and an inventory strategy so as to maximize
expected profit. The inventory policy will specify, period by period, the
amount of available product to be sold as well as the minimum amount of
inventory to be transfered to the next period.

Unfortunately, this case is more complex than the previous one and indeed
the following observations can be made:

e The save-up-to level in a specific period depends on the initial
inventory level in that period.

e Price does not necessarily increase as a function of decreasing
inventory. That is, unlike the model with backlogging, it is possible
that as initial inventory increases, price also increases.

A related work is the paper by Van Mieghem and Dada (1999), in which the
authors explicitly consider price postponement versus production postpone-
ment strategies. They focus on a single-period, two-stage process with an
initial decision, e.g., production decision, followed by a realization of demand,
followed by another decision, e.g., pricing decision. Thus, price (production)
postponement as outlined by Van Mieghem and Dada is different from
Delayed Pricing (Production) in Chan et al. (2001). Specifically, in the model
analyzed by Van Mieghem and Dada, the postponed decisions are made after
demand is realized.

8 Computational results and insights

The key challenge when considering dynamic pricing strategies is to
identify conditions under which this strategy provides significant profit benefit
over (the best) fixed price strategy. For this purpose, Federgruen and
Heching (1999) and Chan et al. (2001) performed extensive computational
studies. In both papers, the focus is on periodic review models with variable
ordering costs but no fixed costs. These computational studies provide the
following insights.

o Available Capacity: Assuming everything else being equal, the smaller
the production capacity relative to average demand, the larger the
benefit from dynamic pricing [Chan et al., 2001].

o Demand Variability: The benefit of dynamic pricing increases as the
degree of demand uncertainty, measured by the coefficient of
variation, increases [Federgruen and Heching, 1999].

o Seasonality in Demand Pattern: The benefit of dynamic pricing
increases as the level of demand seasonality increases [Federgruen and
Heching, 1999, Chan et al., 2001].
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o Length of the planning horizon: The longer the planning horizon the
smaller the benefit from dynamic pricing [Federgruen and Heching,
1999].

All in all, research [Federgruen and Heching, 1999, Chan et al., 2001]
indicates that, depending on the data and the model assumptions, dynamic
pricing may increase profit by 2-6%. This increase in profit due to dynamic
pricing is very significant for industries with low profit margins, e.g., retail and
computer industries.

To determine the effectiveness of the planning models developed in
Section 7, Chan et al. (2001) conducted an extensive computation study. The
objective of the study was two-fold:

1. Identify situations where partially delayed planning, i.e., either
Delayed Production or Delayed Pricing, provides significant increase
in expected profit relative to a fixed price strategy, and

2. Determine conditions under which one strategy outperforms the other.

Below we provide a summary of the insights obtained from the
computational study.

e Delayed Pricing and Delayed Production provide significant increase
in expected profit in most of the cases analyzed.

¢ The performance of partial update strategies, either Delayed Pricing or
Delayed Production, tends to increase as seasonality increases and as
capacity becomes more constrained.

e Delayed Pricing usually outperforms Delayed Production. Exceptions
occur when production cost is high or under certain types of seasonality.

The last insight, concerning the performance of Delayed Pricing versus
Delayed Production, is in agreement with the one obtained by Van Mieghem
and Dada (1999) for a somewhat related two stage problem. As observed
earlier, they consider a single period model where the postponed decisions are
made after demand is realized. They found that in many instances Pricing
Postponement outperformed Production Postponement; one exception was in
a case with high production cost.

PART III: SUPPLY CHAIN DESIGN MODELS

9 Introduction

One of the most important aspects of logistics is deciding where to locate
new facilities, such as retailers, warehouses or factories. These strategic
decisions are a crucial determinant of whether or not materials will flow
efficiently through the distribution system.
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In this section we consider two important warehouse location problems: the
Single-Source Capacitated Facility Location Problem and a distribution
system design problem. In each case, the problem is to locate a set of
warehouses in a distribution network. We assume that the cost of locating a
warehouse at a particular site includes a fixed cost (e.g., building costs, rental
costs, etc.) and a variable cost for transportation. This variable cost
includes the cost of transporting the product to the retailers as well as possibly
the cost of moving product from the plants to the warechouse. In general, the
objective is to locate a set of facilities so that total cost is minimized subject
to a variety of constraints which might include:

¢ cach warehouse has a capacity which limits the area it can supply,

¢ cach retailer receives shipments from one and only one warehouse,

o cach retailer must be within a fixed distance of the warehouse that
supplies it, so that a reasonable delivery lead time is ensured.

Location analysis has played a central role in the development of the
operations research field. In this area lie some of the discipline’s most elegant
results and theories. We note here the paper of Cornugjols, Fisher, and
Nemhauser (1977) and the two excellent books devoted to the subject by
Mirchandani and Francis (1990) and Daskin (1995).

This section closely follows the material in Bramel and Simchi-Levi (1997)
and is organized as follows. We first present an efficient algorithm for the
Single-Source Capacitated Facility Location Problem. In this problem a set
of retailers needs to be served by a number of warehouses with limited
capacity. In Section 11, we present a more general model where all levels of the
distribution system, i.e., plants and retailers, are taken into account when
deciding warehouse locations.

All of the algorithms developed in this section are based on Lagrangian
relaxation techniques which have been applied successfully to a wide range of
location problems.

10 The single-source capacitated facility location problem

Consider a set of retailers geographically dispersed in a given region. The
problem is to choose where in the region to locate a set of warehouses. We
assume there are m sites that have been preselected as possible locations for
these warehouses. Once the warehouses have been located, each of n retailers
will get its shipments from a single warehouse. We assume:

e If a warechouse is located at site
o a fixed cost f; is incurred, and
o there is a capacity g; on the amount of demand it can serve.

Let the set of retailers be N where N={1,2,...,n}, and let the set of
potential sites for warehouses be M where M ={1,2,...,m}. Let w; be the
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demand or flow between retailer i and its warehouse for each i € N. We assume
that the cost of transporting the w; units of product from warehouse j to
retailer i is c;;, for each ie N and je M.

The problem is to decide where to locate the warehouses and then how
the retailers should be assigned to the open warehouses in such a way that
total cost is minimized. It is easy to verify that the capacity constraint implies
that a retailer will not always be assigned to its nearest warehouse.

This problem is called the single-source Capacitated Facility Location
Problem (CFLP), or sometimes the Capacitated Concentrator Location
Problem (CCLP).

To formulate the problem as an integer linear program, define the following
decision variables:

1, if a warehouse is located at site j,
Y= ~
0, otherwise,

for je M, and

Yo — 1, if retailer i is served by a warehouse at site J,
7710, otherwise,

forie M, and je M.
The Single-Source Capacitated Facility Location Problem can be formu-
lated as follows:

n m

Problem P : Min Z Z ci X+ if, Y;
=1

i=1 j=1

m

st. > X;=1 VieN (10.1)
j=1

Y owiXy<qY; VieM (10.2)

i=1

X;Y;€{0,1} VieN,jeM (10.3)

Constraints (10.1) (along with the integrality conditions (10.3)) ensure that
each retailer is assigned to exactly one warehouse. Constraints (10.2) ensure
that the warehouse’s capacity is not exceeded, and also that if a warehouse is
not located at site j, no retailer can be assigned to that site.

Let Z* be the optimal solution value of the Single-Source Capacitated
Facility Location Problem. Note we have restricted the assignment variables
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(X) to be integer. A related problem, where this assumption is relaxed, is
simply called the (multiple-source) Capacitated Facility Location Problem. In
that version, a retailer’s demand can be split between any number of
warehouses. In the Single-Source Capacitated Facility Location Problem, it is
required that each retailer have only one warehouse supplying it. In many
logistics applications, this is a realistic assumption since without this
restriction optimal solutions might have a retailer receive many deliveries of
the same product (each for, conceivably, a very small amount of the product).
Clearly, from a managerial, marketing and accounting point of view,
restricting deliveries to come from only one warehouse is a more appropriate
delivery strategy.

Several algorithms have been proposed to solve the CFLP in the literature;
all are based on the Lagrangian relaxation technique. This includes Neebe and
Rao (1983), Barcelo and Casanovas (1984), Klincewicz and Luss (1986), and
Pirkul (1987). The one we derive here is similar to the algorithm of Pirkul
which seems to be the most effective.

We apply the Lagrangian relaxation technique by including constraints
(10.1) in the objective function. For any vector A € R”, consider the following
problem, Py

n m

Min > > "X + Iiij,- + Xn:/\,(i)(,»j - 1)
j=1 i=1 j=1

i=1 j=1

subject to (10.2)—(10.3).
Let Z; be its optimal solution and note that

Z, < Z*, VaeR"

To solve P, we separate the problem by site. For a given je M, define the
following problem Rj, with optimal objective function value Z;:

Min Y (c; + )X + 1Y,

1

n

i=
n

S.t. Z W,’X,’j < quj
i=1

X,j S {O, 1} Vie N
Y; € {0,1}.
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10.1 Solving Pj

Problem P, can be solved efficiently. In the optimal solution to Pj, Y; is
either 0 or 1. If ¥;=0, then X;;=0 for all ie N. If Y;=1, then the problem 1s
no more d1fﬁcu1t than a constraint 0-1 Knapsack Problem for which
efficient algorithm exist; see, e.g., Nauss (1976). If the optimal knapsack
solution is less than —f}, then the corresponding optimal solution to Pj
found by setting Y¥; = 1 and Xj; according to the knapsack solution, 1ndlcat1ng
whether or not retaller i 1s assigned to site j. If the optimal knapsack solution
is more than —f}, then the optimal solution to P’ is found by setting ¥; =0
and X;; =0 for all ie V.

The solution to R, is then given by

Z, = i zl — Z Ai.
j=1 i=1

For any vector A € R", this is a lower bound on the optimal solution Z*. To
find the best such lower bound we use a subgradient procedure described in
Bramel and Simchi-Levi (1997).

10.2  Upper bounds

For a given set of multipliers, if the values {X} satisfy (10.1), then we
have an optimal solution to Problem P, and we stop. Otherwise, we perform a
simple subroutine to find a feasible solution to P. The procedure is based
on the observation that the knapsack solutions found when solving P
give us some information concerning the benefit of setting up a warehouse
at a site (relative to the current vector A). If, for example, the knapsack
solution corresponding to a given site is 0, i.e., the optimal knapsack is
empty, then this is most likely not a ‘good’ site to select at this time.
In contrast, if the knapsack solution has a very negative cost, then this is a
‘good’ site. Given the values Zj for each j € M, let m be a permutation of
1,2,...,m such that

Z;f(l) < Z;f(z) < ... < Z;f(””)'

The procedure we perform allocates retailers to sites in a myopic
fashion. Let W be the minimum possible number of warehouses used in the
optimal solution to Problem P. This number can be found by solving the bin-
packing problem defined on the values w; with bin capacities g;. Starting with
the ‘best’ site, in this case site (1), assign the retailers in its optimal knapsack
to this site. Then, following the indexing of the knapsack solutions, take the
next ‘best’ site (say site j = n(2)) and solve a new knapsack problem: one
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defined with costs ¢;;=c; + A; for each retailer i still unassigned. Assign all
retailers in this knapsack solution to site j. If this optimal knapsack is empty,
then a warehouse is not located at that site, and we go on to the next site.
Continue in this manner until W warehouses are located.

The solution may still not be a feasible solution to Problem P since some
retailers may not be assigned to a site. In this case, unassigned retailers are
assigned to sites that are already chosen where they fit with minimum
additional cost. If needed, additional warehouses may be opened following the
ordering of m. A local improvement heuristic can be implemented to improve
on this solution, using simple interchanges between retailers.

