
Kevin Bowman

Systems Analysis
A Beginner’s Guide

Systems Analysis

Systems
Analysis

A Beginner’s Guide

Kevin Bowman
Sheffield Hallam University

© Kevin Bowman 2004

All rights reserved. No reproduction, copy or transmission of
this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with
the provisions of the Copyright, Designs and Patents Act 1988,
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 90 Tottenham Court
Road, London W1T 4LP.

Any person who does any unauthorised act in relation to this
publication may be liable to criminal prosecution and civil
claims for damages.

The author has asserted his right to be identified
as the author of this work in accordance with the
Copyright, Designs and Patents Act 1988.

First published 2004 by
PALGRAVE MACMILLAN
Houndmills, Basingstoke, Hampshire RG21 6XS and
175 Fifth Avenue, New York, N. Y. 10010
Companies and representatives throughout the world

PALGRAVE MACMILLAN is the global academic imprint of the Palgrave
Macmillan division of St. Martin’s Press, LLC and of Palgrave Macmillan Ltd.
Macmillan® is a registered trademark in the United States, United Kingdom
and other countries. Palgrave is a registered trademark in the European
Union and other countries.

ISBN 0–333–98630–X paperback

This book is printed on paper suitable for recycling and made from fully
managed and sustained forest sources.

A catalogue record for this book is available from the British Library.

10 9 8 7 6 5 4 3 2 1
13 12 11 10 09 08 07 06 05 04

Printed and bound in China

To Mum and Dad

Contents

Preface xi

Acknowledgements xiii

1 Introduction to systems analysis 1

1.1 What is a system? 1

1.2 Information systems 2

1.3 What is systems analysis? 2

1.4 Systems Methodologies 3

1.5 SSADM – Structured Systems Analysis and Design Method 4

1.6 The structure of SSADM 5

1.7 SSADM and the Systems Development Life Cycle 7

Summary 7

Exercises 8

2 The current system 9

2.1 The approach in this book 9

2.2 The case studies 9

2.2.1 Swillbuckets Country Club 9

2.2.2 The Medical Centre at the University of Life 11

2.3 Investigation of the current environment 14

2.3.1 Investigate and define requirements 14

2.3.2 Fact-finding techniques 16

2.3.3 Investigate current processing 17

2.3.4 Simple steps in data flow modelling 22

Summary 34

Exercises 40

vii

3 Modelling the data structure 42

3.1 Entity modelling 42

3.1.1 Entities 42

3.1.2 Attributes 43

3.1.3 Keys 43

3.1.4 Relationships 44

3.1.5 Resolving many-to-many relationships 46

3.2 Simple steps in entity modelling 48

3.3 Entity modelling at Swillbuckets 49

3.4 Physical data store/entity cross-reference 59

Summary 61

Exercises 65

4 The logical view 66

4.1 Logicalization 66

4.2 Simple steps in logicalization 67

4.3 Logicalization at Swillbuckets 73

4.4 Problem and requirements catalogue 75

4.4.1 The Medical Centre 76

4.4.2 The problem and requirements catalogue for
Swillbuckets 81

Summary 82

Exercises 83

5 Business system options 85

5.1 Business system options 85

5.2 Simple steps in creating business system options 85

5.3 BSOs at the Medical Centre 86

5.4 BSOs at Swillbuckets 89

Summary 91

6 Requirements specification 92

6.1 Requirements specification 92

6.2 Required logical models 92

6.3 Elementary process descriptions 94

6.3.1 Structured English and decision trees 97

6.3.2 Decision tables 98

6.3.3 Simple steps in decision tables 99

viii Contents

6.4 Input/output design 101

6.4.1 Output design 102

6.4.2 Simple steps in output design 105

6.4.3 Input design 105

6.4.4 Simple steps in input design 108

6.4.5 User interface design 108

Summary 109

Exercises 109

7 Normalization 110

7.1 Normalization 110

7.1.1 What happens if data isn’t normalized 110

7.1.2 (Not so) simple tasks in normalization 115

7.2 Rationalization 133

7.3 Rebuild the entity model 135

7.4 Entity/function matrix 136

7.4.1 Simple steps in creating an entity/function matrix 137

Summary 138

Exercises 138

8 Technical and Physical Design 140

8.1 Technical design and physical design 140

8.1.1 Design detailed user interface 141

8.1.2 Prototyping 142

8.1.3 Simple steps in prototyping 143

8.1.4 Interface flow diagrams 143

8.2 Database design 144

8.2.1 Indexes 145

8.3 Access and security 145

8.4 Volumetrics 146

8.5 Documentation 147

8.6 CASE tools 149

Summary 150

Exercise 150

And finally... 151

Contents ix

Appendix: Teaching case study – North Sea Ferries 152

TITLE: NSF Project Information Document 152

Project Background 152

Project Team – Terms of Reference 153

NSF Project Briefing Document 153

Company Overview – Crossing Bookings 153

Transcript of Interview with Booking Office Manager 155

Transcript of Interview with Port Desk Staff 158

Examples of Documents used by North Sea Ferries 160

Bibliography 169

Index 171

x Contents

Preface

This book teaches the key techniques used in SSADM and is an ideal
starting text for first-year undergraduate computing students or those at
Foundation or HND level. It is not intended to be an SSADM manual;
instead, it strips SSADM down to the key techniques and explains these in
simple terms without the common repetition and over-elaboration found
in other books in this area. Most real-world systems use such a cut-down
version, and this book provides the reader with a sound awareness of the
fundamental skills required for successful systems analysis and design.

The book uses a step-by-step approach, assuming no previous knowledge
and avoiding jargon. Chapter 1 provides an overview of systems analysis,
and Chapter 2 goes on to introduce the approach of this book and the two
case studies that will develop throughout the text. Chapters 3–8 then detail
each key stage in systems analysis and design. A complete teaching case
study is provided in the Appendix.

The book contains an abundance of examples, end of chapter exercises,
and two case studies: the Swillbuckets Country Club and the Medical
Centre at the University of Life. The use of humour is central and the case
studies have been designed to give ample opportunity to make the text
amusing while demonstrating the key points. The book is also accompa-
nied by a dedicated lecturer and student web site which features solutions
to all the exercises and working versions of the case studies.

xi

Acknowledgements

Special thanks to Liz for support and giving me precious time. Thanks to
Danny, Holly, Tom and Jack for giving me the incentive. Someone’s got to
pay those university fees.

Thanks also to Steve Wade for the inspiration.

xiii

C H A P T E R 1

Introduction to
systems analysis

1.1 What is a system?
It is sometimes assumed that a system always refers to a computer system,
but of course there are many other types of system. The human body, for
example, is a complex system made up of many smaller systems: the respi-
ratory system, the digestive system etc.

We could loosely define a system as anything with a purpose. A system
must do something. If you put something into it, you should get something
different out of it. So this book is a system for learning about systems anal-
ysis. If you input the time and effort required to read it, as indeed you are
doing, you will gain unparalleled insights into systems analysis tech-
niques, Swillbuckets Club, normalization and all manner of joys.

But nearly everything has a purpose. It’s hard to think of something that
has no purpose. Morning television, perhaps. Or museum attendants,
maybe. Generally, though, we could take the view that everything is a
system.

It certainly seems to be true that every system is made up of smaller sys-
tems, and also that every system is part of a larger system. The college or
university you attend is a system, though it might not always seem like it.
It is made up of departments, classes and students, all of which are systems
themselves. Expanding upwards, the college or university is a part of the
education system of the country, which in turn is part of the public services,
and so on.

Sometimes, it’s hard to know when one system stops and another one
starts. The systems analyst has to make this decision early on: exactly what
is the scope of the system being analysed? Otherwise, the analyst could be
analysing away for ever.

1

1.2 Information systems
Most, if not all, organizations have an information system. It might be
quite primitive, like a list of names and addresses stuffed into a shoebox, or
it might be hugely sophisticated. Either way, the aims will be pretty much
the same: to help provide an effective customer service and to help man-
agement make the best decisions.

In order to understand how information systems can help organizations,
you need to understand the difference between data and information. Data
is raw facts or figures such as: 42, 12, 45, 13, 9 and 34. These numbers have
no meaning until you know the context. They might be lottery numbers,
map coordinates or a secret code. They need to be processed in some way to
turn them into something useful. When this has been done, you have
information.

Information is useful to somebody. It tells you something you didn’t
know before. Sometimes it’s not that important and can be ignored; some-
times it’s priceless. How much would advance information about the Sep-
tember 11th 2001 terrorist attacks have been worth? Of course,
information systems in businesses won’t provide that type of information,
but they might make the difference between success and failure. Figure 1.1
shows how information systems work in essence.

The raw data needs to be processed in some way to produce information.
The data might be sorted into alphabetical order. Or key elements of the
data might be filtered out. Or the data might just be presented in a more
understandable way. It’s your job as the systems analyst, in conjunction
with the user, to decide what processing of data takes place and how it
happens.

1.3 What is systems analysis?
There’s a lot more to building an information system than sitting down at a
PC and starting to type. In the past, before systems analysis existed, pro-
grammers went into organizations, spoke to a couple of senior managers,
went away and came back a few months later with a new system. But this
wasn’t a very successful approach. It assumed that users knew what
system they wanted. That’s like an aeroplane engine manufacturer asking
passengers what sort of engine they want. They just want one that works!

2 Systems analysis: a beginner’s guide

Data Process Information
Collected Presented

Storage

Figure 1.1
Information systems.

Equally, users of computer systems usually don’t know what sort of
system they want; they just want one that works. Some of them don’t even
want a new system. They just know that there are a few problems here and
there.

So the job of the systems analyst is to find out what is good and what is
bad about the system they currently have, and then design a new system
that keeps the good things and gets rid of the bad things. Sounds simple,
but it’s not.

To begin with, there are always gaps between the user and the systems
analyst. The user understands the current system, but the analyst doesn’t.
The analyst understands the new system, but the user doesn’t. How well
the analyst and user work together to bridge these gaps will determine how
successful the new system is.

Effective communication between user and analyst is therefore vital. The
analyst must involve the user in all stages of the systems analysis process.
This will help bridge the gaps. But how will the user understand the com-
plexities of systems analysis? After all, the user might not know much
more about computers than how to type a memo or play golf.

That’s one problem. Here’s another. Can you believe what users tell you?
Alice in Sales might have all kinds of reasons for telling you that she needs
a new interactive, web-enabled, real-time, dynamic Orders system, but the
real problem might be that nobody wants to buy their products.

Then again, Alice’s boss might have a very different view of what an
Orders system should look like (and cost!). There might be lots of ‘poli-
tics’ going on which causes requirements to change. The systems analyst
needs a method of avoiding these pitfalls. This brings us on to
methodologies.

1.4 Systems Methodologies
The other thing to be aware of about systems is that they are all very com-
plicated. Usually, they are too complicated for anyone to understand
without tools and techniques to help them. This is where methodologies
come in. They’re there to help. If they don’t help, there’s no point in both-
ering with them.

A methodology is a strategy for overcoming the problems faced by the
systems analyst. It’s made up of techniques, tools, conventions and docu-
ments, and it lays down the tasks to be done.

It’s like cooking a meal. If you follow the recipe, you might end up with
something edible. If you make it up as you go along, you usually end up
with a brown mess.

One type of methodology is called structured. Structured methodologies
are very popular with systems analysts. They are just like recipes for
building computer systems. They lay down steps that the analyst should
follow in a clear order. If the analyst follows these steps, then eventually a
quality information systems design should be the outcome. Structured

Introduction to systems analysis 3

methodologies also allow the analyst to break down complex systems into
smaller, well-defined and well-documented chunks.

The most widely used structured methodology is SSADM.

1.5 SSADM – Structured Systems Analysis and
Design Method

SSADM contains in it some basic principles that should help overcome the
problems we’ve mentioned:

1 The first principle is the one just mentioned, about breaking down
complex systems into chunks. This is called top down functional
decomposition. It means that the analyst starts off just thinking about
the system as a whole. Small details are ignored to begin with until the
analyst has a grasp of the key features of the system. Later on, the ana-
lyst will think about the more detailed lower levels of the system.

2 The scope of SSADM is clearly defined. The analyst starts off by looking
at the physical aspects of the current system. This means looking at
how things are currently done and who does them. The analyst then
moves on to look at what is currently done from a logical point of view.
This completes the analysis phase, and then it’s on to design. The ana-
lyst will consider what the new system should do and finally how it
should do it. This is as far as SSADM goes. This approach might be rep-
resented as in Figure 1.2.

3 SSADM requires users to get involved from the start. This makes them
more committed to the process and more likely to be happy with the
new system. The analyst must meet the users regularly to sort out prob-
lems and check understanding. Incidentally, this means that the ana-
lyst should possess highly developed communication skills. These are
possibly the most important skills of all in systems analysis.

4 Systems analysis: a beginner’s guide

Physical

How? Who?

Physical

How? Who?

Logical

What?

Logical

What?

Current system New system

Analysis Design

Figure 1.2
SSADM approach.

4 SSADM makes effective use of diagrams to help both the analyst and
the user understand the system. These diagrams should be simple and
easy to follow, like a map of the system.

5 SSADM allows the analyst to see the system from different views. You
can then check to see if the different views match up. This is called
cross-checking.

6 SSADM has been around for a good many years. It’s an industry standard,
so most analysts have used it. If your life depended on a system being suc-
cessful, you might well use SSADM as the best bet to save your skin.

1.6 The structure of SSADM
SSADM is made up of a number of Stages. These Stages are then divided up
into Steps. Figure 1.3 shows an overview of the Stages.

Introduction to systems analysis 5

SSADM Version 4+

Feasibility

Stage 0

Investigation
of current

environment

Stage 1

Business
system
options

Stage 2

Definition of
requirements

Stage 3

Technical
system
options

Stage 4

Logical design

Stage 5

Physical design

Stage 6

Figure 1.3
SSADM Stages.

Stage 0: Feasibility
This is where the analyst and users decide if the entire project is worth pur-
suing. It involves the analyst considering the problems faced by the organi-
zation and producing a set of options to resolve them. The users must then
decide whether the costs involved in resolving the problem are worth it. It
may be that the problems are so severe that the organization simply has to
resolve them. In this case, the feasibility study might be left out.

Stage 1: Investigation of the current environment
This needs to be done so that the analyst and the users fully understand
what the current system does. They need to be clear what problems they
have and what they want from the new system.

Stage 2: Business system options
This Stage allows the analyst and users to come up with some ideas about
what the new system might do. Usually, a range of options, with different
costs and benefits, are considered. Users will need to be clear about the
objectives of the business before they can choose the option to proceed
with.

Stage 3: Definition of requirements
This involves specifying the required system. During this Stage, the analyst
will want to move away from the constraints of the current system and
towards a more logical, data-driven design. An overview of the underlying
data structures for the required system is created.

Stage 4: Selection of technical system options
By now, the analyst and users will have a reasonable idea of what the new
system will be expected to do. This allows them to consider the technical
options. For example, the key hardware components will need to be identi-
fied and costed. The users will, eventually, choose from a range of options.

Stage 5: Logical design
This involves specifying the new system. What will the new system do?
What might it look like from a user perspective?

Stage 6: Physical design
This Stage concentrates on the environment within which the new system
will be running. It involves looking at storage requirements and perfor-
mance issues.

At the end of each of these Stages, the analyst and users must decide
whether to press on to the next Stage, abandon the project, or redo one or
more Stages. All of these cost money.

6 Systems analysis: a beginner’s guide

1.7 SSADM and the Systems Development Life
Cycle

SSADM isn’t the end of the story – it’s just part of it. The whole process of
systems development goes further still. SSADM stops with the design of
the new system, but systems development goes on. Most projects go
through the stages outlined in Figure 1.4. This is the Systems Development
Life Cycle.

However, even this may not be the end of the process, as organizations
change and it may soon be time to start the whole process again.

Summary
We have described what systems analysis is and the need for a method-
ology to help the analyst. We have described the most popular methodology
– SSADM – and considered its advantages and how it fits into the Systems
Development Life Cycle.

Introduction to systems analysis 7

Objectives

Feasibility

Analysis

Implementation

Design

Maintenance

SSADM

Figure 1.4
The Systems
Development Life
Cycle.

Exercises
1.1 What functions does the systems analyst perform during the Systems
Development Life Cycle (SDLC)?

1.2 The SDLC is just one model for systems development. Find at least one
more and describe the differences.

1.3 Why has SSADM become an industry standard?

8 Systems analysis: a beginner’s guide

C H A P T E R 2

The current system

2.1 The approach in this book
It is not the approach of this book to go through each SSADM Stage and
Step in detail. Rather, the book focuses on the key techniques used at each
Stage and applies them to a case study or two. Each technique will be
explained in simple steps using the case studies as examples.

The approach is to present a cut-down version of SSADM. This version
has all the techniques and steps necessary for a successful systems analysis
and design, but cuts out some of the repetition and over elaboration. Most
real-world systems analysts use such a cut-down version.

2.2 The case studies
There are two main case studies in this book. They are central to the book
and should be read carefully. The case studies concern the Swillbuckets
Country Club and the Medical Centre at the University of Life.

2.2.1 Swillbuckets Country Club

General
Swillbuckets Country Club is a club for the people of West Yorkshire. Each
weekend, the members roll up eager for refreshment and keenly antici-
pating the entertainment booked by Jack Trout, the Swillbuckets Secretary.
Some of the more popular acts include ‘Chucky Egg the Chicken Hypno-
tist’, ‘Sharon Twain Entertains’ and ‘Jade Green and her Dancing
Chihuahuas’.

Jack has a number of tasks to perform at Swillbuckets. As well as
booking the artistes, he also has to enrol new members, produce payslips to
pay the acts, advertise future events and chase up subscriptions. He also

9

prides himself on his choice of meat dishes at the events, though the chef,
Freddo Smith, should take some credit. Not much, though.

The problem background
Jack has always used a card-based data storage system to keep information
about members and artistes – essentially two or three shoeboxes full of
dog-eared cards. Given the current popularity of Swillbuckets, this
shoebox system (SS) is no longer adequate. Jack has the option of opening
up yet more shoeboxes or going computerized. These are the issues he is
grappling with.

A key problem that Jack is currently encountering revolves around mem-
bers’ subscriptions. Amanda Stote (Assistant Subscriptions Supervisor –
ASS) helps Jack collect the subscriptions. Amanda is not a patient person.
She asked Jack two weeks ago for a list of all the members with overdue
subscriptions. Jack has been unable to provide it, since it entails working
through the entire shoebox, checking all the expiry dates of members’ sub-
scriptions and then writing out the list.

A second headache for Jack has been amending members’ records. He
has favoured the White Fluid Approach To Amendment (WFATA). But the
problems are legion: applying the correction fluid, making a drink while it
dries, forgetting to make the correction etc.

Jack also produces a monthly Forthcoming Events list, which he sends
off to local media such as Farm to Table News and Trucks and Tractors.

Jack prides himself on the imaginative range of foodstuffs available at
Swillbuckets. Jack is a connoisseur of meat, or, more specifically, offal. He
likes nothing better than tucking in to a sweetmeat or two of an afternoon.
But the catering side of things is a real problem. Jack acquires his meat
through a variety of suppliers. One of his main suppliers, Tommy
Chillmore, often turns up round the back of the club with a bag of skinned
rabbits, or ducks. You never quite know what you’re going to get with
Tommy. Jack has to negotiate a price using techniques such as pointing out
that poaching is illegal. He pays Tommy in cash and stuffs the ‘fresh pro-
duce’ in the freezer. None of this is ever recorded. The result is that Jack has
no real idea what is in stock at any given time.

This makes life difficult for Freddo Smitho, the chef. He comes in with a
recipe in mind, specifically targeting the clientele for that evening’s event.
For example, when Gypsy Ky-Lee performs, scrag end of mutton hash
seems to be the meal of choice. Imagine Freddo’s horror when he discovers
that Jack has not ordered any mutton, but has a pigeon mountain instead.
Often the menu has to be rewritten at the last minute.

Fortunately, some suppliers are more reliable and prefer to do things
by the book. The local brewery, Cooper’s, is particularly diligent when
it comes to paperwork and deliveries are always punctual. However, Jack
gets confused when trying to operate proper business arrangements with
some suppliers and a more relaxed approach to legal requirements with
others.

10 Systems analysis: a beginner’s guide

2.2.2 The Medical Centre at the University of Life

General
The Medical Centre caters mainly for students and staff at the University of
Life. Registration takes place each year when new students take their
enrolment numbers to the Centre and register as patients. The University
sends the Medical Centre a list of all students enrolled each year so that
they can double check that a prospective patient is enrolled.

It is also possible for local residents to enrol if they live within the catch-
ment area and if there is room on a doctor’s list.

Once a patient is enrolled, the Medical Centre sends details to the Gen-
eral Practitioners’ Council (GPC). The GPC will then issue a new Medical
Card directly to the patient. If a patient leaves the Centre, the GPC must be
informed. The GPC will fund the Centre and pay salaries depending upon
the number of patients enrolled.

Patients can attempt to make an appointment at the Centre, though usu-
ally their condition will have cleared up by the time the appointment
occurs. Patients must then cancel their appointments or be open to public
ridicule. A ‘name and shame’ list of patients who forgot to cancel appoint-
ments is on display in the waiting room. If they do get to see a doctor, they
will be prescribed paracetamol or penicillin. This works fine in most cases,
but the head lice epidemic shows no sign of abating.

In the rare cases where the doctors admit defeat, they will refer patients
(if still breathing) to the local hospital. Alternatively, they might ask for a
second opinion. However, this will rarely be useful as they will already have
tried paracetamol.

Staff
There are four doctors and a nurse. The nurse, Constance Payne, deals
mainly with vaccinations and repeat prescriptions. She is also responsible
for ordering supplies when they get low. Supplies might be anything from
plasters to syringes.

Each doctor has a list of patients for whom he or she is the GP. However, it
is possible for patients to see other doctors if their own doctor is not on
duty.

There are two receptionists, George and Betty, and a trainee receptionist,
Chelsea, who are responsible for dealing with patient queries and main-
taining the Appointments Book. This is a very hit and miss affair, as the fol-
lowing transcript shows:

Reception
George: I’ve got a girl on the phone, Betty. She wants to go on Doctor

Spock’s list.
Betty: We haven’t got a Doctor Spock, George. He was on the telly,

funny ears, from outer space I think dear.
George: That’s what I told her, she must mean Doctor Spackman.
Betty: Ask her where she lives.

The current system 11

George: 47 Thomson Road.
Betty: Never heard of it. Where’s the street map?
George: Chelsea had it when she was looking for that boy’s address,

Dean was it?
Betty: Oh yes, didn’t exist though did it. Shame for her. Still, she’ll

learn. Where is Chelsea?
George: Eh?
Betty: Where’s Chelsea?
George: London, I think.
Betty: Really? What’s she doing there? Has that Dean upset her

again?
George: No that was last week. I’ll put her on Dr McLean’s list. He’s a

bit low, what with the court case and the flu jab mix-up.
Betty: What’s this say in the Appointment Book? Mr Enkab Rolow?
George: Looks like Nek Bralow to me.
Betty: Hold on, this name’s been crossed out. There’s another one

squashed underneath – Conquest. That’s it Norman Conquest
– daft name. Eh, George, look at this, Norman Conquest. Oh,
hello Mr Conquest. Looks like you and Mr Bralow have got
the same appointment. Would you mind waiting? You too Mrs
Stote? Well I’m sure Dr. McLean will be here soon. Just take a
seat. George, Mrs Stote’s records: where are they? She’s not
even down for an appointment but I daren’t tell her. She put
the butcher in hospital when he told her he had no trotters
and would ribs do?

George: Don’t worry Betty love, I’m sure they’re here somewhere. I
remember seeing them. The cat had hold of them... where is
it? Under the stairs, I think.

Betty: Mrs Stote’s records under the stairs!
George: No the cat. I think Dr McLean had Mrs Stote’s records, or was

that the cat? I can’t remember. I can’t remember anything
these days. Where am I?

Betty: Here they are, under the street map.
George: The street map. Didn’t I want that? There’s a girl still on the

phone. Where’s the phone gone?

Problem background
The problem areas can be summed up as:

� Appointments: chaotic, with double bookings, no room for urgent
cases, and changes not made. A foolproof system of appointments is the
top priority for the Centre.

� Patient processing: the filing of records is haphazard. They can go
missing, or be misfiled. With such a high turnover of patients, the
records are not always maintained accurately. Much information is
duplicated and often disparities appear. The doctors require a way of

12 Systems analysis: a beginner’s guide

viewing patient records without having to keep going backwards and
forwards to see Betty and George. Prescriptions are normally illegible,
which results in Heather in the chemists having to pop in regularly to
have them decrypted.

� management information: the GPC requires regular information
about the hours doctors have worked, new patients, supplies used etc.
Currently, Nurse Payne attempts to produce these, but mathematics is
not her strong point. The staff time sheets are a mess and staff often get
paid for hours they haven’t worked. The accountant is not happy about
this. Neither is the GPC.

The GPC also needs regular updates on currently enrolled patients. It is
the responsibility of the receptionists to record when patients leave and
keep a list of patients for each doctor. However, the University does not
tell them when a student withdraws, and patients rarely think to inform
them when they move away. The only information it gets is from the GPC
when it issues a new Medical Card for another practice, or from the Reg-
istrar of Deaths. Betty gets quite queasy when she has to tear up some-
one’s medical records and throw them in the bin.

The Prescription Monitoring Agency also requires information about
what prescriptions have been issued so that it can compare different
practices and see who is out of line. It sends a report every six months to
the Centre. This is shredded and used as a home for the hamster.

The accountant requires regular financial information about outgo-
ings. This is the bane of Nurse Payne’s life. A proper accounting system is
required.

� Ordering supplies: on a more mundane note, Nurse Payne has no infor-
mation about potential suppliers, other than the catalogues she keeps
under her desk. She may be paying too much for bandages etc. She is
keen to find out more about some recycled Crimean War bandages that
her friend, Nurse Blunt mentioned to her.

� Registration: it has been known for the receptionists to take down
details wrongly (e.g. ‘blood group’), or to omit key words such as
‘haemophiliac’. These typing errors have had unnerving results. Also,
George and Betty have had problems trying to determine who is eligible
to join the practice. A street map with felt tip lines on it has proven to be a
less than adequate tool. Ideally, they want to be able to say instantantly if
a postcode is within their catchment area.

The remainder of this chapter will consist of an analysis of the two case
studies using structured systems analysis techniques. This chapter will
focus on the Medical Centre, though there will be some examples from
Swillbuckets also. We will assume that the feasibility study (Stage 0) has
given us the green light to go ahead. We are about to start Stage 1: Investi-
gation of the Current Environment, as shown in Figure 2.1.

The current system 13

2.3 Investigation of the current environment
Remember that we are investigating the current environment so that we
can identify problems, record requirements and generally understand
what the organization does. We will focus on the Steps needed to accom-
plish this. Not all of the formal SSADM Steps will be covered.

2.3.1 Investigate and define requirements

As we work through the analysis of the current system, we need to be teasing
out problems and requirements. Sometimes, these will be thrust in the ana-
lyst’s face. On other occasions, they will be well hidden and only appear
when it’s too late. All these problems and requirements need to be written
down in the Requirements Catalogue. The Requirements Catalogue might
consist of a collection of forms like the blank one shown in Figure 2.2.

14 Systems analysis: a beginner’s guide

SSADM Version 4+

Feasibility

Stage 0

Investigation
of current

environment

Stage 1

Business
system
options

Stage 2

Definition of
requirements

Stage 3

Technical
system
options

Stage 4

Logical design

Stage 5

Physical design

Stage 6

Figure 2.1
SSADM Stage 1.

If we were to consider the Medical Centre case study, the first entry in
our Requirements Catalogue might look like the one in Figure 2.3.

The P/R option requires the analyst to enter whether this is a problem (P)
or a requirement (R). The Priority section requires a quick decision to be
made on the priority of the requirement. It may be that only the top priori-
ties can be implemented, for example. Normally, these range from top pri-
ority (1) to low priority (5).

The final section allows the analyst to link together problems and
requirements, if appropriate. So the problem in Figure 2.3 might well be
linked to a requirement to introduce a computerized appointments system
which prevents double booking.

Typical problems that the analyst might look for are:

� The current system is unreliable in some way.

� The current system lacks integrity: it can’t be trusted to give accurate
information.

The current system 15

System:

Author:

Date: Page of Draft/final

P/R No: Source: Priority:

Description:

Benefits if action taken:

Comments/suggested solutions:

Related probs/reqts/documents:

Problems/requirements
catalogue

Figure 2.2
Requirements
Catalogue.

� The current system is easy to break into.

� The current system has no proper backup procedures in place.

� The current system does not perform adequately at peak times.

� The current system cannot be adapted to meet current and future needs.

Improvements in these areas might well be requirements of the new system.

2.3.2 Fact-finding techniques

It is worth considering what the best ways are for getting information
about the system from users. Interviews are the main technique, but the
analyst has to be well prepared for these. It is no use turning up with a
blank piece of paper and no plan. The analyst should set up interviews with
one person at a time, at a specific time and date. The time and date must be
at the user’s convenience. It is normally best to start with top management,
as they have more of an overview of the organization.

16 Systems analysis: a beginner’s guide

System: Medical Centre

Author: Kevin Bowman

Date: 30/10/03 Page 1 of 1 Draft/final

P/R P No: 1 Source: Betty Priority: 1

Description:
Double booking is occurring as a result of the Appointments Book
being hard to maintain accurately.