10.3  Computational results

We now report on various computational experiments using this algorithm.
The retailer locations were chosen uniformly over the unit square. For
simplicity, we made each retailer location a potential site for a warehouse,
thus m =n. The fixed cost of a site was chosen uniformly between 0 and 10.
The cost of assigning a retailer to a site was the Euclidean distance between
the two locations. The values of w; were chosen uniformly over the unit
interval. We applied the algorithm mentioned above to many problems and
recorded the relative error of the best solution (upper bound) to the best lower
bound (maximum Z;) found, and the computation time required. The
algorithm is terminated when the relative error is below 1% or when a
prespecified number of iterations is reached. In Table 16 the numbers below
‘Error’ are the relative errors averaged over five randomly generated problem
instances. The numbers below ‘CPU Time’ are the CPU times averaged over
the five problem instances. All computational times are on an IBM Risc 6000
Model 950.

11 A distribution system design problem

So far the location model we have considered has been concerned with
minimizing the costs of transporting products between warchouses and

Table 16
Computational results for the single-source capacitated
facility location problem

n m Error (%) CPU time (sec)
10 10 1.1 10.2
20 20 1.9 21.3
50 50 3.4 192.8

100 100 4.8 426.7
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retailers. We now present a more realistic model that considers the cost
of transporting the product from manufacturing facilities to the warehouses
as well.

Consider the following warehouse location problem. A set of plants
and retailers are geographically dispersed in a region. Each retailer experiences
demands for a variety of products which are manufactured at the plants up
to their capacity limits. A set of warehouses with limited capacities must
be located in the distribution network from a list of potential sites.

The cost of locating a warehouse includes the transportation cost per
unit from warehouses to retailers and also the transportation cost from
plants to warehouses. In addition, as in the Single-Source Capacitated Facility
Location Problem, there is a site-dependent fixed cost for locating each
warehouse.

The data for the problem are the following:

e [.=number of plants; we will also let L={1,2,...,L}

e J=number of potential warehouse sites; also let J={1,2,...,J}

o /=number of retailers; also let /={1,2,...,1}

e K=number of products; also let K={1,2,...,K}

o J¥ =number of warehouses to locate

* ¢/ =cost of shipping one unit of product k from plant; to warehouse
site j

 dyy.= cost of shipping one unit of product k from warehouse site
j to retailer i

o f;=fixed cost of locating a warehouse at site j

e vy =supply of product k at plant;

e w; =demand for product k at retailer ;

¢ 5, =volume of one unit of product k

e g;=capacity (in volume) of a warehouse at site j

We make the additional assumption that a retailer gets delivery for a
product from one warehouse only. This does not preclude solutions where a
retailer gets shipments from different warehouses, but these shipments must
be for different products. On the other hand, we assume that the warehouse
can receive shipments from any plant and for any amount of product (within
its capacity limit).

The problem is to determine where to locate the warehouses, how to ship
product from the plants to the warehouses, and also how to ship the product
from the warehouses to the retailers. This problem is similar to the one
analyzed by Pirkul and Jayaraman (1996).

We again use a mathematical programming approach. Define the following
decision variables:

{ 1, if a warehouse is located at site j
=

0, otherwise,
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and
Ujjx = amount of product k shipped from plant, / to warehouse /,

foreach / € L,j € J and k € K. Also define:

1, if retailer i receives product k from warehouse j
X = -
0, othrewise,

foreachjeJ,ieland k € K.
Then, the Distribution System Design Problem can be formulated as the
following integer program:

L J K I J K J
min Y "N e U+ Y Y Y duwaXi + Y Y
/=1 j=1 k=1 i=1 j=1 k=1 j=1
J
Y Xu=1 Viel.kek (11.1)
j=1
1 K
DO sewaXi < q;Y; Vjed (11.2)
i=1 k=1
1 L
> waXi=> Uy Vjelkek (11.3)
i=1 /=1
J
> U <vi V/eLkek (11.4)
J=1
J
Yv=w (11.5)
j=1
Y, X € (0,1} Viel,jel,kekK (11.6)
Uy >0 V/elL,jel keKk. (11.7)

The objective function measures the transportation costs between plants
and warehouses, between warehouses and retailers and also the fixed cost of
locating the warehouses. Constraints (11.1) ensure that each retailer/product
pair is assigned to one warehouse. Constraints (11.2) guarantee that the
capacity of the warehouses is not exceeded. Constraints (11.3) ensure that
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there is a conservation of the flow of products at each warehouse, that is, the
amount of each product arriving at a warehouse from the plants is equal to the
amount being shipped from the warehouse to the retailers. Constraints (11.4)
are the supply constraints. Constraint (11.5) ensures that we locate exactly W
warehouses.

Observe that in the model described here, transportation cost is a
linear function of the amount shipped. Indeed, at this strategic level, and
unlike the tactical level described earlier, annual transportation cost is based
on average shipment size. That is, at the strategic level, the model
only approximates the transportation cost functions and thus transportation
costs are linear.

The model can handle several extensions like a warehouse handling fee or
a limit on the distance of any link used. Another interesting extension is
when there are a fixed number of possible warehouse types to choose from.
Each type has a specific cost along with a specific capacity. The model can
be easily extended to handle this situation.

As in the previous problem, we will use Lagrangian relaxation. We relax
constraints (11.1) (with multipliers A;) and constraints (11.3) (with multipliers
0jx). The resulting problem is:

7
diawi Xk + ij Y;

J=1

Mx

L J K J oI
minZZZc AU/Jk-I—ZZ

/=1 j=1 k=1 J=1 i=1

J K I K J
+229’k |:Z Wlk Jik — Z U/]kj| +ZZ)\tk|:l - ZAX}iki|,
) k

i=1 = i=1 k=1 j=1

=~
I

subject to (11.2), (11.4)—(11.7).

Let Z; 4 be the optimal solution to this problem. This problem can be
decomposed into two separate problems, P; and P,. They are the following:

L J K
Problem P, : Z; =Min Z Z Z [esie — O] Uik

J
> Ui <v. V/eLkek (11.8)
j=1

Uy =0, V/elL,jel, keKk.

J I K J
Problem Py : Zy=Min Y > " [djawi — hix + Opwil X + Y_fY;

J=1 i=1 k=1 J=1
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1 K
st > > sowvaXi < q;Y;. Ve (11.9)
i=1 k=1
J
Zyjzw, Y, X €{0,1}, Viel,jeJ,keKk. (11.10)
j=1

11.1 Solving P,

Problem P; can be solved separately for each plant/product pair. In fact,
the objective functions of each of these subproblems can be improved (without
loss in computation time) by adding the constraints:

scUpic < q;, Yl elL,jelJ, keKk. (11.11)

For each plant/product combination, say plant 1 and product k, sort the
J values ¢j=c/j — 0. Starting with the smallest value of ¢;, say ¢, if
¢y > 0, then the solution is to ship none of this product from this plant.
If ¢; < 0, then ship as much of this product as possible along arc (7, /') subject
to satisfying constraints (11.8) and (11.11). Then if the supply v, has
not been completely shipped, do the same for the next cheapest reduced cost
(¢), as long as it is negative. Continue in this manner until the entire
product has been shipped or the reduced costs are no longer negative. Then
proceed to the next plant/product combination repeating this procedure.
Continue until all the plant/product combinations have been scanned in this
fashion.

11.2  Solving P>

Solving Problem P, is similar to solving the subproblem in the
Single-Source Capacitated Location Problem. For now we can ignore
constraint (11.10). Then, we separate the problem by warehouse. In the
problem corresponding to warehouse j, either Y;=0 or ¥;=1.If ¥;=0, then
Xjy=0 for all ie N and ke K. If Y;=1, then we get a Knapsack Problem
with NK items, one for each retculer/product pair. Let Z3 be the objective
function value when Y; is set to 1 and the resulting knapsack problem is
solved. After having solved each of these, let m be a permutation of the
numbers 1,2, ...,J such that

270 < 770 < < 70,



Ch. 2. Supply Chain Design and Planning 87

The optimal solution to P, is to choose the W smallest values:

w
Zz = Z Zg('/).
J=1

For fixed vectors A and 6, the Lagrangian lower bound is

I K

Zio=Z1+Z2+ ) > i

i=1 k=1

To maximize this bound, i.e., max; 4{Z, o}, we again use the subgradient
optimization procedure.

11.3  Upper bounds

At each iteration of the subgradient procedure, we attempt to construct
a feasible solution to the problem. Consider Problem P,. Its solution may
have a retailer/product combination assigned to several warehouses. We
determine the set of retailer/product combinations that are assigned to one
and only one warehouse and fix these. Other retailer/product combinations
are assigned to warehouses using the following mechanism. For each
remaining retailer/product combination, we determine the cost of assigning
it to a particular warehouse. After determining that this assignment is
feasible (from a warehouse capacity point of view), the assignment cost is
calculated as the cost of shipping all of the demand for this retailer/product
combination through the warchouse plus the cost of shipping the demand
from the plants to the warehouse (in the cheapest possible manner while
satisfying plant capacity constraints, possibly along one or more arcs from the
plants to the warehouse). For each retailer/product combination we determine
the penalty associated with assigning the shipment to its second best
warehouse instead of its best warchouse. We then assign the retailer/product
combination with the highest such penalty and update all arc flows and
remaining capacities. We continue in this manner until all retailer/product
combinations have been assigned to warehouses.

11.4 Computational results

In Table 17, we report running times, in seconds, on an IBM PC
166 MHz machine for a variety of problem sizes. The results are given as a
function of various parameters. In all cases, the number of potential locations
for warehouses is 32, the number of suppliers is 9, the numbers of products
is also 9, and we require that the distance between a customer and a
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Table 17

Running times

Number of Number of Running time Running time
customers warehouses 5% (sec) 1% (sec)

144 6 64 106

144 5 95 209

144 4 99 227

73 6 31 60

73 5 19 54

73 4 20 37

warehouse serving it will be no more than 100 miles. The optimization was
terminated when the relative difference between the cost of the solution
generated and the lower bound was within a specified gap. Thus, the column
‘Running Time 5% provides the running times when the gap is 5%
while ‘Running Time 1%’ provides the running times when the gap is 1%.
Finally, these six test problems represent real-world data that we have
received from a producer and distributor of soft drinks in the Northeastern
part of the U.S.

12 Conclusions

The last few years have been marked by considerable progress in the
development and implementation of information and communication
systems. These systems allow companies to track customer demand,
inventory, and the availability of production facilities. Of course, as pointed
out in Shapiro (1998), ready access to transactional data does not
automatically lead to better decision making. Optimization models and new
solution techniques that use the wealth of information to better design and
manage the supply chain are key to improving supply chain performance.

This chapter describes a variety of optimization models and solution
methods for the integration of various tactical and strategic decisions within
the supply chain. The problems addressed range from the coordination of
production, inventory and transportation, through the determination of
pricing and production strategies, to supply chain design models. Most of the
models are deterministic models while some incorporate uncertainty in
customer demand. In all cases we utilize the inherent structure of the optimal
strategies to develop computationally efficient algorithms and solve realistic
instances. Moreover, for some of the problems, we can theoretically prove
optimality or develop attractive worst-case bounds on the performance of
various algorithms. The results demonstrate the power of optimization
techniques and the great potential of these methods when implemented in
Decision Support Systems.
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Of course, many challenges still remain! For instance, in the Production/
Distribution models analyzed in Part I, these challenges include incorporating
production, warehousing and transportation capacities in some of the models,
extending the tactical models to assembly systems, analyzing different modes
of transportation, and most importantly, extending the analysis to practical
situations in which the decision-maker is faced with uncertain demand or
supply. Similarly, the pricing models and results should be extended to models
with multiple classes of customers differentiated by their sensitivity to price
and lead-time, models with discretionary sales, as well as multi-stage supply
chains. Finally, the supply chain design problems analyzed in Part III should
be generalized to incorporate demand uncertainty.