Benefits if action taken:
No more arguments with Amanda Stote. Patients seen on time.
Fewer complaints.

Comments/suggested solutions:
Computerised Appointments Data Entry Form to include Patients
combo box and pre-formatted appointment slots.

Related probs/reqts/documents:
Requirement 1
DFD Appointments

Problems/requirements
catalogue

Figure 2.3
Requirements
Catalogue entry.

It is very difficult to follow what someone is saying about their role in a
system when you are trying to write notes at the same time. It is much
easier to record the interview and listen to it later, as long as the inter-
viewee doesn’t mind. This allows the analyst to think about the user’s com-
ments and pursue different lines of enquiry more effectively.

It is preferable to have a few key questions prepared in advance, though it
is important that users are allowed to talk about what is important to them.

The analyst must be careful not to create conflict and mistrust by dis-
cussing with users what other users have said. Similarly, the analyst must
not prejudge the issue and tell users what sort of system they might be get-
ting. Interviewing users is a difficult skill, acquired mainly by experience.
Beginners should keep it simple and not be afraid to go back for
clarification.

It is also useful to be able to consider the current system by looking at the
existing paperwork. This can give many insights into the problems of the
current system, as well as indicating what data flows around the system.
Forms and files have the advantage of being unbiased and they do not har-
bour grievances against colleagues – unlike users.

So, grab as many forms, files and scraps of paper as you possibly can on
your visits to the organization – with the users’ agreement, of course.

2.3.3 Investigate current processing

This Step also involves fact-finding, but focuses on producing models or
diagrams of the processing in the current system. The key technique here is
Data Flow Modelling.

Data Flow Modelling
Data Flow Modelling allows the analyst to get a picture of the current
system and think about the required system. It involves producing a
number of diagrams which show how the current system works and what
the required system might do. Figure 2.4 models this process.

At this stage of SSADM, the diagrams include: context diagrams, docu-
ment flow diagrams and Data Flow Diagrams (DFDs). Of these, DFDs are
the most important, so we’ll start with those.

The current system 17

Current
physical

Required
physical

Required
logical

Current
logical

Physical
view

Logical
view

Current
view

Required
view

Figure 2.4
Data modelling in
SSADM.

Data flow diagrams
Data flow diagrams are central to SSADM. They show the processes
involved in the current (and required) system, what data is involved, and
where the data goes to. DFDs are about processes, primarily things that are
done – activities. If someone asked you to list the activities involved in, say,
getting out of the house in a morning, you might produce these: getting out
of bed, washing, shaving (optional), getting dressed, eating breakfast,
checking the time, leaving the house. Notice that these all contain verbs,
because they are activities. If you put this list into the form of a diagram,
you might end up with something like Figure 2.5.

This has much in common with a DFD. It includes the activities and
any data which is needed to perform the activities. For example, the cor-
rect time is needed in order to know when to ‘leave the house’. This kind
of data flow, into and out of activities, is very common in DFDs. So DFDs
are nothing to fear: they are a tool to help the analyst understand the
system.

DFDs show how information is created, altered or moved around by the
system. They also show how it is received into the system and stored.

Data flow diagram conventions
There are four elements to a DFD. These are:

� Processes (or activities)

� Data flows

� External entities

� Data stores

18 Systems analysis: a beginner’s guide

Get up
Get washed

Shave

Dress yourself

Eat breakfast

Leave the
house

Check the time

Figure 2.5
Morning activities.

Processes
The processes show an activity carried out by someone in the organization
which involves data in some way. They take the form of a box with the
activity inside. The activity always starts with a verb, such as ‘Pay artistes’
at Swillbuckets. The processes are numbered in the top left-hand corner.
This is just to identify the process: it does not mean that process number 1
must be done first. The person, or department, who does the activity,
appears in the top right section of the box, as in Figure 2.6.

Data flows
Data flows show the movement of data around the system. They take the
form of an arrow which shows the direction of the data. Data flows should
be labelled to show exactly what data is flowing. For example, ‘medical
card’ might be the label attached to a data flow in the Medical Centre.

External entities
These are people or organizations outside of the system being investigated.
They will send data into the system or receive data from it. At Swillbuckets,
‘artiste’ would be an external entity, as would ‘brewery’. They are shown in
the form of ovals with a label inside. If the same entity appears more than
once on a diagram, it has a line through it. Figure 2.7 shows the entity
‘member’.

Data stores
These are places where data is stored. For example, an Orders file would be
a data store. Jack Trout’s members’ shoebox at Swillbuckets is a data store,
and so is Betty and George’s Appointment Book at the Medical Centre.
Data stores are represented by open-ended rectangles with a unique refer-
ence and a label. Normally, at this stage, the reference will begin with ‘M’
for ‘Manual’. Figure 2.8 shows how Jack’s members’ shoebox might look.

The current system 19

1 Secretary

Enrol new
member

Identifier Who?

Activity

Figure 2.6
Process box.

MEMBER MEMBER

Entity appears once Entity appears more than once

Figure 2.7
External entities.

So, now we know the components of a DFD, let’s see what they look like
when we put them together. Figure 2.9 shows part of a DFD for
Swillbuckets and Figure 2.10 shows part of one for the Medical Centre.
Note that these are not yet complete DFDs.

Data flow diagram rules
The analyst needs to be aware of some rules which apply to DFDs. These
rules exist not to make life difficult, but to ensure consistency in
diagramming.

Process rules
� Processes must have both inputs and outputs. If there is no input, but

there is an output, then the output has been created from thin air. Sadly,
this does not happen. If there is an input but no output, then the process
is a waste of everyone’s time and should be scrapped.

Data flow rules
� Data flows must go through a process box. It is not allowed to have a data

flow going directly from an external entity to a data store, for example.

20 Systems analysis: a beginner’s guide

M1 Members’ detailsFigure 2.8
Data store – Jack’s
shoebox.

1 Secretary

Enrol new
member

MEMBER

m
em

bership
form

M1 Members’ details

m
em

be
rs

hi
p

fo
rm

Figure 2.9
Partial DFD –
Swillbuckets.

External entity rules
� The label must be a noun, e.g. SUPPLIER.

Data store rules
� A data flow into a data store means update the data store.

� A data flow from a data store means retrieve data from the data store.

Context diagram
This is the first diagram we draw. We only need to draw one of these
because it shows the entire system. In order to prevent it looking too com-
plicated, we might summarize the key data flows. All the processes in the
system are contained in one process box. The aim is to get an overview of
which external entities send or receive data from our system at present. In
other words, a context diagram is a tool to establish the scope of the system
under investigation. It is similar to a DFD, but does not obey the rules
outlined above.

Document flow diagram
This follows on from the context diagram. It looks inside the one process
box in the context diagram and breaks it up into departments or areas of
work. It also allows us to show exactly which parts of the overall system we
are going to investigate. Some parts might not need looking at.

The current system 21

1 Receptionist

Create new
appointment

PATIENT

appointment request

M4 Appointments Book

ap
pointm

en
t

available appointments

appointm
ent

Figure 2.10
Partial DFD – Medical
Centre.

2.3.4 Simple steps in data flow modelling

The main tasks to be completed, in order, are:

1 Draw a context diagram.

2 Draw a document flow diagram.

3 Draw a top-level data flow diagram.

4 Draw lower level data flow diagrams.

These main tasks will be split up into a number of smaller, simple tasks. An
example from the Medical Centre will be given at each stage.

1 List of external entities
Make a list of all the things (entities) external to our organization which send
data to us or receive data from us. The Medical Centre list might consist of:

� Patient: the Centre will receive all kinds of data from patients, such as
appointment requests.

� University: the Centre receives a list of new students.

� General Practitioners Council: the Centre sends to the GPC
timesheets for the work done by the receptionists and the Nurse. Doctors
are paid according to the number of patients on their list. The Centre
receives pay slips from the GPC.

� Supplier: Nurse Payne will send orders for supplies and receive invoices.

� Hospital: the Centre sends referrals to the hospital and receives reports
on treatment at the hospital.

� Prescription Monitoring Agency: the Centre sends the PMA data on
prescriptions and receives reports on the practice for prescribing drugs
nationally.

� Accountant: the Centre sends regular financial information and
receives reports.

You may wish to draw a table like that in Table 2.1. Remember to draw it
from the point of view of the system under investigation.

2 Draw the context diagram
This follows easily from the table: see Figure 2.11.

Notice that a dashed line has been drawn between GPC and the Patient,
to show the Medical Card. A dashed line can be used in this way to show
data flows between external entities which are felt to be important enough
to show.

3 Identify internal areas/departments
Having considered the external data flows, we move on to the internal ones
which will appear in the document flow diagram. We need to identify the

22 Systems analysis: a beginner’s guide

internal areas which might send data between themselves. For example, in
a college or university the areas might be: Department, Student, Tutor,
Admin, Support and so on. In the Medical Centre, the areas might be:
Reception, Doctor and Nurse. We need to separate Doctor and Nurse
because they perform different tasks for the Centre. We also need to iden-
tify the data flows between these areas, as we did with the Context Dia-
gram. You could draw a table as in the previous section, but in this case it’s
fairly simple, so we’ll draw the diagram.

4 Draw the document flow diagram
The document flow diagram need not just consist of documents. Confus-
ingly, it can include any type of data flow – electronic, word of mouth, or, in
George’s case, arm-waving histrionics which communicate very little.
Nurse Payne, on the other hand, can sometimes communicate a huge
amount of information with just one look. It differs from a data flow dia-
gram in that it does not include any processes, as shown in Figure 2.12.

The system boundary has been added to show exactly what areas we are
concerned with in the Medical Centre. All entities outside of the dashed
line are external entities. It should be obvious from the Context Diagram
which areas are outside our system. With the user’s agreement, it is the
analyst’s role to investigate the internal entities. In this case, they are
RECEPTIONIST, DOCTOR and NURSE.

The current system 23

External entity Data flow Sends (S) or Receives (R)

Patient Registration form R

Appointment request R

Appointment S

Prescription S

GPC Payslips R

Patient lists S

Timesheets S

University Student lists R

Hospital Referral S

Referral results R

PMA Prescriptions S

Prescription reports R

Suppliers Catalogues R

Orders S

Invoices R

Accountant Financial details S

Finance reports R

Table 2.1 Data flows and entities.

5 Convert the document flow diagram into a top-level data flow diagram
� Start with the document flow diagram.

� Focus on the sources/recipients (ellipses) inside the boundary. In our
example (Figure 2.12), these are: Doctor, Nurse and Reception. Now look
at the data flows coming into and going out of these ellipses.

� What processes generate these data flows? What are the main processes
carried out by Doctor, Nurse and Reception?

� Let’s take Reception – we might start with the data flow ‘appointment’.
What process generates this ‘appointment’? Remember that we’re trying
to be general at the moment, so we could identify a process called ‘Pro-
cess Appointment’. This would cover a number of our data flows.

� Another data flow is ‘registration form’. What process generates ‘regis-
tration form’? Being general again, we might call it ‘Register Patient’.

� Other data flows are ‘prescription’ and ‘referral’. What processes gen-
erate these? They could be brought together under the process ‘Process
Patient Requirements’.

24 Systems analysis: a beginner’s guide

Medical Centre
Patients

Appointments
Pay staff

Make prescriptions

PATIENT

SUPPLIER

GPC PMA

UNIVERSITY

ACCOUNTANT

registration form

appointm
ent request

appointm
ent

prescription

payslip

patient list

stu
den

t list

prescription
report

prescription

fin
an

cia
l re

por
t

fin
an

cia
l d

eta
ils

order

catalogue

invoice

m
edicalcard

HOSPITAL

re
fe

rr
al

re
su

lt

re
fe

rr
al

Figure 2.11
Context diagram for
the Medical Centre.

� Many of the other data flows concerning Reception are sending or
receiving information to or from external organizations like the GPC.
These could all come under the umbrella of a process called ‘Process
Management Information’. That covers Reception. In fact, the only data
flows not covered by these general process headings are the Nurse’s deal-
ings with suppliers. We could put these data flows into a process called,
say, ‘Maintain Supplies’.

� Put these general processes together in one diagram and we have our
DFD. For the sake of simplicity, data stores can be left out of this top-level
diagram. They will appear in the lower level diagrams.

We now have an overview DFD. This is normally called a Level 1 DFD.
Figure 2.13 shows the complete Level 1 DFD.

Notice that the GPC entity has a line through it to indicate that it appears
at least twice in the diagram. The label ‘Current Physical DFD’ indicates that
the diagram shows the current state of affairs and that we are looking at the

The current system 25

registration
form

appointm
ent req.

m
edical card

PATIENT

GPC

PMA

UNIVERSITY

ACCOUNTANT

appointm
ent

prescription

prescriptionfin
an

ci
al

re
po

rt
fin

an
ci

al
de

ta
ils

HOSPITAL

re
fe

rr
al SUPPLIER

or
de

r

ca
ta

lo
gu

e

in
vo

ic
e

NURSE

RECEPTION

st
ud

en
t

lis
t

DOCTOR

PM
A rep

ort

re
fe

rr
al

re
su

lt

PM
A

report

referral result

financial report

prescription

payslip
tim

esheet

payslip
timesheet

patient list

financial details

Figure 2.12
Document flow
diagram for the
Medical Centre.

physical view of how things happen. Who does what? When? How? Later on,
we’ll ‘logicalize’ these diagrams and focus on what is actually achieved.

6 Develop the lower level DFDs using functional decomposition
What is functional decomposition? The Level 1 DFD gives us a very general
overview of what goes on in the Medical Centre, but provides no details
about what really happens. We need to know these details. So we need to
talk to the users again to gain a deeper understanding of what happens at a
lower level.

This enables us to create lower level diagrams, working down from the
Level 1 processes. Thus each Level 1 process might be broken down into a
number of Level 2 processes. The example in Figure 2.14 shows the Level 1
process ‘Process appointments’ and how it might look when broken down
into more detailed processes at Level 2.

26 Systems analysis: a beginner’s guide

1 Reception

Register patient

2 Reception

Process
appointment

PATIENT app’t requestappointment

registra
tion form

UNIVERSITY
student list

GPC
patient

list

3 Doctor/reception

Process
patient

requirements

prescription

HOSPITAL referral

referral result

PMA

4 Reception

Process
management
information

prescriptionPMA report

GPC

tim
esh

eet

pays
lip

ACCOUNTANT

financial report

financial details

5 Nurse

Maintain
suppliesSUPPLIER

catalogue

invoice

order

Figure 2.13
Level 1 current
physical DFD for the
Medical Centre.

These Level 2 processes must now be incorporated into a full DFD for
each Level 1 process. So, in our example, we will need five Level 2 DFDs,
because there are five Level 1 processes to decompose.

This decomposition process can continue to even lower levels. It may be
the case that some processes are still not fully broken down even at Level 2.
For example, in Figure 2.14 there is a Level 2 process called ‘Receive
appointment request’. This is a little vague. We could make this process
clearer by breaking it up as shown in Figure 2.15.

And so on. We may even want to break down one or two of these pro-
cesses to make them absolutely clear. It is unlikely, even in the most com-
plex systems, that we would ever go below Level 4. The lowest level
processes are known as elementary processes.

When drawing the lower level DFDs, we must now incorporate the data
stores. These were omitted from the Level 1 DFD, simply to avoid over-
loading the diagram. We must also ensure that every data flow and entity
on the Level 1 diagram appears somewhere on the lower level ones.

So, let’s draw the Level 2 DFDs for the Medical Centre at the University of
Life. The first one we’ll do is for the Level 1 process ‘Register Patient’. This
will contain in it four sub-processes numbered 1.1 through to 1.4 (Figure
2.16).

Notice that in Figure 2.16 a numbering system is used. This is necessary
so that each process has a unique identifier. The system is easy to follow:
the Level 1 number comes first, then the Level 2 number and so on.

The current system 27

Process
appointments

Create new
appointment

Receive
appointment

request

Check
appointment

book

Functional decomposition

Change
appointment

Level 1

Level 2

Figure 2.14
Decomposition of
DFDs – Levels 1 and
2.

Process
appointments

Create new
appointment

Receive
appointment

request

Check
appointment

book

Functional decomposition

Change
appointment

Check urgency
of condition

Take patient’s
name

Check if patient
registered

Level 1

Level 2

Level 3

Figure 2.15
Decomposition of
DFDs – Levels 1, 2
and 3.

A couple of things may need explaining in Figure 2.16. Process 1.1 – ‘File
student list’ – has a data flow from the University. The data flow is the list
of new students who have enrolled that year. All Process 1.1 does is to take
the list and file it. Even Betty and George can manage that. The list is filed
in a data store. In this case it is ‘M1 – Student Lists’. ‘M’ stands for ‘man-
ual’. It’s a manual store, not an electronic one. It’s the first data store we’ve
identified, so that’s why it’s ‘M1’.

Data stores can take many forms. Normally, they will be files or ledgers,
that kind of thing. But they could also be forms, catalogues, noticeboards,
or anywhere data is held.

This DFD is very simple; none of the processes have more than two or
three inputs and outputs, so there is no need to break it down further.
These four processes can now be described as elementary processes, i.e.
they don’t need simplifying.

28 Systems analysis: a beginner’s guide

1.1 Reception

File student list

1.2 Reception

Process
registration form

PATIENT
registration form

UNIVERSITY
student list

1.3 Reception

Add patient to
doctors’ list and
patient records

1.4 Reception

Inform GPC

GPC
patient details

medical history

M1 Student lists

student list

student list

M2 Catchment area

doctor nam
e

M4 Doctors’ list

patient

M5 Patient records

patient details

m
ed

ic
al

ca
rd

M6 Medical records

medical history

M3 Registration forms

registration form

patient details

registra
tion form

Figure 2.16
Level 2 DFD ‘Register
Patient’.

TE
AM
 F
LY

Let’s have a look at the next DFD (Figure 2.17). This one focuses on the
appointments process.

Once again, this one is very simple. It’s worth bearing in mind that these
DFDs are the first attempt at this process. When we show them to users and
ask if they are accurate, the users will almost certainly identify some errors
in the DFDs, which will need putting right. Also, there are various checks
to be done on the DFDs which may well throw up some more problems. So
don’t think of this process of drawing DFDs as a once only job. It’s probably
the first of several attempts to get them right.

Next we have process number 3 – ‘Process Patient Requirements’. This
one illustrates what happens when patients arrive at the Medical Centre
for treatment (see Figure 2.18).

This DFD throws up a couple of points. Firstly, notice that the ‘appoint-
ment’ data flow has an arrowhead at both ends. This means that data is
taken from the data store ‘M7 Appointment book’ and also added to it.

Secondly, in creating this DFD, it became apparent that the patient
would need to notify the Medical Centre of his or her arrival. This piece of
information is missing from the level 1 DFD. We should now go back to the
level 1 DFD and add it in. Any data flows to or from external entities must
appear in the level 1 DFD and the lower level DFDs. If this doesn’t happen,
the DFDs will be inconsistent and confusing.

The current system 29

2.1 Reception

Take appointment
request

PATIENT

agreed slot

PATIENT request

2.3 Reception

Amend
appointment

2.4 Reception

Cancel
appointment

M7 Appointment book
free

slots

agreed slot

appointment

confirmation

ap
po

in
tm

en
t c

an
ce

lla
tio

n

free slots

2.2 Reception

Create new
appointment

amendment request appointm
ent am

endment

cancellation request

new appointment

Figure 2.17
Level 2 DFD -
‘Process
Appointment’.

Sometimes the level 2 DFD contains a process which is quite complex
and may have several data flows into it and out of it. The next DFD (Figure
2.19) contains such a process.

Process 4.3 – ‘Process staff income/expenses’ – has three data flows into
it and two coming from it. This is a little complex, though some analysts
would be happy to leave it alone. However, we will draw a Level 3 DFD to
clarify the process.

There is another issue with this DFD. We have a data flow called ‘form’
coming from ‘M11 Expenses forms’. However, nowhere in our DFDs is
there a data flow into this data store. So we are taking something from it
without ever putting anything into it. Sadly, that kind of thing can’t
happen. We may therefore need to invent a new process called something
like ‘Update staff expenses’, where we add the expenses forms to the data
store. Or we could amend Process 4.2 so that it becomes ‘Update staff
timesheets and expenses’.

30 Systems analysis: a beginner’s guide

3.1 Reception

Process patient
arrival

HOSPITAL

notification

3.3 Doctor

Prescribe
treatment

M7 Appointment book

appointment

3.2 Doctor

Diagnose
illness or refer

M6 Medical records

records

symptoms

referral diagnosis

diagnosis
referral result

PATIENT

PATIENT

prescription

M8 Prescriptions

prescription

treatm
ent

3.4 Nurse

Create repeat
prescription

request
pres

crip
tio

n

rep
eat

pres
cri

ptio
n

repeat prescription

Figure 2.18
Level 2 DFD –
‘Process Patient
Requirements’.

Anyway, Figure 2.20 shows how Process 4.3 might look when decom-
posed to Level 3.

Once again the creation of the DFD reveals something missing. This time
it’s a data store to store copies of the pay claims sent to the GPC. This would
be necessary in case of queries about the pay claims. For example, the GPC
might wonder why they are paying the doctors so handsomely when all
they do is dispense paracetamol.

The current system 31

M12

expenses

M11 Expenses forms

form

ACCOUNTANT

4.4 Nurse

Compile
income/expense

data

Budget

financial details

report

4.5 Reception

Compile
prescription

data
PMA

prescriptiondetails

M8 Prescriptions

pres
crip

tio
n

report

4.3 Reception

Process staff
income/expenses

payslip

GPC pay claim

M9 Timesheets

tim
esheet

4.2 Reception

Collate staff
timesheets

M10 Work rota

rota

timesheet

4.1 Nurse

Create work
rota

rota

previous rota
constraint

Figure 2.19
Level 2 DFD –
‘Process Management
Information’.

The final Level 2 DFD (Figure 2.21) focuses on Nurse Payne’s role as con-
troller of supplies for the Medical Centre.

Our current physical DFDs are now complete. They should give us a pic-
ture of what the Medical Centre currently does. They should be under-
standable and be useful as a communications tool with the user. However,
there are limitations with DFDs. They don’t do everything (which is why
we need other techniques). Here are a few limitations:

32 Systems analysis: a beginner’s guide

4.3.2 Reception

Compile pay
claim

M14 Pay cabinet

4.3.1 Reception

Check timesheet

M9 Timesheets

M10 Rota

timesheet

rota

checked
timesheet

GPC

pay claim

payslip

4.3.5 Reception

Compile monthly
expenses

M11 Expenses forms

form

M12 Budget

expenses

4.3.3 Reception

Post pay claim

pay
cla

im

pay claim

4.3.4 Reception

Receive and
distribute payslip

pa
ys

lip

Figure 2.20
Level 3 DFD.

� They don’t show us how the data is structured.

� They don’t show the effect of time or sequence.

� They may not help communicate with the user – they may be too
complex.

� They take a long time to draw and redraw.

� They may never be complete

While these limitations are real enough, the experienced analyst can use
DFDs as a useful tool and not allow the limitations to become a problem.

The set of DFDs for the Swillbuckets Case Study are shown in Figures
2.22–2.29.

The current system 33

5.2 Nurse

Order new
supplies

SUPPLIER

5.4 Nurse

Pay invoice

5.3 Nurse

Receive delivery
and invoice

SUPPLIER

M12 Budget

product details

invoice

5.1 Nurse

Update suppliers
file

M13 Suppliers file

catalogue catalogue

order

order

order

budget info

expenditure

invoice

paymentreceipt

receipt

M13 Supplier’s file

Figure 2.21
Level 2 DFD.

Summary
In this chapter, we have considered the techniques required to analyse a
system. Communications skills and data flow modelling have been the
focus. The two case studies have been introduced. In the next chapter we
look at modelling the data structure.

34 Systems analysis: a beginner’s guide

MEMBER

MEDIA

BREWERY

ARTISTE

de
liv

er
y

no
te

or
de

r

SUPPLIER

order

invoice

in
vo

ic
e

pa
ym

en
t

paym
ent

re
ce

ip
t

bo
ok

in
g

co
nf

irm
at

io
n

pa
ys

lip

enrolm
ent form

enrolm
ent form

events list

events list

subscription

overdue
rem

inder

Swillbuckets
Manage events

Members
Book artistes

Prepare meals

Figure 2.22
DFDs for the
Swillbuckets case
study (1).

The current system 35

MEMBER

MEDIA

BREWERY

ARTISTE
de

liv
er

y
no

te

or
de

r

SUPPLIER

order

invoice
SECRETARY

(JACK)

in
vo

ic
e

pa
ym

en
t

paym
ent

re
ce

ip
t

bo
ok

in
g

co
nf

irm
at

io
n

pa
ys

lip

enrolm
ent form

enrolm
ent form

events list

events list

subscription

overdue
rem

inder

Figure 2.23
DFDs for the
Swillbuckets case
study (2).

36 Systems analysis: a beginner’s guide

1 Secretary

Process
membership

ARTISTE

MEMBER

enrolment form

3 Secretary

Order drinks
and supplies

4 Secretary

Process
payments

M1 Members’ shoebox

subscription

enrolment form

2 Secretary

Book artistes

5 Secretary

Manage events

enrolment formoverdue reminder

booking form

booking form

M2 Artiste shoebox

SUPPLIER

M3 Supplier shoebox

order

invoice

delivery note

payment

deliv
ery

note

MEDIA

MEMBER

events list

events list

M2 Artiste shoebox

delivery note

M4 Events folder

M5 Recipe book

dish details

cancellation

booking form

artiste details

cancellation

ARTISTE
payment

booking form

M4 Events folder

event

artist
e

supplier

event

requirements

Figure 2.24
DFDs for the
Swillbuckets case
study (3).

The current system 37

1.1 Secretary

Issue
enrolment form

MEMBER

enrolment form

1.3 Secretary

Issue overdue
subscription

reminder

1.4 Secretary

Close
membership

M1 Members’ shoebox

enrolment form

1.2 Secretary

Process
subscriptions

enrolment form

overdue reminder

subscription

overdue member details

subscription
request

su
bscr

iptio
n

mem
ber

deta
ils

MEMBER

M1 Members’ shoebox

subscription
subscription

mem
ber

deta
ils

notice of closure

Figure 2.25
DFDs for the
Swillbuckets case
study (4).

38 Systems analysis: a beginner’s guide

2.1 Secretary

Select artiste
for event

ARTISTE

2.3 Secretary

Issue booking
form

2.4 Secretary

Write letter of
confirmation

M2 Artiste shoebox
2.2 Secretary

Contact
possible
artistes

bookin
g form

booking form

event details

ARTISTE
M4 Event shoebox

bookin
g form

booking form

booking form
letter

M4 Event folder

event details

artiste details

2.5 Secretary

Process
cancellation

cancellation

ca
nce

lla
tio

n

Figure 2.26
DFDs for the
Swillbuckets case
study (5).

The current system 39

3.1 Secretary

Check food and
drink supplies

KITCHEN

3.3 Secretary

Place order
with supplier

3.4 Secretary

Process
delivery

M4 Event folder

3.2 Secretary

Evaluate
suppliers

order

supplier details

SUPPLIER

delivery note

M3 Supplier shoebox

BAR
requirements

requirements

supplies inform
ation

M3 Supplier shoebox

delivery note

order

Figure 2.27
DFDs for the
Swillbuckets case
study (6).

4.1 Secretary

Pay supplier
SUPPLIER

M3 Supplier shoebox

supplier detailsdelivery note

payment

4.2 Secretary

Pay artiste

M2 Artiste shoebox

artiste details
booking form

paymentARTISTE

Figure 2.28
DFDs for the
Swillbuckets case
study (7).

Exercises
2.1 Draw DFDs for each of these scenarios:

(a) A customer goes into a bookshop and asks for this book. The member of
staff looks for the book in the online stock catalogue and reports that
the book is sold out.

(b) Every month, the Medical Centre receives a list of current drugs avail-
able from the drug companies. These lists are collated into a catalogue
of drugs which is copied and given to each doctor.

(c) Swillbuckets orders a crate of Babycham from the brewery. Jack Trout
fills in an order form and sends copies to the brewery and the barman.
The original is kept in the Orders shoebox. When the order arrives, the
delivery note is checked against the order form by the barman. If the

40 Systems analysis: a beginner’s guide

MEMBER
M2 Artiste shoebox

list

5.2 Secretary

Choose dish

M5 Recipe book

booking form

MEDIA

5.1 Secretary

Create
forthcoming
events list

M4 Events folderlist

5.3 Chef

Record dish
details

M4 Events folder

5.4 Secretary

Check artiste
requirements

ARTISTE

M2 Artiste shoebox

requirements
requirements

event

artiste

recipedish

dish

Figure 2.29
DFDs for the
Swillbuckets case
study (8).

delivery matches the order, the barman signs the delivery note and
attaches it to the order. He sends this to Jack.

(d) Decompose the diagram for part (c) into two lower level DFDs, one
showing the order process and one showing the delivery process. Com-
pare them with the top-level DFD in (c).

2.2 Draw a physical DFD to model this vet practice scenario.
Hallam Vets consists of two vets plus a receptionist. Both vets maintain
records of treatment sessions. In addition, they maintain detailed animal
records held in reception. When an owner arrives with an animal, the
receptionist enters new animal details if the animal has not been seen
before. The receptionist also reminds owners if their account needs paying,
and receives payments where offered. She records details of payments.

Patients may send payments by cheque in the mail, or pay by cheque or
cash at reception. Payments are banked daily. Once a week the receptionist
checks the payments. She updates the ledgers and records the updated bal-
ance on the owner’s records. She sends reminders to owners with out-
standing balances. Once a year, a breakdown of treatment has to be
prepared by each vet and despatched to the Department of Animal Welfare.

The current system 41

C H A P T E R 3
Modelling the
data structure

3.1 Entity modelling
Entity modelling is another technique used in Stage 1 of SSADM. As just
mentioned in Chapter 2, DFDs show the processes, or functions, involved
in a system. They don’t tell us much about the structure of the data: what
categories of data, for example, there might be in the system. For this
aspect of the system, we need to produce an entity model (or Logical Data
Model). This model shows the actual data used by an organization and how
it links together. Before we look in more detail at entity modelling, let’s be
clear what we mean by certain terms.

3.1.1 Entities

Entities are things we might want to keep information about. They are usu-
ally types of people like CUSTOMER, or objects like PRODUCT. Jack Trout
can’t move for all the entities at Swillbuckets Club. They’re everywhere. He
needs to keep information about MEMBERS, RECIPES, EVENTS,
ARTISTES and so on. These are all entities. There are four tests we could
use to decide whether or not something is an entity:

1 An entity must be important to the organization.

2 An entity must have at least one attribute (see below).

3 An entity must occur more than once – so if MEMBER is to be classed
as an entity, there must be more than one member of Swillbuckets. For-
tunately, there is more than one, though this could change when the
Health Inspectors visit next month.

4 Each entity occurrence must be uniquely identifiable – so we must be
able to uniquely identify each member if MEMBER is an entity. This
can be done through a Membership Number, for example. Similarly, we

42

could identify a RECIPE through its unique Recipe Name or Recipe
Number if there are many of them.

Entities are represented by rectangles with rounded corners in Entity
Models, as shown in Figure 3.1. The name of the entity is always singular.

3.1.2 Attributes

Each entity has a number of attributes. These are bits of data associated with
the entity. If we take the entity MEMBER at Swillbuckets, we might identify
Member Name as an attribute of MEMBER. Other attributes might be:

� Membership Number

� Member Address

� Date of Birth

� Type

� Seconder

� Renewal Date

So the full record for a member, when we add in all the data, might look like
that in Table 3.1.

3.1.3 Keys

A key is a way of identifying something – an entity or form or whatever.
Your key is your name, usually. It’s how other people identify you. But it’s
not a brilliant key, because there will be lots of people with the same name
as you (unless you’re called Amanda Stote). A better key to identify you
would be your National Insurance Number (if you live in the UK). It’s
unique. There are never two the same. That’s why you have it. Similar keys
can be identified for people living in other countries.

Modelling the data structure 43

MEMBER
Figure 3.1
The MEMBER entity.

Attribute Data

Member Name Malcolm Sprotdale

Membership Number 3421

Member Address 1 Cemetery Road, Wigginton

Date of Birth 5 October 1912

Type Free

Seconder Herbert Woodcock

Renewal Date 6 May 2003

Table 3.1 A full membership record.

Alternatively, your key could be your name combined with your address
as a way of identifying who you are. After all, there are not likely to be two
Will Winterbottoms living at Hag End Farm, though it’s not impossible.
The problem is that people move house, whereas a National Insurance
Number always stays the same.

We’ve just seen that an entity is made up of a number of attributes. To
identify that entity, we need a key. Let’s think of the entity MEMBER. It
may be that Member Name could be the key, but, as we’ve seen, names on
their own are not enough. So we could combine it with Member Address
and that would do the trick. This would be a composite key, which means
that there is more than one attribute involved in the key.

However, a better key would be Membership Number. This uniquely
identifies all the MEMBERs. Indeed, that is it’s only purpose. This then
would be the primary key. It’s a simple key, which means it’s made up of
just one attribute.

3.1.4 Relationships

Entities do not exist in isolation in most systems. They have relationships
with other entities. If we think about Swillbuckets, we can see that
MEMBER, EVENT and ARTISTE are all linked together. For example,

� Artistes entertain Members

� Members attend Events

� Artistes perform at Events

Similarly,

� Students attend Classes

� Students have Tutors

� Tutors give Classes

� Doctors treat Patients

� Patients make Appointments

� Doctors attend Appointments

The entities are all related in these examples. They are joined together by
a verb which describes the relationship between them.

In an entity model, related entities are joined by a line, as in Figure 3.2.

Relationship type
Unfortunately, there are three different types of relationship. These are:

44 Systems analysis: a beginner’s guide

MEMBER EVENT
Figure 3.2
Related entities.

� one-to-one (1:1)

� one-to-many (1:M)

� many-to-many (M:N)

A one-to-one relationship is fairly unusual. An example might be CAR
and DRIVER. This would be one-to-one if a car only had one driver and the
driver only drove one car. But if a car could have more than one driver, it
would be one-to-many; and if the same driver could also drive more than
one car, it would be many-to-many. Notice in Figure 3.3 how the entity
model changes, depending upon the type of relationship.

One-to-many relationships are very common:

� A PATIENT can only have one DOCTOR, but a DOCTOR can treat many
PATIENTs.

� At Swillbuckets, an EVENT presents only one ARTISTE, but an ARTISTE
can appear at many EVENTs.

This could change, of course. Jack Trout might decide to put on more
than one ARTISTE at some EVENTs. Then the relationship would become
many-to-many. So it is the policies of the organization which determine the
type of relationship. (Remember: more than one = many.)

Modelling the data structure 45

CAR DRIVER

A car can have only one driver; a driver can have
only one car

CAR DRIVER

A car can have more than one driver; a driver can have
only one car

CAR DRIVER

A car can have only one driver; a driver can have more
than one car

CAR DRIVER

A car can have more than one driver; a driver can have
more than one car

1:1

1:M

1:M

M N:

Figure 3.3
Relationship types.

Many-to-many relationships are also quite common:

� A MEMBER might attend many EVENTs and each EVENT could have
many MEMBERs.

� A STUDENT might take many COURSES and each COURSE might have
many STUDENTS.

� A CUSTOMER might buy many PRODUCTs and a PRODUCT might be
bought by many CUSTOMERs.

Sadly, many-to-many relationships are not good for databases. They
cannot be implemented effectively. So many-to-many relationships have to
be resolved.

3.1.5 Resolving many-to-many relationships

In effect, this means we have to split many-to-many relationships into two
one-to-many relationships. This requires us to find a link entity which is a
single occurrence of the many-to-many relationship.

1 Find a link entity
Here’s an example: let’s look at the CUSTOMER:PRODUCT relationship.
We’ve already said it’s a many-to-many relationship, so let’s think of a link
entity. A single occurrence of this relationship might be a TRANSACTION.
That is one CUSTOMER buying one PRODUCT. In diagrammatic form, we
see how this might work. Each occurrence of TRANSACTION represents
one occurrence of the CUSTOMER:PRODUCT relationship. The many-to-
many relationship changes to two one-to-many relationships in Figure 3.4.

Each CUSTOMER can make many transactions, but each
TRANSACTION is made by only one CUSTOMER. Similarly, Each
PRODUCT can be part of many transactions, but each TRANSACTION only
involves one PRODUCT.

46 Systems analysis: a beginner’s guide

CUSTOMER PRODUCT

CUSTOMER PRODUCT

TRANSACTION

Figure 3.4
Resolution of many-
to-many
relationships.

Here’s another example from an analysis of the Probation Service. Pre-
liminary investigation reveals the entities: COURT and DEFENDANT. But
the relationship is many-to-many. Each COURT may have many DEFEN-
DANTs and each DEFENDANT can come before many COURTs. To resolve
this relationship, we need to think of a single instance of the relationship.
What is the term for the coming together of COURT and DEFENDANT at a
particular moment in time? The answer is TRIAL. TRIAL is the link entity
which resolves the many-to-many relationship. For simplicity’s sake, we
will assume there is only one defendant at a trial, as modelled in Figure 3.5.

2 Consider the attributes
When we create a new link entity in this way, we need to consider which
attributes will make up the new entity. There will be one or two from the
original two entities, but there may be some completely new ones. The
COURT and DEFENDANT entities might have had these attributes (Keys
are underlined):

COURT DEFENDANT
Court Number Defendant Number
Court Name Defendant Name
Court Address Defendant Address
Postcode Postcode
Court Type Date of Birth
Court Clerk Current status

But when we introduce the new link entity, TRIAL, it will normally be the
case that the keys from the two original entities will need to be in the
TRIAL entity. In order to identify a TRIAL, we need to know the Court
Number and the Defendant Number.

So TRIAL might look something like this:

Modelling the data structure 47

COURT DEFENDANT

COURT DEFENDANT

TRIAL

A single instance of the COURT and DEFENDANT
relationship is a TRIAL

Figure 3.5
The COURT and
DEFENDANT
relationship.

TRIAL
Court Number *
Defendant Number *
Trial Number
Trial Date
Judge
Charge
Defence Lawyer
Prosecutor
Secretary

In this example, Trial Number would be the key. The two keys taken from
the COURT and DEFENDANT entities are called foreign keys and are usu-
ally marked with an asterisk. They could have been used as a key for TRIAL,
along with Trial Date, but Trial Number is simpler.

Foreign keys, then, are primary keys in other related entities and are
used as a means of linking the entities together.

3.2 Simple steps in entity modelling
Now that the terms are reasonably clear, let’s summarize the steps involved
in entity modelling.

1 List the possible entities.
As we’ve seen, this will be done by talking to the users. It is also necessary
to check the DFDs, as we must ensure that we hold information about the
external entities identified there, such as ARTISTE.

2 Check that the entities listed are really entities.
This can be done by applying the four rules outlined earlier.

3 Draw a basic entity model, with boxes around the entities.

4 Identify which entities are related.
Draw a line between them.

5 Give the relationship a name in each direction.
This can be quite difficult, as the analyst is attempting to summarize what
may be a complex relationship in a short phrase or word. Try to avoid vague
names if possible and specify what exactly the relationship is. Figure 3.6
gives a couple of examples.

6 Identify the relationship type.

(1:1, 1:M or M:N)

7 Resolve any one-to-one relationships.

8 Resolve any many-to-many relationships.
Add in link entities.

9 Add the attributes, including primary keys and foreign keys.

48 Systems analysis: a beginner’s guide

The systems analyst will need to communicate regularly with the user
during this process in order to check that all necessary entities have been
identified and that the relationships are accurate.

3.3 Entity modelling at Swillbuckets
Let’s go through the simple steps using the Swillbuckets case study. Just as a
reminder, Swillbuckets puts on events on a weekly basis for the entertainment
of members. These events feature artistes of various types and all manner of
barely legal activities – the annual six-legged pig race being a case in point. In
addition, Swillbuckets offers certain dishes based on local recipes and a range
of local beers and sundry items. One can hardly stress enough the importance
of Cooper’s ‘Old Firtle Ale’ to the local economy and social mix.

1 List the possible entities.
One method is to pick out the nouns in the interview transcripts. We are
looking for anything which might be important to Jack and other users at
Swillbuckets – things they might need to hold information about.

A quick run through might identify the following candidate entities:

� ARTISTE

� EVENT

� MEMBER

� DISH

� BREWERY

� DRINK

� RECIPE

Modelling the data structure 49

COURT DEFENDANT

TRIAL

hosts appears at

DOCTOR PATIENT

APPOINTMENT

makestakes

occurs at tries

is taken by is made by

Figure 3.6
Naming the
relationships.

A glance at the DFDs drawn in the previous chapter reveals that the
external entity SUPPLIER needs adding to our list – the suppliers of food-
stuffs. Similarly, MEDIA needs considering – information about the local
media.

2 Check that the entities are really entities.
The next step is to check that each of these is a real entity. All the candidate
entities are important to Swillbuckets, so they all pass test one. Similarly,
they all have attributes, so they pass test two. However, test three throws
up a problem – do they occur more than once? Since Jack gets all his beers
from the same brewery – Cooper’s – BREWERY will only occur once. It may
be that we can dispense with this one. This is particularly sensible given
that we have identified SUPPLIER as an entity. The brewery could be
recorded as a supplier. So BREWERY fails the test. They all pass the last test
– can they be uniquely identified?

3 Draw the basic entity model.
Now we can draw an entity model showing the eight entities identified so
far (Figure 3.7). Bear in mind that there may be more entities to come
when we show the user our entity model.

At the moment, all we’ve done is put boxes around the entities.

4 Identify the relationships.
We’ll start with ARTISTE. ARTISTEs attend EVENTs, so there is a relation-
ship between ARTISTE and EVENT. Similarly:

50 Systems analysis: a beginner’s guide

ARTISTE EVENT

MEMBER
DISH

DRINK

SUPPLIER

RECIPE

MEDIA

Figure 3.7
Swillbuckets entity
model – boxes.

� MEMBERs attend EVENTs

� EVENTs provide DISHes

� DISHes require RECIPEs

� SUPPLIERs supply DRINKs

� MEDIA cover EVENTs

So let’s add these relationships into our model (Figure 3.8).

There is a problem here. The DRINK and SUPPLIER relationship is isolated
from the other entities. This may be all right, but as analysts we would need
to check with Jack and ensure the accuracy of our model. So let’s do that.

Jack informs us that we’ve made a mistake. He further informs us that
he’s giving us a watch and paying us to tell the time – whatever that means.
Basically we’ve missed out the information about the supplies he gets from
the SUPPLIER, the stuff that goes into the dishes. Also, why does he need
to keep information about drinks? He already knows everything about
drinks. It transpires that really what Jack needs is information about
ORDERs – whether it’s ORDERs for drinks or from food suppliers. Even if
Tommy Chillmore turns up at the back door with a bag of wet fish, that
could still be recorded as an ORDER – the amount, the cost etc. So let’s have
another crack at the entity model (Figure 3.9).

Notice that ORDER is linked to RECIPE at the moment because RECIPEs
require ORDERs. However, the orders for drinks have nothing to do with
the RECIPEs, so there’s another problem. It looks like we need a separate

Modelling the data structure 51

ARTISTE EVENT

MEMBER DISH

DRINK SUPPLIER

RECIPE
MEDIA

Figure 3.8
Entity model with
relationships.

entity for drink orders. The key thing here is not to worry about the odd
mistake. As long as we are beginning to understand the data and how it is
related, the problems should be overcome. Let’s create an entity called
DRINK ORDERS and put that in our model (Figure 3.10).

That looks fine for now.

5 Give the relationships a name.
This needs to be done in each direction. For example, suppliers SUPPLY
food and food IS SUPPLIED BY suppliers. Let’s amend the entity model
(Figure 3.11).

6 Identify the type of relationship.
In this step, we need to look at each relationship in turn and decide
whether it is 1:1, 1:M or M:N.

� ARTISTE and EVENT: the current situation is that each ARTISTE might per-
form at many EVENTS, but each EVENT will only present one ARTISTE. So
the relationship is 1:M. However, we should bear in mind that in the future
Jack might want to have more than one ARTISTE per event. This may end
up being a requirement for the design of the new system.

� EVENT and MEMBER: each MEMBER might attend many EVENTs
and each EVENT will attract many MEMBERs. This is therefore an
M:N type of relationship. We will need to look at this relationship
again shortly.

52 Systems analysis: a beginner’s guide

ARTISTE EVENT

MEMBER DISH

ORDER SUPPLIER

RECIPE
MEDIA

Figure 3.9
Revised entity model
with relationships.

� EVENT and DISH: each EVENT will only ever offer one dish (in order to
keep Freddo Smitho just the right side of sane) and each dish will be
offered at many EVENTs. So it’s a 1:M relationship.

� DISH and RECIPE: each DISH is produced from one RECIPE and each
RECIPE prescribes one DISH. This is a 1:1 relationship. In this circum-
stance, it is usually possible to combine the entities into one. In this case we
could keep the entity DISH, but make Recipe Number an attribute of DISH.
We would need to check if this attribute is needed with Jack or Freddo.

� EVENT and MEDIA: each MEDIA branch (or MEDIUM) will cover many
EVENTs and each EVENT may be covered by many MEDIA branches.
This is an M:N relationship in its current form and will need further
consideration.

� RECIPE and FOOD ORDER: each RECIPE could require many FOOD
ORDERs and each FOOD ORDER could be required for many RECIPES.
This is clearly a many-to-many relationship and will also need looking at
again.

� SUPPLIER and FOOD ORDER: each SUPPLER might deal with many
FOOD ORDERS but each FOOD ORDER will only be placed with one
SUPPLIER. It’s a one-to-many relationship.

Modelling the data structure 53

ARTISTE EVENT

MEMBER DISH

FOOD
ORDER

SUPPLIER

RECIPE
MEDIA

DRINK
ORDER

Figure 3.10
Revised entity model.

� SUPPLIER and DRINK ORDER: same as for SUPPLIER and FOOD
ORDER.

Let’s see how this step affects our entity model (Figure 3.12).

7 Resolve any one-to-one relationships.
We do have one such relationship, between DISH and RECIPE. We will need
to discuss this with Jack and Freddo. Freddo informs us, to no one’s great
surprise, that he doesn’t bother much with recipes. He makes it up as he goes
along. So there’s very little point in storing information about recipes.

However, Jack would like to know how much meat is in stock, so that he
doesn’t order more than he needs. Only the other week, Jack had ordered 50
kg of beef in preparation for Freddo’s ‘Industrial strength chilli’. Imagine his
surprise when he discovered that there was already 35 kg in the freezer!

What Jack needs is information about the ingredients and how much there
is in stock. It seems that we have lost one entity (RECIPE), but found another
(INGREDIENT). Let’s make these changes in the entity model (Figure 3.13).

The relationship between INGREDIENT and DISH turns out to be many-
to-many. This is because each DISH contains many INGREDIENTs and
each INGREDIENT is contained in many DISHes. For example, the
INGREDIENT ‘beef flavouring’ appears in most of Freddo’s dishes,
including even ‘Omelette Carbonari’.

54 Systems analysis: a beginner’s guide

ARTISTE EVENT

MEMBER

DISH

FOOD
ORDER SUPPLIER

RECIPE

MEDIA

DRINK
ORDER

performs at
presents

attends

attracts
offers

is offered at

is produced from

prescribes

covers

is covered by

requires
is required for

is placed with
deals with

is placed with deals with

Figure 3.11
Entity model with
relationship names.

Similarly, INGREDIENT and FOOD ORDER is many-to-many, since each
INGREDIENT can appear on many FOOD ORDERS and each FOOD
ORDER can be have many INGREDIENTS on it. Clearly, we have some
work to do in the next step.

8 Resolve any many-to-many relationships.
We have a few of these, so let’s take them one at a time: firstly, the
EVENT–MEMBER relationship. In order to resolve many-to-many rela-
tionships, we need to find a link entity. It’s often useful to try to think of a
single instance of the relationship. In this case, it will be something along
the lines of a member’s attendance at an event. If, for example, Jack were
to issue a ticket for an event, the information on the ticket would be just the
sort of information we’re looking for. So we might call the link entity
EVENT TICKET. The information associated with this entity (its attributes)
might be: the title of the event, the date of the event, the member number
and the ticket number. So we have some information about the EVENT,
some information about the MEMBER and a unique identifier (ticket
number).

However, Jack does not currently do this. We must check with Jack that he is
happy collecting and storing this information. It should be noted in the
Problem/Requirement List and considered in Stage 2 (Chapter 4). We must

Modelling the data structure 55

ARTISTE EVENT

MEMBER

DISH

FOOD
ORDER SUPPLIER

RECIPE

MEDIA

DRINK
ORDER

performs at
presents

attends

attracts
offers

is offered at

is produced from

prescribes

covers

is covered by

requires
is required for

is placed with

deals with

is placed with deals with

Figure 3.12
Entity model with
type of relationship.

bear in mind that we are modelling the current system at this stage. In
resolving many-to-many relationships, we may be making assumptions
about the new system. We must be careful not to do this without verifying
these assumptions. These assumptions will have to be examined again
when we consider the Problem/Requirement List. If necessary, we can leave
a many-to-many relationship unresolved for the time being and return to it
in the Design Stage.

The next relationship is EVENT and MEDIA. We could resolve this by
introducing a link entity called, perhaps, COVERAGE, where we store
information about the MEDIA coverage of each EVENT. However, this
seems like information overload. Does Jack really store such detailed infor-
mation about each of his events? When this question was put to Jack he felt
that many events were best not covered at all: ‘The less people know about
last year’s six-legged pig race the better’. All Jack does is keep some contact
information, so he can phone them to advertise events. It is not a require-
ment to store any more information. We can, therefore, assume that
MEDIA no longer has any links with the main system being analysed.

The next relationship is a little more complex – DISH and INGREDIENT.
Let’s look carefully at the attributes that these two entities might have
(Figure 3.14).

56 Systems analysis: a beginner’s guide

ARTISTE EVENT

MEMBER

DISH

FOOD
ORDER SUPPLIER

INGREDIENT

MEDIA

DRINK
ORDER

performs at
presents

attends

attracts
offers

is offered at

contains

is contained in

covers

is covered by

appears on
is placed for

is placed with

deals with

is placed with deals with

Figure 3.13
Entity model with
one-to-one
relationships
resolved.

We have information about the dish and information about the ingre-
dient, but what we don’t have is information about which ingredient goes
in which dish and how much of it goes in. This is starting to sound a little
bit like a recipe, which we’ve already dismissed, but it’s not quite the same.
The link entity might be called DISH DETAIL and it will simply be a single
instance of the DISH–INGREDIENT relationship. So if the DISH is ‘Skew-
ered kidneys in lager’, the ingredient might be ‘kidneys’ and we might
store the quantity required for, say, 100 meals, which might be ‘50 kg’. The
next record in DISH DETAIL might be ‘Skewered kidneys in lager’ again for
the DISH, but the INGREDIENT might be ‘lager’ and the quantity might be
‘10 litres’. Figure 3.15 shows the link entity and its attributes. Again, this
will need noting in the Problem/Requirements List, but we will include the
change in our entity model for the time being.

Finally, there’s FOOD ORDER and INGREDIENT. A single instance of
this relationship might be thought of as a FOOD ORDER LINE. If you
imagine an order with a list of ingredients on the order, then one line of this
list would be our link entity. The information involved might be the Order
Number, the Ingredient Number, the Quantity and the Price.

So our latest entity model will look like Figure 3.16.
This is still early days in the modelling process. There will be more

changes to come as we start to design the new system.

9 Add the attributes and keys.
It is useful, now that the entity model is nearing completion, to consider
the attributes for each entity and which attributes might be the key for
each entity. Figure 3.17 gives a rough idea of how this might look.

There are a few things to notice here:

Modelling the data structure 57

DISH INGREDIENT

Dish name
Dish price

Ingredient number
Ingredient name
Quantity in stock
Reorder level

Figure 3.14
DISH and
INGREDIENT.

DISH INGREDIENT

Dish name
Dish price

Ingredient number
Ingredient name
Quantity in stock
Reorder level

DISH
DETAIL

Dish name
Ingredient number
Ingredient quantity

Figure 3.15
DISH and
INGREDIENT
resolved.

� Primary keys are underlined.

� Attribute names have been condensed into one word with no spaces –
spaces can cause problems in some systems. Capital letters are used to
denote a new word in the name.

� An asterisk denotes a foreign key – an attribute which acts as a link to
another entity by appearing in both. It’s a primary key in one entity but
not in the other.

� Address attributes are shown as just one attribute, but in reality they are
usually made up of a number of attributes e.g. Street, Town, County,
Postcode.

We now have an overview of how the data in the current system at
Swillbuckets could usefully be structured. In the process we have learnt a
lot about the system and how it might be improved. Before we set about
making some improvements, there is one final technique which brings
together what we have done in chapters 2 and 3 – physical data store/entity
cross-reference.

58 Systems analysis: a beginner’s guide

ARTISTE

MEMBER
DISH

FOOD
ORDER

SUPPLIER

INGREDIENT

MEDIADRINK
ORDER

EVENT

EVENT
TICKET

DISH
DETAILS

FOOD
ORDER
LINE

Figure 3.16
Current entity model.

3.4 Physical data store/entity cross-reference
This is an important technique which serves to check that all the data
stored in current data stores appears somewhere on our entity model. If it
doesn’t, we’ve missed something. Either we have a data store we don’t use,
or our entity model is not complete. Here are the simple steps in creating
the cross-reference:

1 List all the data stores.
This is done by checking the current physical data flow diagrams. For
Swillbuckets, the list will look like this:

Modelling the data structure 59

ARTISTE

ArtisteName
RealName
ArtisteAddress
Tel_home
A_Mobile
Fee

MEMBER

MemberNo
MemberName
MemberAddress
PhoneNo
M_Mobile
M_Date

DISH

DishName
Price

FOOD
ORDER

F_OrderNo
OrderDate
*SupplierNo
DeliveryDate
F_OrderPayment

SUPPLIER

SupplierNo
SupplierName
S_Address
S_Tel
S_Contact Name

INGREDIENT

IngredientNo
IngredientName
QuantityInStock
ReorderLevel

MEDIA

MediaName
M_Address
Type
M_ContactName
M_Tel

DRINK
ORDER

D_OrderNo
OrderDate
*SupplierNo
Delivery Date
D_OrderPayment

EVENT

EventNo
EventName
Date
*ArtisteName
*DishName
ArtistePayment

EVENT
TICKET

TicketNo
*MemberNo
*EventNo

DISH
DETAILS

*DishName
*IngredientNo
IngredientQuantity

FOOD
ORDER
LINE

*F_OrderNo
*IngredientNo
Quantity
Price

Figure 3.17
Entity model with
attributes.

M1 Membership shoebox
M2 Artiste shoebox
M3 Supplier shoebox
M4 Events folder
M5 Recipe book

2 Cross reference each data store with corresponding entities from the
entity model.

This means checking that each data store on the DFDs has a corresponding
entity or entities. A data store can have more than one entity. The cross-ref-
erence for Swillbuckets appears in Figure 3.18.

3 Check that each data store has at least one entity.
We can see that this is the case for Swillbuckets.

60 Systems analysis: a beginner’s guide

M1 Membership shoebox

M2 Artiste shoebox

M3 Supplier shoebox

M4 Events folder

M5 Recipe book

MEMBER

ARTISTE

FOOD
ORDER LINE

FOOD
ORDER

SUPPLIER DRINK
ORDER

EVENT DISH

DISHDISH
DETAILS

INGREDIENT

Figure 3.18
Data store/entity
cross-reference.

4 Check that each entity is stored in a data store.
We note that the entities EVENT TICKET and MEDIA do not have data
stores. The fact that EVENT TICKET does not have a data store is expected.
This is because Jack does not currently store this information and it
appears on the entity model to resolve a many-to-many relationship. At
some point, we will have to decide, in consultation with Jack, whether to
keep it or not.

The fact that the MEDIA entity does not have a data store is the result of
an omission on the DFDs. In order to alert the media about his forthcoming
events, Jack would have to look up information such as addresses and
phone numbers. This information might be stored in an address book or a
folder. Either way, it’s a data store and should have appeared on the DFDs.
We should now add it in, both to the cross-reference and the DFDs. We will
call it M6 – Media Details. Our final cross-reference will look like the one in
Figure 3.19.

We have now completed our investigation into the current physical system
at Swillbuckets. In this chapter we have developed an entity model, so that
we know the structure of the data currently in use, and a cross-reference to
check that we have done the job properly.

The entity model and cross-reference for the Medical Centre are included
in Figures 3.20 and 3.21. Note that M14 ‘Pay cabinet’ has no corresponding
entity. This indicates that it does not store any meaningful data and can
probably be dispensed with. It will be investigated as part of the next Stage.

In the next chapter we will look at the techniques involved in converting
to a logical system and summarizing the requirements for the new system.

Summary
In this chapter, we have looked at the techniques involved in modelling the
data. Entity modelling has been the focus and we have considered the ele-
ments involved in the structure of data. In the next chapter, we attempt to
take a logical view of the data and the data flows.

Modelling the data structure 61

62 Systems analysis: a beginner’s guide

M1 Membership shoebox

M2 Artiste shoebox

M3 Supplier shoebox

M4 Events folder

M5 Recipe book

M6 Media details

MEMBER

ARTISTE

FOOD
ORDER LINE

FOOD
ORDER

SUPPLIER DRINK
ORDER

EVENT DISH

DISH

MEDIA

DISH
DETAILS

INGREDIENT

Figure 3.19
Final data store/entity
cross-reference.