In this chapter, we have focused on a single decision-maker that has full
control and access to information over the entire logistics network. In many
practical situations, however, an important issue in supply chain design and
planning is the management of information flows. How information is shared
among different locations and organizations, and how decision power is
distributed among multiple agents has a significant impact on supply chain
performance. This effect has been observed in industry and rigorously
analyzed in the academic literature under various settings, see Tayur,
Ganeshan, and Magazine (2000), Lee, So, and Tang (2000) or Chen, Drezner,
Ryan, and Simchi-Levi (2000). The flow of information and the coordination
of distributed decision making within the supply chain are the subject of much
current research, but are beyond the scope of this chapter.
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1 Introduction

The focus of this chapter is on safety stock placement in the design of a
supply chain, as well as on the optimal configuration of the supply chain to
minimize total supply chain cost. As our intent is not to cover all of supply
chain design, we first need to position this chapter relative to the other work in
this handbook on supply chain design. We also need to position our treatment
of the safety stock placement problem relative to other chapters that address
multi-echelon inventory systems.

There is a great range of decisions associated with the design of a supply
chain. One might group the design decisions into three broad categories.

First, there are the traditional decisions of network design as applied to the
design of a supply chain. The choice of nodes corresponds to questions about
the number, location and sizing of facilities. The choice of arcs corresponds
to setting the general logistics strategy in terms of who serves whom and by
what transportation or production mode. Muriel and Simchi-Levi cover these
models in Chapter 2 of this book.

Second, we mention the decisions that are made in product design that
determine the topology, as well as the key economics, of the supply chain.
Ideally, one would like to concurrently design the product and its supply chain
so as to meet the market objectives for the product with the best performance
of the supply chain. Lee and Swaminathan look at the impact of product
design decisions on the supply chain, with a particular focus on understanding
the tactic of postponement as a way to achieve product proliferation with a
well performing supply chain.

95
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Third, we note the design decisions that allow the supply chain to be
responsive to uncertainty and variability. In Chapter 4, Bertrand addresses the
general question of how to accomplish flexibility in a supply chain, for
instance by means of having flexible facilities and/or capacity buffers, as well
as through contracting mechanisms. In the current chapter, we examine a
completely different tactic, the deployment of inventory as safety stock for
addressing demand uncertainty. In particular we look at the strategic
placement of safety stocks across a supply chain.

In this chapter, we also introduce a new design consideration for how to
configure the supply chain. The configuration decision entails choosing how to
source each step or stage in the supply chain, where there might be several
options that vary in terms of lead-time and cost. For instance, the
configuration decision includes decisions about choice of suppliers for raw
materials, choice of transportation modes, and choice of processing options,
which might vary in terms of technology and capacity.

As the majority of the chapter is on safety stock placement in a supply
chain, there is a close connection between this chapter and the body of
literature on multi-echelon inventory systems. In this handbook, there are
three chapters that focus, to some degree, on multi-echelon inventory models,
namely Axsédter (Chapter 10), Song and Zipkin (Chapter 11) and de Kok and
Fransoo (Chapter 12). We see three distinctions between the focus of this
chapter and the general literature on multi-echelon inventory systems, as
treated in these other chapters.

First, the primary emphasis on the approaches studied in this chapter is in
terms of providing decision support for supply chain design, rather than
supply chain operation. By this, we mean that the intent is to determine the
best overall strategy for deploying safety stock across the supply chain so as to
buffer it against demand uncertainty. In particular, we are concerned with
questions about where are the best places in the supply chain to position a
safety stock, and how much is needed to protect the chain. In contrast with
much of the multi-echelon inventory literature, the intent is not to find the
inventory control policy for operating the supply chain.

Second, much of the multi-echelon literature focuses on specific network
topologies such as serial, assembly or distribution systems. We know, however,
that de Kok and Fransoo in Chapter 12 do explicitly describe a multi-echelon
algorithm that applies to general network structures. The purpose of this
chapter is to consider multi-echelon models that have been specifically
designed for optimizing the placement of safety stocks in real-world supply
chains. As such, we find that the network topologies of most supply chains are
neither an assembly nor distribution system, and thus require different
approaches. Admittedly, in order to make progress on these more complex
systems, these approaches for safety stock placement require simplifications
and at times, strong assumptions. As a consequence, these safety stock models
lack some of the rigor found in the literature for multi-echelon systems. But,
on the plus side, they have had substantial success in being applied in practice.
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Third, we assume that the inventory policies throughout the supply chain
just rely on local information and make local decisions in terms of their
inventory management and replenishment. In contrast, the models in these
other three chapters allow for a central decision maker to coordinate and
control the actions at all stages in the supply chain.

The structure of the chapter is to consider first two approaches to safety
stock placement, which we term the stochastic-service model and the
guaranteed-service model. These two approaches provide an interesting
contrast to how one models and analyzes a supply chain for the purposes of
setting safety stocks. We then address the issue of how to optimally configure
the supply chain. We introduce the notion of options for each stage in the
supply chain, where the options differ in terms of lead-time and cost. We show
how this work builds on the safety-stock placement models and we formulate
an optimization model that finds the best choice of options and safety stock
placement to minimize the total supply chain cost. We conclude the chapter
with some reflections on this material and its applicability and value to
practice, as well as reflections on opportunities for research.

2 Approaches to safety stock placement

In this chapter, we consider two approaches to optimizing safety stock
levels in multi-echelon supply chains. Our intent is to compare and contrast
these approaches in terms of their underlying assumptions, computational
and modeling implications, and the nature of the results produced. Both
approaches adopt a network representation of the supply chain, where nodes
in the network correspond to stages in the supply chain and arcs denote the
precedence relationship between stages. A stage represents a processing or
transformation activity in the supply chain. Depending on the scope and
granularity of the analysis being performed, the stage could represent
anything from a single step in a manufacturing or distribution process to a
collection of such steps to an entire assembly and test operation. Regardless of
the level of detail chosen by the modeler, a stage corresponds to the material
flow of a single item or a single family of items, and each stage is a candidate
location for the placement of a safety stock of inventory. When it is necessary
to distinguish the safety stocks for different items at the same location, then we
need to replicate the stages. For example, if two products flow through a
distribution center, we might model each product in the supply chain map by
a stage that corresponds to that SKU at that distribution center.

The approaches also assume decentralized control throughout the supply
chain. There is no central decision maker that coordinates and controls the
actions at all of the stages in the supply chain. Instead, for the purposes of
determining safety stocks, we assume that each stage in the supply chain
manages its inventory with a simple control policy that takes inputs from
adjacent upstream and downstream stages. Thus, in order to be implemented
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in practice, the final recommendations of the model with regard to safety
stocks must be translated into the control policies that are in use throughout
the supply chain. As a final note on this issue, saying the supply chain is
subject to decentralized control is not equivalent to saying the supply chain is
locally optimized. In an optimization context, the models attempt to find the
safety stock levels, under the assumption of decentralized control, that
minimize the total safety stock cost for the supply chain. For the approaches
presented here, this requires global access to information to run the opti-
mization and calculate the system’s performance measures. In particular,
demand information is passed from finished goods stages through the chain
to raw materials and cost and lead-time data is passed in the opposite direction.

The two approaches differ in how they model the replenishment mechanism
between stages in the supply chain. We refer to the two approaches as the
stochastic-service model and guaranteed-service model. The stochastic-service
model assumes the delivery or service time between stages can vary based on
the material availability at the supplier stage. The guaranteed-service model
assumes that each stage can quote a delivery or service time that it can
always satisfy.

In the stochastic-service model, each stage in the supply chain maintains a
safety stock sufficient to meet its service level target. In this setting, a stage
that has one or more upstream-adjacent supply stages has to characterize its
replenishment time taking into account the likelihood that these suppliers will
meet a replenishment request from stock. Because the upstream suppliers
will not always meet demand requests immediately from stock, each stage will
occasionally experience a delay in obtaining its supplies from its upstream
suppliers. Due to this stochastic delay, the replenishment time for the stage is
also stochastic, even when the processing time at the stage is deterministic.
The inventory level required at each stage to meet its service level target
depends on its replenishment time. And the challenge in this work is in how to
characterize these replenishment times given that a stage might have multiple
upstream suppliers, and given that each of the upstream stages might also
be dependent upon unreliable suppliers.

In the guaranteed-service model, each stage provides guaranteed service
to its customer stages. In this setting, a supply stage sets a service time to
its downstream customer and then must hold sufficient inventory so that
it can always satisfy the service-time commitment. A key assumption in this
model is to assume that demand is bounded for the purposes of making the
service-time guarantee. As a consequence, the service-time guarantee can be
accomplished with a finite stock of inventory. The guaranteed nature of these
service times assures that the replenishment time for downstream stages is
predictable and deterministic. This then allows the downstream stage to plan
its inventory so that it can also make a service-time guarantee to its customers.
In this work, the challenge is determining the best choice of service
times within the supply chain that minimize the total supply-chain inventory
and meet the service requirements for the supply-chain’s customer.
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The stochastic-service and guaranteed-service approaches both require
strong assumptions in order to produce tractable models. The stochastic-
service model assumes that the system behaves the same under all demand
conditions. That is, each stage reacts in a predictable way whether there is
ample inventory or there is a stock-out, and inventory is the only
countermeasure available to deal with demand and supply uncertainty in
the supply chain. If one were to make an analogy to a checkout clerk in a
grocery store, the stochastic-service model assumes that the clerk behaves the
same way if the line is one person or fifty people.

The guaranteed-service model makes an equally strong assumption.
In order to provide guaranteed service, the guaranteed-service model
assumes that the safety stock policy is only being designed to meet
some portion of the demand, as specified by the demand bound. When
demand exceeds the bound, the model does not attempt to address how the
system will react. In effect, the guaranteed-service model assumes that
inventory is held to handle some nominal level of uncertainty and that other
responses or tactics are available to address demand or supply uncertainty
beyond this nominal level. Continuing the grocery-checkout analogy, if the
system were designed to process a maximum of 20 customers in a one-hour
interval, then when 25 customers show up in an hour, the model does not say
how exactly the additional customers would be served. In effect, the model just
assumes outside measures are adopted to serve these customers in the specified
time frame. (We note here that the control framework proposed in Chapter 12
assumes that other countermeasures are applied when planned lead times
are threatened.)

The next two sections discuss in more detail the papers that have appeared
in both streams of work.

2.1 Stochastic-service model approach

Lee and Billington (1993) develop a multi-echelon inventory model to
reflect the decentralized supply chain structure they witnessed in Hewlett-
Packard’s DeskJet printer supply chain. Their goal was to produce a model
that manufacturing and materials managers could use to evaluate different
strategic decisions involved with the creation of a new-product supply chain.
They model a supply chain as a collection of SKU-locations where each
stage in the supply chain accepts as an exogenous input a service level target
or a base stock policy. In the case where service level targets were inputs, the
authors develop a single-stage base-stock calculation that, while approximate,
is tractable. The single-stage base-stock level is a function of the replenishment
lead-time at the stage, which includes the production lead-time, plus the
effects from production downtime and random delays due to component
shortages. Lee and Billington show how to propagate the single-stage model
to multiple stages by developing expressions for the random delays
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induced on downstream stages from shortages from the base-stock policy of
upstream stages.