Modelling the data structure 63

PATIENT

PatientNo
P_First Name
P_Surname
P_ Address
P_DOB
P_Tel_home
P_Mobile
P_DoctorName

APPOINTMENT

AppointmentNo
*PatientNo
*Doctor/NurseName
A_Date
A_Time
A_Outcome

PRESCRIPTION

PrescriptionNo
*PatientNo
*DoctorName
P_Date

SUPPLIER

SupplierNo
SupplierName
S_Address
S_Tel
S_ContactName

DOCTOR

DoctorName
D_Address
D_Tel_Home
D_Mobile
Pager
StartDate

ORDER

OrderNo
*SupplierNo
*NurseName
O_Date
O_Total

PRESCRIPTION
LINE

*PrescriptionNo
DrugCode
Dosage
Condition

TREATMENT

RecordNo
*PatientNo
Date
Condition
PrescriptionNo
Outcome

REFERRAL

ReferralNo
*PatientNo
*DoctorName
R_Date
Destination
R_Outcome

NURSE

NurseName
N_Address
N_Tel_Home
N_Mobile
StartDate

WORK
ROTA

*DoctorName
Date
StartTime
EndTime
HoursWorked

DRUG

DrugCode
Supplier
Usage
SideEffects
Restrictions

ORDER LINE

*OrderNo
ProductCode
Quantity
Cost

EXPENSES

ExpenseNo
*DoctorName
ExpenseType
E_Amount
E_date

REPEAT
PRESCRIPTION

RepeatPrescripNo
*PrescriptionNo
Frequency
NextDate

Figure 3.20

64 Systems analysis: a beginner’s guide

PATIENT

PATIENT

PATIENT

PATIENT

PATIENT

PRESCRIPTION

WORK ROTA

WORK ROTA

ORDER ORDER
LINE

SUPPLIER

EXPENSES

PATIENT APPOINTMENT DOCTOR

PATIENT

No entity

M5 Patient records

M4 Doctor’s list

M1 Student list

M2 Catchment area

M3 Registration forms

M6 Medical records

M7 Appointment book

M8 Prescriptions

M9 Timesheets

M10 Work rota

M11 Expenses forms

M12 Budget

M13 Suppliers file

M14 Pay cabinet

Figure 3.21

Exercises
3.1 Draw an entity model to model the following car rental business
scenario:

� Cars are always rented from one location and are brought back to the
same location.

� Customers may pay by cash or credit card.

� Customers who call the agency may request a particular car make, model
etc. if available.

� A bill is presented to the customer prior to releasing the rental car.

� A further bill may be presented to the customer once the rented car has
been returned to cover any damage or excessive mileage.

3.2 Draw an entity model to model this university scenario:

� A university department employs lecturers and clerical staff.

� It offers a three-year degree.

� A student has to take 12 modules during the course.

� Each lecturer teaches one or more courses.

� Courses may be taught by more than one lecturer.

� During the year, each postgraduate student has to complete two or three
coursework assignments for each module.

Modelling the data structure 65

C H A P T E R 4
The logical view

4.1 Logicalization
So far, we have been concerned with how the current system works. Before
we can design a new and better system, we need to be clear exactly what
the current system does, not how it does it. In other words, we need to strip
off all the physical trappings introduced by Jack Trout at Swillbuckets and
the receptionists at the Medical Centre and focus on what the systems
actually do. This process is called logicalization, and the outcome will be a
logical model of the current system. We try to envisage how things would
work if no physical constraints existed. Once it is done, we can move on to
Stage 2 of SSADM, where we start to consider how we can improve things.

Logicalization focuses on the data flow diagrams, specifically the lowest
level DFDs. The diagrams produced so far use terms and processes created
by the users (Jack and the receptionists). These may not be entirely logical.
They may be plain daft. Ways of doing things will have developed over the
years which might seem fine to the user, but they should at least be exam-
ined to see if they are sensible. At the Medical Centre, for example, patient
records are made up of handwritten cards stuffed into a cardboard folder.
These are then stored in huge filing cabinets, each the size of a small
garage. These records will still have to be stored in our new system, but
probably not in this way.

The process can be divided up into four steps:

1 Logicalize the data stores: as well as the DFDs, logicalization uses
the data store/entity cross-reference produced at the end of the last
chapter. This cross-reference was physical, so we need to produce a log-
ical version. In this version, each data store will be an entity, or a group
of related entities. So we might well end up with a data store called ‘Pa-
tient’ which will contain all the data about patients. So physical stores
like ‘Student lists’, ‘Medical Records’ and ‘Patient Records’ will all fall
into the logical ‘Patient’ data store.

66

As we logicalize the data stores, their labels will change from M1, M2, ...
to D1, D2, ... – this indicates that the label no longer signifies a manual data
store, just a data store. The exact nature of the data store is not important
in a logical DFD.

2 Remove physical time dependencies: this involves removing any pro-
cesses which exist purely as a result of physical time constraints or from
convenience. For example, we have a process at the Medical Centre: 4.3.3
– Post pay claim. This process is purely a physical restraint and involves
the receptionists waiting until all the timesheets are completed before
physically posting the pay claim. In the world of the computer we prob-
ably won’t be posting much at all. So logically we can remove this process.

3 Logicalize the processes: processes in the physical DFDs tell us how
physically a process is done and who does the process, but in the logical
DFDs this isn’t necessary. Logically, processes can be done anyhow by
anyone. Logical processes will input data, read it, change it, store it or
delete it. Anything to do with physical tasks like Receptionist: ‘Receive
and distribute payslip’ can be removed.

4 Logicalize the data flows: any reference to forms, reports, sheets etc.
must be removed and replaced with the actual data which flows
around the system. The actual data is modelled in the entity model.
Thus the data flows will be labelled with the entity used by the process.
For example, a patient’s medical card will become simply ‘patient’ or
‘patient details’ in our logical model. This is imprecise because the
medical card will only contain some of the data stored in the PATIENT
entity, but to specify which attributes the medical card actually con-
tains would make the diagram too cluttered.

4.2 Simple steps in logicalization
In this section, the focus will revert to the Medical Centre, though all the
documentation for Swillbuckets will be included at the end.

1 Consider the data stores.
We could simply take the entity model (see Figure 3.20) and make each
entity a data store. That would be the easiest thing to do and may well be
the best thing to do. In the case of the Medical Centre, that would give us
15 logical data stores, which seems reasonable enough. However, it might
be worth considering whether to combine some data stores. For example,
we might combine all the prescription information into one data store. On
the entity model we have ‘Prescription’, ‘Prescription Line’ and ‘Repeat
Prescription’ all containing information about prescriptions. We could
lump these three together and call them ‘Prescription’. We will still need
them as separate entities, but joining them together will make the DFDs
simpler. This is just a convenient way of representing the data stores; we
are not actually merging the entities.

The logical view 67

Similarly, ‘Doctor’ and ‘Nurse’ are closely related and could be lumped
together to form one data store. We would be in big trouble with Nurse
Payne if we called this store ‘Doctor’, so we had better call it ‘Doctor/Nurse’.
We could also put ‘Work Rota’ and ‘Expenses’ in here, as they too refer to
the doctors and the nurse.

‘Order’ and ‘Order Line’ could sensibly be referred to as the ‘Order’ data
store and finally it might be easier to put ‘Referral’ and ‘Treatment’ in with
‘Patient’ as they all relate to the patient. We might call this store ‘Patient’.

2 Produce the logical data store/entity cross-reference.
This is simply a matter of listing the entities and corresponding data stores.
Each entity must appear in only one data store. The data stores are labelled
‘D1’, ‘D2’ etc. on the logical DFDs.

3 Remove time dependencies.
There are a few of these in our physical DFDs – 4.3.3 ‘Post pay claim’ has
already been mentioned, and 4.3.4 ‘Receive and distribute payslips’ is not a
process we would want to keep if we could erase it. This is not because we
don’t want to pay the doctors (though the GPC has considered this
approach). It is rather that it serves no logical purpose: it just wastes time
by passing on data which could go directly to the doctors. So we can remove
some processes in this way.

4 Remove names and departments from the process boxes.
Since it does not matter, logically, who does what, we can take out these
labels from the process boxes.

5 Change processes so that they describe what is done to the data.
Where a process refers to any particular ways of doing things instead of
what is actually done, we need to change the process to make it logical. An
example of this and the previous step is shown in Figure 4.2.

In this example, what we are actually doing is creating a new patient.
Whether this is done by adding data to doctors’ lists or patient records, or
both, should not matter. We are focusing on what happens, not how it is done.

6 Remove any physical references from the process box.
Any process names which refer to physical objects or describe physical
actions must be changed. If possible, make the objects entities and make
the actions one of: create, update, edit, delete or something similar.

For example, process 4.2 ‘Collate staff timesheets’ might become some-
thing like ‘Update work rota’, since the timesheet information (hours
worked per day) is contained in the Work Rota entity in our entity model.

7 Make sure that the data flows refer to logical items of data
These will normally be entities as items of data are contained within enti-
ties and not things like forms, reports, handwritten notes, or chewed up
pieces of card.

8 Data flows between processes should be removed.
Instead, the data should be directed into and out of a data store.

68 Systems analysis: a beginner’s guide

The logical view 69

DRUG

ORDER ORDER
LINE

SUPPLIER

APPOINTMENT

PATIENT

TREATMENT REFERRAL

PRESCRIPTION

PRESCRIPTION
LINE

REPEAT
PRESCRIPTION

DOCTOR NURSE

EXPENSES WORK ROTA

D1

D2

D3

D4

D5

D6

D7

Patient

Appointment

Prescription

Drug

Doctor/Nurse

Order

Supplier

Figure 4.1
Logical data store/
entity cross-reference.

1.3 Reception

Add patient to
Doctors’ list and
Patient records

Physical Logical

1.3

Create new patient

Figure 4.2
Converting a physical
process to a logical
one.

If we put all these simple steps into practice, we will produce a set of cur-
rent logical DFDs. These are shown in Figures 4.3–4.7. These might use-
fully be compared to the current physical DFDs at the end of Chapter 2
(Figures 2.16–2.20).

In Figure 4.3, note that processes 1.1 ‘File student list’ and 1.2 ‘Process
registration form’ have been merged to produce the logical process ‘Reg-
ister patient’. This could have been called ‘Create patient’, but the use of
the word ‘register’ is more descriptive of what actually happens.

All of the data stores used by these processes have been logically grouped
into one data store, ‘Patient’, and, similarly, the data flows are all con-
cerned with ‘patient’. Even a data flow such as ‘doctor’s name’, which
might appear to be about the doctor, is logically about the patient. The
name of the doctor would appear in the ‘Patient’ entity rather than the
‘Doctor’, as can be seen from the entity model.

The logical DFDs normally seem much simpler than the physical ones.
This is because many of the constraints and unnecessary activities have
been taken away, leaving the bare bones of what happens.

Figure 4.4 shows the ‘Process appointments’ DFD in logical form. The
physical processes ‘Take appointment request’ and ‘Create new appoint-
ment’ have been deemed to be part of the same logical process which we
call ‘Create new appointment’.

‘Process Patient Requirements’ has been converted into logical format in
Figure 4.5.

The only significant change here is that a new data flow has been added.
This is ‘prescription’, which goes to the Prescription Monitoring Authority.
Previously, this was done in a separate process – 4.4 ‘Compile PMA report’.

70 Systems analysis: a beginner’s guide

1.1

Register patient

1.2

Allocate patient to
doctor

PATIENT

patie
nt

UNIVERSITY
patient

1.3

Inform GPC

GPC

patient

D1 Patient

patient

pati
en

t

m
edicalcard

patient

pati
en

t

patient

pa
tie

nt

patient

Figure 4.3
Current logical DFD –
‘Register patient’.

However, logically the prescription information should go directly to the
PMA as part of 3.3 ‘Prescribe treatment’. How this might happen is not a
consideration as yet, and it may be that we still end up compiling a separate
report.

Things get a little more complex in process 4 – ‘Process Management
Information’. The timesheet is not a logical entity: it is a physical entity, a
form. Or rather a scrappy bit of paper that Nurse Payne thrusts under the
noses of the receptionists at regular intervals in an effort to get them to fill
in their actual working hours. It is not part of our entity model. Essentially,
the information contained in it appears in the ‘Work Rota’ entity. As a
result, the rota appears on our logical DFDs and not the timesheet.

It should also be remembered that the ‘Work Rota’ entity has been placed
in D5 ‘Doctor/Nurse’ for the sake of convenience.

Process 4.3 ‘Process staff income/expenses’ was the only process to be
taken down to a level 3 DFD as part of the current physical DFDs. This was
done because it was too complex to be completely clear as a level 2 process.
The level 3 DFD was given in Figure 2.20 (p. 32).

Many of the processes in this DFD have been discussed above. We have
already decided that 4.3.3 ‘Post pay claim’ and 4.3.4 ‘Receive pay slips’ can
be removed because they refer to physical, not logical, activities. Similarly,
4.3.1 ‘Check timesheets’ adds nothing and can be seen as part of 4.3.2
‘Compile pay claim’. As a result, we are left with only two logical processes.
It is therefore no longer necessary to have a lower level DFD and we can
incorporate these processes in their level 1 process – 4.3 ‘Update staff
income/expenses’; see Figure 4.6.

Processes 4.4 and 4.5 on the physical DFD involve compiling reports. We
have already seen how the PMA report can be removed by adding a data
flow to the PMA in Figure 4.5. Similarly, we can remove the process of

The logical view 71

2.2

Amend
appointment

PATIENT

patient

2.3

Cancel
appointment

D2 Appointment

appointment

appointm
ent

appointm
ent

appointment

ap
po

in
tm

en
t

appointm
ent

2.1

Create new
appointment

appointment

appointment

appointment

ap
po

in
tm

en
t

Figure 4.4
Current logical DFD –
‘Process
appointments’.

gathering data for the accountant in 4.4 by adding data flows to the
accountant in the logical DFDs.

A final point is that there is no logical reason why pay information
should be part of our system at all. The GPC pays the doctors, so logically
the data flow is between these two entities. How this might happen in prac-
tice remains to be considered, like many things.

The final logical DFD concerns physical process 5 – ‘Maintain supplies’
(Figure 4.7).

As mentioned above, we should show financial data such as orders,
invoices and payments going directly to the accountant, not going into phys-
ical processes like compiling reports. Otherwise this DFD is straightforward.

The logical DFDs are now complete. We have seen how several of the
problems, many of which are related to the ‘Betty and George’ way of doing
things, have now disappeared. However, some problems still remain and it
is time to consider the Requirements Catalogue in detail to consider how
we might resolve the outstanding problems.

72 Systems analysis: a beginner’s guide

3.2

Diagnose illness
or refer

3.3

Prescribe
treatment

D2 Appointment

appointment

patient

3.1

Receive patient
for appointment

appointment

appointment

patient

D1 Patient

patientpatient

referral

HOSPITAL

referral

patientreferral

D4 Drug

drug

PATIENT

PATIENT

prescription

D3 Prescription

prescription

3.4

Create repeat
prescription

patient

D1 Patient

patient

repeat prescription

repeat prescription

PMA prescription

Figure 4.5
Current logical DFD –
‘Process Patient
Requirements’.

4.3 Logicalization at Swillbuckets
The data store/entity cross-reference and the current logical DFDs for
Swillbuckets are provided in Figures 4.8–4.13.

The cross-reference in Figure 4.8 does highlight the issue of whether
FOOD ORDER and DRINK ORDER should be separate entities, or whether
it would be more sensible to combine them into an ORDER entity. We will
consider this in our Problem and Requirements Catalogue.

The DFD of Figure 4.9 is very straightforward, but that in Figure 4.10 –
‘Book artistes’ – raises an issue.

The very title of the process indicates that there should be a BOOKING
entity in our system. The presence of the ‘booking form’ data flow rein-
forces this view. However, currently Jack does not need this as he stores this
booking information within the EVENT entity. This is fine as long as there
is only one artiste appearing at the event. But if we start booking more than
one artiste per event, we will soon hit problems. So it may well be that a
requirement for our new system would be the facility to book more than
one artiste per event. Jack’s initial reaction to this idea is lukewarm:

We once had Jade Green and her Dancing Chihuahuas on with Leapy
Len’s Flea Circus. A disaster. Half the members wear insect repellent to
this day. I vowed then that it would be one act per night. They’re bad
enough on their own, but two together is asking for trouble.

The logical view 73

4.2

Update work
rota

4.3

Update staff
income/expenses

D5 Doctor/Nurse

previous rota

4.1

Create work
rota

rota

rota
rota

GPC

ro
ta

rota

ACCOUNTANT

ex
pe

ns
es

ex
pe

ns
es

expenses

constraint

Figure 4.6
Current logical DFD –
‘Update staff income/
expenses’.

Nevertheless, we could build in the facility quite easily in case Jack
changes his mind.

The next process at Swillbuckets, ‘Order Drinks and Supplies’ (Figure
4.11), also throws up an issue.

Whilst we have a DISH entity to record information about the food side
of the Club, there is no method for recording drinks information. In terms
of stock, Jack tends to adopt the ‘scraping the barrel’ approach. He does not
order more beer until even the frantic pumping of the bar staff fails to per-
suade any more liquid to issue from the beer taps. This has been known to
cause a degree of concern among members eager for another pint (or
eight). Indeed, it was Nick Coal’s verbal invective which persuaded Jack of
the need for change.

So the new system must record drink stock levels very carefully in order
that Jack does not have to have Nick’s pint glass surgically removed.

The next process – ‘Process payments’ is simple enough to convert to log-
ical form (Figure 4.12).

However, its simplicity indicates that we may be able to dispense with it.
For example, we could move 4.1 ‘Pay supplier’ into the ‘Order drinks and
supplies’ DFD, making it process 3.4. Similarly, 4.2 ‘Pay artiste’ could go

74 Systems analysis: a beginner’s guide

5.2

Create new
order

5.3

Update order on
delivery

D7 Supplier

5.1

Update
supplier

supplier

supplier

order

SUPPLIER

ACCOUNTANT

SUPPLIER

D6 Order

supplier

order

ACCOUNTANT

order

invoice

invoice

invoice

5.4

Pay invoice

payment

payment

pa
ym

en
t

Figure 4.7
Current logical DFD –
‘Maintain supplies’.

into the ‘Book artistes’ DFD, making it process 2.4. This would allow us to
remove the top-level process ‘Process payments’ from our top-level current
logical DFD. This change will be made in the required logical DFDs.

The ‘Manage events’ process is shown in logical form (Figure 4.13) to
complete the current logical DFDs for Swillbuckets.

4.4 Problem and requirements catalogue
This catalogue is a constantly changing document. It is created when the
analyst first interviews users and is added to at various points during the
systems analysis. After the completion of the logical DFDs, it is a sensible
time to consider the current position.

Problems can be defined as:

� things the system is not doing correctly

The logical view 75

ARTISTE

EVENT
TICKET

EVENT

MEDIA

MEMBER

FOOD
ORDER LINE

FOOD
ORDER

DISH
DETAIL

DISH INGREDIENT

SUPPLIER

DRINK
ORDER

D1

D2

D3

D4

D5

D6

D7

D8

Artiste

Event

Dish

Media

Member

Food Order

Supplier

Drink Order

Figure 4.8
Data store/entity
cross-reference
(Swillbuckets).

� things the system is doing inefficiently/ineffectively

� things the system should do but is failing to do

Requirements are requested features of the new system.

4.4.1 The Medical Centre

As we saw in Section 2.3.1, a useful template for recording problems and
requirements might be something like the one in Figure 2.2.

It is now time to develop a set of problems and requirements, agree them
with the user and start to consider priorities. We will, of course, need to
come back to the Catalogue at a later stage.

We have already seen the one in Figure 4.14.

76 Systems analysis: a beginner’s guide

1.1

Enrol new
member

MEMBER

member

1.3

Remind
overdue
member

1.4 Secretary

Close
membership

D5 Member

1.2

Update
subscriptions

member

member

m
em

ber subscription

member

m
em

ber

mem
bermem

ber

MEMBER

D5 Member

member
subscription

member

mem
ber

member

Figure 4.9
Current logical DFD –
‘Process
membership’.

TE
AM
 F
LY The logical view 77

2.1

Book artiste
ARTISTE

artiste

2.3

Cancel
booking

D1 Artiste

2.2

Confirm
booking

artiste

event

ev
en

t

event

D2 Event

event

cancellation

ca
nc

el
la

tio
n

Figure 4.10
Current logical DFD –
‘Book artistes’.

3.1

Record food and
drink stocks

KITCHEN

3.2

Place order
with supplier

3.3

Record
delivery

D2 Event

order

SUPPLIER

order

D7 Supplier

BAR
dish

suppliersupplier

D6 Order

order

dish

drink

D3 Dish

event

order

order

Figure 4.11
Current logical DFD –
‘Order drinks and
supplies’.

78 Systems analysis: a beginner’s guide

4.1

Pay Supplier

SUPPLIER

D7 Supplier

supplier

order

4.2

Pay Artiste

D1 Artiste

artiste

event

eventARTISTE

D6 Order

order

D2 Event

event

Figure 4.12
Current logical DFD –
‘Process payments’.

MEMBER

D2 Event

event

5.2

Record dish for
event

D3 Dish

dish

MEDIA

5.1

Create events
report

ev
en

t

dish

5.3

Record artiste
requirementsARTISTE

D1 Artiste

artiste
requirements

ev
en

t

event

dishKITCHEN
dish

artisteartiste

Figure 4.13
Current logical DFD –
‘Manage events’.

The logical view 79

Here is a summary of all the problems and requirements in bullet form:

� Double booking occurring due to the Appointments Book being hard to
maintain and Betty being past her best (Figure 4.14) (Ref: P1).

– Suggested solution: Figure 4.14.

� Repeat appointments being missed because staff have no time, or indeed
inclination, to remind patients of their appointments (Ref: P2).

– Suggested solution: an automatic mailing system so that when a
repeat prescription is made, a letter is printed off at the appropriate
time.

� Patient records being difficult to locate, especially when the cat has had
them (Ref: P3).

– Suggested solution: records securely stored in a database system.

� Patient details being incorrectly entered – there is no blood group P, for
example (Ref: P4).

System: Medical Centre

Author: Kevin Bowman

Date: 30/10/03 Page 1 of 1 Draft/final

P/R P No: 1 Source: Betty Priority: 1

Description:
Double booking is occurring as a result of the Appointments Book
being hard to maintain accurately.

Benefits if action taken:
No more arguments with Amanda Stote. Patients seen on time.
Fewer complaints.

Comments/suggested solutions:
Computerised Appointments Data Entry Form to include Patients
combo box and pre-formatted appointment slots.

Related probs/reqts/documents:
Requirement 1
DFD Appointments

Problems/requirements
catalogue

Figure 4.14
Requirements
Catalogue P1.

– Suggested solution: validation and verification checks set up to help
data entry.

� Prescriptions are normally illegible – Chris Longbottom was recently
almost given boot polish instead of boil poultice, which might have had
irreversible consequences (Ref: P5).

– Suggested solution: a prescription printing facility for each doctor –
these can be signed and a record stored for the PMA.

� Nurse Payne being worn down with all the financial information
required by the accountant – even syringing wax from ears is stimulating
in comparison (Ref: P6).

– Suggested solution: financial data might be entered into a database or
spreadsheet system. This file could be sent to the accountant regularly.
Alternatively, a web-based system could be set up whereby the accoun-
tant has access to the database online.

� It would be sensible and unbelievably lucrative to negotiate a deal with
pharmaceutical companies keen for the doctors to prescribe their drugs.
The Centre would need to process prescription information so that the
Nurse could check that the Centre is receiving the correct amount of
money.

– Suggested solution: prescription information is stored and payment
calculated on the basis of agreements with pharmaceutical companies.

Key requirements are:

� An effective appointments system (Ref: R1)

� A fast and effective way of storing and retrieving patient records (Ref:
R2)

� A quicker way of producing legible prescriptions (Ref: R3)

� A report showing the work schedules of each member of staff (Ref: R4)

� A report to the GPC, detailing the patient processing for each month
(Ref: R5)

� A report to the PMA, detailing the drugs prescribed for that month (Ref: R6)

� A system for Nurse Payne to keep track of orders and store financial
information (Ref: R7)

Slightly less pressing are:
� Fast information concerning the catchment area for the Centre (Ref: R8)

� Up to date information about the latest medical techniques – Dr McLean
still uses leeches (Ref: R9)

� Information about referrals to hospitals – diagnosis, treatment etc. –
which is then added to patient records (Ref: R10)

80 Systems analysis: a beginner’s guide

Stop press: the Prescriptions Monitoring Agency have just been on the
phone to George. Apparently they want a full report each month from now
on, as some questionable prescribing practices have been noted. It will no
longer be sufficient just to send the raw data to them. The exact details of
the required report were lost in translation as George seemed to lose the
power of speech when recounting the conversation. However, they will
send a full description in the post.

4.4.2 The problem and requirements catalogue for
Swillbuckets

Artiste booking information is currently stuffed into the Events folder. This
would confuse our new computer system. It has already confused Jack.
Last week, a few elderly stalwarts were quietly waiting for the Gypsy Ky-
Lee Clairvoyant’s show to commence, when Rocky Rocket and the
Rockettes burst onto the stage like a howitzer. Mr Popplewell couldn’t keep
down solids for days afterwards.

� It would be better all round if there was a way of storing booking infor-
mation more effectively (Ref: P1).

– Suggested solution: a new BOOKING entity.

� Supplier and order information is all stored in the Supplier shoebox (if
it’s ever stored at all). One more order and the whole box could explode
(Ref: P2).

– Suggested solution: Supplies and Order information stored separately
but linked together.

� Members’ subscriptions become due at different times of the year and
Jack can’t keep track. Even the robust interventions of Amanda Stote
don’t always persuade members to renew their subscriptions on time. If
Amanda had up-to-date and accurate information, however, at least she
would be sure to pin the correct person up against the pool table (Ref: P3).

– Suggested solution: a regular report which lists overdue members and
a mail merge facility to print reminders before the subscription
becomes overdue.

� Jack needs up to date drink stock information so that he can order more
barrels in good time (Ref: P4).

– Suggested solution: a new DRINK entity with stock information
within it. It is worth considering combining the FOOD ORDER and
DRINK ORDER entities into one entity called ORDER. However, since
Jack only ever orders drinks from one SUPPLIER, DRINK ORDER has a
different relationship with SUPPLIER than FOOD ORDER. In the
future, though, Jack may order from a number of suppliers, so we need
to allow for this in our design. For the time being we will keep them
separate, as this is more flexible.

The logical view 81

� Jack recently had a phone call from Lard, of ‘Little and Lard’ claiming
that they had not been paid for their last ‘performance’. Jack informed
Lard that they had drunk their fee after, and indeed during, their act.
Lard claimed that he had no memory of this fiscal arrangement. Jack
said this wasn’t surprising. Threats were made and the upshot is that
Jack has reluctantly decided to put a cheque in the post. If Jack had
proper payment records, this unsavoury incident might have been
avoided. Jack might not have been left with the damaging mental image
of 150 kg of Lard bearing down on him (Ref: P5).

– Suggested solution: add payment information into the new BOOKING
entity.

� The ‘Forthcoming Events List’ is time-consuming to produce, especially
as Jack has to start from a blank page every time (Ref: P6).

– Suggested solution: a word processor or DTP template which could be
linked to a database to produce the list automatically. Alternatively,
the information could be dynamically displayed on a web site. How-
ever, since most of the Swillbuckets members think the World Wide
Web is another name for the Inland Revenue, this is probably a non-
starter. However, an email link for the media might be appropriate.

Key requirements are:

� A new booking system

� A new supplies and ordering system

� An overdue members report

� Accurate drink stock information

� A record of payments made to artistes and suppliers

� A better way of producing and disseminating the events list

Slightly less pressing are:

� Better supplier information

� Some feedback on members’ likes and dislikes – a record of which mem-
bers attend which events might be a start

� The flexibility to book more than one artiste per event – on the under-
standing that animal life will only feature in one act

Summary
In this chapter, we have looked at data flow modelling techniques to model
what the current system does. We have also started to consider what
requirements the user has for the new system. We have now completed our
investigation of the current system and can now begin to consider the new
system and what options are available to us.

82 Systems analysis: a beginner’s guide

Exercises
4.1 Logicalize the following, if necessary:

� Type and copy invoice

� Collate customer details

� SR1 form – blue

� File details from new customer

� View patient’s name and address

� Photocopy application form

� Delivery note

4.2 Logicalize the mail order book company DFD shown in Figure 4.15
(overleaf).

The logical view 83

84 Systems analysis: a beginner’s guide

2 Sales

File valid orders

M3 Pending orders

1 Sales

Verify order

M2 Customer file

M1 Book list

credit status

Publisher

orders

consignment note

5 Despatch

Assemble
customer order

details

3 Purchasing

Assemble
publisher order

orders batc
hed

order

4 Reception

Check shipment
is correct

order form

Customer order
book details

M4 Publisher catalogue

publisher address

M5 Publisher Orders

order details

M2 Customer file

M3 Pending orders

pending orders

Customer

shipping note

Figure 4.15
Book company DFD.

C H A P T E R 5
Business system

options

5.1 Business system options
Creating the Business System Options (BSOs) and then selecting one of
them constitutes the second Stage of SSADM. It is here that we begin to
move away from analysis and into design. Nevertheless, we may well con-
tinue to identify problems and requirements as we progress, so, in a sense,
analysis never finishes. What we do not want to do is find lots of problems
as we near the end of the system life cycle, as these may prove impossible,
or very expensive, to resolve.

We should also try not to simply provide a more efficient version of the
old system. We should consider quite revolutionary changes. It may be that
turning Swillbuckets into a bingo hall is the best thing for everyone. It will
be the user that makes the final decision about which direction to take.

Normally, the business system options consist of five or six preferred
options for the new system. They will all be based on the Problem and
Requirements Catalogue primarily, but will take different approaches to
meeting the needs of the organization. A group consisting of, for example,
users and analysts will meet to define the options. Each option will need to
be described and modelled. The modelling takes the form of a Required
Logical DFD for each option. These options are normally presented to man-
agement, or a senior user, to whittle them down and make a choice. The
final choice may well not be one of the original options, but a mixture of
two or three of them.