Ettl, Feigin, Lin and Yao (2000) also consider a supply chain context that is
quite similar in spirit to the work of Lee and Billington (1993). The single-
stage base-stock model in Ettl et al. (2000) makes a distinction between the
nominal lead-time a stage quotes and the actual lead-time the stage
experiences. The actual lead-time will exceed the nominal lead-time when
there is a stock-out at a supplier. The authors develop an approximate
characterization of the random variable for the actual lead-time. This
approximation is based on assuming that at most one supplier is out of stock
at any time instant, and then determining the stock-out probability for each
supplier, given their service targets and this assumption. The authors use an
M/M /oo model of the supplier’s replenishment process to develop a bound on
the expected delay induced by a stock-out. Weighting these delays by the
stock-out probabilities for each supplier, and combining with the nominal
lead-time provides the characterization of the actual lead—time for a single
stage. Given this lead-time, a base-stock level is determined to assure a given
service target for the stage. As in the case of Lee and Billington (1993), the
single-stage model extends immediately to a multiple-stage supply chain.
Indeed, given service level targets for every stage in the supply chain, it is
possible to decompose the performance analysis of a multiple-stage system
into the analysis of a series of single-stage base-stock systems.

In addition to performance analysis, Ettl et al. (2000) go on to place their
supply chain model into an optimization context. The authors’ objective
function is to minimize the total inventory investment in the supply
chain, defined as work-in-process inventory plus safety stock inventory. The
decision variables are the safety factor (or service level) at each stage. The
authors then develop expressions for the partial derivative of the objective
function with respect to the safety factors. This formulation allows the authors
to solve the resulting nonlinear programming problem using conjugate
gradient methods.

Glasserman and Tayur (1995) consider a context very similar to that of Lee
and Billington (1993) and Ettl et al. (2000) but go on to introduce capacity
limits into their multi-echelon model. The introduction of production capacity
requires each stage to operate a modified base-stock policy where at each
period the stage will order the minimum of its capacity and the amount to
bring its inventory position back to the base-stock level. The problem
formulation of Glasserman and Tayur (1995) follows the framework of Clark
and Scarf (1960) with the addition of capacity. The authors first develop
recursions for stage inventories, production levels, and pipeline inventories.
The authors develop estimates of the derivatives of the inventory requirements
with respect to the base-stock levels, based on an infinitesimal perturbation
analysis. They use these estimates to generate the gradient of the cost function,
with which they can conduct a gradient-based search to find the optimal base-
stock policy.
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2.2 Guaranteed-service model approach

The guaranteed service-time approach traces its lineage back to the 1955
manuscript, which was later reprinted in 1988 (Kimball, 1988). In that paper,
Kimball describes the mechanics of a single stage that operates a base-stock
policy in the face of random but bounded demand. In particular, beyond the
deterministic production time assumed at the stage, there is an incoming
service time that represents the delivery time quoted from the stage’s supplier
and an outgoing service time representing the delivery time the stage quotes to
its customer. Kimball further assumes that demand over any interval of time is
bounded. Given this characterization, the base-stock level at the stage is set
equal to the maximum demand over the net replenishment time, which is
defined as the incoming service time plus the production time minus the
outgoing service time.

Simpson (1958) develops a model to determine the optimal safety stocks in
a serial supply chain. Simpson uses Kimball’s work as the building block,
coupling adjacent stages together through the use of service time. In
particular, the incoming (or inbound) service time of a downstream stage is
equal to the outgoing (or outbound) service time of the upstream stage,
namely its supplier. The optimal stocking locations in the supply chain can
then be found by determining the optimal service times in the supply chain.
Simpson proves that for a serial supply chain the optimal service times satisfy
an extreme point property where the outgoing service time at a stage will equal
either zero or its incoming service time plus its production time. In terms of
inventory, the optimal policy is an ‘all or nothing’ policy, in which a stage
either has no safety stock or carries a decoupling safety stock, namely enough
stock to decouple the downstream stages from the upstream stages. Simpson
suggests an enumeration procedure to find the optimal service times.

Simpson also provides a rich interpretation for the bounded demand
process. Rather than saying that bounded demand reflects the maximum
demand the stage will see, the bound can instead reflect the maximum amount
of demand the company wants to satisfy from safety stock. Under this
interpretation, when demand exceeds the bound, the stage will have to resort
to extraordinary measures, like expediting and overtime, to meet the demand
requirement by means other than using safety stock.

Graves (1988) observes that the serial-line problem, as formulated by
Simpson (1958), can be solved as a dynamic program. Inderfurth (1991),
Inderfurth and Minner (1998), Graves and Willems (1996, 2000) extend
Simpson’s work to supply chains modeled as assembly networks, distribution
networks, and spanning trees. In each case, the optimization problem is still
to determine the service times that minimize the total cost for safety stock in
the supply chain. The challenge is to determine an efficient approach to
traverse the state space of the dynamic program. The definition of service time
must also be expanded to include the cases where a stage can see more
than one upstream or downstream stage. In the case of multiple upstream
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stages feeding a downstream stage, the papers assume that the downstream
stage has to wait until the item with the longest service time arrives. In the
case of an upstream stage supplying multiple downstream stages, the papers
assume the upstream stage quotes the same service time to all of its adjacent
downstream stages.

3  Model formulation

The single-stage base-stock policy is the common building block for all of
the papers in this chapter. The differences in the approaches deal with how
adjacent stages interact with one another and the assumptions about the
operating behavior of the individual stages. This section develops both the
underlying base-stock equations and the resulting multi-echelon problem
formulations for both the guaranteed and stochastic-service models.

The goal of this section is to distill the two models into their simplest
elements so that the reader can clearly see the similarities and differences
between the two approaches. The goal is not to replicate the contents of the
papers surveyed in the literature review nor is it to provide a careful
development of the features of each model. Rather, the intent is to give a self-
contained development that highlights the essence of each approach. We refer
the reader to the specific papers for the critical details and refinements that
are necessary for the successful implementation of each model.

To get started, we note the key similarities of the two approaches. In each
model, each stage in the supply chain operates according to a base-stock
policy. In each period, the stage observes demand and places a replenishment
order on its suppliers equal to the observed demand. There are no capacity
constraints. There is a common underlying review period for all stages in
the supply chain. Demand is stationary and independent across nonoverlap-
ping intervals, with mean demand per period of u and a standard deviation
of 0. Associated with each stage is a deterministic processing time (or lead-
time) that includes all of the time required to transform the item at the stage.
Once all of the stage’s required inputs are available, the processing
time includes any waiting time, manufacturing time and transportation time
at the stage.

3.1 Stochastic-service model

In the stochastic-service model, each stage sets its base stock to meet a
service level target, i.e., an upper bound on the probability that a stage is out
of stock in any period and thus cannot meet customer demand directly from
stock on hand. The service level target for external customers is an exogenous
input to the model, usually dictated by market conditions. The service
level target for internal customers is an input when the model is used for
performance evaluation; alternatively, the service level target for internal
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customers is a decision variable when the model is placed within an
optimization. We say that a stage provides stochastic service because a
demand order will receive immediate service when stock is on hand, but will be
subject to a random delay when the stage is out of stock.

The replenishment time at a stage equals the processing time at the stage
plus any delay from upstream stages. If we denote the replenishment time at
stage j as a random variable 7;, the processing time as a constant L;, and the
delay for supplier i as a random variable A,, then the replenishment time at
stage j equals:

=L+ %nax {A} 3.1)
i:(i,))e

where A is the set of directed arcs in the network representation of the supply
chain.

In the worst case, this delay might equal the entire replenishment time from
its slowest supplier, e.g.,

= L;+ max {7 3.2
l(”)eA{} (3.2)

The development of an exact characterization of 7; is extremely challenging.
To illustrate, with N suppliers, there are 2”1 combinations of suppliers that
might be out of stock in any period. For each stage that is out of stock,
determining its delay requires considering where its first unallocated unit is in
its replenishment process. Finally, there are the multi-echelon ramifications
when a supplier’s supplier is out of stock. As a consequence, one must make
some simplifications to make the analysis of this model more tractable.
We describe an approach here, which is loosely based on the development in
Ettl et al. (2000).

For purposes of illustration, we assume that at most one supplier will stock
out per period and the delay will equal the supplier’s processing time. (This
assembly assumption is also discussed in Chapter 12.) This allows us to
express the expected replenishment time at stage j as:

E[v]=Li+ > myL (3.3)
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where m;; is the probability that in a period stage i is causing a stock-out at
stage j. Ettl et al. (2000) use this form of equation for the expected
replenishment time, but use a bound on the expected delay, rather than the
supplier’s processing time as we have done in (3.3). They derive the bound on
the expected delay by means of applying an M/M/oo model to the supplier’s
replenishment process.

We assume the demand over the replenishment time is normally distributed
with mean w;E[t;] and with standard deviation o,/ E[7;]. We assume that the
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base stock is given by B; = u,E[t;] + kjo;,/E[7;], where k; is the safety factor
necessary to achieve the service level target for the stage.

To determine the expected replenishment time, given by (3.3), we need to find
an expression for m;;. Ettl et al. (2000) propose the following calculation for m;;:

~1
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where k; denotes the safety factor at stage i and ®(k;) represents the
cumulative distribution function for a standard normal random variable. In
(3.4), the term in parentheses acts to normalize the probability that a stock-out
does or does not occur, and the first part of the expression calculates the
fraction of occurrences that are attributable to stage i.

Given the assumptions of normally distributed demand over the
replenishment lead-time, we follow the development in Ettl et al. (2000) to
get the following expression for the expected on-hand inventory for stage j:

El}] = kjo; \/ Elt)] + 05/ El7] /k» (z — k;)¢(2) dz (3.5)

where 7; is defined by (3.3) and (3.4), and ¢() is the probability density
function for a standard normal. The first term is the expected inventory level
at stage j, equal to the base stock level net the expected demand. Since the on-
hand inventory level cannot be negative, we need to augment the first term
with the second term, which corresponds to the expected number of shortages
or backorders.

We can now develop an expression for the total safety stock cost across the
supply chain. We let CJS denote the per unit holding cost of safety stock at
stage J. Cj‘s is typically determined by multiplying the cumulative cost of
the product at stage j by a holding cost rate. Given this cost characterization,
we let C*™ denote the total safety stock cost of the stochastic-service
model. Then,

Csm — ZC 0/ E (k + /Ook (Z — kj)qﬁ(z) dZ) (3.6)
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We can use (3.6) for performance evaluation in a supply chain, namely
to find the inventory requirements and costs for a given set of service level
targets or safety factors. We can also place (3.6) in an optimization context,
where the objective is to minimize safety stock cost and the decision variables
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are the service level targets, or equivalently the safety factors, at each stage in
the supply chain.

3.2  Guaranteed-service model

In the guaranteed-service model, each stage sets its base stock so as to
guarantee that it can meet its service-time commitment to its customers. That
is, each stage will quote a guaranteed service or delivery time to its
downstream customers, who know that this commitment will be met with
certainty. The service time for external customers is an exogenous input, just
as with the service level target for the stochastic-service model. The service
time for internal customers can be either an input or a decision variable,
depending upon whether the model is being used for performance evaluation
or for optimization.

As we have noted earlier, the guarantee applies to a bounded demand
process. We specify for each stage j a function D) that represents the
maximum demand over t consecutive periods for which we will guarantee the
service commitment. For each stage j, the model finds the base stock that
satisfies the stage’s service time commitment, provided that the demand time
series is always within the demand bound given by D(r). In a typical
application, similar to the stochastic-service model, one might assume that
actual demand at stage j is normally distributed with mean demand per period
of u; and a standard deviation of o;. Then a common way to set the demand
bound is as follows:

Di(1) = tp; + kjo; V/1,

where k;is a given safety factor. When demand exceeds the demand bound, then
the safety stock in the system will not be adequate to assure the service times.
We assume that in this case of extraordinary demand, some correspondingly
extraordinary measures are taken to augment the safety stock so that
the demand can be served. Alternatively, one might view demand in excess
of this bound as being lost or somehow being served from another source.
For the guaranteed-service model, the replenishment time at a stage does
not drive base stock requirements, but, rather, it is the net replenishment time
that is of importance. In order to understand net replenishment time, we first
define the concept of service time. Service time is the amount of time that
elapses between when a downstream stage places an order on an upstream
stage and when the order is delivered by the upstream stage to the downstream
stage and is available to begin processing at that stage. Each stage in the
supply chain quotes a service time to its downstream (customer) stages
and it is quoted service times from its upstream (supplier) stages. We
describe the service time that stage j quotes its customers as the outbound
service time, denoted by s¢*'. The inbound service time at stage j is denoted
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Since stage j cannot start its processing activities until it receives all
of tfle required inputs, we can state the inbound service time at stage j in
terms of the outbound service times for its suppliers:

n

s" = max {s?}. 3.7
J i;(f,_;')eA{’ } (3.7

Now, for the guaranteed-service model the replenishment time at stage j is:
T =541, (3.8)

Since both the service time and processing time (by assumption) are
deterministic constants, we have that the replenishment time for this model
is also deterministic. The net replenishment time for stage j is the reple-
nishment time minus the stage’s outbound service time, i.¢., s’" + L — 57" In
this model, we set the base stock for each stage to cover the mdxnnum demand
over its net replenishment time, as will be shown next.

We assume each stage j starts at time 0 with initial inventory 7(0)= B;.
Given the assumptions of guaranteed service and the definition of the service
times, the inventory at time ¢, I(f), equals

— Suur l*L,’fS;"
Ii()) = B; - Z a0+ D dw), (3.9)
v=0 w=0

where d(7) denotes the demand in period 7. In period 7, stage j completes into
its inventory the replemshment order that was placed in period ¢ — L; — s/
Correspondingly, in perlod t, stage j must serve the replenishment orders
placed by its customers in period ¢ — "”’ . We can simplify (3.9) as,

— A(m’

I(t) = B; — Z di(v). (3.10)

v=t— L—s/+I

In order to satisfy the service-time guarantee, we need to set the base stock B,
so that the inventory on hand Ii(f) is always non-negative. That is, we w1ll
want to set

(— Sﬂul

B> Z (). (3.11)
v=t—L; s”fH

In words, we need for the base stock to equal (or exceed) the maximum
possible demand over the net replenishment time. But given the assumption of
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a bounded demand process, then we can set B; = D,»(s;” + L; — 57") and be
assured that Eq. (3.11) holds. ' '
For illustration, assume we set the demand bound as given earlier. Then we

choose B;j = (s + L; — s" W + kjoj /s + L; — 5. We can immediately

find that the expected 1nventory on- hand at stage j equals:

E[1] = kjo /st + L; — 52 (3.12)

We can use (3.12) to determine the inventory requirements for a given setting
of the service times in a supply chain. We can also incorporate (3.12) into an
optimization to find the best choice of service times. The objective function for
the optimization could be the total holding cost for safety stocks, which we
denote by C*™ and state as:

N
J=1

In the optimization model, one minimizes the objective (3.13) with the
decision variables being the service times at the stages in the supply
chain and subject to constraints (3.7) to relate the inbound to the out-
bound service times, and non-negativity constraints on the net replenishment
times.

4 Heavy industry and consumer packaged goods example

In this section we apply the two approaches for safety stock placement
to two examples. Our intent is two-fold. First, we wish to show the
applicability of these approaches to different industries. The examples
presented in Lee and Billington (1993); Ettl et al. (2000); Graves and Willems
(2000) are all drawn from the high-technology industry. Here we will present
examples from two other industries, heavy industry and consumer packaged
goods, to demonstrate the characteristics of their supply chains and the
differences in the structure of their optimal solutions. Our second purpose is
to illustrate how the results of the two approaches can differ, and then to
discuss the implications for implementing these models.

4.1 Bulldozer assembly and manufacturing

In this section we present the assembly and manufacturing process for a
bulldozer. Figure 1 presents the bulldozer’s supply chain map.
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Fig. 1. Bulldozer Supply Chain Map.

At a high level, a bulldozer is put together in three operations. In the
common subassembly step, the transmission, drivetrain, and brake system are
attached to the case and frame. The main assembly process then installs the
chassis and the engine to the common subassembly. In final assembly the track
and suspension are installed. A real-world map of this supply chain exceeds
1000 stages with many of the stages shown in Fig. 1 spawning their own large
supply chains. Whereas we have combined many stages in order to present
the supply chain, the structure of the supply chain accurately represents
the manufacturing process and flow for bulldozers. In addition, we have
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Table 1

Parameters for Bulldozer Supply Chain

Stage name Nominal time Stage cost ($)
Boggie assembly 11 575
Brake group 8 3850
Case 15 2200
Case & frame 16 1500
Chassis/platform 7 4320
Common subassembly 5 8000
Dressed-out engine 10 4100
Drive group 9 1550
Engine 7 4500
Fans 12 650
Fender group 9 900
Final assembly 4 8000
Final drive & brake 6 3680
Frame assembly 19 605
Main assembly 8 12,000
Pin assembly 35 90
Plant carrier 9 155
Platform group 6 725
Roll over group 8 1150
Suspension group 7 3600
Track roller frame 10 3000
Transmission 15 7450

made two major simplifications to the supply chain. First, we ignore the
customization process in this analysis; in effect, we are modeling the supply
chain for a stock bulldozer that will be modified at the dealer. Second, we have
not modeled all of the different variations the bulldozer can come in. Besides
adding complexity to the example, after adding the different variations, the
network is no longer a spanning tree, and thus requires a solution technique
presented in Humair and Willems (2003). Table 1 provides the cost and
nominal lead-time information for the supply chain.

The cumulative cost of the product is already $28,990 when the common
subassembly stage is complete. The chassis/platform and engine subcom-
ponents each contribute $7095 and $9250, respectively, to the cost of the
product. The total cost for the bulldozer, upon completion of final assembly,
is $72,600. Because of the lean manufacturing initiative at the company, lead-
times are quite low given the complexity of the product. The average daily
demand is 5 and the daily standard deviation is 3. Assuming 260 days per year,
the cost of goods sold is $94,380,000. The company applies an annual holding
cost rate of 30% when calculating inventory costs.

For the guaranteed-service model, we set the demand bound to corre-
spond to the 95th percentile of demand, and thus, set the safety factor
as k=1.645. Figure 1 graphically presents the optimal solution to the
guaranteed-service model; a triangle within a stage designates that the stage
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Table 2
Optimal Service Times and Safety Stock Costs under Guaranteed-
Service Model

Stage name Service time Stage safety
stock cost (%)

Boggie assembly 11 0
Brake group 8 0
Case 0 12,614
Case & frame 15 6373
Chassis/platform 16 0
Common subassembly 20 0
Dressed-out engine 20 0
Drive group 9 0
Engine 7 0
Fans 10 1361
Fender group 9 0
Final assembly 0 607,969
Final drive & brake 15 0
Frame assembly 0 3904
Main assembly 28 0
Pin assembly 21 499
Plant carrier 9 0
Platform group 6 0
Roll over group 8 0
Suspension group 28 0
Track roller frame 10 0
Transmission 15 0

holds a safety stock. Since the underlying network is a spanning tree with
22 nodes and 21 arcs, we can optimize the network with the algorithm from
Graves and Willems (2000). The resulting optimal service times and holding
costs for the safety stock are displayed in Table 2.

The optimal inventory policy does not demonstrate the clear decoupling
policy that one often sees in the guaranteed-service model. There is a large
safety stock at final assembly, which is necessary to provide immediate service
to the distribution department of the company. The safety stock at final
assembly is sized to cover the demand variability over the net replenishment
time for the stage of 28 days. The remaining stages, for the most part, carry
no safety stock; the exceptions are a few long lead-time stages where
safety stock is held so as to keep the net replenishment time for final assembly
to 28 days. In total, the annual holding cost for the safety stock in the supply
chain is $633,000.

To understand the solution better, we repeated the optimization but
with a constraint that forced the common subassembly to have a service
time of zero and thus to hold a safety stock. A priori one might suspect that
having a safety stock at the common subassembly stage would lead to a good
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if not optimal solution, as this would seem to be a logical point to decouple
the chain. From the resulting optimization, we found that the chassis/platform
and dressed-out engine stages also quote service times of zero and are thus
decoupling points. However, the annual holding cost for safety stock increases
by nearly 10%, from $633,000 to $693,000. In contrast to our experience with
supply chains for high-tech products, we observe that the incredibly expensive
nature of the components and the relatively short lead-times make it
uneconomical to develop local decoupling points.

We begin the analysis of the stochastic-service model by determining
the range of allowable service targets per stage. To maintain consistency
with the presentation of the guaranteed-service model, we again assumed a
95% service level at the final assembly stage. For the other stages, the service
level is a parameter that is to be set or serve as a decision variable in an
optimization. We need for the resulting service levels to be consistent with the
assumptions that were made in the development of (3.3), our calculation of the
expected replenishment time. In particular, we assumed that for each stage, at
most one of its supplier stages stocks out in any period. In order to make this
assumption operational, we set an upper bound on the probability that two or
more of a stage’s suppliers stock out in a period, namely 0.10. Thus, we restrict
the choice of service levels so that the probability that a stage has two or more
suppliers out of stock is no more than 0.10.

In the bulldozer supply chain, stages have between one and three suppliers.
For stages with three suppliers, we impose a lower bound of 0.80 on the
service level for each supplier. For stages with two suppliers, we impose a
lower bound of 0.68 on the service level for each supplier. As justification for
these lower bounds, we observe that with an assumption that the stock-out
events of the suppliers are independent, then setting the service levels to these
lower bounds results in the stage having a probability of 0.90 that at most one
supplier is out of stock. There is no claim that this is the best way to
implement the stochastic-service model; rather, we argue that this seems a
reasonable way to proceed with the model based on the assumptions that
underlie its development, and given the purposes of this chapter. Finally, we
will also use 68% as the lower bound on the service level for the case of a sole
supplier.

In Table 3 we report the results for the stochastic-service model when the
service level for each stage is set to its lower bound. The table displays the
expected lead-time and annual holding cost for the safety stock for each stage
in the bulldozer supply chain. We cannot guarantee that this is the best
solution for the stochastic-service model for this example. However, we did
conduct an extensive grid search over the service levels and found the lower
bounds on the service levels always to be binding.