5.2 Simple steps in creating business system
options

1 Assemble the inputs to the process.

85

The inputs are the logical DFDs, the entity model and the Problem and
Requirements Catalogue.

2 Assemble the team who will create the BSOs.
This will normally be the analyst and one or more users.

3 Consider the aims of the organization and business plans.
Any decisions taken about the information systems in an organization
must be in keeping with the aims and strategies of that organization. If a
business plan exists, it will provide guidelines for the budget for the new
system. This kind of information is vital, as budget and time-scale will be
key parameters in the production and consideration of the BSOs.

4 The BSO production team produce a range of ideas.
To begin with, the team should aim to be as creative as possible within the
constraints imposed by the organization.

5 Five or six BSOs are agreed for further discussion or presentation.
The production team decide upon five or six options which will be dis-
cussed with management or senior users. These may range from a cheap
option to an expensive option. One option might resolve all the problems in
the Problem and Requirements Catalogue, whereas another might only
deal with the top-priority problems. The BSOs may consider alternatives,
such as centralizing an organization’s information systems or making
them more locally autonomous. There may be various networking and
communications options to consider.

6 Two or three options are selected for detailed analysis.
The analyst must investigate the implications of the chosen options very
carefully. Required Logical DFDs should be drawn up for each option. A
cost–benefit analysis will be required which must consider the impact of
the proposed changes on the organization. There may be a need to produce
an entity model for each option.

7 A choice is made and documented.
Management makes a choice and the chosen option is described. It may be
a mixture of two or three of the options. This specification of the required
system now forms the basis of further development.

8 Elementary process descriptions are produced.
These are brief narrative descriptions of the processes in the required log-
ical DFDs. If there are any lower level DFDs, then these must be described
rather than their higher level equivalent. These descriptions will form the
basis of the programs required to make the system work.

5.3 BSOs at the Medical Centre
Each of our BSOs must address all the key problems and requirements, but
may address all, some or none of the less pressing concerns.

86 Systems analysis: a beginner’s guide

The BSO production team might consist of a receptionist, a doctor, the
Nurse, a GPC representative and the analyst. After discussions, the fol-
lowing options might be arrived at:

Option 1 A fully networked database system with an online sup-
plies ordering system, email facilities and a printer in
every surgery.

Option 2 A networked database system with a terminal and
printer in every surgery and in reception, with Internet
access and email.

Option 3 A simple network with a printer in reception only.
Option 4 A stand alone system.
Option 5 Keep the manual system, but get reliable staff to admin-

ister it.
Option 6 A radical option involving the closing down of the Centre

in its current form and replacing it with a phone-in diag-
nostics service and a drug dispenser.

After extensive discussions, it is decided that Option 1 is too expensive and
far too modern for the medical profession to consider. Option 6, although
favoured by the GPC, is rejected on the grounds that the staff would be
unemployable elsewhere. Option 5 is rejected as the notion of ‘reliable
staff’ is felt to be unrealistic. Option 4 is also rejected as there would soon
be several different versions of patient records on the different PCs.

So we come down to Option 2 or 3. We should now create Required Log-
ical DFDs for each of these options and produce a cost–benefit analysis. In
this case, however, the DFDs would be almost identical, as we would still be
doing the same processes. The difference is that Option 2 would allow pro-
cess 3.3 ‘Prescribe treatment’ to be performed more efficiently than Option
3. This is because the prescription could be printed during the appointment
with the doctor rather than having to collect it afterwards from reception.
An additional benefit of Option 2 would be that the doctor would have the
benefit of online medical information to help with diagnosis. The required
logical DFD for patient processing would look like Figure 5.1.

This is almost identical to the current logical DFD (Figure 4.5). Indeed,
none of the requirements in the Problems and Requirements Catalogue
would require us to alter the current logical DFDs very much in order to
turn them into required logical DFDs. The only important change would be
the introduction of a new process to produce the report now required by the
PMA. The other requirements are simply a matter of improving and auto-
mating the processes on the current logical DFDs.

The cost–benefit analysis might look like the following.

Option 2: Fully networked database system with internet access
This involves networking the Medical Centre with terminals in reception,
and in each doctor’s and the nurse’s surgeries. All terminals would have
Internet access. Additionally, an integrated database system would be avail-
able incorporating appointments, registration, patient records, prescriptions

Business system options 87

and management information. The nurse would have access to a supplies
system.

A Required Physical DFD could be drawn demonstrating the effects. This
would show whether the processes are computerized or not, batch or
online, and where they are done.

Costs
Costs would be quite high – a server PC plus at least five terminals, five
printers, communications hardware and software, other software, ISP
costs, additional phone charges etc.

Approximate cost: £50,000.

Benefits
Benefits would be impressive:

� Automatically produce a range of management information reports
which could save lots of money eventually.

88 Systems analysis: a beginner’s guide

3.2

Diagnose illness
or refer

3.3

Prescribe
treatment

D2 Appointment

appointment

patient

3.1

Receive patient
for appointment

appointment

appointment

patient

D1 Patient

patientpatient

referral

HOSPITAL

ref
err

al

patient

referral

D4 Drug

drug

PATIENT

PATIENT

prescri
ption

D3 Prescription

prescription

3.4

Create repeat
prescription

patient

D1 Patient

patient

repeat prescription

repeat prescription

Online
medical info

patient

Figure 5.1
Required Logical DFD
‘Process patient
requirements’
(Option 2).

� Might need fewer staff (sorry George).

� All doctors would have immediate access to all patient records.

� Even Betty would not be able to double book appointments, as the
system would prevent this happening.

� Easy access to important online medical information would improve
diagnosis and might save hundreds of lives (a week).

� Security features would prevent unauthorized access to private informa-
tion. Of course this wouldn’t stop Chelsea gossiping.

� Validation checks would ensure that only sensible information is entered
– more or less.

� Printing prescriptions would allow chemists to read them instead of
having to phone up the Centre and ask what they said.

� Repeat appointments could be automatically entered into the system
and letters reminding patients could be printed.

To be useful, the analysis of benefits needs to have some sort of figure or
rating attached to it. This might be an assessment of the financial benefits
of the option under scrutiny, or it might be a risk assessment resulting in a
risk rating.

Time
It is estimated that this option would take 4 months to deliver.

Impact
This would have a major effect on the quality of the service, but would have
implications for staff training. The phrase, ‘Betty, connect the tape
streamer and start the backup’ is not one which could be uttered with
much conviction.

A similar analysis would need to be carried out for the remaining options
and then a final decision reached. Let’s assume Option 2 is chosen.

5.4 BSOs at Swillbuckets
After due consideration of the options with Amanda, Freddo and someone
in the bar, Jack has chosen a database system containing the required
information on bookings, orders, suppliers and members. Jack has decided
not to try to gather information on which members attend which events, as
he feels that would be overkill. As a result, the MEMBER entity will not be
linked to the rest of the system on our required entity model. We will still
store information about members, but not about which events they attend.

In a surprise move, Jack has decided to go for a web site. This is an
amazing turnaround. When first asked if he wanted to go online, Jack
thought he was being invited on a fishing trip. However, he was quick to

Business system options 89

see the benefits of a web site containing forthcoming events information.
This could be linked to the database and would automatically display the
events as Jack entered them. This would save him having to phone the
media, as the local newshounds could simply log into Jack’s web site for
information. His flier for the members could be generated from the data-
base and printed as a report.

A small network would be required linking Jack’s PC in the office behind
the bar with Freddo’s PC in the corner of the kitchen by the freezer. This
would enable Freddo to keep the food stock and dish information up to
date.

Costs
Two PCs (one a server), one printer, communications hardware and soft-
ware, web access, a couple of swivel chairs – about £10,000. Running costs
might be £50 a month.

Benefits
Jack would save a lot of time currently spent leafing through shoeboxes
looking for records. With all this spare time, he is thinking of joining the
Gnarlsborough Marrow Growing Circle in an attempt to meet some inter-
esting people and/or vegetables.

The sharing of information between Jack and Freddo would be of
immense benefit to the whole community. Never again would Jack buy a
gross of pigs’ trotters, throw them in the corner of the kitchen and find
Freddo boiling them up six weeks later. With the new system, Freddo
would know as soon as Jack made a purchase and could plan his dishes
accordingly. He could do this, though he might not bother.

Up-to-date drink information would save Jack from running out of key
drinks such as Black Rock Stout, Dark Ramshead Bitter, Old Moor Porter
and Babycham. This should increase sales, improve customer satisfaction,
and generally make members very happy right up to the point when con-
sciousness is temporarily lost.

Freddo is keen to put his meat recipes up on the web site. He is confident
a book deal might be in the offing. He hasn’t quite decided on a title,
though A Love Affair with Offal is the current favourite.

Time
It is expected that the system could be up and running in two to three
months.

Impact
As long as Jack and Freddo keep the information up to date, the impact
should be considerable in terms of efficiency gains. However, there is a
clear danger that the PCs will just gather dust after an initial burst of
enthusiasm. It is important, therefore, that both Jack and Freddo feel
closely involved in all aspects of the design. This will make them more
likely to use the system.

90 Systems analysis: a beginner’s guide

Summary
In this chapter, we have considered the range of business options available
in our case studies and how to choose a preferred option. This completes
Stage 2 of SSADM.

Business system options 91

C H A P T E R 6
Requirements
specification

6.1 Requirements specification
We know, broadly speaking, the kind of system we are working towards.
We now need to specify it. To specify it means to model and describe it in
detail. This will require the analyst to produce a full set of required logical
DFDs, a required entity model and a sensible data structure. Various checks
will also be required to ensure that we haven’t missed anything.

6.2 Required logical models
We must now produce a top-level required logical DFD, any lower level
DFDs which might be required and a required entity model.

The top-level required logical DFD for the Medical Centre might look like
Figure 6.1.

Figure 6.2 shows the required logical DFD Level 2 for ‘Process manage-
ment information’.

The required logical DFD for ‘Process patient requirements’ has already
been completed (Figure 5.1). The other Level 2 required logical DFDs are
identical to the current logical DFDs, as discussed in the previous chapter.

The required entity model would need to reflect the new entities DRUG
COMPANY and PAYMENT. We would also need to calculate and store the
expected payment somewhere. This could be done by extending the
PRESCRIPTION LINE, DRUG and DRUG COMPANY entities, so that the
system calculates the payment generated by each prescription. Exactly
how this calculation is made will be looked at in the next chapter. The new
entity PAYMENT will be required to store the details of payments from the
drug companies. A further decision is to merge the DOCTOR and NURSE
entities, since NURSE would only have one record. This makes it untenable
as an entity.

92

The required entity model is shown in Figure 6.3. Note that the company
name in DRUG is referred to as ‘Supplier’. The attribute ‘Supplier’ is, there-
fore, an alias for DCompanyName. This means that the attributes are iden-
tical but have two different names.

The required entity model for Swillbuckets Club also needs creating. The
BOOKING entity has been inserted and the EVENT TICKET and MEDIA
entities removed, as Jack does not wish to gather information about these
entities. DRINK and DRINK ORDER LINE have been inserted to allow for
more accurate drink stock information.

Requirements specification 93

1

Register
patient

2

Process
appointments

PATIENT appointmentappointment

patient

UNIVERSITY
patient

GPC
patient

3

Process
patient

requirements

prescription

HOSPITAL referral

referral

PMA

4 Reception

Process
management
information

prescription

GPC

rota

ACCOUNTANT

report

expenses

5 Nurse

Maintain
supplies

SUPPLIER

supplier

order

order

Online
medical info

patient

order
invoice

patient

DRUG
COMPANY

payment

payment

Figure 6.1
Required logical DFD
– Level 1.

6.3 Elementary process descriptions
These provide descriptions of the lowest level (elementary) processes for
the required system. The format for these can vary depending upon the
nature of the process being described. Some processes are very simple
and will just require a short written description. For example, process
2.3 ‘Cancel Appointment’ is simply a matter of finding the particular

94 Systems analysis: a beginner’s guide

4.2

Update work
rota

4.3

Update staff
income/expenses

D5 Doctor/Nurse

previous rotarota

4.1

Create work
rota

preferred time

rota

ro
ta

ro
ta

GPC

ro
ta

rota

ACCOUNTANT

DOCTOR

p
ay

ex
pe

ns
es

ex
pe

ns
es

expenses

4.4

Create PMA
reportPMA

D3 Prescription

prescription

prescription

pa
tie

nt

patient

report

4.5

Receive and
check drug
company
payments

D4 Drug

DRUG
COMPANY

payment paym
ent

paym
ent

ACCOUNTANT

payment

Figure 6.2
Required logical DFD
‘Process management
information’.

appointment and deleting it from the system. Process 2.1 ‘Create new
Appointment’ is fairly straightforward and might look like Table 6.1.

However, the process 1.1 ‘Register Patient’ is a little more complex. We
need to find out if patients are eligible to be registered by ensuring they are
either a student or living in the catchment area. If they are eligible, we need
to register them and allocate them to a doctor. We need a policy for doing

Requirements specification 95

PATIENT

PatientNo
P_FirstName
P_Surname
P_ Address
P_DOB
P_Tel_home
P_Mobile
P_DoctorName

APPOINTMENT

AppointmentNo
*PatientNo
*Doctor/NurseName
A_Date
A_Time
A_Outcome

PRESCRIPTION

PrescriptionNo
*PatientNo
*Doctor/NurseName
P_Date

SUPPLIER

SupplierNo
SupplierName
S_Address
S_Tel
S_Contact Name

DOCTOR/
NURSE

Doctor/NurseName
D_Address
D_Tel_Home
D_Mobile
Pager
StartDate

ORDER

OrderNo
*SupplierNo
*Doctor/Nurse
O_Date
O_Total

PRESCRIPTION
LINE

*PrescriptionNo
DrugCode
Dosage
Condition
Value

TREATMENT

RecordNo
*PatientNo
Date
Condition
PrescriptionNo
Outcome

REFERRAL

ReferralNo
*PatientNo
*Doctor/NurseName
R_Date
Destination
R_Outcome

WORK
ROTA

*Doctor/NurseName
Date
StartTime
EndTime
HoursWorked

DRUG

DrugCode
*Supplier
Usage
SideEffects
Restrictions
TotalValue

ORDER LINE

*OrderNo
ProductCode
Quantity
Cost

EXPENSES

ExpenseNo
*Doctor/NurseName
ExpenseType
E_Amount
E_date

DRUG
COMPANY

DCompanyName
Address
DC_Tel
DC_Contact

REPEAT
PRESCRIPTION

RepeatPrescripNo
*PrescriptionNo
Frequency
NextDate

PAYMENT

PaymentNo
*DCompanyName
PaymentDate
Amount

Figure 6.3
Required entity
model – Medical
Centre.

this. It may be that we simply allocate them to the doctor with the lowest
number of patients.

All of this is a little complex to write in narrative form and could lead to
confusion. It is a good idea, in cases like this, to use techniques such as
structured English or decision trees.

96 Systems analysis: a beginner’s guide

ARTISTE

ArtisteName
RealName
ArtisteAddress
Tel_home
A_Mobile

MEMBER

MemberNo
MemberName
MemberAddress
PhoneNo
M_Mobile
M_Date

DISH

DishName
Price

FOOD
ORDER

FOrderNo
OrderDate
*SupplierNo
DeliveryDate

SUPPLIER

SupplierNo
SupplierName
S_Address
S_Tel
S_ContactName

INGREDIENT

IngredientNo
IngredientName
I_QuantityInStock
I_ReorderLevel

DRINK
ORDER

DOrderNo
OrderDate
*SupplierNo
DeliveryDate

EVENT

EventNo
EventName
EventDate
*DishName

DISH
DETAILS

*DishName
*IngredientNo
IngredientQuantity

FOOD
ORDER
LINE

*FOrderNo
*IngredientNo
F_Quantity
F_Price

DRINK
ORDER
LINE

*DOrderNo
*DrinkName
D_Quantity
D_Price

DRINK

DrinkName
D_Quantity InStock
D_ReorderLevel
D_Type

BOOKING

BookingNo
*EventNo
*ArtisteName
BookingDate
DatePaid
AmountPaid

Figure 6.4
Required entity
model – Swillbuckets.

6.3.1 Structured English and decision trees

Structured English is sometimes referred to as pseudo-code and is a kind of
half-way house between English and a programming language. It makes
use of some conventions originally used in languages such as Pascal or
BASIC. Commands such as IF... ENDIF or REPEAT ... UNTIL can be used.
However, the syntax does not have to conform to a rigid programming lan-
guage and spoken English words can be used as well.

Using structured English, we might come up with something like this for
1.1 ‘Register Patient’:

IF patient NOT registered
IF patient is a student

register patient
ELSE

IF patient in catchment area
register patient

ELSE
send patient elsewhere

ENDIF
ENDIF

ELSE
inform patient they are registered already

ENDIF

Of course this is just a rough description of the process, but it does give the
poor programmer, who will eventually have to implement our system, a
pretty clear idea of what is required.

A decision tree modelling the same process would look like Figure 6.5.

Requirements specification 97

Elementary Process Description

System: Medical Centre

Author: Kevin Bowman

Date: 30/3/03 Page 1 of 1 Draft/Final

Process Id: 2.1

Process Name: Create new appointment

Inputs to Process: Notification of
Patient’s need for appointment,
preferred times

Outputs from Process: Appointment
created, Patient informed

Process Description: Patient requests appointment. Receptionist checks which
appointments are available. The patient is given some options for an appointment
and chooses the preferred time. The appointment is created and confirmed with
the patient.

Table 6.1 Elementary process description example.

Clearly, this technique models only the decision-making aspects in a pro-
cess. It does not model the whole process as fully as the structured English
example.

It must be remembered that we are still in the early stages of design and
these processes could change further. When we are a little more certain of
what is required for the new system, we will use a further, more definitive,
technique for describing processes called decision tables.

6.3.2 Decision tables

Decision tables are an alternative to structured English and decision trees
and offer a more detailed specification. They are only necessary when there
is the possibility of confusion concerning the exact logic of a particular
process.

A decision table is made up of four sections:

1 The possible conditions which might apply to the process.

2 The possible actions to take.

3 The possible combination of conditions which can occur.

4 The choice of action for each possible combination of conditions.

As an example, we will look at the process at the Medical Centre – ‘3.5
Receive and Check Discount’.

The drug companies operate a scheme whereby they categorize a surgery
as gold, silver or bronze each month, depending upon the value of
their drugs prescribed by the surgery. If the surgery prescribes over
£50,000 worth of drugs in a month, they become a gold surgery and
receive a payment worth 10% of the value of the drugs. If they prescribe
£10,000–£50,000 worth of drugs, they are categorized as silver and

98 Systems analysis: a beginner’s guide

1 Is patient registered?
2 Is patient a student?
3 Is patient in catchment area?

2

inform
patient

1

register
patient

3no

yes

no

register
patient

send
elsewhere

yes

no

yesFigure 6.5
A decision tree for
process 1.1 ‘Register
patient’.

receive 5% of the value. If they prescribe less than £10,000 worth of
drugs, they receive bronze status which entitles them to a free first-aid kit,
unless they received a first-aid kit last month, in which case they receive
nothing.

In our new system, it will be the responsibility of Nurse Payne to check
that payments are accurate. Nurse Payne is not keen on financial adminis-
tration, however, and we need to make this process as automatic as pos-
sible. Using a decision table, we can specify a computer program to check
the payments automatically. All Nurse Payne will need to do is compare the
payment expected with the payment received.

So let’s set up the decision table using simple steps.

6.3.3 Simple steps in decision tables

1 List the possible conditions.
The possible conditions for this process are:

Condition 1: Prescribed more than £50,000 worth of drugs (>50)
Condition 2: Prescribed £10,000–£50,000 worth of drugs (10–50)
Condition 3: Prescribed less than £10,000 worth of drugs (<10)
Condition 4: Received first-aid kit last month
There must be no ambiguity here. For example, it must be clear what

happens if exactly £50,000 worth of drugs is prescribed. In this case, it
would meet Condition 2 only.

2 List the possible actions.
The possible actions are:

Action 1: Gold status (10% payment)
Action 2: Silver status (5% payment)
Action 3: Bronze status (first-aid kit)
Action 4: Receive nothing

3 Calculate how many combinations of conditions can occur.
This calculation is performed using the simple expression 2c. In other
words, if there are four conditions, there will be 24 combinations of condi-
tions i.e. 16 conditions. These normally take the form of a Y (Yes) or a N
(No) sequence in the table (see Figure 6.6).

4 Prescribe actions for each combination of conditions.
These are prescribed by the conditions laid down above.

5 Draw the draft table.
The table is drawn using a four-part grid as in Figure 6.6.

There is a technique to ensure that all possible combinations of ‘Y’s and
‘N’s are covered. We know there are 16 combinations of conditions. In the
first row (>50,000), we make the first 8 ‘Y’s and the second 8 ‘N’s. In the
next row (10,000–50,000), we put 4 ‘Y’s followed by 4 ‘N’s and alternate in
patterns of 4. In the next row (<10,000), we alternate in patterns of 2.

Requirements specification 99

Finally, in the last row (First-aid kit), we alternate every time. This ensures
that if we read vertically down the columns, every possible combination
occurs somewhere.

6 Rationalize the table.
This involves removing the impossible conditions and editing the redun-
dant conditions. An example of an impossible condition is: if the drugs are
worth over £50,000, then they can’t also be worth £10,000–£50,000, or less
than £50,000, so these columns can be removed. The first column in Figure
6.6 is just such a column. Similarly, it cannot be the case that none of the
conditions applies, so the column with all ‘N’s can be removed.

A redundant condition occurs if the same action applies whether a con-
dition is ‘Y’ or ‘N’. In this circumstance we place a dashed line in the condi-
tion entry. For example, whether the Medical Centre received a first-aid kit
last month is irrelevant if prescriptions are over £10,000. The Centre still
receives the payment.

The rationalized table (Figure 6.7) looks much simpler.

The decision table could now form the basis of a program to implement a
routine to calculate the payment for each drug prescribed and output a
report each month for the Nurse to check against actual payments. The

100 Systems analysis: a beginner’s guide

>50,000

10,000–50,000

<10,000

First-aid kit
last month

Y Y Y Y Y Y Y Y N N N N N N N N

Y Y Y Y N N N N Y Y Y Y N N N N

Y Y N N Y Y N N Y Y N N Y Y N N

Y N Y N Y N Y N Y N Y N Y N Y N

10% payment

5% payment

First-aid kit

No payment

X X X X X X X X

X X X X

X X

XX

Figure 6.6
Draft decision table.

>50,000

10,000–50,000

<10,000

First-aid kit
last month

Y N N N

N Y N N

N N Y Y

- - N Y

10% payment

5% payment

First-aid kit

No payment

X

X

X

X

Figure 6.7
Rationalized decision
table.

report could even contain a chart to inform the doctors, which might look
like Figure 6.8.

6.4 Input/output design
This part of the process is crucial to the success or failure of the system. If
users do not input data correctly, we will not have an effective system.
Readers will, no doubt, be familiar with the maxim ‘Garbage in, garbage
out’; it is at this stage that we can do most to avoid the garbage going in.
Incidentally, the maxim above also happens to be Freddo Smitho’s motto
on dish production, but let’s not dwell on that.

Any system, computerized or not, can be stripped down to three basic
components: INPUT, PROCESSING and OUTPUT. Well, here we are going
to design two of the three. We need to do everything we can to ensure that
the user only inputs sensible, accurate data. We also need to ensure that
outputs are easy to understand and relevant to the user. They are, after all,
the reason for the system being created.

Screen designs are the first impression the users will get of the system,
and as such the system may be judged on the basis of these screens. If the
users do not like these screens, for whatever reason, they may turn against
the system and possibly not use it at all.

Strangely, we need to consider the outputs before we can consider the
inputs. This is because we need to identify what outputs are required,
before we can be sure what inputs will be needed to produce these outputs.

Requirements specification 101

Paracetamol
74%

Penicillin
13%

Cough mixture
10%

Boil cream
1%

Ear drops
1%

Other
1%

Figure 6.8
Prescription values.

6.4.1 Output design

So what is an output? An output might be a printed report for a manager or
external body. Alternatively, an output might be a screen displaying the
quantity of drinks in stock or a chart showing the number of patients each
doctor has registered. Management reports can be of various types:
detailed or just a summary. So outputs come in many shapes and sizes. The
analyst will need to decide which type of output is required in each case
and to document this.

The outputs can be identified from the required logical DFDs. Any data
flows to external entities are outputs. Also, data flows from data stores
might be outputs. For example, before Jack places an order with a supplier,
he will need to view the supplier information. So he will need a list of sup-
pliers with contact details and product information so that he can make an
informed choice of which supplier to honour with an order for a truckload
of mushy peas. The list of suppliers, and the order itself, are both outputs.

It may not be necessary to identify every possible output in advance.
Most modern database packages include simple reporting tools and wiz-
ards so that most users will be able to set up their own queries as required.

When designing outputs, it is not wise to sit at a PC and start pressing
buttons straight away. It is far better to start with a pencil and paper and
draft a rough design for the screen or report.

Pre-formatted design sheets are often used featuring XXXXs to represent
alphanumeric characters and 9999s to represent numeric information (see
Table 6.3 below). In this way, fields or columns can be quickly positioned
on the design. Report headings and sub-headings will appear at the top of
the design and on every new page. At the end of the report, some kind of
summary, such as totals and a grand total for numerical fields, will nor-
mally be appropriate.

Additional features will depend upon the nature of the report, but the
date and page numbers will usually appear. Related information such as
patient name, address and telephone number will appear together in a sen-
sible order. The key thing is to make the report clear and legible. This may
mean including some white space around columns or headings so that the
report does not appear too cramped. Also, it is often worth supporting rows
and rows of figures with a chart or two picking out the key items of
information.

Whether the output is on-screen or in the form of a written report, it
must be carefully designed to suit the user. This usually means the outputs
must be relevant and clear as a minimum requirement. Internal reports,
such as the work rota in the Medical Centre, will normally be just that – rel-
evant and clear. However, reports to the GPC might be crafted more care-
fully, perhaps highlighting key information through charts, or grouping
related information together.

Another example of an external report might be the report to the PMA,
which will list all the prescriptions issued by the Medical Centre over a
given period. A short extract from the report might look like Table 6.2.

102 Systems analysis: a beginner’s guide

However, this is not a particularly well-designed report. The information
is not in any significant order (just by date of entry), and nothing is high-
lighted as being particularly significant. No report headings or dates are in
evidence. A more useful report might group the report by prescription, as
prescriptions are the focus, and order by date within the prescription. A
better report design might look like the one in Table 6.3.

This design might produce a report like Table 6.4.
This is a clear and simple design with no frills as it is for the sole use of a

government agency and is not for public view.
An example from Swillbuckets: Jack will want to send details of forth-

coming events to the media and to club members. This report needs to be
clear and well-presented as it is for public view. An example of this kind of
output is shown in Table 6.5.

Requirements specification 103

NHS
number

Patient
name

Prescription
date

Prescription Diagnosis Doctor

4534552 Wilf Carp 23/11/02 Paracetamol Broken leg McLean

3455622 Oliver Plum 12/12/02 Paracetamol Paracetamol
overdose

Hammler

4667782 Jason Spink 14/12/02 Paracetamol Collapsed
lung

McLean

6733332 Irene
Skidmore

14/12/02 Penicillin Gout Prodder

4667782 Jason Spink 15/12/02 Cod liver oil Collapsed
lung

McLean

4667782 Jason Spink 16/12/02 Iron lung Respiratory
failure

Prodder

Table 6.2 PMA report – weak design.

Medical Centre at the University of Life
PMA Report – {report date}
Prescription: {prescription}

NHS number Patient name Prescription
date

Diagnosis Doctor Amount (g)

9999999 XXXXXXXXXXXX
XXXXXXXXXXXX

dd/mm/yy XXXXXXXX
XXXXXXXX
XXXXXXXX

{doctor} 999

Total 9999

Page no.

Table 6.3 PMA report design.

Image considerations such as a logo and the overall impression created
by the reports will be important here.

Other reports will simply be on-screen reports. Here, the user will view
one record at a time (e.g. members at Swillbuckets). Such screens will need
to be simple and attractive. Additionally, there will need to be facilities to
allow the user to move to other screens e.g. a ‘Back’ button and a ‘Forward’
button. Many of the issues of screen design will be looked at in the Input
Design section (6.4.3). One key factor in output design, though, is to
involve the user. Users get very frustrated with designs which don’t quite
fit the bill, especially if they have to use them day in day out.

104 Systems analysis: a beginner’s guide

Medical Centre at the University of Life
PMA Report – 4th Quarter 2002
Prescription: Paracetamol

NHS number Patient name Prescription
date

Diagnosis Doctor Amount (g)

4534552 Wilf Carp 23/11/02 Broken leg McLean 50

3455622 Oliver Plum 12/12/02 Paracetamol
overdose

Hammler 20

4667782 Jason Spink 14/12/02 Collapsed lung McLean 100

Total 170

Prescription: Penicillin

2344552 Holly Skidmore 14/12/02 Gout Prodder 50

5656632 Archie Bloggs 18/12/02 Lumbago Squeam 100

Total 150

Prescription: Cod Liver Oil

4667782 Jason Spink 15/12/02 Collapsed lung McLean 300

Total 300

Prescription: Iron Lung (Ventilator)

4667782 Jason Spink 16/12/02 Respiratory
failure

Prodder

Page 1 of 5

Table 6.4 PMA report – good design.