As expected, every stage carries a safety stock sufficient to cover the
expected lead-time. On a percentage basis, two types of stages have expected
lead-times that differ significantly from their nominal times. First, there
are those stages that have short nominal lead-times; final assembly is an
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Table 3
Nominal and Expected Lead-times for the Stochastic-Service Model
Stage name Nominal Service Expected Stage safety
lead-time level (%) lead-time stock cost (§)
Boggie assembly 11 68 11.00 1160
Brake group 8 80 8.00 9342
Case 15 68 15.00 5181
Case & frame 16 80 24.24 18,184
Chassis/platform 7 80 10.29 19,521
Common subassembly 5 80 10.29 79,764
Dressed-out engine 10 80 14.61 30,328
Drive group 9 80 9.00 3989
Engine 7 68 7.00 7240
Fans 12 68 12.00 1369
Fender group 9 80 9.00 2316
Final assembly 4 95 7.57 299.472
Final drive & brake 6 80 9.71 24,693
Frame assembly 19 68 19.00 1604
Main assembly 8 80 11.14 164,194
Pin assembly 35 68 35.00 324
Plant carrier 9 80 9.00 399
Platform group 6 80 6.00 1524
Roll over group 8 80 8.00 2791
Suspension group 7 80 18.15 15,589
Track roller frame 10 80 10.00 8139
Transmission 15 80 15.00 24,754

example of this kind of stage. Second, there are stages with suppliers that
have long nominal lead-times; the suspension group is an example of this
kind of stage.

Whereas the safety stock in final assembly is now much less than in the case
of the guaranteed-service model, overall we find that there is about 12% more
inventory cost with the stochastic-service model. In the stochastic-service
model, safety stock is the single countermeasure to address the demand
variability in the supply chain. In the guaranteed-service model, safety stock is
used to protect against demand variability up to the demand bound. The
model assumes that other countermeasures, including expediting and
overtime, are utilized when demand exceeds the demand bound. While the
guaranteed-service model does not quantify the cost of these other
countermeasures, understanding the gap between the two models presented
gives some indication of the relative benefit of using only safety stock as a
countermeasure versus other operational tactics. Figure 2 displays the total
annual holding cost as a function of the service level for the external customer
for two different types of policies for each model.

The top two lines represent what one could reasonably consider being the
base case for each of the models. For the stochastic-service model, each stage
maintains a service level equal to final assembly’s service level. For the
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Fig. 2. Safety Stock Cost as a Function of Service Level in Bulldozer Supply Chain.

guaranteed-service model, each stage quotes a zero service time. For each
model, the base case has each stage holding significant safety stock so as
to decouple it from the other stages in the supply chain. For extremely
high service levels, the two models are virtually identical, which is not a
surprise given the assumptions in the models. As service levels decrease, there
is a difference in cost between the models, due to the fact that the replenish-
ment times for the stochastic-service model increase due to delays from the
suppliers. In this example, an increase in the replenishment time at many
stages has a large impact on the stage’s inventory requirement, due to the
expensive nature of the product and the relatively short nominal lead-times.

The lower two lines represent the best inventory policy identified for the
stochastic-service model and the optimal inventory policy for the guaranteed-
service model. The difference between the two policies allows the manager to
quantify the cost of using countermeasures other than inventory. For
example, at the 95% service level the cost difference is $80,000 and at 85%
service the difference is $224,000; Table 4 provides the numerical values for
each of the four policies.

Table 4 also helps determine the appropriate demand bound. These
calculations allow us to trade off the cost of safety stock against the cost
of other tactics, like expediting and subcontracting, which can also be
employed to satisfy demand. If these other tactics are cheaper than holding
the higher levels of safety stock, then it makes financial sense to adopt a
safety stock policy that only meets 95%, or less, of the possible demand
realizations.
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Table 4
Safety Stock Cost as a Function of Service Level in Bulldozer Supply Chain
Service  Stochastic-service Guaranteed-service  Stochastic-service =~ Guaranteed-
level model (service model (all stages model (calculated  service
levels equal end- quote zero service policy) model
item service levels)  time) (optimized)
0.80 596,618 425,062 593,788 323,743
0.81 611,063 443,382 599,044 337,697
0.82 625,931 462,306 604,532 352,110
0.83 641,281 481,902 610,279 367,035
0.84 657,215 502,252 616,330 382,534
0.85 673,780 523,452 622,711 398,680
0.86 691,037 545,616 629,459 415,562
0.87 709,091 568,885 636,623 433,284
0.88 728,073 593,428 644,268 451,977
0.89 748,150 619,459 652,469 471,803
0.90 769,527 647,249 661,322 492,969
0.91 792,481 677,150 670,952 515,742
0.92 817,409 709,633 681,531 540,483
0.93 844,880 745,350 693,297 567,686
0.94 875,651 785,240 706,570 598,068
0.95 911,043 830,735 721,877 632,719
0.96 953,156 884,186 740,048 673,429
0.97 1,006,022 949,896 762,629 723,477
0.98 1,078,523 1,037,248 792,955 790,007
0.99 1,185,142 1,174,924 836,583 894,866

4.2 Battery manufacturing and distribution

Figure 3 presents a supply chain map for a single battery product line. This
supply chain depicts the manufacturing and packaging process for one size of
battery that is sold in three regions in three types of packaging. In this setting,
the battery manufacturing stage represents the manufacturing of a single size
like AAA, AA, C, or D. The battery size is produced in a single bulk
manufacturing facility. Finished batteries are then sent to three pack locations
that produce specialty battery packages. For example, the package that
comprises an end-item SKU is distinguished by the number of batteries
included, the artwork on the package, and the inclusion or exclusion of items
like RFID tags, hangers, bar codes, and price labels. Each SKU is sent to
the company’s three distribution centers (DCs) in the United States for
distribution to regional markets. The nominal lead-time and direct cost added
for each stage are displayed in Table 5. Table 5 demonstrates the commodity
nature of the business. Materials have relatively short lead-times and the cost
per item is extremely low. Whereas the cumulative cost of a bulldozer is
§72,600, the total unit cost of a battery is less than one dollar. Indeed, the
material and process cost to package the battery is on the same order of
magnitude as the cost of the battery.
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Fig. 3. Graphical Representation of the Battery Supply Chain.

The company’s holding cost rate is 25%. The daily demand parameters
are given in Table 6. Assuming 260 days per year, the expected cost of
goods sold per year is $53,569,000. On a daily basis the demand is highly
variable with the coefficient of variation being more than two in several
instances. Clearly, the daily demand of a SKU at a DC is not well modeled as
being from a normal distribution. Nevertheless, we note that for each model
we are effectively assuming that the demand over a stage’s replenishment
time is normally distributed, which seems more plausible given the range
of nominal lead-times. Furthermore, for all of the upstream stages, the
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Table 5

Parameters for Battery Supply Chain

Stage name Nominal time Stage cost ($)
Bulk battery manufacturing 5 0.07
Central DC A 6 0.02
Central DC B 6 0.01
Central DC C 4 0.01
East DC A 4 0.00
East DC B 4 0.01
East DC C 4 0.01
EMD 2 0.13
Label 28 0.06
Nail wire 24 0.02
Other raw materials 1 0.24
Pack SKU A 11 0.07
Pack SKU B 11 0.12
Pack SKU C 9 0.24
Packaging A 28 0.16
Packaging B 28 0.24
Packaging C 28 0.36
Separator 2 0.02
Spun zinc 2 0.05
West DC A 5 0.01
West DC B 8 0.03
West DC C 6 0.06

demand is pooled over several regions and, except for packaging, over
all SKUs. Hence, the assumption of normality seems defensible for the
purposes at hand.

For the guaranteed-service model, we set the demand bound again to
correspond to the 95th percentile of the demand process. Figure 3 graphically
displays the optimal safety stock locations when the guaranteed-service model
is optimized; a triangle within a stage denotes safety stock being held at the
stage. The resulting optimal service times are displayed in Table 7. The inter-
esting result here is that the bulk manufacturing facility does not hold any
safety stock. Instead the three packing locations are the decoupling points in
the supply chain. The intuition is that the packing locations are able to pool
the demand variability for the three DCs and also pool the variability over the
lead-time from the bulk manufacturing plant. This is more cost effective than
holding inventory at the bulk plant but then having the regional DCs holding
a safety stock that covers not only their lead-time but the pack lead-times as
well. The optimal annual holding cost for safety stock is $853,000.

For the stochastic service method, we have a 95% service level target for
each SKU at each regional DC. As we did with the bulldozer example, we
assess a lower bound on the service level provided by each supplier to a stage,
where the lower bound depends on the number of suppliers. In the battery
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Table 6

Demand Information for Battery Supply Chain
Stage name Mean demand Standard deviation

of demand
Central DC A 43,422 67,236
Central DC B 16,350 39,552
Central DC C 5536 11,213
East DC A 67,226 109,308
East DC B 15,765 34,079
East DC C 6416 14,125
West DC A 65,638 119,901
West DC B 10,597 23,277
West DC C 3519 6576
Table 7

Optimal Service Times using Guaranteed-Service Model

Stage name Service time Stage safety
stock cost ($)

Bulk battery manufacturing 7 0
Central DC A 0 56,889
Central DC B 0 38,245
Central DC C 0 11,066
East DC A 0 73,716
East DC B 0 26,907
East DC C 0 13,940
EMD 2 0
Label 2 23,361
Nail wire 2 7163
Other raw materials 1 0
Pack SKU A 0 251,253
Pack SKU B 0 94,741
Pack SKU C 0 37,573
Packaging A 7 52,953
Packaging B 7 25,852
Packaging C 7 13,022
Separator 2 0
Spun zinc 2 0
West DC A 0 91,507
West DC B 0 26,531
West DC C 0 8279

supply chain, six suppliers supply the bulk battery manufacturing plant.
To maintain a probability of 0.90 that at most one stage will be out of stock in
a period, each of the six supplier stages must have a service level of at least
0.91. The bulk battery is combined with packaging at each pack location.
We set the lower bound on the service level for these two inputs for the
pack location to be 0.68. Since the three pack locations are themselves
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Table 8
Expected Lead-times and Safety Stock Costs for the Stochastic-Service Model
Stage name Nominal Service Expected Stage safety
lead-time level (%) lead-time stock cost (§)
Bulk battery manufacturing 5 68 8.66 54,467
Central DC A 6 95 6.55 60,191
Central DC B 6 95 6.55 40,465
Central DC C 4 95 4.32 11,649
East DC A 4 95 4.55 79,616
East DC B 4 95 4.55 29,060
East DC C 4 95 4.32 14,674
EMD 2 91 2.00 11,799
Label 28 91 28.00 20,375
Nail wire 24 91 24.00 6288
Other raw materials 1 91 1.00 15,402
Pack SKU A 11 95 19.00 261,404
Pack SKU B 11 95 19.00 98,568
Pack SKU C 9 95 17.00 39,220
Packaging A 28 68 28.00 25,117
Packaging B 28 68 28.00 12,263
Packaging C 28 68 28.00 6177
Separator 2 91 2.00 1815
Spun zinc 2 91 2.00 4538
West DC A 5 95 5.55 97,628
West DC B 8 95 8.55 27,775
West DC C 6 95 6.32 8606

finished goods locations, we assume that both the pack locations and the
nine DC-SKU pairs all set a service level equal to the customer service level
target, namely 0.95. Again, we find that the best solution for the stochastic-
service model seems to set the service level to the lower bound at each
stage. Table 8 displays the nominal and expected lead-times for the battery
supply chain.

On a percentage basis, the bulk manufacturing stage and the three pack-
aging stages have the greatest increase between nominal and expected lead-
time. The difference is attributed to the fact that these stages each have one
or more suppliers with significant nominal lead-times. The total safety stock
cost under the stochastic-service model is $927,000.

To gain more insight into the role that different countermeasures may
play in this supply chain, Figure 4 displays the cost for each policy under
different end-item service levels. Varying the service levels at all end-item
stages does not change the structure of the optimal policy under the
guaranteed-service model. For the stochastic-service model, the nine DCs and
the three pack locations had their service levels changed to equal the current
end-item service level while all the other stages maintained their existing levels
from Table 8. The safety stock costs are shown graphically in Figure 4 and
reported in Table 9. One can view the cost difference as being the additional
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Fig. 4. Safety Stock Cost as a Function of Service Level in Battery Supply Chain.

Table 9

Safety Stock Cost as a Function of Service Level in Battery

Supply Chain

Service level Stochastic-service Guaranteed-service
model (calculated model (optimized)
policy)

0.80 627,155 436,454

0.81 639,637 455,266

0.82 652,624 474,696

0.83 666,184 494,818

0.84 680,421 515,713

0.85 695,400 537,481

0.86 711,203 560,239

0.87 727,950 584,132

0.88 745,791 609,333

0.89 764,911 636,061

0.90 785,539 664,596

0.91 807,974 695,298

0.92 832,635 728,652

0.93 860,105 765,326

0.94 891,159 806,285

0.95 927,098 853,000

0.96 969,960 907,883

0.97 1,023,570 975,355

0.98 1,096,198 1,065,047

0.99 1,201,556 1,206,414
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cost for the stochastic-service model to handle the full range of demand
realizations by means of safety stock.

5 Supply-chain configuration

Lee and Billington (1993), Ettl et al. (2000), Graves and Willems (2000)
all report on industrial applications in which their work was used to optimize
safety stocks in a supply chain. These applications provide compelling
evidence of the financial impact that optimizing inventory levels can have in
practice, as reductions of 25-50% in the safety-stock holding cost
are common. However, this work starts after most of the design decisions
for the supply chain have been set, namely the topology of the network
and the key cost and lead-time parameters. In effect, these models are being
applied to existing supply chains where the only design options available are
in terms of whether to locate safety stocks at a stage, and if so, how much to
maintain.

In Chapter 2 of this handbook, Muriel and Simchi-Levi present and
consider one category of supply-chain design problems, referred to as network
design problems. The intent of the network design problem is typically
to determine the optimal manufacturing and distribution network for a
company’s entire product line. The most common approach is to formulate a
large-scale mixed-integer linear program that captures the relevant fixed and
variable operating costs for each facility and each major product family. The
fixed costs are usually associated with the investment and/or overhead costs
for opening and operating a facility, or with placing a product family in a
facility. The variable costs include not only the manufacturing, procurement
and distributions costs, but also the tariffs and taxes that depend on the
network design. Network design focuses on the design of two or three major
echelons in the supply chain for multiple products. Due to the nature of the
problem being solved, network design is typically solved every two to five
years.

In this section, we consider another type of supply-chain design problem
that arises after the network design for the supply chain has been set. These
decisions determine the total supply chain cost, which we define to be the cost
of goods sold (COGS), plus the inventory holding costs for the pipeline
inventory and for the safety stock. For example, in the bulldozer supply
chain presented earlier, the total supply chain cost consists of the annual
COGS of $94,380,000, plus the annual holding cost for pipeline stock of
$2,007,000, plus the annual holding cost for safety stock of $633,000. For the
battery supply chain, there is a similar cost breakdown with annual COGS of
$55,364,000, and annual holding costs for pipeline and safety stock of
$942,000 and $853,000. In both examples COGS is an order of magnitude
larger than the total inventory cost, while the pipeline stock exceeds the
safety stock.
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For every supply chain a company launches, there is a set of decisions that
are made after the network design and that act to configure each stage in
the network. In particular, these decisions result in determining the key
operating parameters for each stage, including the lead-time and cost added at
the stage. These decisions determine the total supply chain cost. For instance,
the company must decide whether to source a part locally or globally. The
company must decide whether to dedicate machinery to a manufacturing
process or to conduct the manufacturing process on shared equipment. The
company must decide the transportation mode to move product into a
distribution channel. These decisions affect more than just safety stock cost.
They also affect the cost of goods sold, pipeline stock cost, quality costs, and
time-to-market costs.

To inform these decisions, we introduce a problem that we refer to as the
supply-chain configuration problem. For this problem, we address how to
configure the supply chain for a new product for which the product’s design
has already been decided and the topology for the supply-chain network has
been set. The central question is to determine what suppliers, parts, processes,
and transportation modes to select at each stage in the supply chain. For each
stage, we have a set of options that are differentiated, at a minimum, by their
lead-times and their direct costs added. Our supply-chain design framework
considers the total supply chain cost, equal to the cost of goods sold, plus the
inventory holding costs for both safety stock and pipeline stock. The
supply chain configuration problem chooses a sourcing option for each stage
of the supply chain so as to minimize the sum of these costs.

In the next section, we expand our discussion of options as the fundamental
construct in the supply chain configuration problem. We then present the
model formulation for the supply-chain configuration problem. The final
section presents an example of the approach applied to the bulldozer example
presented earlier.

5.1 Option definition

The supply-chain configuration problem is based on the same assumptions
made for the safety stock optimization problem, with one significant
difference. In the safety stock optimization problem, a stage represents a
processing or transformation activity. That is, it is a defined task that will
take a certain amount of time at a certain cost. In the supply-chain con-
figuration problem, we still model the supply chain as a network of stages but
now a stage represents functionality that must be provided. The essence of the
configuration problem is to decide how best to satisfy this functionality in the
context of the overall supply chain.

For each stage, we assume that we can specify one or more options that
can satisfy the stage’s required activity. For example, if a stage represents
the procurement of a metal housing, then one option might be a locally based
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high-cost provider and another option could be a low-cost international
supplier.

For each stage, we assume that we will select a single option. Thus, we do
not permit the possibility of having dual or multiple sources for a single
activity or stage; this might be a topic for further research.

We characterize an option at a stage by its direct cost added and its
processing time or lead-time. When a stage reorders, the processing or lead-
time is the time to process an item at the stage, provided all of the
inputs are available. An option’s direct cost represents the direct material and
direct labor costs associated with the option. If the option were the
procurement of a raw material from a vendor, then the direct costs would be
the purchase price including transportation and the labor cost to unpack
and inspect the product.

In practice, there might be other dimensions or attributes upon which
different options are evaluated. For instance, different suppliers might differ
in terms of the quality of the product they supply. Similarly, different
options for a manufacturing activity might differ in terms of the amount of
capacity that could be made available to the supply chain. We do not consider
these other attributes in this presentation. In effect, we assume that the
different options at a stage are the same on all attributes except for lead-time
and cost. Admittedly, this is a simplification of reality. We leave it to future
research to extend the work presented here to address this additional
complexity.

We will present the configuration problem for the case of guaranteed
service. One could also develop the supply-chain configuration model with
the assumption that stages provide stochastic service, but we do not do this
here. Rather, we will follow the development of the supply-chain
configuration problem for the guaranteed-service model, as given by Graves
and Willems (2002).

The model assumptions for the supply-chain configuration problem are the
same as for the guaranteed-service safety-stock problem presented earlier in
this chapter. We assume that each stage j promises a guaranteed service time

"”’ by which the stage will satisfy its demand, either from internal or external
customers Similarly, we define s]’” to be the inbound service time for stage j,
which equals the maximum of the service times quoted to stage j by its
suppliers. We assume each stage operates according to a periodic review policy
with a common review period. We assume the demand process for any
finished good is stationary with mean demand per period of 1« and a standard
deviation of o. For the purpose of determining the safety stock, we assume
that we are given a bound on the demand process for each stage.

If we let n denote the nth option at stage j, then L;, and C;, represent the
processing time and cost added associated with the nth option at stage j. The
choice of option at a stage will have an impact on the cost of goods sold, on
the amount of safety stock and pipeline stock at the stage, and the holding
costs. For a given option n, the stage’s contribution to the COGS is Cj,u;
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per period. As before, we can calculate the stage’s safety stock to be
kjoj s}” + Lj, — 57" Since the choice of an option at a stage decides the lead-
time 'at the stage, the work-in-process or pipeline stock now depends on the
option chosen. In particular, the pipeline stock at a stage will equal p1;L;, when
option # is selected. Finally, the option choice will also affect the holding cost
rate because it depends on the cumulative cost at the stage; the option choices
at the stage and at any upstream suppliers determine the stage’s cumulative
cost, and thus the holding cost rate.

5.2 Model formulation
We can formulate the supply chain configuration problem as a non-linear

mixed-integer optimization problem where the decision variables are the
binary variable for option selection and the services times.

P

N .
minZ[aci [Di(s!"+1; — s7) = (s +1;— 7" Y s +oe<ci —%) tiui+,3xiui]
i=1

s.t.
O;
Y Luyin—1i =0 fori=12,....,N .
n=1
O;
> Cinyin — xi =0 fori=1,2,...,N (5.2)
n=1
ci— Y ¢g—xi=0 fori=1,2,...,N (5.3)
Ji(J.0)eA
s;:nZs})ut fori=1,2,...,N,j:(j,i)€A (54)
st 1 — s =0 fori=1,2,....N (5.5)
;;’“’ <S5 for all demand nodes j (5.6)
™ 57" > 0 and integer fori=1,2,...,N (5.7
O;
D =1 fori=1,2,...,N (5.8)
n=1

v € {0, 1} fori=1,2,...,N,1<n<0; (5.9)
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where O;, number of options to choose from at stage i; C;, direct cost
added of the nth option at stage i; L;,, lead-time of the nth option at stage i
Dy), maximum demand function for stage 7; «, scalar representing the holding
cost rate; B, scalar converting the model’s underlying time unit into the
company’s time interval of interest; u, mean demand rate at stage i; c¢;
cumulative cost at stage i; t,, selected option’s lead-time at stage i; x;, selected
option’s cost at stage i; y;,, indicator variable which equals 1 if stage 7’s nth
option is selected and 0 otherwise; S;, maximum service time permitted for
demand node ;.

The objective function has three terms, each corresponding to a component
of the total supply chain cost. The first term represents stage i’s safety
stock cost, which is a function of the stage’s net replenishment time and
demand characterization. The holding cost at stage i equals the cumulative
cost of the product at stage i times the holding cost rate. The second term
expresses the pipeline stock cost as the product of the holding cost rate, the
average cost of the product at the stage, and the expected amount of pipeline
stock. The third term, cost of goods sold (COGS), represents the total cost of
all the units that are delivered to customers during a company-defined interval
of time. The incremental contribution to COGS is calculated at each stage by
a product of the average demand at the stage, the option’s cost, and a scalar 8,
which expresses COGS in the same units as pipeline stock cost and safety
stock cost. (For instance, one might set & and S so that all terms are expressed
as annual costs or as the total costs over the lifetime of the supply chain.)

The cost and time associated with the option chosen at each stage is
given in (5.1) and (5.2). Constraint (5.3) calculates the cumulative cost at each
stage. Constraints (5.4-5.7) assure that the service times are feasible. In
particular, the incoming service time at every stage is at least as large as the
largest service time quoted to the stage, the net replenishment time of
each stage is non-negative, the maximum service times to the customer must
be no greater than the user-defined maximums, and service times must be non-
negative and integer. The last two constraints, (5.8) and (5.9), enforce the sole
sourcing of options.

Graves and Willems (2002) describe how to solve P by dynamic
programming when the underlying network is a spanning tree.