6.4.2 Simple steps in output design

1 Decide on the purpose of the report.
This will involve talking to the user.

2 Decide how the report will be used.
Will the report be for internal use, or external use? Will it be required regu-
larly or just in exceptional cases?

3 List the information to be included in the report.
What fields from the database will be included? Will there be any charts or
multimedia output? Only include information the user wants. Just because
information is available does not mean that it should be in the report.

4 Decide whether the output will be on-screen, printed or both.

5 Design the report.
This can be done on a piece of paper or using a pre-formatted design sheet.

6 Produce a prototype report.
This should be discussed with users before the final design is specified.

6.4.3 Input design

This phase of the design process focuses on getting data into the system as
quickly and effectively as possible. The first part of the process is to deter-
mine exactly what we are going to put into the system. This can be achieved
by listing all the attributes for each entity on our entity model. In other
words, all the bits of data, such as Patient Name, Patient Address and so on,

Requirements specification 105

Swillbuckets Club December Events List

Date Event Name Artiste Entrance
Fee

11/12/02 Man of Men Competition Sharon Twain Entertains £5.00

12/12/02 Dan on Spoons Dan Pickles £1.50

16/12/02 A Right Good Do Little and Lard £3.00

19/12/02 5-legged Pig Race Rocky Rocket and the
Rockettes

24/12/02 Christmas Eve
Extravaganza

Tracey Beardmore is Shirley
Bassey

£5.78

compiled by Jack Trout (Secretary) tel: 5554448

Table 6.5 Events List report.

will need to be input somehow. In addition we will need to look at the DFDs
to see what data is flowing into the system from external bodies. All of that
data may well have to go into our system. The student list required for the
registration of patients at the Medical Centre is an example of this.

Once we know what data is going in, we need to decide how it’s going to
get into the system. There are various input devices we might use. There are
some devices which will input data automatically, such as barcode scan-
ners. If possible, these should be used, as they reduce the risk of errors
being made. However, in many cases this is not appropriate. After all,
patients might not be too happy about having bar codes imprinted on their
foreheads. On the other hand, it should be possible to arrange for the stu-
dent lists arriving from the University to be easily imported into the ‘Pa-
tient’ table. The Centre would have to insist that the lists arrive in digital
format and then a little program could be written to allow the receptionists
to import the file into the system.

So we will need to go through all the inputs and decide how we are going
to perform the input, automating it where possible. Often, manual inputs
will be required and this is where forms, or data entry screens, are used.

Data entry screens
There is one key thing to consider when designing these screens. We should
try, at all times, to minimize the amount of data being input and the
number of keystrokes required to do it. We can do this by using data already
in the system to calculate or produce other data items where possible. Also,
we can introduce codes and abbreviations to save typing in long strings of
data. If there is a limited range of possible inputs, we can list them and
allow the user to click on the one they want.

At the Medical Centre, most of the patients are students, so if we wanted
to store occupation information, we could set up the system so that ‘Stu-
dent’ would be automatically entered on the screen. The receptionist could
change this on the occasions that it did not apply.

There are a number of Human–Computer Interface (HCI) considerations
to bear in mind when designing these screens:

� Data entry screens often require the user to enter the data from a paper
form directly into the form on the screen. If this is the case, the form on
the screen should be consistent with the paper form, as far as possible.
Ideally, it should be identical. At the very least, the fields on the screen
should be in the same sequence as those on the form.

� Generally, the data should be input into the form moving from left to
right and from top to bottom.

� Similar types of information should be grouped together – e.g. name,
address, phone number.

� Use headings and labels to help the user identify the data.

� Use comments and instructions to tell the user what to do.

106 Systems analysis: a beginner’s guide

� Make it easy to move between screens – this may involve the use of sub-
forms to minimize the need to move around (see Figure 6.9).

The example in Figure 6.9 shows a well designed data entry screen for
the Medical Centre. The main form can be used for finding an existing
patient or for entering a new patient’s details. However, there is an
appointment sub-form attached to it so that the receptionists can see pre-
vious appointments and add a new appointment without leaving the
patient’s main screen.

The screen looks clear and uncluttered. Note that the text is primarily lower
case. This is easier to read than upper case. Also, the font needs to be easy to
read, so avoid fancy fonts and italics. Use lines or boxes to separate different
areas. The background should normally be plain. A simple colour scheme is
fine, but avoid lots of different colours. Images and animations may get
tedious by the time the user has input 200 new patients, so use with care.

Data validation
It is important to make every effort to ensure that the data entered into the
system is accurate and sensible. This involves designing data validation

Requirements specification 107

Figure 6.9
Well-designed data entry screen.

checks. As mentioned above, the less data users need to enter, the fewer
errors they can make. Additionally, we can check most of the data being
entered to try to spot errors before they become part of the system.

These are the kinds of checks we can build in to data entry screens:

� Check that key and mandatory fields have data in them.

� Check that numeric data is within a sensible range – e.g. no-one can be
aged 601 (indeed, very few reach 61 if registered at the Medical Centre).

� Check that data is of the right type e.g. a name with a ‘7’ in it is unlikely
to be accurate.

� Check that data is entered in the right order.

� Check that data is sensible; e.g. an appointment time of 3.30 a.m. might
raise eyebrows.

All of these can be done automatically and any errors might generate a
message like ‘George, no-one was born on 15/h6/!%; have another try’.
Generally, error messages should be simple and factual. Having just made
yet another error, the data input clerk is normally in no mood for jokey
messages.

6.4.4 Simple steps in input design

1 Identify the data to be input.

2 Determine the input method.

3 Design the screen.

4 Design the validation process.

6.4.5 User interface design

The user interface refers to the elements of a system through which users
communicate with the system. Data input and output are a part of this, but
there are other related elements. We are aiming to achieve a high-quality
interface, by which we mean an interface that is easy to learn, easy to use
and efficient. After a while, the interface should feel intuitive so that the
user can move around the system without having to think.

Consistency is a key factor in making an interface easy to learn. The use
of labels and icons must always be consistent. The same label or icon
should always mean the same thing. Also, the way the screens are struc-
tured must be consistent and efficient.

For example, many systems use a menu structure to help users find the
facility they want. The top-level menu will list all the main functions or
operations performed by the system. There should be no more than six or
seven of these. The user will choose one of these options and then be pre-
sented with a sub-menu. Very quickly, the user should reach the facility

108 Systems analysis: a beginner’s guide

that he or she requires and will be able to run the program. Clearly, there
will need to be user involvement in the design of the menus.

It is often a good idea to include a Help facility in the system. This might
be an indexed user guide, or a link to a web site where help is available.
Other user interface features to consider will be: check boxes; radio but-
tons; scroll bars; drop-down lists and so on. All of these can save users time
and effort as well as make the interface attractive and easy to use. More of
this in Chapter 8.

Summary
In this chapter, we have begun the process of specifying the requirements
of the new system. Requirements specification continues in the next
chapter, which involves the enhancement of the data model. This is more
commonly referred to as normalization.

Exercises
6.1 Produce a decision table to model the logic in this scenario:
A postal delivery company delivers parcels air or rail transport. The price of
delivery by air depends upon the weight of the parcel. There is a basic
charge of £5 per kg up to 50 kg. Excess weight over 50 kg is charged at £3
per kilo.

Delivery by rail is charged at £3 per kg up to 50 kg and then £2 per kg.
There is a special service guaranteeing same day delivery which carries an
additional flat rate charge of £20.

Any deliveries overseas are charged at double the normal rate.

6.2 Produce a structured English specification for this scenario:
A travel agent has account customers and individual customers. Account
customers who have spent over £25,000 in the past year get a discount of
25%. Otherwise, they get a 10% discount. Individual customers who have
booked holidays previously get a 5% discount. New customers get no dis-
count. Account customers who have spent over £10,000 in any previous
year will receive offers of free tickets on selected routes.

6.3 Design a report for the Medical Centre showing the appointments for
the following week. The report will be used by the receptionists to check
patients as they arrive for their appointment, so consider what information
will be required on the report.

Requirements specification 109

C H A P T E R 7
Normalization

7.1 Normalization
Normalization is a bit like having a vaccine injected into your arm. It’s
painful (I’ve seen grown men cry), but it’s better than the alternatives.

Normalization is a way of modelling the structure of the data. With a bit
of luck, you should end up with the tables designed and ready to use.

You will already have done a version of this modelling of the data structure
when you did your entity models. So why do it all again? Well, the entity
models started from very general things, or entities, and then got more and
more detailed. Normalization is the other way round. You start with all the
bits of data lying around on forms or in filing cabinets and you sort them into
groups of similar data. These end up being the tables, or data structure.

This is called ‘bottom up’ design. The aim is to help you understand
better the data required by the new system, and to check that the entity
model you have is accurate. Usually it’s not, and you end up having to do
another after normalization.

The other point is that entity modelling is a bit hit and miss, whereas
normalization is based on mathematical principles and, if you do it right,
should give you a bullet-proof design. It’s the doing it right bit that can
cause some pain.

7.1.1 What happens if data isn’t normalized

We’ll use Swillbuckets Country Club to demonstrate the nightmare that
could happen if you don’t normalize. As you may know, Swillbuckets prides
itself on its meat dishes as well as the high-quality artistes who regularly
entertain the members.

As a result of all these different activities, there are all sorts of data
buzzing round the place. Here’s a list of some of the data categories or
fields; there would be more but these will do for now:

110

EventDate
ArtisteName
TelNo
cost
StartTime
DishName
IngredName
quantity
NoInStock

(The convention in this book is that where two words are required in the
name, capital letters are used to denote this.)

We could just put all this data into one big table and start entering data.
We would end up with something like Table 7.1.

Normalization 111

Event
Date

ArtisteName TelNo cost (£) Start
Time

DishName IngredName quantity NoIn
Stock

01/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 8.00 Chicken in a
polystyrene
tray

chicken quarter 4320

polystyrene 1 1044

02/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

sheep intestines 0.5 kg 202

peas 28 550

04/05/
03

Sharon Twain
Entertains

55555 90 8.00 Skewered
kidneys in
lager

kidneys 6 4078

lager 10 50

skewer 1 45

07/05/
03

Gypsy Ky-Lee
Clairvoyant

66666 25 7.00 Crispy duck
and crisps

duck half 345

prawn cocktail
crisps

1 5500

08/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 7.30 Industrial
strength chilli

old beef 1 kg 188

tin of sauce 1 377

rice 4 g 289

09/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

sheep intestines 0.5 kg 202

peas 28 550

Table 7.1 Unnormalized data.

One or two problems are clear straight away. We are repeating all the
information about an artiste every time we book them. For example, every
time we book ‘Jade Green and her Dancing Chihuahuas’, we are also typing
in the phone number and the cost. Since we already have this information,
it is a waste of time and disk space to keep repeating it.

Another problem is the gaps that appear. The full effects of these gaps
would not be seen until we tried to sort the information. If we sorted on
ingredient (IngredName), say, to use as a shopping list, we’d end up with
one looking like the one in Table 7.2.

Now I’m no TV chef, but I would suggest that ‘Skewered kidneys in lager’
would not normally have prawn cocktail crisps as a key ingredient.
(Although, come to think of it, it might not be too bad....) Similarly, ‘Indus-
trial strength chilli’ probably wouldn’t benefit much from having polysty-
rene tipped in. You can see the sort of problems we’re having here.

112 Systems analysis: a beginner’s guide

Event
Date

ArtisteName TelNo cost (£) Start
Time

DishName IngredName quantity NoIn
Stock

01/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 8.00 Chicken in a
polystyrene
tray

chicken quarter 4320

duck half 345

07/05/
03

Gypsy Ky-Lee
Clairvoyant

66666 25 7.00 Crispy duck
and crisps

lager 10 50

08/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 7.30 Industrial
strength chilli

old beef 1 kg 188

peas 28 550

peas 28 550

polystyrene 1 1044

06/05/
03

Sharon Twain
entertains

55555 90 8.00 Skewered
kidneys in
lager

potatoes half a tin 5060

prawn cocktail
crisps

1 5500

rice 4 g 289

sheep intestines 0.5 kg 202

02/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

sheep intestines 0.5 kg 202

09/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and Peas

skewer 1 45

tin of sauce 1 377

Table 7.2 Sorted unnormalized data.

Having gaps in the data structure has meant that we have lost our rec-
ipes, possibly forever. A sad loss for the culinary world.

Normalization 113

Event
Date

ArtisteName TelNo cost (£) Start
Time

DishName IngredName quantity NoIn
Stock

01/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 8.00 Chicken in a
polystyrene
tray

chicken quarter 4320

01/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 8.00 Chicken in a
polystyrene
tray

polystyrene 1 1044

02/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

sheep intestines 0.5 kg 202

02/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

peas 28 550

04/05/
03

Sharon Twain
entertains

55555 90 8.00 Skewered
kidneys in
lager

kidneys 6 4078

04/05/
03

Sharon Twain
entertains

55555 90 8.00 Skewered
kidneys in
lager

lager 10 50

04/05/
03

Sharon Twain
entertains

55555 90 8.00 Skewered
kidneys in
lager

skewer 1 45

07/05/
03

Gypsy Ky-Lee
Clairvoyant

66666 25 7.00 Crispy duck
and crisps

duck half 345

07/05/
03

Gypsy Ky-Lee
Clairvoyant

66666 25 7.00 Crispy duck
and crisps

prawn cocktail
crisps

1 5500

08/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 7.30 Industrial
strength chilli

old beef 1 kg 188

08/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 7.30 Industrial
strength chilli

tin of sauce 1 377

08/05/
03

Tracey
Beardmore is
Shirley Bassey

33333 50 7.30 Industrial
strength chilli

rice 4 g 289

09/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

sheep intestines 0.5 kg 202

09/05/
03

Jade Green and
her Dancing
Chihuahuas

44444 80 7.00 Offal surprise
and peas

peas 28 550

Table 7.3 Unnormalized data with duplicate data.

114 Systems analysis: a beginner’s guide

Of course, we could just fill in the gaps with duplicate data: that would solve
the sorting problem. That would give us a data model looking like Table 7.3.

However, there are still three types of problem with this data structure.

1 The insertion problem
Suppose we decide to buy some ingredients because they happen to be
cheap and available. In fact, this happened only last week at Swillbuckets,
when Seth Shepherd poached a few rabbits on the Chalfont estate. Jack
Trout was quick to spot a commercial opportunity and a large black bag
soon appeared at the Swillbuckets back door.

So now Jack has the new ingredient, rabbit, but where does he put it in
our current design? He doesn’t yet have a recipe to put it in or an event to
serve it at. He can’t just put it in the ingredients column, as that would
mean leaving blanks in most of the other columns, and we know where
that leads. If he sorted on ingredient, he would finish up with rabbit in the
skewered kidneys. Not ideal.

2 The update problem
Let’s think about sheep’s intestines. On second thoughts, maybe not. Let’s think
about peas. Peas occurs twice in our list of ingredients. This is because Jade Green
(and, indeed, her chihuahuas) is very partial to ‘Offal surprise and peas’. As a
result, every time she performs, she insists it’s on the menu. So, in our current
data structure, peas will be repeated every time Jade Green performs. Also, peas
might occur in a number of different recipes and at different events.

At the moment, Jack has 28 tins of peas in stock. If he uses one up, he
needs to update the data (change it to 27). But he doesn’t just have to do this
once, he has to go through all his data looking for every occurrence of peas
and making the same update each time.

If he’s fresh from a lunchtime session in Swillbuckets Bar, he’s bound to
miss some and then no one will know whether there are 27 or 28 tins in
stock. Soon no one will believe the data. It’ll have no integrity. A bit like Jack.

3 The deletion problem
Another problem reveals itself if we have to delete something. If somebody
complains about the ‘Industrial strength chilli’ (and who can blame
them?), or dies a painful death, Jack might have to take it off the menu. So
he deletes the rows containing information about Industrial strength
chilli. Unfortunately, he’s also deleted the information about how much
old beef he has in stock – 90 kg of the stuff to be exact. This is bad news
because the Health Inspectors are not going to take kindly to finding 90 kg
of old beef stuffed in the back of the fridge that Jack has forgotten about
because he’s deleted it from his database.

There are plenty of problems with the way this data is structured at the
moment. So what’s the solution? Splitting the data up into a number of
smaller tables, instead of one big one. In other words – normalization. So
let’s do some before Swillbuckets gets shut down.

Normalization is quite difficult and complex. Sadly, it’s also arguably the
most important bit of SSADM. Life’s cruel. If it wasn’t so important, it
would have been chucked in the bin years ago. Here are some simple tasks,

but they aren’t that simple. Don’t panic if you don’t get the hang of it first
time. Almost nobody does. The trick is to keep hammering away at it until
it gives in and reveals its secrets.

7.1.2 (Not so) simple tasks in normalization

1 Make sure you understand the data.
It’s no good expecting to be able to breeze through normalization without
first understanding the data. You must know what each bit of data is there
for, what it relates to and how it’s used. Hopefully, you’ve done this during
the analysis phase.

2 Decide what to normalize.
The easiest way is to do it one form at a time, and then merge it all together.
So that’s what we’ll do here. On the other hand, you could try to normalize
all the data at once. This is not recommended if there are more than about
20 items of data in the system.

The Swillbuckets example above only shows nine fields of data, but in
reality there would be many more: the address of the performers, their
agents, the admission fee etc. So we’ll tackle it one form at a time. I say
‘form’, but actually we want anything that’s to be inputted into the system
or outputted from it – things like invoices, lists of forthcoming events, rec-
ipes and stock lists. Also, we might need to add in new items that aren’t
currently in the system but will be in the new system we’re designing. Fig-
ures 7.1–7.4 show a sample of the sort of thing we might normalize.

Normalization 115

Swillbuckets Country Club

Forthcoming Events

4/12/02 8.00 Curry and peas night – eat, drink and be poorly £1

7/12/02 7.30 Slide show with Eddie Jones – ‘Stuffing dead voles’

11/12/02 8.00 Fancy Dress Party – Theme: ‘The Butcher’s Shop’ £5

12/12/02 7.30 Dan Pickles on spoons plus buttered toast £1

19/12/02 7.00 Annual 5-Legged Pig Race – Man and pig in
harness!

24/12/02 8.00 Christmas Eve Special ‘A right good do’ (volunteers
please for balloon blowing and spittoon emptying)
Admission by ticket only

£10

26/12/02 2.00 Boxing Day Tug o’ war, fastest 6 pints, stomach
throwing in the Swillbuckets Man of Men Competition

27/12/02 Closed for refurbishment

Events are free to members unless otherwise stated

Figure 7.1
Forthcoming events
list.

116 Systems analysis: a beginner’s guide

Swillbuckets Payment Slip

Payment Date: 12/10/02 Deductions: £45 – damage to stage

Payee: Little and Lard Payment method: Cash

Fee: £75.00 Net pay: £30

Figure 7.2
Payslip.

Swillbuckets Membership Form

Name: Wilf Trotter Date: 20 November 2002

Address: Hag End Farm
Nether Bog
Muckthwaite
W. Yorks

Postcode: H34 2FT Date of birth: 12 January 1904

Member Type: Free Seconder: Josh Gitter

Interests: Brown water rafting
Coal sculpting
Reclaiming mine shafts

Level: Beginner
Expert
Expert

Do not write below this line or there will be trouble

For official use only

Member No: 5647 Fee: N/A

Figure 7.3
Membership form.

Swillbuckets Event Booking Form

Date of event: 12/12/02

Name of event: Dan Pickles on Spoons

Artiste: Dan Pickles Contact No: 2344556

Fee: £45 Status: Provisional/Confirmed

Special Requirements: 5 rounds of buttered toast
3 cups of tea
spare spoons

Signed: Jack Trout Date: 14/11/02

Figure 7.4
Event booking form.

That’s enough to be going on with. We’ll start with the Forthcoming
Events List.

3 List all the fields on a normalization sheet.
You could use one like Table 7.4 (or just use some large, blank paper).

All the fields of data from the Forthcoming Events List are listed in the
column headed UNF – this stands for Unnormalized Form. The field called
‘SpecialPoint’ refers to any special information about an event. For
example, volunteers are needed for the Christmas Eve Special to blow up
balloons and empty spittoons. Let’s hope they don’t get confused and blow
up the spittoon....

4 Find a key.
As mentioned in Chapter 3, a key is a way of identifying a form or a table, or
whatever. Your key is your name, usually. It’s how other people identify
you. But it’s not a brilliant key because there will be lots of people with the
same name as you. A better key to identify you would be your National
Insurance Number (or equivalent). It’s unique. There are never two the
same. That’s why the government invented it. They could have used your
name combined with your address as a way of identifying who you are. The
problem is, people move house, whereas a National Insurance Number
always stays the same.

Anyway, we need a key for the Forthcoming Events List.
Let’s imagine there was a big pile of these lists and you had to find one

particular one. What bit, or bits, of data would you need to know to find the
list you wanted? Knowing one of the events wouldn’t help – say ‘Curry and
peas night’ – because that might appear on other lists. But if you knew one
of the events and the date, that would do it. There would never be two

Normalization 117

Normalization

System: Swillbuckets

Form/Report: Forthcoming Events List

Author: Kevin Bowman

Date: 20/6/03 Page 1 of 1 Draft/Final

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate

StartTime

EventName

EntranceFee

SpecialPoint

Table 7.4 Forthcoming events list UNF.

‘Curry and peas nights’ on the same day. That combination of event and
date would never appear anywhere else.

So, we’ve established that the key will be ‘Event name’ and ‘Event date’
combined. (If you have a key made up of more than one bit of data, like this
one, it’s called a composite key.)

5 Underline the key bit(s) of data.
Just to show it’s the key.

6 Find repeating groups.
The best way to do this is to draw a rough table showing the sort of data
we’re likely to get, like the one earlier (Table 7.1) which showed all the gaps
before normalization. Use the fields as headings in the table. So you get
something like Table 7.5.

There are some gaps at the bottom of the table caused by the fact that
there are three SpecialPoints for the Christmas Eve Special. We could fill in
the gaps by duplicating all the Christmas Eve Special information:

24/12/03 Christmas Eve Special 8.00 10.00 Volunteers for balloon
blowing

24/12/03 Christmas Eve Special 8.00 10.00 Volunteers for spittoon
emptying

24/12/03 Christmas Eve Special 8.00 10.00 Ticket only

but we clearly have a repeating group here. Repeating groups are the ones
with different values from the rest of the fields. In this case, it’s the
‘SpecialPoints’ that are different. Everything else stays the same. You could
say that for every event, there might be many ‘SpecialPoints’. It’s the
‘many’ bits that we call ‘repeating groups’. So what do we do with them?

118 Systems analysis: a beginner’s guide

EventDate EventName Start
Time

Entrance
Fee

SpecialPoint

04/12/03 Curry and peas night 8.00 1.00 None

07/12/03 Slide show with Eddie
Jones

7.30 0 None

11/12/03 Fancy dress party 8.00 5.00 Theme: Butcher’s Shop

12/12/03 Dan Pickles on spoons 7.30 1.00 Buttered toast

19/12/03 5-legged pig race 7.00 0 None

24/12/03 Christmas Eve Special 8.00 10.00 Volunteers for balloon
blowing

Volunteers for spittoon
emptying

Ticket only

Table 7.5 Forthcoming Events List data.

7 Split up the data structure.
Because we have repeating groups, we have to split up the data structure.
We take away the repeating groups and make them into a separate group,
or relation. We must take with this new group a copy of the key (Table 7.6).
(The column headings will be explained as we go through the normaliza-
tion process.)

8 Identify a key for the repeating group.
This new breakaway group currently has the same key as the
unnormalized group. This is never right. In this case, you could not iden-
tify one particular ‘SpecialPoint’, by knowing the ‘EventDate’ and the
‘EventName’. Let’s say you knew the event was the Christmas Eve Special
and the date was 24/12/01; you wouldn’t be able to identify a particular
‘SpecialPoint’ as there are three possibilities – that’s why we had to
remove them. So you always need a different key for repeating groups. In
this case, there’s no option as there is only one bit of data not already in
the key – ‘SpecialPoint’. So we make this part of our composite key and
now we can identify all data items. Our table is now in First Normal Form
(1NF) and looks like Table 7.7.

Normalization 119

Data structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
StartTime
EntranceFee
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

Table 7.6 Forthcoming Events List 1NF.

Data structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
StartTime
EntranceFee
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

Table 7.7 Forthcoming Events List 1NF with key.

The eagle-eyed among you will have noticed that the two new groups
have fields in common, i.e. the original key. This will become important
because these common fields will act as a link and allow a relationship
between the groups when they become tables in a database.

9 Move to Second Normal Form.
Second Normal Form only applies to groups of data with composite keys –
that’s the good news. The bad news is that there will usually be at least one
group with a composite key. In our case, both our groups have composite
keys, so we need to examine both groups.

We are looking for non-key fields that are dependent upon only part of
the composite key, not the whole thing. If we find any, we need to split
them up. How do you know if a field is dependent upon another field or
not?

This is the crunch question in normalization.
The best way to think about this is to ask the question: What determines

what? For example, a worker’s pay_grade determines his or her pay. If we
know the pay_grade, we know the pay. So pay is dependent upon
pay_grade.

The box with the arrow pointing at it is dependent upon the box with the
arrow coming from it.

Here are some more examples: doctor_no determines doctor_name and
doctor_address. If we know the doctor number, we know the doctor’s
name and address. So doctor_name and doctor_address are dependent
upon doctor_no.

Car_registration_no determines car_model, car_colour and engine_
size. If we know the registration number of a car, we will know the model,
colour and engine size. So they are dependent upon car_registration.

It gets a little more complicated when a field is dependent upon a
number of other fields. For example, in a university or college:
course_name, date and class_time will determine room_no. You will have
to know all three of the course name, the date and the time of the class, in
order to know which room to go to. So room_no is dependent upon
course_name, date and class_time combined.

120 Systems analysis: a beginner’s guide

pay_grade pay

doctor_no doctor_name

doctor_address

So let’s have another look at our current table (7.7). Remember, we’re
interested in any non-key fields that might be dependent upon only a part
of the composite key.

Let’s look at the first group, the one with StartTime and EntranceFee as its
non-key fields. We’ll take one field at a time. For the field StartTime, do we
need to know both EventDate and EventName in order to determine
StartTime, bearing in mind there might be more than one event on a partic-
ular date? Well, we would certainly need to know the EventName in order to
find out what time it started. But do we also need to know the date? Yes,
because there might be many events with the same name (e.g. Dan Pickles on
Spoons), but they might not have the same start times. We need to know
which particular Dan Pickles on Spoons, i.e. the EventDate, in order to be sure
of the start time. Knowing the EventDate by itself would be sufficient as long
as there is never more than one event on a particular date. But let’s assume
there might be more than one. So, we need to know both fields in order to
determine StartTime. This means it is dependent upon the whole key.

Now, EntranceFee; it’s pretty much the same as StartTime. We would
need to know both the EventDate and the EventName in order to be sure of
the EntranceFee. So EntranceFee is dependent upon the whole key too.

So both our non-key fields are dependent upon the whole key. The data is
now in Second Normal Form and our table looks like Table 7.8.

That leaves us with the other group: EventDate, EventName and
SpecialPoint. Well, they are all part of the key, so there are no non-key fields
to worry about. Fantastic! Who said normalization was difficult? So, we
just move them across into the Second Normal Form column (Table 7.9).

Normalization 121

Data structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
StartTime
EntranceFee
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

Table 7.8 Forthcoming Events List 2NF (partly done).

date

class_time

course_name

room_no

10 Move to Third Normal Form.
This one applies to just non-key fields. We have to check to see if any non-
key fields are dependent upon another non-key field rather than on the key.
If there are any like this, we need to split them away to form a new group.
We will choose a key for this new group and leave a copy of this key in the
old group. This forms a link between the two groups.

Looking at our table, there is only one candidate. For a start, the second
group (EventDate, EventName and SpecialPoint) contain no non-key
fields, so we can forget about that group. The first group needs looking at,
though, since there are two non-key fields in there (StartTime and
EntranceFee). We need to be sure that one of them is not dependent upon
the other. Well, is the EntranceFee determined by the start time? If we
know the start time, do we always know the entrance fee? No. Is the start
time determined by the entrance fee? No. They are both determined by the
key: EventDate and EventName.

So there is no problem here, we can simply move both our groups over to
the Third Normal Form column.

It is useful to give each group a name at this point, just so that we know
which group we are talking about. These may end up being the table names
in the final database. The final normalized table looks like Table 7.10.

122 Systems analysis: a beginner’s guide

Data structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
StartTime
EntranceFee
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

EVENT

SPECIAL
POINT

Table 7.10 Forthcoming Events List 3NF.

Data structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
StartTime
EntranceFee
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

EventDate
EventName
StartTime
EntranceFee

EventDate
EventName
SpecialPoint

Table 7.9 Forthcoming Events List 2NF.

11 Celebrate vigorously.
However, before you get too carried away, remember that we’ve only done
one form and there are a good few more to do.

The Swillbuckets Payment Slip, you may remember, looked like this:

This is fairly easy to normalize, so we’ll whiz through this one (Table 7.11).

This table shows all the fields on the Payment Slip with the exception of the
‘Net pay’ field. This can be ignored for the time being as it can be calculated by
subtracting the ‘deductions’ value from the ‘amount’ value. Any calculated
fields do not normally need to be included in the normalization process.

Next we need to find a key. There’s a bit of a problem here. Even if we had
every field as part of a composite key, we couldn’t be sure it would be
unique. We might have more than one payment slip created on the same
day, for the same artist (payee) for the same amount, with the same deduc-
tion etc. It’s unlikely, but far from impossible.

In this situation, rather than have a huge key which is not necessarily
unique, it’s best to invent a field which is unique. The obvious choice is

Normalization 123

Swillbuckets Payment Slip

Payment Date: 12/10/02 Deductions: £45 – damage to stage

Payee: Little and Lard Payment method: Cash

Fee: £75.00 Net pay: £30

Normalization

System: Swillbuckets

Form/Report: Payment Slip

Author: Kevin Bowman

Date: 20/6/03 Page 1 of 1 Draft/Final

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

PaymentDate

amount

deductions

payee

PayMethod

Table 7.11 Payment Slip UNF.

‘payment slip number’. This probably should have been on Jack’s form
anyway; he just didn’t think of it. He doesn’t like forms much and who can
blame him?

So let’s add ‘PayslipNo’ to our table and make it the key:

PayslipNo

PaymentDate

amount

deductions

payee

PayMethod

Simple Step 6 now requires us to identify repeating groups, so let’s see
what the data might look like in a table (Table 7.12).

There are no obvious problems of a repeating group nature. The only possi-
bility would be if we wanted to allow for the possibility that there might be
a number of deductions on a payslip. Deductions would then be a repeating
group. However, Jack simply requires a total figure for deductions, not a
detailed record.

Since there are no composite keys involved here, we can skip straight to
Second Normal Form. So the Normalization table would currently look like
Table 7.13.

124 Systems analysis: a beginner’s guide

PayslipNo PaymentDate amount deductions payee PayMethod

1 12/10/01 75.00 45.00 Little and Lard cash

2 15/12/01 90.00 0.00 Sharon Twain cheque

3 8/11/01 50.00 0.00 Tracey Beardmore cash

4 12/12/01 80.00 20.00 Jade Green cash

5 12/12/01 25.00 0.00 Gypsy Ky-Lee cash

Table 7.12 Payment Slip data.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

Table 7.13 Payment Slip 2NF.

TE
AM
 F
LY

Now we’re ready for Simple Step 10 – Move to Third Normal Form. This is
where we consider the non-key fields to see if they are dependent upon
other non-key fields rather than the key. If we find any that are dependent
upon other non-key fields, we will remove them into a separate group.

We need to look at each non-key field in turn. Let’s start with
PaymentDate. Does this field depend upon any of the other non-key fields?
Does it depend upon amount? If we knew the amount, would we always
know the payment date? No. If we knew the payee, would we always know
the payment date? No. We would need to know the specific payslip
(PayslipNo), in order to know the payment date.

If we go through each field in turn, we find that they all depend on the
key, PayslipNo, with one possible exception. Let’s just think about
PayMethod. It’s possible that each payee might have a particular method
for being paid. So Gypsy Ky-Lee might only accept cash, for example. So, it
could be argued that PayMethod depends upon payee.

If we decided that this was the case, we would take payee and
PayMethod and put them in a separate group, with payee as the key. A copy
of the key (payee) is left in the other group to act as a link, or foreign key. So
the Third Normal Form table would look like Table 7.14.

The little asterisk next to ‘payee’ in the top group shows that this is the link
field, or foreign key, as it is known.

Having done that, Jack Trout then informs us that some artistes, such as
Sharon Twain, aren’t bothered whether they get paid by cash, cheque or
free sherry, as long as they get paid. So, we would need to know the
‘PayslipNo’ after all in order to determine whether it was cash or cheque, or
free sherry at the bar. So ‘PayMethod’ is not dependent upon ‘payee’ in all
cases, it’s dependent upon the key after all.

So we need to hastily redraw our table and simply move the group across
from Second Normal Form to Third Normal Form (Table 7.15).

We’ll call this table ‘PAYMENT’, and that’s another form done.

Normalization 125

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee*

payee
PayMethod

Table 7.14 Payment Slip 3NF – provisional.

Now it’s time to consider the membership form. Just to remind you,
here’s what it looks like (Figure 7.5).

This form is filled in when a new member joins Swillbuckets. It’s a little
more complex than the last, so we’ll take it step by step. Let’s list all the
fields in the usual way (Table 7.16).

The next simple step requires us to identify a key field. We’re in luck
here, as Jack Trout has had the wisdom and foresight to include ‘Member-
ship No’ on his form. It’s called ‘MemberNo’ in our list of fields. Each
member will have a different number allocated to them, so each one is
unique. This makes it an ideal candidate for our key field. So without fur-
ther ado, let’s underline it (Table 7.17).

Now we’re looking for repeating groups. Let’s draw our table with some
sample data (Table 7.18).

126 Systems analysis: a beginner’s guide

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PayslipNo
PaymentDate
amount
deductions
payee
PayMethod

PAYMENT

Table 7.15 Payment Slip 3NF – final version.

Swillbuckets Membership Form

Name: Wilf Trotter Date: 20 November 2002

Address: Hag End Farm
Nether Bog
Muckthwaite
W. Yorks

Postcode: H34 2FT Date of birth: 12 January 1904

Member Type: Free Seconder: Josh Gitter

Interests: Brown water rafting
Coal sculpting
Reclaiming mine shafts

Level: Beginner
Expert
Expert

Do not write below this line or there will be trouble

For official use only

Member No: 5647 Fee: N/A

Figure 7.5
Membership form.

You can see the problem here. We have repeating groups caused by the
‘interest’ and ‘level’ fields. There are multiple values of these for each
‘MemberNo’ (the key). So we remove them into another group taking a
copy of the key with us. Table 7.19 shows the data in Second Normal Form.

Normalization 127

Normalization

System: Swillbuckets

Form/Report: Membership form

Author: Kevin Bowman

Date: 20/6/03 Page 1 of 1 Draft/Final

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

date

name

address

PostCode

DateOfBirth

type

seconder

interest

level

MemberNo

RegFee

Table 7.16 Membership form UNF.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
interest
level
RegFee

Table 7.17 Membership Form with key.

The next simple step is to identify a key for this new group. In this case,
we can identify a specific interest of a member if we know the member
number and the interest. We don’t need to know the level as well. So the
composite key would be: ‘MemberNo’ and ‘interest’ (Table 7.20).

You will doubtless have remembered that moving to Second Normal
Form requires us to examine only groups of data with composite keys. We
need to check if the non-key field, ‘level’, is dependent upon both of the key
fields in our second group. Do we have to know both the member number
and the interest in order to identify the level? Yes we do. So, level is
dependent upon both our key fields. We can move swiftly on through
Second Normal Form (Table 7.21).

The move to Third Normal Form requires us to look at the other group.
Here we are checking that non-key fields are not dependent upon other
non-key fields, but are dependent upon the key only.

128 Systems analysis: a beginner’s guide

Member
No

date name address PostCode DateOf
Birth

type seconder interest level RegFee

5647 20/11/99 Wilf
Trott

Hag End
Farm

H34 2FT 12/1/04 F Josh
Gitter

brown water
rafting

B n/a

coal sculpting E

mine shaft
reclaiming

E

1234 12/3/94 Harry
Babb

12 Park
St

H1 3GH 14/2/11 R Ewan
Spratt

street cleaning E £10

industrial
sewing

B

cheese shaping C

Table 7.18 Membership data.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
interest
level
RegFee

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

Table 7.19 Membership form 1NF.

The one possible candidate here is the ‘RegFee’ field. We need to know
how that is determined. Jack tells us that there are three possible fees.
Membership is free if the person is a pensioner when they join
Swillbuckets. This is denoted by an ‘F’ for free in the ‘Type’ field. Member-
ship is £10 if the person is unemployed when they join. This is denoted by
‘R’ for reduced in the ‘type’ field. Finally, membership is standard for
everyone else. The standard fee is £25.

This tells us that the ‘RegFee’ field is dependent upon the ‘type’ field. If
we know the type of membership – free, reduced or standard – we know the
fee. So we need to take the ‘type’ and ‘RegFee’ fields out of the group,
leaving a copy of the determinant field, ‘type’, behind. If we add the table
names, our form is now normalized (Table 7.22).

Normalization 129

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
interest
level
RegFee

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

Table 7.20 Membership form 1NF with keys.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
interest
level
RegFee

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

Table 7.21 Membership form 2NF.

The final form we’re going to consider from Swillbuckets is the Event
Booking Form. Jack Trout uses this form to store information about how a
booking is progressing. As soon as it’s confirmed in writing by the artiste,
Jack draws a ring round ‘Confirmed’ and moves it into a different shoebox.
Figure 7.6 shows a copy of the form.

Some of the information on this form is recorded elsewhere. You may
remember that EventName and EventDate are two of the fields in the first
form we looked at, the Forthcoming Events List, so we need to be careful
we’re not recording the same information twice. Fortunately, SSADM takes
care of this for us. Let’s start filling in our normalization form in the usual
way (Table 7.23).

130 Systems analysis: a beginner’s guide

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
interest
level
RegFee

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder
RegFee

MemberNo
interest
level

MemberNo
date
name
address
PostCode
DateOfBirth
type
seconder

type
RegFee

MemberNo
interest
level

MEMBER

MEMBER
TYPE

MEMBER
INTEREST

Table 7.22 Membership form normalized.

Swillbuckets Event Booking Form

Date of event: 12/12/02

Name of event: Dan Pickles on Spoons

Artiste: Dan Pickles Contact No: 2344556

Fee: £45 Status: Provisional/Confirmed

Special Requirements: 5 rounds of buttered toast
3 cups of tea
spare spoons

Signed: Jack Trout Date: 14/11/02

Figure 7.6
Event booking form.

The key looks like being a combination of EventName and EventDate just
as it was in the Forthcoming Events List. (Remember that we can’t just
have EventDate, as Jack might want to put on more than one event on a
particular day). However, this only works if there is only ever one artiste at
an event. We need to clarify this with Jack.

Jack informs us that at the moment he only has one artiste per event.
This is due to an unfortunate incident a few years ago. He booked Jade
Green and her Dancing Chihuahuas on the same bill as Leapy Len’s Flea
Circus. Apparently, the chihuahuas were soon dancing in a more frenzied
fashion than usual and the fleas were never seen again.

Having said that, Jack would still like the option of having more than one
act per event, so we have to allow for this possibility. This means that ‘art-
iste’ needs to be part of the composite key. Let’s have a look at the sort of
data we might get in tabular format (Table 7.24).

We can see that the special requirement field (SpecReq) is causing a
problem by forcing us to repeat the data for the other fields or leave blanks.
We need to remove this field along with a copy of the key in order to move
to First Normal Form (Table 7.25).

The key for this new group will be the key for the unnormalized data plus
SpecReq (Table 7.26).

Excellent. Now let’s move to Second Normal Form. We check to see if the
non-key fields are dependent upon the whole of the key. There is one field
that needs attention, the ContactNo field. It’s got nothing to do with
EventDate or EventName but everything to do with artiste. ContactNo is

Normalization 131

Normalization

System: Swillets

Form/Report: Event Booking form

Author: Kevin Bowman

Date: 20/9/03 Page 1 of 1 Draft/Final

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate

EventName

artiste

ContactNo

fee

status

SpecReq

BookDate

Table 7.23 Event booking form UNF.

132 Systems analysis: a beginner’s guide

EventDate EventName artiste ContactNo fee status SpecReq BookDate

12/11/02 Slide show with
Eddie Jones

Eddie Jones 2242343 £50 C projector 24/10/02

12/12/02 Dan Pickles on
spoons

Dan Pickles 2344556 £45 C 5 rounds of
buttered toast

14/11/02

3 cups of tea

spare spoons

24/12/02 Christmas Party Bobby Crash 2343454 £85 P 10/11/02

31/12/02 New Year Do Sharon Twain 2657378 £75 C extra sherry 23/10/02

room for the night

ambulance on
standby

Table 7.24 Event booking data.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
artiste
ContactNo
fee
status
SpecReq
BookDate

EventDate
EventName
artiste
ContactNo
fee
status
BookDate

EventDate
EventName
artiste
SpecReq

Table 7.25 Event booking data 1NF.

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
artiste
ContactNo
fee
status
SpecReq
BookDate

EventDate
EventName
artiste
ContactNo
fee
status
BookDate

EventDate
EventName
artiste
SpecReq

Table 7.26 Event booking form 1NF with key.

determined by artiste alone. So we need to place artiste and ContactNo into
a separate group leaving a copy of the determinant field, artiste behind
(Table 7.27).

All the other non-key fields are dependent upon the whole of the key, so we
don’t need any more changes for Second Normal Form.

Third Normal Form requires us to check that there are no non-key fields
dependent upon other non-key fields. So let’s have a look. The bottom two
groups aren’t affected because there is only one non-key field in each
group.

In the top group, fee, status and BookDate are all dependent upon the
key not each other, so there’s no problem here. Straight into Third Normal
Form (Table 7.28) and we’ve almost finished normalizing our four forms.
We’ll give the groups of data names and move on to the final task of
normalization.

7.2 Rationalization
This final task is called rationalization and is very easy. We’ve been gath-
ering data from various forms, and in the real world there would be many
more than the four we’ve looked at here. So we would end up with a large
number of normalized groups. Rationalization attempts to merge some of
these together, so we haven’t got quite so many.

The idea is that if any of our groups have the same keys, then really they
should be in the same group. So we need to see our groups and their keys.
Below are the data groups, or relations, obtained from each form.

Normalization 133

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
artiste
ContactNo
fee
status
SpecReq
BookDate

EventDate
EventName
artiste
ContactNo
fee
status
BookDate

EventDate
EventName
artiste
SpecReq

EventDate
EventName
artiste
fee
status
BookDate

artiste
ContactNo

EventDate
EventName
artiste
SpecReq

Table 7.27 Event booking form 2NF.

Forthcoming Events List
EVENT SPECIALPOINT
EventDate *EventDate
EventName *EventName
StartTime SpecialPoint
EntranceFee

Payment Slip
PAYMENT
PayslipNo
PaymentDate
amount
deduction
*payee
PayMethod

Membership Form
MEMBER MEMBER TYPE MEMBER INTEREST
MemberNo type *MemberNo
date RegFee interest
name level
address
PostCode
DateOfBirth
*type
seconder

134 Systems analysis: a beginner’s guide

Data Structure:

UNF 1NF 2NF 3NF TABLE NAME

EventDate
EventName
artiste
ContactNo
fee
status
SpecReq
BookDate

EventDate
EventName
artiste
ContactNo
fee
status
BookDate

EventDate
EventName
artiste
SpecReq

EventDate
EventName
artiste
fee
status
BookDate

artiste
ContactNo

EventDate
EventName
artiste
SpecReq

EventDate
EventName
artiste
fee
status
BookDate

artiste
ContactNo

EventDate
EventName
artiste
SpecReq

BOOKING

ARTISTE

ARTISTE
REQ

Table 7.28 Event booking form normalized.

Event Booking Form
BOOKING ARTISTE ARTISTE REQS
*EventDate artiste EventDate
*EventName ContactNo EventName
*artiste *artiste
fee SpecReq
status
BookDate

You might be tempted to think that because EventName appears in a
number of keys, these groups can be merged. However, the whole key has to
be identical for merging to take place.

It appears that there are no tables which share the same key, so no
merging can take place. If we had normalized every form at Swillbuckets,
however, it is likely there would have been some rationalization required.

Once rationalization is complete, we are in a position to compare the
Required Logical Entity Model, completed in the last chapter (Figure 6.4)
with the relations produced by normalization. Any enhancements required
will now need to be built into the final entity model.

Just from the forms looked at above, there are a number of enhance-
ments identified by normalization. Instead of simply having a MEMBER
table, with all the data concerning members thrown in, we now see the
need to have three tables: MEMBER, MEMBER TYPE and MEMBER
INTEREST.

Similarly, there is a need to hold information about the requirements of
artistes which we have called ARTISTE REQ and their payment which has
resulted in the PAYMENT table. Also, the SPECIAL POINT entity has been
added to store any special points about a particular event.

The process of rationalization would require us to merge together the
FOOD ORDER and DRINK ORDER tables as, logically, they both have the
same key – Order No.

Bearing these enhancements in mind, we can rebuild the Swillbuckets
entity model.

7.3 Rebuild the entity model
The model must be remodelled once again, to take into account the changes
identified by normalization (Figure 7.7).

A number of issues regarding attributes have been resolved. For
example, the key for EVENT has been finalized as EventNo as in the nor-
malized tables, not a composite key of EventName and EventDate. We
could have kept these two attributes as the primary key, but it is easier to
use EventNo. In this situation where there is more than one possible pri-
mary key, the keys concerned are called candidate keys. As long as we
remember to use EventNo as the primary key at all times, there will be no
problem.

Normalization 135

One or two synonyms have been identified. These are attributes with dif-
ferent names, but which are logically the same. For example, Payee in
PAYMENT is the same as Artiste, which is fortunate as Payee is our link or
foreign key. We could change Payee to Artiste or, if it’s clearer, we can keep
it as Payee.

7.4 Entity/function matrix
So far we have modelled the processes or functions using DFDs and the
data structure using entity models for the required system. A third (and
final) view of the new system is required to consider how the system will be

136 Systems analysis: a beginner’s guide

ARTISTE

Artiste
RealName
ArtisteAddress
Tel_home
A_Mobile

MEMBER

MemberNo
MemberName
MemberAddress
PostCode
D_O_B
*Type
PhoneNo
M_Date
Seconder

DISH

DishName
Price

ORDER

OrderNo
OrderDate
*SupplierNo
DeliveryDate

SUPPLIER

SupplierNo
SupplierName
S_Address
S_Tel
S_ContactName

INGREDIENT

IngredientNo
IngredientName
I_QuantityIinStock
I_ReorderLevel

EVENT

EventNo
EventName
Date
*DishName
StartTime
EntranceFee

DISH
DETAILS

*DishName
*IngredientNo
IngredientQuantity

FOOD
ORDER
LINE

*OrderNo
*IngredientNo
F_Quantity
F_Price

DRINK
ORDER
LINE

*OrderNo
*DrinkName
D_Quantity
D_Price

DRINK

DrinkName
D_QuantityInStock
D_ReorderLevel
D_Type

BOOKING

BookingNo
*EventNo
*Artiste
Status
BookDate
ArtisteFee

MEMBER
INTEREST

*MemberNo
Interest
Level

TYPE

Type
RegFee

ARTISTE
REQ

*Artiste
SpecialReq

PAYMENT

PayslipNo
*Payee
Amount
PayMethod
PayDate
Deductions

SPECIAL
POINT

*EventNo
SpecialPoint

Figure 7.7
Swillbuckets entity
model after
normalization.

affected by time. Our DFDs tell us what events or functions are likely to
occur. Our entity model tells us what the data looks like. We now need to
check that all the events can be accommodated by our data model. It may
be that we have missed some events, or functions, from our DFDs, in which
case we will need to update them. Or we may have missed a data item
needed by a function. The entity function matrix allows us to check this.

The matrix pulls together the two previous views of the system and
allows us to check that each entity has a beginning and an end, i.e. a func-
tion which creates it and a function which deletes it or archives it. The
ability to delete an entity is particularly important; otherwise entities will
carry on expanding forever. Similarly, we should check that each entity is
used once it’s in the system. After all, there’s no point in collecting infor-
mation about, say, drugs, if there isn’t a means in the system to use the
information. We don’t want it just sitting around doing nothing. We have
receptionists for that.

So we need to check if each entity is born, has a full and purposeful life,
and then dies.

Creating an entity/function matrix is simple. Here are the steps.

7.4.1 Simple steps in creating an entity/function matrix

1 List the entities and functions.
Create the matrix on a piece of paper by listing all the entities down the
side and all the functions across the top. You may need a large piece of
paper to do this.

2 Create a grid.
Draw lines to divide the paper up into cells.

3 Fill in the grid.
This is done by looking at the DFDs and entering one of these possible
options: I (Insert), R (Read), M (Modify), D (Delete) or A (Archive). Cells
in the grid can be left blank if the function has no effect on the entity.

4 Check that each row (entity) has a full life.
In other words, it should be have an I, at least one R or M and a D or an A.
Often there are no functions in the DFDs to create an entity or to delete the
entity. These functions will need to be added to the DFDs. Occasionally, an
entity will have more than one I. This needs looking at, as it implies that
the entity is created more than once by different functions. There may be
inconsistencies here.

5 Update the DFDs
There will normally be some changes required to the DFDs as a result of
this process.

Table 7.29 is a section from an entity function matrix for the Medical
Centre (not all functions and entities are shown).

In the Medical Centre, we can see that nothing is ever deleted apart from
when an appointment is cancelled. We would need to discuss with Betty

Normalization 137

and George a strategy for deleting records. Obviously we would want to
keep patient records until the patient dies or leaves the Centre. We may be
required to archive them for a period of time after death in case there are
any queries about treatment. Perish the thought. These functions will need
to be added to the required DFDs so that they appear in the final system.

It might also be noted that the Doctor entity is never inserted. This may
not be viewed as a problem since it will happen only rarely, but the new
system must allow us to perform this function.

Summary
We have focused very much on normalization in this chapter. This is
because it is a crucial part of systems analysis and is relatively difficult to
learn. This completes the specification of requirements and it now becomes
a simple matter of sorting out a few physical design issues before we can
start implementing the new system. The next chapter looks at the technical
and physical design techniques required.

Exercises
7.1 Normalize the following data taken from a student assessment form,
bearing in mind that students will take a number of modules:

Student Number
Student Name
Student Address

138 Systems analysis: a beginner’s guide

Function

Entity 1.
1

R
eg

is
te

r
Pa

ti
en

t

1.
2.

A
llo

ca
te

p
at

ie
n

t
to

d
o

ct
o

r

1.
3

In
fo

rm
G

PC

2.
1

.C
re

at
e

ap
p

o
in

tm
en

t

2.
2

A
m

en
d

ap
p

o
in

tm
en

t

2.
3

C
an

ce
l

ap
p

o
in

tm
en

t

3.
1

R
ec

ei
ve

p
at

ie
n

t
fo

r
ap

p
o

in
tm

en
t

3.
2

D
ia

g
n

o
se

ill
n

es
s

o
r

re
fe

r

3.
3

Pr
es

cr
ib

e
tr

ea
tm

en
t

3.
4

C
re

at
e

re
p

ea
t

p
re

sc
ri

p
ti

o
n

3.
5

R
ec

ei
ve

an
d

ch
ec

k
d

is
co

un
t

Doctor

Appointment I R/M D R/M

Patient I M R R/M R

Prescription I M R/M

Referral I

Drug R

Table 7.29 Entity/function matrix – Medical Centre.

Module Code
Module Name
Module Mark
Module Grade

7.2 Normalize this form:

Purchase Order (Customer copy) Order: 345

To:
Jack Trout
Swillbuckets Club
West Yorkshire

8/12/2002

From:
Cooper’s Brewery
15 Brewery St
Fillem

Product No Name Quantity Price

10 Babycham 400 1.50

25 Old Firtle 25 30.00

48 Egg nog 20 2.50

28 Red Nose bitter 30 25.00

Total cost: 3536.00

Normalization 139

C H A P T E R 8
Technical and
Physical Design

8.1 Technical design and physical design
The technical design involves making any final decisions concerning the
technical environment. We have already decided on the broad components
of our system in both case studies. However, we now need to consider
details like the exact specification of the PCs we will need. Which vendor
should we choose to buy from? Can the required software be bought off the
shelf? Or will it need developing? We will certainly need to discuss these
issues with suppliers of equipment before reaching any decisions.

In a large system, it may be necessary to compile a list of options, much
as we did for the Business Systems Options in Chapter 5. The same process
of identifying the options, analysing costs and benefits and choosing the
best option would apply.

Some organizations have detailed information systems policies that
might well include service level agreements. Service level agreements
specify the level of service that users can expect from the information sys-
tems. In this kind of environment, we need to be sure that our technical
environment can meet the demands of the agreements.

The main aim of physical design is to design the physical system such
that the performance is acceptable to the user and data integrity and secu-
rity are guaranteed. In order to create the design, the analyst will need:

� the normalized tables

� attribute details

� interface requirements

� data volume estimates

� service level requirements

� security needs

140

We already have much of this information but have not, so far, consid-
ered the need to ensure that we have sufficient storage capacity in our
system to store all the data. In order to be sure of this, we will have to calcu-
late roughly how much storage space our system will require in the foresee-
able future. This technique is called volumetrics and will be described
shortly.

The main areas to be considered in physical design are:

� the performance of the system

� the user friendliness of the system

� response times

� security aspects

� accessibility

� the flexibility of the system – it’s ability to develop as required

It is not difficult to imagine the impact on the user if any one of these areas
is not functioning properly.

Very often it is impossible to make an informed choice of technical
options until we have considered the physical design of our proposed
system. These two activities must, to some extent, run in parallel rather
than occur sequentially.

8.1.1 Design detailed user interface

A more detailed look at the user interface is now required. We have already
specified some general principles in Chapter 6, but there are still some
important decisions to make. As mentioned earlier, the key to a successful
interface design is consistency. A set of rules or standards for the interface
must be decided upon and used throughout. This makes the system easy to
learn and gives it an intuitive feel. If, for example, the ‘Print’ button is situ-
ated in the bottom left-hand corner in one screen, it must be situated there
in all the others, so that the users instinctively know where it is. A number
of industry standards for interface design already exist and it seems sen-
sible to adopt one of these.

While colour schemes should be consistent too, there may be some room
for flexibility here. The user may wish to have different colours to denote
different parts of the system. For example, Jack Trout might find it helpful
to have a background of insipid puce for all the artiste screens and one of
bile green for the food-related screens. This might add to the intuitive
nature of the system. However, whatever colour scheme is used, the first
priority is to make sure the text is clear and readable. That usually means
dark text on a light background.

Readability is not improved by flashing purple labels on a black
background.

On the subject of text, the choice of fonts is important. Lower-case serif
fonts are the easiest to read. Examples of serif fonts are Times Roman and

Technical and Physical Design 141

Garamond. They have little hooks on the letters which allow the user’s eye
to skim across them quickly and easily. Avoid using italics and obscure or
childish fonts.

The layout of the screens needs careful thought. There is a balance to be
achieved between having all the necessary information available to the
user on one screen and making the screen too cluttered. Screens should not
be overloaded with navigation buttons and sub-forms. It may be necessary
to create an additional screen if one screen is overloaded.

A good idea is to have an ‘Escape to Main Menu’ button on each key
screen so that if users get confused, they have a route back to the safe
haven which is the opening screen. Try to make this opening screen, the
main menu, as welcoming as possible. This might be done with a welcome
message, a logo or banner and use of colour.

8.1.2 Prototyping

Prototyping has developed as a response to some of the problems identified
with SSADM and similar structured systems analysis methodologies.
These problems are:

� implementation is delayed

� users are resistant

� the process takes too long

� diagrams are misunderstood

Prototyping attempts to solve these problems by the building of a cut-
down version of the system as part of the design process. This allows the
user to evaluate one or more prototypes and become more involved in the
process. This also saves time by avoiding the need for lots of diagrams.

It is often a good idea to prototype one or two different user interfaces at
this point in order to involve the user and to establish some clear prefer-
ences. The design of the user interface will have implications for the choice
of technical environment. For example, one of our prototype interfaces
might require a colour monitor to be effective. However, we might have
decided on black and white monitors as a technical systems option. Should
the preferred interface design drive the choice of hardware or should the
choice of hardware drive the interface design? We will have to make this
kind of awkward decision at this stage.

Prototypes can be generated very quickly using various high-level tools
such as application generators. Since little time needs investing in them,
they can be scrapped or radically altered if necessary without significant
costs. They allow the user to visualize a range of options, to use them and to
evaluate them. Usually a hybrid design is the preferred option after
evaluation.

The analyst must be careful not to raise expectations unrealistically,
however. Having seen the analyst generate a prototype interface in a couple

142 Systems analysis: a beginner’s guide

of hours, the user may well expect the final system to be delivered in a
couple of days. If so, the user is likely to be grossly disappointed, as there is
still considerable work to do. That aside, prototyping is usually a very
worthwhile technique providing high-quality feedback for the analyst.

8.1.3 Simple steps in prototyping

1 Discuss the options for screen designs with users.
We will need to be aware of any constraints and make the user aware of the
scope of prototyping.

2 Build a prototype – quickly.
The prototype will need to take into account the chosen Business System
Option, the entity model and the DFDs.

3 Demonstrate the prototype.
It will be necessary to set up this session carefully. The prototype must be
installed on the user’s workstation in advance and tested with sample
data.

4 Evaluate the prototype.
This must be done in consultation with the user. The prototype may go
straight in the bin, or there may be elements in it that the user likes. Either
way, the analyst will have learnt something.

5 Build another prototype.
Hopefully, this is the end of the prototyping stage, but be prepared for
another trip round the loop.

8.1.4 Interface flow diagrams

The ability to navigate easily between screens is another key aim of inter-
face design. Ideally, the design should follow the likely flow of work as the
user uses the system. This will give the user confidence in the system and
increase efficiency. This aim can be achieved by the use of interface flow
diagrams and by consideration of the required entity model, to identify key
relationships. These diagrams in combination with prototyping provide an
effective tool for the analyst.