While P clearly uses safety stock optimization as a building block, it also
exhibits behavior that is far more complex than just optimizing safety stock.
For safety stock optimization, inventory stocking decisions at one stage in the
supply chain affect adjacent downstream stages in the supply chain through
the downstream stage’s net replenishment time. In the supply chain
configuration problem, inventory decisions again affect downstream adjacent
stages, but the cost at the current stage has an impact on all stages that are
downstream of the current stage, not just those that are adjacent. On an
intuitive level, P is balancing the increase in COGS against the decrease in
inventory-related costs. One can reduce inventory related costs by choosing
more responsive options, but at the cost of an increase to the COGS. A key
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realization is that this tradeoff cannot be properly considered by solving P one
stage at a time, in isolation; rather, one needs to consider the impact of
configuration decisions on the entire supply chain in order to produce the
globally optimal solution. The benefit to P comes from globally balancing the
potential increase in COGS with the benefits one gets from being able to
reduce inventory costs.

5.3  Example

To gain more insight into the supply chain configuration problem, we will
revisit the bulldozer supply chain discussed earlier in the chapter. There are
two types of stages in the bulldozer supply chain: procurement and assembly
stages. Procurement stages are stages that do not have any incoming arcs; they
represent the purchase of materials outside the supply chain. All of the other
stages in the supply chain are assembly stages, at which one or more
components are combined in the process.

For the example, there are two options per stage. The stage lead-times and
costs from the original presentation correspond to the standard option at each
stage. If the stage is a procurement stage, this is the existing procurement
arrangement. If the stage is an internal assembly stage, this is the traditional
manufacturing method at the stage. All procurement stages also have a
consignment option where the supplier is responsible for providing immediate
delivery to the bulldozer line. Each assembly stage has an expedited
option that corresponds to the company investing in process improvement
opportunities to decrease the stage’s lead-time. These second options are not
based on actual data at the company, but they are indicative of the kinds of
option costs we have seen in similar supply chains.

We calculate the cost of the consignment option by the following formula:
for each one-week reduction in the supplier lead-time, the supplier will
increase the purchase price of the part by 0.75%. This is a similar structure to
the kind of arrangements that we have encountered before in practice; see
Graves and Willems (2002) and Willems (1999). Typically, the cost increase
for a week’s reduction ranges from 0.5% to 1% of the original purchase price.
The increase in price represents the cost to the supplier for bearing the
additional inventory holding cost.

For the expedited assembly option, we classify the required improvement
activity at a stage as easy, medium or hard. An easy improvement activity
might include the assignment of additional labor resources to the task or the
dedication of some minor equipment. For the purposes of this analysis, the
cost of an easy improvement is $97,500. By dividing this by the average annual
demand, we convert this into a per unit approximation of the cost increase,
namely $75 per unit. Most of the upstream assembly stages fall into the camp
of assembly operations that could be easily improved. Medium improvement
activities cost $150 per unit and hard improvements cost $300 per unit. As the
cost of the improvement increases, significant redesign and additional human
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labor are often required. Final assembly is the only stage that is classified as
hard to redesign.

The costs and associated lead-times for each option are presented in
Table 10.

Figure 5 depicts the service times that correspond to optimizing the supply
chain configuration problem.

Among the 22 stages, the optimal supply chain configuration selects the
higher cost, shorter lead-time option for only six of the stages. The pro-
curement stages with the higher cost, shorter lead-time option are the brake
group, fender group, and plant carrier. The assembly stages with the higher
cost, shorter lead-time option are the common subassembly, dressed-out
engine, and main assembly. All of the other stages continue to use their
original option.

The optimal inventory policy has also changed in reaction to the different
options selected. In the original safety stock optimization, the common
subassembly and dressed-out engine held no safety stock and both quoted a
service time of twenty days to the main assembly. The chassis/platform also
held no safety stock, but quoted its maximum possible service time of sixteen
days. With the reduction in the processing time at the common subassembly,
the brake group and the plant carrier, the common subassembly is now able to
quote a service time of eight days to the main assembly. To achieve this eight-
day service time requires that two of its suppliers, transmission and case &
frame, must now hold a safety stock. Furthermore, stages in the other two
sub-networks that supply main assembly are also holding safety stock so that
the inbound service time to main assembly remains at eight days. This is a
good example of how subtle changes in the configuration of some stages have
a dramatic impact on the resulting safety stock policy

Table 11 summarizes the results from optimizing the supply chain con-
figuration and compares the results to those for a solution that keeps the
original option at each stage and optimizes the resulting guaranteed-service
model.

We observe that when we optimize the safety stock, there are savings in
annual holding cost of $198,000 relative to a base case in which each stage
holds a safety stock and quotes a service time of zero. When we optimize the
configuration, we find an additional savings in total supply chain costs of
$371,000. We see, as expected, that when we optimize the supply-chain
configuration we actually increase the COGS but get an overall savings due to
lower inventory holding costs.

Based on Graves and Willems (2002) and the work presented here, we are
able to formulate some initial hypotheses about the behavior of optimal
supply chain configurations. First, the further upstream the supply chain, the
less likely is it that we choose a higher cost option. Higher-cost options
increase the cost at a stage, which not only increases the COGS but also the
holding cost for all of the pipeline and safety stock at downstream stages.
Furthermore, since the cumulative cost at an upstream stage is typically
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Table 10
Option values for Bulldozer Supply Chain Configuration
Stage name Option description Option Option
time cost (§)
Boggie assembly Standard procurement 11 575
Consignment 0 584
Brake group Standard procurement 8 3850
Consignment 0 3896
Case Standard procurement 15 2200
Consignment 0 2250
Case & frame Standard assembly 16 1500
Expedited assembly 4 1575
Chassis/platform Standard assembly 7 4320
Expedited assembly 2 4395
Common subassembly Standard assembly 5 8000
Expedited assembly 2 8075
Dressed-out engine Standard assembly 10 4100
Expedited assembly 3 4175
Drive group Standard procurement 9 1550
Consignment 0 1571
Engine Standard procurement 7 4500
Consignment 0 4557
Fans Standard procurement 12 650
Consignment 0 662
Fender group Standard procurement 9 900
Consignment 0 912
Final assembly Standard assembly 4 8000
Expedited assembly 1 8300
Final drive & brake Standard assembly 6 3680
Expedited assembly 2 3755
Frame assembly Standard procurement 19 605
Consignment 0 622
Main assembly Standard assembly 8 12,000
Expedited assembly 2 12,150
Pin assembly Standard procurement 35 90
Consignment 0 95
Plant carrier Standard procurement 9 155
Cosnsignment 0 157
Platform group Standard procurement 6 725
Consignment 0 732
Roll over group Standard procurement 8 1150
Consignment 0 1164
Suspension group Standard assembly 7 3600
Expedited assembly 2 3675
Track roller frame Standard procurement 10 3000
Consignment 0 3045
Transmission Standard procurement 15 7450
Consignment 0 7618
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Fig. 5. Optimal Service Times for Bulldozer Supply Chain.

relatively small, it is not that costly to just hold a decoupling safety stock at
the upstream stage, thereby making its effective lead-time to the rest of the
supply chain zero. Therefore, when choosing a higher cost option at an
upstream stage, the inventory savings will have to be truly dramatic to justify
the higher cost to the supply chain.

Conversely, we note that a higher-cost, shorter lead-time option is more
likely to be attractive at a downstream stage. For instance, we find for stages
that represent the transportation of a finished good to an end customer, a
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Table 11

Comparison of Optimal Safety Stock and Supply Chain Cofiguration

Cost category Results from Optimal supply Numerical  Percentage
safety stock chain difference (§) difference (%)
optimization ($) configuration ($)

Cost of goods sold 94,380,000 94,848,000 468,000 0.50%

Total safety stock cost 632,719 499,786 (132,933) —21.01%

Total pipeline stock cost 2,006,843 1,300,328 (706,514) —35.21%

Total supply chain cost 97,019,561 96,648,114 (371,447) —0.38%

faster but more expensive transportation mode is able to pay for itself in terms
of inventory savings.

Second, the greatest potential for supply chain configuration occurs when
the supply chain has a structure where the selection of options across the chain
makes different sub-networks of the supply chain similarly responsive, that is,
have the same service times. As an example, making one subassembly very
responsive will not likely be cost-effective unless the other components can
either be equally responsive, or it is cost-effective to decouple them with
inventory so that effectively the subassemblies in the echelon are all similarly
responsive. If one of the stages cannot be made more responsive, then the
high-cost subassembly could be produced with cheaper options at no penalty
to the supply chain’s performance.

6 Conclusion

In this chapter we have presented two general approaches to safety stock
placement, and have introduced the supply chain configuration problem. The
safety stock placement work, as evidenced by the applications cited in
the papers, has proven itself to be of value to practice. Both approaches
quantify the impact that demand uncertainty has in supply chains. By taking a
system-wide view of the problem, these models are able to mitigate the impact
of this uncertainty in a cost-effective manner.

We find that there is a significant opportunity to improve the total supply
chain cost by jointly optimizing sourcing and inventory decisions during the
configuration of the supply chain. The earlier that these supply chain
considerations can be incorporated into product and sourcing decisions, the
more leverage we have — we see this in this chapter in terms of value of getting
the configuration right vis-a-vis solely optimizing safety stocks.

Nevertheless, we wish to conclude this chapter with some thoughts about
research opportunities.

Product life cycles are increasingly short, with products within a product
family continually being introduced and terminated. Supply chains need to be
designed to accommodate this. In particular, demand is never stationary and
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there is huge uncertainty and risk over a product life cycle. In particular, the
risk applies not just to the inventory holding cost in the chain, but also to the
inventory investment required to fill the chain since enough demand may not
materialize to empty out the chain. There is a need for good models and
approaches to determine how to evolve the supply chain to handle generations
of products.

Many products see seasonal or cyclic demand. Furthermore, there are often
different service targets, holding cost rates, and/or costs for stock outs in
different periods. Characterizing both optimal and reasonable approaches for
planning safety stocks across a supply chain and across a seasonal cycle is
worthy of research.

Supply chains are most certainly not limited to just demand uncertainty.
Other types of uncertainty, such as lead-time, capacity, and yield uncertainty,
can be equally important. While this chapter has not covered these kinds of
uncertainty, the models presented can adapt to these issues, albeit with
additional assumptions and often in an ad hoc fashion. Nevertheless, there
are opportunities for the development of more general and comprehensive
methods for handling the full range of supply chain uncertainties.

Properly designing contracts is another opportunity. This can be thought of
as a different form of the configuration decision. In this case, we are looking to
establish contracts throughout the supply chain so as to get the best overall
performance. In particular, one would expect to design contracts with, say,
suppliers so that there is some consistency in how the supply chain is able to
respond to upswings (or downswings) in demand. Furthermore, one would
hope to understand how to design and coordinate contracts across a number
of suppliers or channel partners so as to distribute the risks and rewards in the
most economic way.

We have found empirically an interesting analog between supply chains and
project management networks. As with a project management network, we
find when applying the guaranteed-service model, there is a critical path that
underlies the optimal safety stock policy. The difference is that instead of a
lead-time-weighted critical path, there is a critical path that is driven by
cumulative cost, maximum replenishment time and safety stock policy. For
example, appropriately buffering a long lead-time part makes its effective lead-
time to the system zero. Identifying and characterizing the components of the
critical path in the supply chain is a potentially fertile area to begin the
development of new solution approaches.

As a final opportunity, we would hope to see the continuing deployment
of models in this chapter to practice. This should provide an opportunity to
examine, test, and validate the underlying assumptions of these models.
To wit, the stochastic service and guaranteed-service models offer two
different perspectives on how the world works. Can we determine which
is right? Can we say anything about which is more common? Is either of
them right? Or is there a better perspective? We hope th