The diagrams model the possible movement between screens available to
the user. They provide an overview of the structure of the interface. Figure
8.1 is an example of one for part of the Medical Centre.

This shows the appointments sub-system and some related areas. Since
APPOINTMENT has relationships with PATIENT and DOCTOR on the
entity model, we would expect to see a similar set of relationships in the
interface design. Clearly, there are a number of other ways in which the
navigation around the system could be arranged; hence the need for proto-
type interfaces to aid selection.

Technical and Physical Design 143

8.2 Database design
Most systems will require the creation of a relational database – certainly
our case study systems will. A relational database is defined by Connolly
and Begg (1999) as ‘a collection of normalized relations’. We will have
spent considerable time and energy in designing these ‘normalized rela-
tions’ for our new system. Techniques such as normalization may have left
us feeling weak and confused. However, it’s all been worth it, because we
can now start implementing our database.

Before we set up the tables in our Database Management System (such
as Access or Oracle), we need to plan the detailed field formats. Broadly
speaking, we will need to do the following:

� Each table (or relation) identified through entity modelling and normal-
ization (i.e. on our required entity model) will become a table in our
database.

� Each attribute on our required entity model will become a field in our
database.

144 Systems analysis: a beginner’s guide

Main menu

Patient
search

click
search

button

Patient list

choose
p

atient
Patient
screen

Appointment
search

Appointment
list

choose
ap

p
ointm

ent

Appointment
screen

make
appointment

click
search

button

Doctor
list

choose
doctor

Doctor
screen

view work
rota Work rota

screen

click
w

ork
rota

button
choose

patie
nt butto

n
choose doctor button

choose
ap

p
ointm

ent
button

ba
ck

to
m

ai
n

m
en

u

back
to

m
ain

m
enu

Figure 8.1
Interface design
diagram.

� Primary keys and foreign keys on our entity model will be translated onto
our database structure, checking that foreign keys are at the ‘many’ end
of the relationships.

� Each attribute will require a name, a field length, a data type (usually
Text or Number) and possibly an input mask and validation rules (see
below). Data integrity must be promoted through validation rules built
into the format of the field.

The promotion of data integrity can take a number of forms. We can, for
example, limit the range of possible inputs into a field. The Medical Centre
could set the range of permissible inputs into ‘Patient Age’ to 0–120. In the
case of Dr McLean’s patients, that could be 0–65 without much danger of
causing problems. Input masks ensure that data is entered in a specified
format. This is particularly important in fields such as ‘Postcode’.

Some DBMS allow the use of combo boxes in the design of the interface.
These allow the user to choose from a list of prescribed choices. The chosen
option is then entered into the field automatically so there is no possibility
of error. This can only be used when there are only a limited number of pos-
sible entries, such as ‘Doctor Name’.

8.2.1 Indexes

We will also need to design the indexes for our database. Particular fields,
or combinations of fields, can be indexed. This means that an index file is
kept, by the DBMS, recording the location of specific records and the order
in which they need to be presented. These records can then be quickly
located and presented in the particular order specified. For example, we
could set up an index to list patients alphabetically by their surnames. This
would allow the DBMS to locate and order the records much more quickly
than if no such index existed.

We must consider very carefully, in consultation with the user, exactly
what indexes need to be set up. Most modern DBMS systems will automat-
ically produce an index for each table based on the primary key of the table.
Additional indexes will depend upon what queries the user anticipates
having to deal with regularly and what reports we have already identified
in the system requirements. Indexes can take up considerable space, how-
ever, so the analyst should take care that the index is really necessary.

8.3 Access and security
In more complex systems with a number of users having access to the
system, it may well be that users will only be able to access certain parts of
the system. For example, when Freddo Smitho logs on to the system, we
might allow him to order ingredients or add dishes, but we certainly would
not want him dealing with the artistes, particularly Sharon Twain. As a

Technical and Physical Design 145

result, we would need to design the interface available to each category of
user. In large systems there might be many different categories of user,
each with a different view of the system. The different views will need to be
specified through separate interface design diagrams. These different
views will then need to be built into the physical design of the system.

This is normally achieved by using the DBMS security features such as
privileges and views. Privileges allow categories of users to perform certain
operations. Users might be allowed to read or query information in a table,
but not be allowed to update or delete information. It is common sense not
to allow users access to more information than they need. Similarly, only a
very few users should be allowed to update or delete information.

8.4 Volumetrics
As mentioned above, before we can make final decisions on hardware and
storage requirements, we need to have some idea of the volume of data
likely to be generated by our system. The likely volumes can be modelled
using the entities on the entity model. The average number of occurrences
of each entity is marked inside the entity box. So, if we have 15,000
patients in our system, we will write 15000 inside the PATIENT box. On
average, each patient might have had two referrals, so we write 2 on the
relationship with REFERRAL. This gives us 15,000 × 2 referrals on average,
so we would write 30000 in the REFERRAL entity box. Figure 8.2 shows a
model for the Medical Centre.

This diagram shows us the average number of occurrences for each entity
during a specific time period. The time period is the life of the entity before
it is deleted or archived. This will be determined by the Database Adminis-
trator and will vary from entity to entity. For example, we would expect to
keep the patient information for many years before archiving or deleting.
However, the work rota information will quickly become obsolete and can
be deleted soon after the work has been done.

Figure 8.2 only estimates the number of records we can expect in a table
at any one time; it does not tell us the size of each record. In order to
acquire that information, we need to consider the size of each field in the
table and expand our calculations accordingly. Figure 8.3 shows part of a
spreadsheet which might be used to make the final calculations. This will
give us a logical volumetric size of the database. In practice, databases are
usually larger than the predicted size.

Note that the ‘Size’ data is taken from the format of the fields and the
‘Volume’ data is taken from the volumetrics diagram (Figure 8.2). The two
tables, PATIENT and TREATMENT, will generate around 30 Mbyte of data
in this example. A figure for all the entities in the system will be required
and this will give us a good idea as to whether our planned hardware will
be able to cope with the storage requirements.

146 Systems analysis: a beginner’s guide

8.5 Documentation
This is an area which tends to get ignored by many analysts. Having
laboured over the analysis and design and having produced the perfect
blueprint for the perfect system, the last thing anyone feels like doing is
writing up the documentation. However, the documentation is the user’s
number one support tool. As a minimum, it should consist of:

Technical and Physical Design 147

PATIENT

15000

APPOINTMENT

75000

PRESCRIPTION

50000

SUPPLIER

25

DOCTOR/
NURSE

5

ORDER

500

PRESCRIPTION
LINE

150000

TREATMENT

300000

REFERRAL
30000

WORK ROTA

500

DRUG

1500

ORDER LINE

2500

EXPENSES

500

DRUG
COMPANY

30

2
6000

20

5
15000

100 100

10000

3

50

100

100

5

20

10

Figure 8.2
Volumetrics diagram.

� a preliminary user guide

� a technical guide

� online help

� users may require a guide to the daily or weekly operations required

The user guide should be a clear set of instructions showing the user how
to use the system. It must avoid technical language and jargon. It should be
a training manual as well as a reference guide. Key sections will be the
functions of the system and how to use the interface.

The online help should contain information about all the key procedures
and components in the system. There could be information about the pos-
sible error messages and available reports and queries. This information
should be indexed and also contain search facilities.

The technical guide should contain the data dictionary where all the data
is defined; DFDs; entity models; system architecture information; and pro-
totype information. This guide will be used primarily by the technical staff
who will operate the system. In small organizations, there may not be any
technical staff. In this case, the guide will have to be fairly general and may
be included as a section in the user guide.

148 Systems analysis: a beginner’s guide

PATIENT Type Size Volume Total (k)

PatientNo Number 6 15000 90

P_FirstName Text 15 15000 225

P_Surname Text 20 15000 300

P_Address Text 50 15000 750

P_TelHome Text 15 15000 225

P_Mobile Text 15 15000 225

P_Type Text 5 15000 75

P_DateOfBirth Date 8 15000 120

TREATMENT

RecordNo Number 8 300000 2400

PatientNo Number 6 300000 1800

Date Date 8 300000 2400

Condition Text 20 300000 6000

PrescriptionNo Number 10 300000 3000

Outcome Text 40 300000 12000

Grand Total = 29520 kbyte

or 29.5 Mbyte

Figure 8.3
Spreadsheet showing
volumetric data for
two tables.

We are now in a position to hand over our designs to the programmer to
develop and test the required code. Our job as a systems analyst is over and
we would expect to see large amounts of money appearing imminently in
our bank balance.

8.6 CASE tools
Computer-Assisted Systems Engineering (CASE) tools were originally
developed in response to a number of problems experienced by systems
analysts and their clients. Primarily, these problems can be summarized as:
systems were expensive and didn’t work. Apart from that, they were fine.
It’s not hard to see how the process of analysis and design can be tedious,
slow and expensive. The phrase ‘paralysis by analysis’ is often used. CASE
tools are an attempt to speed up the process and make it less prone to error.

CASE tools can be used to support many aspects of systems engineering.
However, there are a large number of tools available which specifically sup-
port structured systems analysis and design techniques and methodologies.

CASE tools allow the analyst to draw DFDs and entity models which can
be easily updated and amended as the need arises. This can save many
hours of redrawing diagrams. They will also validate the diagrams to make
sure that no errors of consistency have been made. For example, they will
ensure that each DFD process box has at least one input and at least one
output. Similarly, they will check that DFDs across different levels are con-
sistent. As a result, CASE tools, once mastered, are likely to improve both
the efficiency and the effectiveness of the analyst.

Many modern CASE tools will even generate required code from designs,
particularly in the areas of prototyping, report generation and query
design. The really good news is that they will generate reams of documen-
tation too, but this comes with a serious health warning and will need
careful editing.

Other features of CASE tools are:

� Support for reusable code

� Support for project groups

� Project management information and support

� Links to external products such as databases

� Pseudo-code generation

� Re-engineering of existing systems

There are four different types of CASE tool:

� Upper CASE
These are used in the strategic planning of information systems. They pro-
vide a structure for the planning phase of the systems life cycle.

Technical and Physical Design 149

� Middle CASE
These are used during the analysis and design phase of projects and tend to
be the tools analysts mean when they refer to CASE tools.

� Lower CASE
These are used by programmers during the implementation and mainte-
nance phases of projects to help develop and test code.

� Integrated CASE tools
These tools integrate the previous three into one tool. So they cover upper,
middle and lower CASE tools.

It is worth bearing in mind that most time is expended on maintenance
in the systems development life cycle. This is because new systems often
have many errors or omissions which need correcting. This is classed as
corrective maintenance.

Other types of maintenance might be adaptive maintenance, which
requires changes to be made to allow the system to adapt to new technolo-
gies in the external environment; and perfective maintenance, which
involves changing the system in response to changing user requirements.
Maintenance can be very expensive, so it is important to try to minimize
the need for it. This can only be done by careful and flexible design.

The use of CASE tools ought to pick up or eradicate many of these poten-
tial problems before the system is implemented. Analysts get tired, dispir-
ited, bored, subversive and bad-tempered (often all at the same time),
whereas CASE tools do not. They can automate much of the tedious stuff,
leaving the analyst free to chew over that sticky design issue, or go for a
game of golf.

Before one gets too carried away, it should not be forgotten that CASE
tools do not guarantee a high-quality system. That remains the analyst’s
responsibility, and CASE tools will not put users at ease or tease out hidden
requirements. They can be tricky to learn and use, but modern analysts will
be expected to have one or two in their tool kit.

Summary
The system design is now complete. Some very general comments have
been made about technical and physical design, but much will depend
upon what hardware and software is chosen. It is now time to implement
and test the system, but that is beyond the scope of this book.

Exercise
8.1 Design an interface for Freddo Smitho at Swillbuckets. He needs to be
able to see and update information about dishes, ingredients, recipes and
events. Use the entity model in Figure 6.4 to help you.

150 Systems analysis: a beginner’s guide

And finally...
Readers will be pleased to hear that Jack Trout is alive and well and has just
opened the ‘Cold Turkey Health Club’ (Motto: ‘Vim and Vigour’) just down
the road from Swillbuckets. Members can recharge their batteries while
enjoying a relaxing massage from Phyllis Haddon. In this way, members
pay him to make them ill at Swillbuckets and then pay him again to make
them better at the health club. This is an iterative process.

Sadly, there is not such good news of the Medical Centre. A GPC investi-
gation, prompted by an incorrect diagnosis of bubonic plague for a
chickenpox sufferer, resulted in the discovery that Dr McLean was not a
doctor after all. He just happened to possess a white coat and illegible
handwriting. After being struck off, his last known whereabouts were as a
consultant in a health club in West Yorkshire....

Technical and Physical Design 151

A P P E N D I X

Teaching case
study – North
Sea Ferries

TITLE: NSF Project Information Document

Project Background
� North Sea Ferries is a small independent ferry operator.

� North Sea Ferries Head Office is at Hull.

� They have booking terminals at Hull, Amsterdam, Rotterdam and
Zeebrugge.

� The company runs passenger and vehicle ferry services between Hull and
the three other ports.

� The company owns four RORO (Roll On, Roll Off) ferries and one cata-
maran. Sometimes at busy times the company will charter other boats.
The company may also have to do this if one of their own boats is being
maintained or repaired.

� All crossings run on a regular timetable.

� Ferries usually carry a mixture of people on business, people on holiday
and freight.

� At the moment the booking system is a manual one.

� Business has increased over the past few years, so the company feels it
should start to use computerized systems.

� The company knows that most other ferry companies use computers.

152

� The company has problems with the system it is using now, and these
problems will get worse as business increases.

Earlier this year, the company decided to have its existing systems for
booking, issuing tickets and embarkation analysed. If this analysis is suc-
cessful it could lead to the design and implementation of a computerized
system.

Project Team – Terms of Reference

As a development team, your terms of reference are to:

� Carefully analyse the existing systems for booking, issuing tickets and
embarkation control.

� Find out what the problems are at the moment with these systems.

� Find out what the new requirements are.

� Design a new system to meet the requirements.

Document this using Structured Systems Analysis and Design Method
standards.

NSF Project Briefing Document

Company Overview – Crossing Bookings

NSF started off as a family firm. Many of the structures and procedures
that the company has now have developed from this family origin.

The company has a number of separate functions involved with ferry
bookings:

� The Central Booking Office at Hull deals with bookings and also with
customer enquiries. So here staff deal with enquiries, reserve tickets for
customers, make bookings for customers and provide general crossing
information.

� The Crossing Desks are at the ports. Here, the staff deal with crossing
queries, take last minute bookings, issue tickets, take cash payments and
issue boarding passes.

� The Payment Control Department checks all payments and authorizes
and issues tickets.

When bookings are made, all the details are recorded on a crossing
booking form. This form is created at the desk where the booking is made.
It is the main record of each booking.

The booking form is then sent from the desk where the booking is made,
over to the central booking office. From the central booking office it is then
sent to the payments control area for them to check the payment and issue
the ticket. Finally, the form goes back to the central booking office where it

Appendix 153

is put in a file. The form is kept in the file for reference in the future and
also to analyse places available on ferries.

Whenever a booking is made, the customers can pay by cash, credit card,
or on account. If a customer has an account, they can put the amount on
their account and they will receive an invoice later.

Some members of staff have been interviewed. Transcripts of these inter-
views are available.

154 Systems analysis: a beginner’s guide

Appendix 155

Transcript of Interview with Booking Office
Manager
The central booking office in Hull is open from 9 to 5, Monday
to Friday. At all other times the answering machine is switched
on. Bookings can be made on the answering machine and the
details are confirmed with the customer later.

For normal crossings, customers can book 6 months ahead.
The booking office has a record card for every crossing. All
bookings are recorded on these cards.

The cards are stored in order so that the crossings that will
be soonest are at the front of the drawer and the crossings that
are a long time away are at the back. Sometimes two or more
cards are stapled together if the crossings are very full and
there is not enough space for all the information on one card.

Apart from the cards, every booking is also recorded on a
booking form. These forms go to the Payments Control
Department and also to Accounts. When they have been pro-
cessed there, the forms come back to us in the booking office
to be filed in the booking form archive file.

Most of our bookings are made by telephone. Some book-
ings are made by fax and a few are made by letter.

We have two sorts of customer. Some customers have an
account – these customers get an invoice every month from
the Accounts Department. Some customers do not have an
account – they must pay before they get their tickets.

Some account customers (e.g. travel agents) may be
booking through their account or they may be booking for
one of their customers. It is very important to know who will
be paying for the tickets, where the invoice should be sent and
whose name should be on it. I will explain more about this
later.

Telephone bookings here in the booking office can come
from customers themselves and they can also come from the
port desks. The procedure for both of these is almost the same,
except that we have special members of staff who just deal
with the port desks. If a booking is made outside office hours,
the port desk writes out the details on a fax and send it to us.
Every morning we use the faxes to make sure that our records
are up to date. If a customer telephones us directly, the
booking clerk has to find out which crossing they want. This

156 Systems analysis: a beginner’s guide

means they need to know where the crossing goes from,
where the crossing goes to, and the time and date of the
crossing.

We only ever book single crossings. This means that a return
is booked as a single there and a single back, each with a
unique booking number. We then need to know who the cus-
tomer is and what they require. We also need to include any
vehicle details and whether they need a seat or a cabin.

If the booking is not going to go on a customer’s account,
we need to know who to send the invoice to and where to
send it to. We need to know who the passengers are, and any
special detail such as wheelchairs, medical problems or small
babies. All these details are used to complete the booking form
and to work out the total cost based on the booking tariff. If
the customer later cancels the booking we change the details
on the crossing record card for that ferry. We also fill in a
booking cancellation form, which goes to Payment Control in
the same way as a normal booking form.

Sometimes people telephone us and they want to travel very
soon. This can mean that we do not have enough time to send
them an invoice by post and receive the money from them. If
this happens they can pay by credit card, by giving us the card
number over the telephone. If this is not possible they can
arrange to pay when they arrive to get on the ferry. These
details must be written on the booking record card so that the
desk staff will know what to do. They must also go on the
booking form for Payments and Accounts.

If a person wants to pay by credit card we check their credit-
worthiness (i.e. whether they are over the limit on their card).
When we check this with the credit card company they give us
an authorization number, which is then written on the
booking form. We also go through the checking procedure if a
person pays by credit card at the desk.

If a port desk phones us with a booking because they have a
customer there who wants to make a booking, exactly the
same procedure is followed. It is just as if the customer was
phoning us. The only difference is that the desk staff can take
the payment at the time and they can also give the customer
the tickets. Account customers can of course also book at
desks.

Appendix 157

One problem we have with the booking system is when cus-
tomers book by leaving the information on the answering
machine. Quite often there is information missing.

When a booking is made out of hours (i.e. when the desk is
shut) or when a desk takes money or issues tickets, they should
fill in a booking form and then fax the form to us. Sometimes
they forget to do this.

We keep a file of all account customers. We keep this file up
to date from information we get from the Payments Control
Department. This file contains a security procedure which
people booking on behalf of this company must use. The pro-
cedure may involve using an order number, which must be
quoted, or only certain people being allowed to make
bookings.

When non-account customers receive an invoice, they
should send the payment to the Accounts Department. The
Accounts Department let the Payments Control people know
that they can go ahead and issue the ticket. When the pay-
ment is made, Payment Control should tell us on the booking
form so that we can keep our records up to date. Also, if tickets
are issued at the desk, this information needs to be entered on
the booking record so that the desks are aware of this. Often
this information reaches us too late.

At the end of every day we fax copies of crossing record
cards for the crossings on the next day to the desk at the port
of departure. That desk then deals with last minute bookings
and they also sell standby tickets. Standby tickets are slightly
cheaper. They are available for all unbooked places, but they
cannot be sold until 2 hours before departure.

Our biggest problems in here are that we receive vital infor-
mation from Accounts very late. Also booking confirmation
information is not clear and the answering machine is a
problem. Everything else is fine. I suppose that the booking
form could be designed better. There is loads of paperwork of
course, but that’s all part of working in an office.

158 Systems analysis: a beginner’s guide

Transcript of Interview with Port Desk Staff
We have a lot of problems here. What happens is that if a mis-
take is made somewhere else in the system, the passenger
always ends up in here complaining.

I think we do three things that will be of interest to you. We
act as go-betweens with the booking office if a passenger
wants to make an advance booking. This means that we relay
information that the booking office wants and also sometimes
take the customer’s payment. We also deal with checking in,
boarding passes and last-minute bookings.

When the booking office closes it faxes copies of the crossing
record cards to us. The cards give us all the information about
latest bookings and passenger information. When the booking
office is closed we can take bookings for crossings that will
soon be departing. Sometimes the copies of the record cards
are very messy and difficult to read. Usually the worst cards are
the ones for the busiest crossings. We are supposed to sort out
how many places there are left on the boats and sell them.
When we do sell them, we have to fill in a booking form and
fax it back to the booking office. If the customer wants the
tickets on account, we have to check with the booking office
that this is all right.

Sometimes passengers collect their tickets at check-in and
sometimes they have to pay for them as well. Passengers can
pay by cash or credit card. We are supposed to work all this out
from the messy copies of the booking cards. At the end of
every day we put the money in the bank, which has a branch
on the port. When the bank gives us the paying-in slip, we
send this to the sales ledger department in Accounts.

Two hours before the ferry goes, we can sell any leftover
tickets or any reserved tickets that have not been paid for. It is
very difficult for us to work out how many we have available to
sell from the information on the crossing record cards. If we
make a mistake the passengers get very angry when they
realize that we have sold their seats to another passenger.

We have quite a few problems, as I have said. The worst one
is working out what the crossing record card means. We can
never even be sure that the information is up to date and cor-
rect. It is very embarrassing to be asking for money from a pas-
senger who has already paid.

Appendix 159

Another problem is that it is very difficult to cope when the
booking office is closed. We use the latest crossing record
cards, but sometimes we might make a booking for a ferry
which is already full. Also, if the central booking office is closed
we have no way of checking whether a customer can pay on
account for crossings which are departing very soon.

Normally we only take account bookings from 9 to 5, but
sometimes we have to make a decision ourselves. We really
need a copy of the account customer file here and at every
other desk.

When we take a booking or if we sell tickets, we fill in a
booking form which is sent by fax to the central booking
office. Sometimes, if we are very busy, it is difficult to do this
properly. If we can’t find and fill in the paperwork quickly
enough the crossing can’t be delayed. If the customer has paid
there and then and the ship is about to leave; why does the
booking office need to know anyway?

Could you change things so that we don’t have to fill in all
the unnecessary details on the booking forms? It would make
our jobs much easier. Also, if you can persuade the booking
office to let us have complete, correct information which is
easy to read on the crossing records, then staff who have to
deal with the public would find life a lot easier.

Examples of Documents used by North Sea
Ferries
The following are examples of documents that the NSF use now. These
were collected when the work areas of NSF were being researched. The doc-
uments are:

� Crossing Booking Form

� Booking Cancellation Form

� Crossing Record Card

� Load Factor Report

� Weekly Traffic Report

� Sample of Crossing Ticket

� Invoice

� Boarding Card

160 Systems analysis: a beginner’s guide

Appendix 161

Crossing Booking Form Booking Date: Booking Number:

Crossing Date: Departure Time: Arrival Time:

Crossing Number: Departure Port: Arrival Port:

Customer Name: Seats Booked: Cabins Booked:

Vehicle Details – Make and Model: Reg. No:

Passengers Cabin Seat Special Requirements

Payment Name and Address:

Amount Due: Payment Mode:

Account Number: Invoice Number:

Date Charged: Date Paid:

Credit Card Details: Cash Payment Date:

Date Charged: Received By:

Date of Ticket Issue:

162 Systems analysis: a beginner’s guide

Booking Cancellation Form: Cancellation Date: Booking Number:

Crossing Date: Departure Time: Arrival Time:

Crossing Number: Departure Port: Arrival Port:

Passenger Name(s): Cabins Booked Seats Booked

Payment Name and Address:

Actioned By: Action Date:

Appendix 163

Crossing Record Card Date:

Crossing Date: Departure Time: Arrival Time:

Crossing Number: Departure Port: Arrival Port:

Vehicle Allocated: Seats
Available:

Cabins
Available:

Deck Crew: Amenities Crew:

Passenger Name Booking Date Booking Status Spec. Req. Seat Booked Cabin Booked

164 Systems analysis: a beginner’s guide

Load Factor Report Date:

Crossing
Number

Departure
Time

Arrival
Time

Vessel
Type

Seats/
Cabins
Available

Seats/Cabins Booked %

Firm Reserved Total

Appendix 165

Weekly Traffic Report Date:

Departure Port Arrival Port No. of Crossings No. of Passengers % loading

166 Systems analysis: a beginner’s guide

North Sea Ferries passenger ticket

Passenger Name:

Crossing No: Date: Time:

Seat/Cabin Type:

From: To:

Arrival time:

You will be given your seat/cabin number at the port.

Please check in one hour before departure.

Booking Clerk:

Appendix 167

North Sea Ferries invoice

Invoice no:

Customer Name:

Crossing No: No. passengers: Price: Total:

Total due:

Please send payment with this invoice to:

North Sea Ferries, 25 Cross Street, Hull

Date paid: Accounts Clerk:

168 Systems analysis: a beginner’s guide

North Sea Ferries Boarding Card

Passenger Name:

Crossing No: Date: Time:

Seat/Cabin Number:

Bibliography

Connolly, T. and Begg, C. (1999). Database Systems, 2nd edn. Reading, MA:
Addison-Wesley.

Fournier, R. (1999). A Methodology for Client/Server and Web Application Devel-
opment. Upper Saddle River, NJ: Prentice Hall.

Goodland, M. with Slater, S. (1995). SSADM A Practical Approach. New York:
McGraw-Hill.

Hoffer, J. A., George, J. F. and Valacich, J. S. (1998). Modern Systems Analysis
and Design, 2nd edn. Reading, MA: Addison-Wesley.

Weaver, P. L., Lambrou, N. and Walkley, M. (1998). Practical SSADM, 2nd
edn. London: Financial Times Professional.

169

Index

attributes 42–4, 47, 50, 53, 56–8, 67,
93, 135, 136, 145

Business System Options 6, 85–91

candidate keys 135
CASE tools 149–50
composite key 44

in normalization 118, 119, 120,
121, 123, 128, 131, 135

context diagram 17, 21–4
cross-checking 5

database design 144–5
database management system 144–6
data dictionary 148
data flow 20–1
data flow diagrams 18–24

data flow modelling 17
decomposition 26–8
exercises in 40–1
levels 30
limitations 33
logical 66–71
Medical Centre examples 26,

29–33, 70–3, 88
Simple Steps in 22–6
Swillbuckets examples 34–40, 73–8

data store 18–21, 27–9
different forms of 28
entity cross reference 58–62
logical 66–9

decision table 98–100
exercise in 109
simple steps in 99

decision tree 97–8
dependencies 119–22
documentation 147
Document Flow Diagram 18, 21–4

elementary process 27
descriptions 86, 94, 97

entities 42–65

characteristics 42
database design 144
entity/function matrix 136–8
exercises in 65
external 19, 21, 23
link 55–7
logical 66–71
Medical Centre examples 63–4
modelling 42–9, 92–6
rebuilding 135
representation 25
simple steps in 48–9
size of 146
Swillbuckets examples 49–59

fact-finding techniques 16–17
feasibility 5–7, 14
First Normal Form 119, 131
foreign key 48, 58, 125, 136, 145
functions 42, 108, 137, 148

entity/function matrix 137–8

Human–Computer Interface (HCI) 106
indexes 145
information 2

gathering 16
management 13

information systems 2
input design 105–6
interface design 141–2
interface flow diagram 143–4
investigation of system 5, 6, 14, 22

keys 43–4, 47, 48, 57, 119, 123, 126
composite see composite key
foreign see foreign key
identification 123
primary see primary key

logicalization 66–73
of DFDs 67
simple steps in 67–9
Swillbuckets example 73–5

171

normalization 110–39
exercises in 138–9
First Normal Form (1NF) 119
rationalization see rationalization
repeating groups 118–19, 124, 126,

127
Second Normal Form (2NF) 120–2
simple steps in 115–23
Third Normal Form (3NF) 122,

125, 128
unnormalized data 110–15

output design 102–5

physical
analysis 4
constraints 66–7
data store 59
design 4–6, 140–50
DFD 25–6, 32
to logical 67–9
view 17, 26

primary key 48–9, 58, 135, 145
problem and requirements catalogue

73, 75–81
Medical Centre example 76–81
Swillbuckets example 81–2

processes 2, 17, 18, 19–20, 24
rules 20
logicalization of 66–73

prototyping 142–3, 149

rationalization 133–5

relationships
between entities 44–9, 50–5
resolving many to many 46, 55, 56
resolving one to one 54
type 45

report design 103–4
required system 6, 17, 18

specification 86, 92–109

screen design 106–7
Second Normal Form (2NF) 120–2
security 140, 145–6
SSADM

approach to 9
data modelling in 17
principles of 4, 7
problems with 142
steps in 14
structure of 5–6

Structured English 97
exercise in 109

systems development life cycle 7

technical design 140–50
Third Normal Form (3NF) 122, 125,

128

unnormalized data 110–15
user guide 148
user interface design 141–2

validation 107
volumetrics 146–7

172 Index

	cover.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf

