
Undergraduate Topics in Computer Science

Guide to Java 
A Concise Introduction 
to Programming

Second Edition

James T. Streib · Takako Soma



Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky , Department of Computer Science, University of Oxford,
Oxford, UK

Chris Hankin , Department of Computing, Imperial College London, London, UK

Mike Hinchey , Lero – The Irish Software Research Centre, University of
Limerick, Limerick, Ireland

Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca,
NY, USA

Andrew Pitts , Department of Computer Science and Technology, University of
Cambridge, Cambridge, UK

Hanne Riis Nielson , Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony
Brook, NY, USA

Iain Stewart , Department of Computer Science, Durham University, Durham,
UK

Joseph Migga Kizza, College of Engineering and Computer Science,
The University of Tennessee-Chattanooga, Chattanooga, TN, USA

https://orcid.org/0000-0003-3921-6637
https://orcid.org/0000-0001-9149-8577
https://orcid.org/0000-0001-5110-561X
https://orcid.org/0000-0001-7775-3471
https://orcid.org/0000-0002-2484-5580
https://orcid.org/0000-0002-0752-1971


‘Undergraduate Topics in Computer Science’ (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems, many of which include fully
worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and
generally a maximum of 275–300 pages. For undergraduate textbooks that are
likely to be longer, more expository, Springer continues to offer the highly regarded
Texts in Computer Science series, to which we refer potential authors.



James T. Streib • Takako Soma

Guide to Java
A Concise Introduction to Programming

Second Edition

123



James T. Streib
Program in Computer Science
Illinois College
Jacksonville, IL, USA

Takako Soma
Program in Computer Science
Illinois College
Jacksonville, IL, USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-031-22841-4 ISBN 978-3-031-22842-1 (eBook)
https://doi.org/10.1007/978-3-031-22842-1

1st edition: © Springer-Verlag London 2014
2nd edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-22842-1


 

 Preface 

James T. Streiba,1 and Takako Somaa,2 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 
1 Email: james.streib@jtstreib.com. 
2 Email: tsoma@ic.edu. 

Purpose 

The purpose of this text is to help the reader learn very quickly how to program using the 
Java programming language. This is accomplished by concentrating on the fundamentals, 
providing plenty of illustrations and examples, and using visual contour diagrams to 
illustrate the object-oriented semantics of the language. 

Comparison to Other Texts 

There are a number of texts on the Java programming language. Some of these texts provide 
plenty of examples and are very comprehensive, but unfortunately, they sometimes seem 
to cover too many details, which might make it difficult for a beginning programmer to 
discern which points are the most relevant. There are also other texts that attempt to provide 
a shortened introduction to the language, but it seems that these texts might not provide the 
necessary examples and illustrations and might be better suited for readers who have 
previous programming experience. 

Need 

This text attempts to fill the gap between the above two types of books. First, it provides 
plenty of examples and concentrates primarily on the fundamentals of the Java 
programming language so that the reader can stay focused on the key concepts. Second, by 
concentrating on the fundamentals, it allows the text to be more concise and yet still 
accessible to readers who have no prior programming experience. The result is that the 
reader can learn the Java programming language very quickly and also have a good 
foundation to learn more complex topics later. 

Features of This Text 

This text provides many examples and illustrations. It further has an early introduction to 
object-oriented programming and uses contour diagrams to illustrate various object-
oriented concepts. The contour model was originally developed by John B. Johnson [4]. 
The model was elaborated on by Organick, Forsythe, and Plummer to illustrate 
subprograms, parameter passing, and recursion in procedural and functional languages [7]. 
The model seems quite adaptable to newer programming methodologies such as object-
oriented programming as illustrated in a paper by the authors of this text [8]. As discussed 
in that paper, it was shown that the use of contour diagrams can be an effective tool in 

v



helping one learn object-oriented concepts in the Java programming language. By 
acquiring a good working model of objects, there is less chance of possible misconceptions. 

In many places in the text, questions are asked of the reader to help them interact with 
the material and think about the subject matter just presented. Hopefully the reader will 
take a few moments to try to answer these questions on their own before proceeding to the 
answer that follows. To help further reinforce concepts, each chapter has one or more 
complete programs to illustrate many of the concepts presented and also to help readers 
learn how to write programs on their own. In addition, for review and practice, there are 
summaries and exercises provided at the end of each chapter. Further, in the appendices at 
the end of the text, there are answers to selected exercises and a glossary of important 
terms. A summary of the features of this text are listed below: 

 Stresses the fundamentals. 
 Provides many examples and illustrations. 
 Has an early introduction to objects. 
 Uses contour diagrams to illustrate object-oriented concepts. 
 Asks readers questions to help them interact with the material. 
 Has one or more complete programs in every chapter. 
 Provides chapter summaries. 
 Includes exercises at the end of each chapter, with selected answers in an appendix. 
 Has a glossary of important terms. 

 
Features New to the Second Edition 
 
The second edition retains all the features of the first edition. In addition to fixing any 
known errors,  any areas that could be clarified have been reworded. Features new to the 
second edition, include the following: 
 
 Chapter 1 has been reorganized into Chapters 0 and 1. Whereas an experienced 

programmer can go straight to Chapter 1, it is recommended a new programmer or an 
experienced programmer who wants a review start with the computer concepts in 
Chapter 0. 

 Chapter 0 contains new topics such as computational thinking and computer ethics. 
 Where previously some topics in Chapter 1 were scattered in different sections, they 

have been consolidated into single sections to help the reader focus on each topic 
individually.  

 Simple graphical user interface (GUI) is introduced in Chapter 1 and used in different 
sections throughout the text. 

 Chapter 11 has been added to include an introduction to bit-wise logic for computer 
science students taking computer organization in the future or for pre-engineering 
students to gain exposure to some of the logic capabilities in the C-like languages. 

 Chapter 12 introduces parallel processing programming for computer science students 
who will be taking a course in operating systems in the future. 

 Appendix A contains a detailed description of the Java skeleton introduced in Chapter 
1 along with additional information on standard output and GUI. 

 Additional exercises have been added to various chapters. 

vi Preface



Overview of the Chapters 

This text first introduces the reader to various computer concepts such as hardware, 
software, computational thinking, software design, and computer ethics. It then allows the 
reader to understand a simple program with the appropriate input, processing, and output, 
followed by an early introduction to objects. It then looks at selection and iteration 
structures followed by more object-oriented concepts. Next, strings and arrays are 
examined. This is followed by recursion, inheritance and polymorphism, and elementary 
files. Then there is an introduction to bit-wise logic and parallel processing. The appendices 
include information on the Java skeleton, standard output, graphical input/output, 
exception processing, Javadoc, a glossary, and answers to selected exercises.  Lastly, there 
are references, useful websites and an index. The following provides a brief synopsis of 
the chapters and appendices: 

. 
 Chapter 0 begins with the computer concepts of hardware/software, computational 

thinking, design, and computer ethics. 
 Chapter 1 provides an introduction to variables, input/output, and arithmetic 

operations. 
 Chapter 2 introduces objects and contour diagrams. 
 Chapter 3 explains selection structures. 
 Chapter 4 shows how iteration structures work. 
 Chapter 5 revisits object-oriented concepts. 
 Chapter 6 introduces string variables and processing. 
 Chapter 7 illustrates arrays and array processing. 
 Chapter 8 examines recursion. 
 Chapter 9 explores inheritance and polymorphism. 
 Chapter 10 discusses elementary files. 
 Chapter 11 describes how bit-wise logic works 
 Chapter 12 introduces parallel processing programming. 
 Appendix A elaborates on the Java skeleton, standard output, and graphical 

                             input/output. 
 Appendix B discusses elementary exception processing. 
 Appendix C presents the basics of Javadoc. 
 Appendix D lists a glossary of key terms. 
 Appendix E provides answers to selected exercises. 

Ordering of the Chapters 

Typically, there are three ways objects can be introduced to the beginning programmer: 

 Objects first. 
 Objects last. 
 Objects interleaved. 

This text takes the latter approach where objects are discussed in Chapters 2, 5, and 9. 
However, recognizing that some readers and instructors might want to use one of the first 
two approaches, this text can be read using alternative orders. For example, should an 

Preface vii



objects first approach want to be taken, after reading Chapter 1, Chapters 2 and 5 can be 
read next, followed by Chapters 3 and 4. Should an object later approach want to be used, 
Chapters 3 and 4 can be read prior to Chapters 2 and 5. 

To help facilitate these alternative approaches, starting with Chapter 3, the Complete 
Program sections at the end of each chapter have examples with and without using objects. 
Note that Chapter 9 requires an understanding of arrays, which is covered in Chapter 7, 
and it can be read after completing that chapter.  

Scope 

As mentioned previously, this text concentrates on the fundamentals of the Java 
programming language such as input/output, object-oriented programming, arithmetic and 
logic instructions, control structures, strings, arrays including elementary sorting and 
searching, recursion, files, bit-wise logic, and parallel processing programming. As a result, 
it might not cover all the details that are found in some other texts, and if necessary, these 
topics can be supplemented by the instructor or reader, or covered in a subsequent text 
and/or second semester course. 

Audience 

This text is intended primarily for readers who have not had any previous programming 
experience; however, this does not preclude its use by others who have programmed 
previously. It can serve as a text in an introductory programming course, as an introduction 
to a second language in a practicum course, as a supplement in a course on the concepts of 
programming languages, or as a self-study guide in either academe or industry. Although 
no prior programming is assumed, it is recommended that readers have the equivalent of 
an introduction to functions course that includes trigonometry which will help with 
problem solving and understanding the examples presented in the text. 

Acknowledgments 

In addition to the reviewers of the first edition, the authors would like to thank Mark E. 
Bollman of Albion College and James W. Chaffee of the University of Iowa for their 
continued work on this edition. Also, the authors would like to acknowledge the students 
of Illinois College who have read and used various sections of the first edition in the 
classroom. On a personal note, James Streib would like to thank his wife Kimberly A. 
Streib and son Daniel M. Streib. Takako Soma would like to thank her family and friends, 
near and far. 

Note that Java is a registered trademark of Oracle and/or its affiliates and that Windows 
is a registered trademark of Microsoft Corporation in the United States and/or other 
countries. 

Feedback 

The possibility of errors exist in any text, therefore any corrections, comments, or 
suggestions are welcome and can be sent to the authors via the e-mail addresses below. In 
addition to copies of the complete programs presented in the text, any significant 
corrections can be found at the website below. 

Prefaceviii



Website:  http://www.jtstreib.com/GuideJavaProgramming.html  

Illinois College James T. Streib 
Jacksonville, IL, USA james.streib@jtstreib.com 
October 1, 2022 Takako Soma 

                        tsoma@ic.edu 

 

  

Preface ix

http://www.jtstreib.com/GuideJavaProgramming.html


 

Contents 

0 Introduction to Computing Concepts 1 
 0.1       Introduction 1 
 0.2       Overview of Hardware and Software 1 
             0.2.1     Hardware 1 
             0.2.2     Software 2 
             0.2.3     History and Java 3 
             0.2.4     High-level Translation 3 
 0.3       Introduction ro Computational Thinking 5 
 0.4       Essentials of Software Design 7 
             0.4.1     Syntax, Semantics, and Errors 7 
             0.4.2     Design Methodology 8 
                          0.4.2.1     Analysis 9 
                          0.4.2.2     Design 9 
                          0.4.2.3     Implementation 9 
                          0.4.2.4     Maintenance 10 
              0.4.3    Tools and Techniques 10 
                          0.4.3.1     Pseudocode 10 
                          0.4.3.2     OOP and UML 11 
                          0.4.3.3     Debugging 11 
 0.5        A Brief Look at Computer Ethics 12 
 0.6        Summary 13 
 0.7        Exercises (Items Marked with an * Have Solutions in Appendix E) 14       
 
1 Variables, Input/Output, and Arithmetic 17 

1.1 Introduction 17 
1.2 Java Skeleton 16 
1.3  17 
            1.3.1     Text-based Output 17 
 1.3.2     GUI-based Output 18 
1.4       Variables and Constants 19 
1.5 Assignment Statements 23 
1.6 Output 26 
 1.6.1     Text-based 26 
 1.6.2     GUI-based 30 
1.7 Input 31 
 1.7.1     Text-based 31 
 1.7.2     GUI-based 34 
1.8 Arithmetic Statements 36 
 1.8.1     Binary Operators 36 
 1.8.2     Precedence 38 
 1.8.3     Unary Operators 39 
 1.8.4     Incrementing 40 

xi



 

 1.8.5     Summing 41 
 1.8.6     Arithmetic Functions 42 
1.9 Comments 43 
1.10 Complete Program: Implementing a Simple Program 44 
1.11 Summary 46 
1.12 Exercises (Items Marked with an * Have Solutions in Appendix E) 47 

2 Objects: An Introduction 51 
2.1 Introduction 51 
2.2 Classes and Objects 51 
2.3 Public and Private Data Members 52 
2.4 Value-Returning Methods 52 
2.5 void Methods and Parameters 53 
2.6 Creating Objects and Invoking Methods 54 
2.7 Contour Diagrams 56 
2.8 Constructors 62 
2.9 Multiple Objects and Classes 66 
2.10 Unified Modeling Language (UML) Class Diagrams 73 
2.11 Complete Program: Implementing a Simple Class and 

Client Program 75 
2.12 Summary 77 
2.13 Exercises (Items Marked with an * Have Solutions in 

 Appendix E) 78 

3 Selection Structures 83 
3.1 Introduction 83 
3.2 If-Then Structure 83 
3.3 If-Then-Else Structure 88 
3.4 Nested If Structures 91 

3.4.1 If-Then-Else-If Structure 91 
3.4.2 If-Then-If Structure 94 
3.4.3 Dangling Else Problem 96 

3.5 Logical Operators 99 
3.6 Case Structure 105 
3.7 Complete Programs: Implementing Selection Structures 111 

3.7.1 Simple Program 111 
3.7.2 Program with Objects 114 

3.8 Summary 116 
3.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 116 

4 Iteration Structures 121 
4.1 Introduction 121 
4.2 Pretest Indefinite Loop Structure 121 

4.2.1 Count-Controlled Indefinite Iteration Structure 122 
4.2.2 Sentinel Controlled Loop 128 

4.3 Posttest Indefinite Loop Structure 134 
4.4 Definite Iteration Loop Structure 137 

xii Contents



4.5 Nested Iteration Structures 140 
4.6 Potential Problems 141 
4.7 Complete Programs: Implementing Iteration Structures 142 

4.7.1 Simple Program 143 
4.7.2 Program with Objects 145 

4.8 Summary 150 
4.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 150 

5 Objects: Revisited 155 
5.1 Sending an Object to a Method 155 
5.2 Returning an Object from a Method 158 
5.3 Overloaded Constructors and Methods 161 
            5.3.1 Overloaded Constructors 161 
 5.3.2 Default Constructors 163 
 5.3.3 Overloaded Methods 164 
5.4 Use of the Reserved Word this 165 
5.5 Class Constants, Variables, and Methods 169 

5.5.1 Local, Instance, and Class Constants 169 
5.5.2 Local, Instance, and Class Variables 176 
5.5.3 Class Methods 178 

5.6 Complete Programs: Implementing Objects 180 
5.6.1 Program Focusing on Overloaded Methods 180 
5.6.2 Program Focusing on Class Data Members and Class 

Methods 189 
5.7 Summary 193 
5.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 193 

6 Strings 203 
6.1 Introduction 203 
6.2 String Class 203 
6.3 String Concatenation 204 
6.4 Methods in String Class 206 

6.4.1 The length Method 206 
6.4.2 The indexOf Method 206 
6.4.3 The substring Method 207 
6.4.4 Comparison of Two String Objects 209 
6.4.5 The equalsIgnoreCase Method 211 
6.4.6 The charAt Method 212 

6.5 The toString Method 213 
6.6 Complete Program: Implementing String Objects 215 
6.7 Summary 219 
6.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 219 

7 Arrays 223 
7.1 Introduction 223 
7.2 Array Declaration 223 

Contents xiii



7.3 Array Access 224 
7.4 Input, Output, Simple Processing, and Methods 226 

7.4.1 Input 226 
7.4.2 Output 230 
7.4.3 Simple Processing 230 
7.4.4 Passing an Array to and from a Method 231 

7.5 Reversing an Array 232 
7.6 Searching an Array 237 

7.6.1 Sequential Search 237 
7.6.2 Binary Search 238 
7.6.3 Elementary Analysis 240 

7.7 Sorting an Array 241 
7.7.1 Simplified Bubble Sort 241 
7.7.2 Modified Bubble Sort 244 

7.8 Two-Dimensional Arrays 245 
7.8.1 Declaration, Creation, and Initialization 245 
7.8.2 Input and Output 247 
7.8.3 Processing Data 248 
7.8.4 Passing a Two-Dimensional Array to and from a Method 251 
7.8.5 Asymmetrical Two-Dimensional Arrays 253 

7.9 Arrays of Objects 255 
7.10 Complete Program: Implementing an Array 258 
7.11 Summary 261 
7.12 Exercises (Items Marked with an * Have Solutions in Appendix E) 262 

8 Recursion 265 
8.1 Introduction 265 
8.2 The Power Function 265 
8.3 Stack Frames 274 
8.4 Fibonacci Numbers 277 
8.5 Complete Program: Implementing Recursion 289 
8.6 Summary 291 
8.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 291 

9 Objects: Inheritance and Polymorphism 293 
9.1 Inheritance 293 
9.2 Protected Variables and Methods 303 
9.3 Abstract Classes 304 
9.4 Polymorphism 306 
9.5 Complete Program: Implementing Inheritance and Polymorphism 310 
9.6 Summary 315 
9.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 316 

10 Elementary File Input and Output 321 
10.1 Introduction 321 
10.2 File Input 321 
10.3 File Output 326 

xiv Contents



10.4 File Input and Output Using an Array 328 
10.5 Specifying the File Location 332 
10.6 Complete Programs: Implementing File Input and Output 334 

10.6.1 Matrix Multiplication 334 
10.6.2 Sorting Data in a File 336 

10.7 Summary 338 
10.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 338 

11  Bit Manipulation 341 
 11.1     Introduction 341 
 11.2     Simple Conversions 341 
 11.3     Declaration and Assignments 343 
 11.4     Bit-wise Logic Operations 344 
 11.5     Testing, Clearing, Setting, and Toggling 346 
 11.6     Shifting 348 
 11.7     Precedence 350 
 11.8     Complete Program: Implementing Bit-wise Operators 351 
 11.9     Summary 355 
 11.10   Exercises (Items Marked with an * Have Solutions in Appendix E) 355 

12 Introduction to Parallel Processing Programming 356  
 12.1     Multiprossor Systems 359 
 12.2     Programming Multicore and SharedMemory Multiprocessor 
             Using Pyjama 360 
             12.2.1  Using Pyjama to Write Multithreaded Programs 360 
             12.2.2  Hello World  361 
             12.2.3  Sorting Building Blocks 363 
 12.3     Analysis 368 
 12.4     Complete Program: Implementing Paralle Inner Product 370 
 12.5     Summary 372 
 12.6     Exercises (Items Marked with an * Have Solutions in Appendix E) 372 
 

Appendix A Explanation and Elaboration of Concepts in Chapter 1 375 
A.1  375 
A.2 Text-base Output: print and println 376 
A.3 Text-based Input 378 
A.4 Overview of Java Packages 379 
A.5 More on GUI-based Output and Input 380 
A.6      Confirmation Dialog Boxes 383 
A.7 Option Dialog Boxes 384    

Appendix B Exceptions 387 
B.1 Exception Class and Error Class 387 
B.2 Handling an Exception 388 
B.3 Throwing Exceptions and Multiple catch Blocks 391 
B.4 Checked and Unchecked Exceptions 396 

Contents xv



Appendix C Javadoc Comments 
C.1 Javadoc 
C.2 More Javadoc Tags 
C.3 Generating Javadoc Documentation from a Command Line 

Appendix D Glossary 

Appendix E Answers to Selected Exercises 

References and Useful Websites 

Index 
 

  

xvi Contents



 

0 

Introduction to Computing Concepts 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

In addition to an introduction to hardware and software concepts, including the concept of compiling, 
interpreting, and executing a program, there is an introduction to computational thinking, software design, 
and computer ethics. 

Keywords 

Hardware, Software, Computational Thinking, Software Design, Computer Ethics. 

0.1 Introduction  

Although this chapter is labeled as Chapter 0, that does not diminish its importance. The 
reason for such a numbering is to allow readers with a previous introduction to computing 
concepts and programming to proceed onto Chapter 1. However, for readers with no prior 
introduction or for those who would like a refresher, this chapter provides an important 
overview of hardware, software, computational thinking, software design, and computer 
ethics.   

0.2 Overview of Hardware and Software 

0.2.1 Hardware 

As many readers may already know from using application software such as a word 
processor, a computer system is composed of two major parts: hardware and software. 
Since this book is primarily about writing software, this section on hardware is 
understandably brief. The hardware is the physical computer that includes five basic 
components: the central processing unit (CPU), the random-access memory (RAM) or just 
memory for short, input (typically a keyboard), output (typically a monitor), and storage 
(often a disk) as shown in Fig. 0.1. 

 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,

1

https://doi.org/10.1007/978-3-031-22842-1_0

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_0&domain=pdf


 

 
Fig. 0.1 Computer hardware 

0.2.2 Software 

In order for computer hardware to perform, it is necessary that it has software. 
Essentially, software (often called a program) is the set of instructions that tells the 
computer what to do and when to do it. A program is typically loaded from storage into the 

executes or runs, it will typically ask the user to input data which will also be stored in 
RAM. The program will then process the data, and various results will be output to the 
monitor. This Input, Process, Output sequence is sometimes abbreviated as IPO. 

The only type of instruction a computer can actually understand is low-level machine 
language, where different types of CPUs can have different machine languages. Machine 
language is made up of ones and zeros, which makes programming in machine language 
very tedious and error-prone. An alternative to using machine language is assembly 
language which is also a low-level language that uses mnemonics (or abbreviations) and is 
easier to use than ones and zeros [10]. 

 However, if the only language that the computer can directly understand is machine 
language, how does the computer understand assembly language? The answer is that the 
assembly language is translated into machine language by another program called an 
assembler (see Fig. 0.2). Note that there is a one-to-one correspondence between assembly 
language and machine language, and for every assembly language instruction, there is 
typically only one machine language instruction. However, even though assembly 
language is easier to program in than machine language, different types of CPUs can also 
have different types of assembly languages, so the assembly language of one machine can 
be different from that of another machine and needs a seperate assembler. 

 

       Input      Output 

     Storage 

       CPU 

       RAM 

2 0  Introduction to Computing Concepts



 
 

 
Fig. 0.2 Assemblers and compilers 

0.2.3 History and Java 

The solution to making programming easier and allow programs to be used on different 
machines is through the use of high-level languages which are more English-like and math-
like. One of the first high-level programming languages was FORTRAN (FORmula 
TRANslation), which was developed in the early 1950s to help solve mathematical 
problems. There have been a number of high-level languages developed since that time to 
meet the needs of many different users. Some of these include COBOL (COmmon 
Business Oriented Language) developed in the 1950s for the business world, BASIC 
(Beginners All-purpose Symbolic Instruction Code) developed in the 1960s for beginning 
programmers, Pascal in the 1970s previously used for teaching computer science students, 
C in the 1970s for systems programming, and C++ in the 1980s for Object-Oriented 
Programming (OOP). 

 Java is also an OOP language that was developed at Sun MicroSystems (which is now 
a subsidiary of Oracle Corporation) and was released in 1995. OOP is a programming 
methodology that makes it more convenient to reuse software and will be discussed further 
in  Chaps. 2 ,  5 , and  9 . 

Although no prior programming experience is necessary to learn Java in this text, 
programmers with experience in C or C++ will recognize a number of similarities between 
Java and these languages. Conversely, programmers learning Java first will also notice a 
number of similarities should they subsequently learn C or C++. The reason for this 
similarity between these languages is that both Java and C++ are based on C. Since Java 
does not contain some of the features of C++ (such as operator overloading and multiple 
inheritance, where overloading and inheritance will be discussed in  Chaps. 5  and  9 ), it 
is an easier language to learn. 

 0.2.4 High-level Translation 
 
If high-level languages are easier to learn and use, how can they be implemented on a 

computer that can only understand machine language? Similar to assembly language 
needing an assembler, the program needed to translate a high-level language to a low-level 
language is a compiler or an interpreter. Although there is a one-to-one correspondence 
between assembly language and machine language, there is a one-to-many correspondence 

High-Level    
Language 

Assembly    
Language 

Machine    
Language 

Assembler Compiler 

0.2  Overview of Hardware and Software 3

http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_9
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_9


 
 

between a high-level language and a low-level language. This means that for one high-
level language instruction, there can be many low-level assembly or machine language 
instructions. Even though different CPUs need different compilers or interpreters to 
convert a particular high-level language into the appropriate machine language, compilers 
and interpreters allow the same high-level language to be used on different CPUs. 

The difference between a compiler and an interpreter is that a compiler will translate 
the high-level language instructions for the entire program to the corresponding machine 
language for subsequent execution, whereas an interpreter will translate and then execute 
each instruction one at a time. Further, a compiler might translate directly to machine 
language, or it might translate the high-level language to assembly language, and then let 
an assembler convert the assembly language program to machine language as shown in 
Fig. 0.2. Once the machine language is created, it is subsequently loaded into the 

 
As mentioned above, an interpreter works slightly differently than a compiler. Instead 

of converting an entire high-level program into machine language all at once and then 
executing the machine language, an interpreter converts one line of the high-level program 
to machine language and then immediately executes the machine language instructions 
before proceeding on with the converting and executing of the next high-level instruction 
(see Fig. 0.3). The result is that compiler-generated code executes faster than interpreted 
code because the program does not need to be converted each time it is executed. However, 
interpreters might be more convenient in an educational or development environment 
because of the many modifications that are made to a program which require a program to 
be converted each time a change is made. 

 

 
 

Fig. 0.3 Compilers and interpreters 
 

Instruction1 
  
 
Instruction2 
 
 
Instruction3 
 

10101010 
01010101 
 
00110011 
11101110 
 
00001111 
11110000 

Instruction1 
  
 
Instruction2 
 
 
Instruction3 
 

10101010 
01010101 
 
00110011 
11101110 
 
00001111 
11110000 

Compile

High-Level High-Level Machine Machine 

1. Translate all the instructions 

2. Then execute all the machine 
     instructions 

Interpreter 

1. Translate one instruction at a time 

2. And then execute only the corresponding 
     machine instructions 

4 0  Introduction to Computing Concepts



 
 

high-level instructions to machine language. A compiler is used to convert the Java 
instructions into an intermediate-level language known as bytecode, and then the bytecode 
is converted into machine language using an interpreter. 

 
Since the intent of Java was for portability on the World Wide Web, the advantage of 

using both a compiler and an interpreter is that most of the translation process can be done 
by the compiler, and when bytecode is sent to different types of machines, it can be 
translated by an interpreter into the machine language of the particular type of machine that 
the code needs to be run on (see Fig. 0.4). 

 Note that just as there can be a one-to-many relationship between high-level and low-
level instructions, there can be a one-to-many relationship between Java and bytecode. 
However, unlike the one-to-one relationship between assembly language and machine 
language, there can also be a one-to-many relationship between bytecode and machine 
language, depending on the machine for which the bytecode is being interpreted. 

 
 

 

Fig. 0.4 Java instructions, bytecode, and machine language 

0.3 Introduction to Computational Thinking 

Instruction1 
  
 
Instruction2 
 
 
Instruction3 
 

Bytecode 
Bytecode 
 
Bytecode 
 
 
Bytecode 
Bytecode 

10101010 
01010101 
 
00110011 
11101110 
 
00001111 
11110000 

Compiler 

Java Bytecode Machine 

1. Translate all the Java instructions 

Interpreter 

2. Then translate one bytecode 
     instruction at a time  

3. And then execute only the corresponding 
    machine instructions  

0.2  Overview of Hardware and Software 5

write a good program, a number of techniques need to be used, including 
decomposition, pattern recognition, abstraction, algorithms, and logical thinking. 
Decomposition is used to break down problems into smaller sections, which makes 
complex problems more manageable. Pattern recognition is the process of finding 
similarities to previously solved problems. Then, the same solution or a slightly modified 

in order to 

Java is somewhat unique in that it uses both a compiler and an interpreter to convert the 



 
 

solution can be used to solve new problems. Abstraction is the filtering out of 
unnecessary information. In other words, taking a step back from the specific details and 
focusing on the big picture allows one to create a more generic solution. Algorithms are 
step-by-step instructions to solve a problem. It is important to create a plan, an algorithm, 
for the solution when solving a problem. Logical thinking is deductive inference of new 
information on existing information. Computational thinking is a problem-solving 
process that involves a number of core principles from computer science as mentioned 
above. 
 
But how can these principles be used in non-programming context, for example, solving 
the Tower of Hanoi game? The Tower of Hanoi game consists of three pegs, and initially 
one of the non-centered pegs contains several rings stacked in order of descending 
diameter from bottom to top. The goal is to move the stack of rings to another non-
centered peg as shown in the Fig. 0.5.  
 
 
 
 
                                                         
 
 
Initial state                                                                  Final state 
 
Fig. 0.5 Tower of Hanoi game 
 
During the process, only one ring can be moved at a time which means only a top ring is 
removed among the towers at any given time. Consequently, several rings cannot be 
moved at once. Another rule is that a bigger ring cannot be placed on the top of a smaller 
one. At the start of the game, the only ring that can be moved is the smallest ring and it 
may be placed on one of the two pegs. Next, there are two rings that can be moved. There 
is no good reason to move the smallest one back to the original stack or to another peg. 
So, the next move should be moving the second smallest ring. As it cannot be stacked on 
the top of the smallest one, naturally it goes on the other peg. By understanding the rules, 
logical thinking is used to determine the next step. When making a move, do not be 
distracted by color of the rings or pegs, nor the sounds they make, but focus on the rings. 
This is simplifying the problem using abstraction. As in Fig. 0.6 after successive moves, 
there is a point where the largest ring is on one peg and rest of the rings are stacked on 
another peg in order the largest to the smallest from the bottom to the top. Realize that 
during the moves, a ring can be placed on the top of any ring that is bigger than itself, not 
merely the next larger ring. 
 

              

 

6 0  Introduction to Computing Concepts



 
 

 
 
Fig 0.6 The largest ring in the final position 
 
Now the task is to move the stack that has one smaller number of rings. During the 
process there will be a situation where the second largest ring is on the top of the largest 
one and the rest of the rings are stacked in correct order on another peg as shown in Fig. 
0.7.  
 

 
 
Fig 0.7 The largest and the second largest rings in the final position 
 
Notice that every time the largest ring of the particular stack is placed in the final 
position, the next problem is to solve the same problem with one less number of rings, 
which means the task to solve the Tower of Hanoi game is divided into smaller problems 
using decomposition. Also realize that the same technique can be used to solve the 
problem with different sizes by seeing the pattern. Making a plan of where to moving a 
ring is step-by-step procedure, which is an algorithm.  
 
Computer scientists naturally use computational thinking when writing programs, 
however, as can be seen in the Tower of Hanoi example, it also allows non-computer 
scientists to benefit from a computational approach to problem-solving. Many disciplines 
have been influenced by computational thinking in some way, including statistics, 
biology, engineering, and economics. As computational thinking can be applied in 
everyday life, currently there is an initiative to introduce computational thinking skills to 
primary and secondary school children as well as reinforcing them at the college level.  

0.4 Essentials of Software Design 

0.4.1 Syntax, Semantics, and Errors 

During the process of translating a language to machine language, the translator catches 

0.3  Introduction to Computational Thinking 7

certain types of errors. Before looking at the various types of errors, a distinction should 



 
 

be made between the syntax and the semantics of a program. Simply stated, the syntax is 
the grammar of the language, and the semantics is the meaning or what each instruction 
does. To explain further, syntax is the spelling of the individual words, where the 
semicolons go, and so on. If mistakes are made, a compiler will detect what are known as 
syntax errors, generate messages to the programmer, and the program will not be compiled 
or executed. Although syntax is very important, there is a tendency for first-time 
programmers to spend too much time learning syntax to avoid syntax errors. However, 
there must be equal time spent on semantics to ensure that the program does what the 
programmer intended it to do. 

Even though there might not be any syntax errors, there can be what are called execution 
errors or run-time errors, such as division by zero. When these types of errors occur, the 
appropriate error messages are generated and execution stops. Even worse, there can also 
be logic errors, which are mistakes in the logic of the program so that the program does 
not do what was intended. The unfortunate aspect of logic errors is that they do not produce 
any error messages which can make them extremely difficult to find and fix. 

 
0.4.2 Design Methodology 

When writing a program for the first time, there is a tendency to want to just start keying 
the program into the computer and get it to work. As a result, many beginning programmers 
focus primarily on the syntax of their program because they want to avoid getting syntax 
errors. Initially this method of just typing in a program appears to work fairly well when 
programs are small at the beginning of a class and in the text. However, as problems get 
more complex and they become more difficult to solve, the programs written this way will 
tend to have not only more syntax errors but complicated logic errors which are more 
difficult to correct since no error messages are provided. 
 

As an analogy, an individual might be able to build a small storage shed by just sawing 
and nailing some lumber together without worrying about the overall design of the project. 
However, with a larger project such as a house, apartment building, or office building, that 
methodology would not be sufficient. Instead, there are many other people who must be 
consulted, including the original customer who wants the building built, the architects who 
work with the customer, the contractors, and the carpenters. The same holds true in the 
world of programming where a programmer and/or systems analyst works with others such 
as customers, users, and managers. 

 
What are needed are various strategies and tools to help write programs correctly to 

minimize logic errors. Just as in the above example where blueprints and plans are used by 
the architect, there are techniques that can be used by analysts, software engineers, and 
programmers. Although the complete process for developing software might not be needed 
initially with smaller programs, it does not hurt to practice the various techniques on 
smaller programs to gain familiarity, so that when one advances to more difficult projects, 
one is comfortable with many of the techniques. Although the following techniques are 
used primarily with non-object-oriented programs, they can be augmented with object-
oriented design techniques introduced in chapter 2 and used in larger programs. 

8 0  Introduction to Computing Concepts



 
 

 
There are many different methodologies and number of stages within the various 

methodologies for solving problems that can be found in different texts, but upon closer 
examination, they are all rather similar. They tend to include at least four stages, and they 
are usually comparable to the following: 

1. Analysis 
2. Design 
3. Implementation 
4. Maintenance 

0.4.2.1 Analysis 

The analysis stage is where the needs of the user or customer are first determined. 
Questions concerning the form and quantity of the input, the type of processing that needs 
to be done, the storage requirements of data, and the type of output needed are asked and 
clarified at this stage. This would be similar to a customer in a construction project trying 
to determine what type of building should be built. In a first semester programming class, 
this stage may or may not be included. Sometimes a professor might have already 
completed the analysis stage and included what is needed in the programming assignment. 
However, at other times, they might require this stage and a number of questions will need 
to be asked by the student. This might be especially true when working on a team project 
in a software design or senior capstone course. 

 

0.4.2.2 Design 
 
The design stage is where a project begins to take shape. It is similar to the architect 

creating a set of blueprints and models for the user to examine, because changes are much 
easier to make on paper or with the model than once the construction of the building has 
started. Various tools such as pseudocode and Unified Modeling Languge (UML) diagrams 
(discussed shortly) are used by systems analysts, software engineers, and programmers to 
help design the program. Again, it is much easier to make changes during the design phase 
than after the programming has begun. 

 
0.4.2.3 Implementaion 

 
The implementation stage is where the code is actually written, entered, compiled, and 

syntax errors are corrected. Once the code is free of syntax errors, it is thoroughly tested. 
This includes testing various components of the program to be sure each section is working 
properly. If not, the code needs to be debugged to correct any logic errors. In addition to 
the various components, the entire program needs to be tested to ensure that all the 
components work together as planned. Sometimes errors are a result of not following the 
design, whereas other times, it is not necessarily the code but rather the design itself that 
has the error, in which case one has to go back and correct the error in the design. The 
result is that the stages above do not necessarily need to be rigorously adhered to, but rather 
when at a stage one may need to return to a previous stage for clarification or to fix a 
possible error. 

0.4  Essentials of Software Design 9



 

Although it is tempting to jump directly to the implementation stage, this tendency 
should be avoided. It is important to take the time to properly design the algorithm first 
before starting to key in a program. An algorithm is a step-by-step sequence of instructions, 
not necessarily implemented on a computer. Once an algorithm is implemented in a 
specific language, it is then a program. By taking the time to design a well-thought-out 
algorithm, there will be fewer logic errors in the program. Although it might seem to take 
longer to include the design stage, the savings will be more than made up for in less time 
spent fixing logic errors later. 
 
0.4.2.4 Maintenance 

 
The maintenance stage is where all the modifications and updates take place. In an 

industrial strength program, more time is spent in the maintenance phase than all of the 
three preceding stages. This is because once a program is up and running, there can be 
numerous changes that need to be made over the lifetime of a program. This is another 
reason why a program should be designed well in order to facilitate modifications later in 
the life of a program. Unfortunately, beginning programmers do not often experience this 
stage of a program, because once the concepts are learned from one programming 
assignment, the program is often not used again and another program is assigned to 
introduce the next set of concepts. However, in some upper-level courses, the assignments 
get longer, existing programs might be modified and reused, and students get to have some 
experience with the maintenance stage of programs. Regardless, it helps even beginning 
students to design well-thought-out programs to gain practice in the event that a professor 
decides it might be easier to modify an existing program rather than having to design a new 
program from scratch, as done in the real world. 

 
0.4.3 Tools and Techniques 
 
0.4.3.1 Pseudocode 
 

One technique that can help during the design stage is the use of pseudocode. 
Pseudocode is a combination of English and a programming language. Since it is not a 

using pseudocode is that one can concentrate on the logic of an algorithm and not worry 
about the syntax of a particular programming language. In fact, well-written pseudocode 
should be understood by any programmer regardless of the programming language that 
they use, and they should be able to convert the pseudocode into their particular 
programming language. However, there can be many different versions and levels of detail 

for any preferences or standards that are employed. As a simple example, consider the 
following pseudocode on the left compared to the Java statement on the right: 

 
Calculate  the area of a rectangle  areaRec = height * width; 

 

At this time it is not nececessary to understand the Java code on the right. However, note 
that the verbal description on the left is much easier to understand than the detailed Java 

10 0  Introduction to Computing Concepts



 
 

code. As a result, one does not need to concentrate on the intricate syntax, but rather the 
semantics. As an alternative, notice the more specific pseudocode on the left. 

 
areaRec           height x width  areaRec = height * width; 

Both the pseudocode and the Java code are known as assignment statements as will be 
discussed in the next chapter. Note that an arrow is used in the pseudocode instead of an 
equal sign in the Java code to indicate an assignment statement. This helps illustrate the 
direction of assignment, since some languages use symbols other than an equal sign to 
illustrate assignment. Also notice that a mathematical symbol is used instead of an asterisk 
to illustrate multiplication. Lastly, a semicolon is not used since not all other languages use 
them to terminate statements. 

 The result is that the pseudocode in the second example is more specific than the first 
example which helps with the translation to Java, but it is also more generic than the Java 
statement which helps in the translation to other languages as well. Again, these are just 
two samples of pseudocode, so be sure to check your local guidelines and requirements 
which should be used. In this text, when pseudocode is used, it will be written with as much 
detail as possible so as not to be ambiguous and to help with the translation into Java. 

0.4.3.2 OOP and UML 

Since the term object has been used previously, what is an object? In the past, programs 
were often written with large sections of code that were not very helpful to reuse when 
another program needed to be written.  

It can help with the understanding of the idea of objects to think of an automobile. An 
automobile has many different parts such as steering mechanisms, transmissions, brakes, 
etc. Instead of designing the transmission as unique to only one type of auto, a generic plan  
for a transmission can be designed first. Then particular versions of the transmission could 
be built to be put into different types of automobiles. The plans for the transmission can be 
thought of as a class and the differing versions of the transmission as instances of that class, 
or in other words, objects. This way a whole new design for a transmission does not need 
to be created for each type of auto, but rather just a different variation. The same applies to 
software, where a whole new complete design does not need to be created but just a 
different version of the original class. Although this is just a brief glimpse of objects, this 
same idea can be applied to software and a more complete discussion will be presented in 
Chapter 2. 

Unified Modeling Language (UML) is a visual method used to help contruct a program 
using classes and objects. One might ask since Java is an Object Oriented (OO) language 
and UML is helpful in creating an OO program, why would one need pseuodocode? The 
answer is because each class and instance of a class or object contains code, pseudocode 
can help with the design of the class. So whereas UML helps with the creating of classes 
and objects, pseudocode helps with the creation of code within classes and objects. UML 
will be discussed further in Section 2.10. 

0.4  Essentials of Software Design 11



 
 

logic errors still exists. The process of finding and fixing logic errors is known as 
debugging. When trying to debug a program, a programmer should not start to randomly 
alter code in the hope that the error might be fixed. Although this might work occasionally 
with smaller programs, it rarely works as programs become larger and more complex. 
Instead, one should look for patterns in the output in an attempt to isolate the problem. 
Further, one needs to carefully check the program by walking through the code to ensure 
that it is doing what was originally intended. 

To assist in this process many Integrated Development Environments (IDEs), which are 
used to enter, edit, compile, and execute a program, sometimes include debuggers that can 
trace the contents of various memory locations to help locate a logic error. However, do 
not rely on the debugger alone to help correct the problem, but rather use it as a tool to 
assist in tracing the logic of the program. If a debugger is not available, well-placed output 
statements at critical points in the program can help in the debugging process. In the end, 
it is the programmer reading the code carefully to see what the code is actually doing, rather 
than what one thinks it is doing, that will ultimately fix logic errors in a program. [9] 

 
0.5 A Brief Look at Computer Ethics 
 

As one is just learning to write code in a programming language, there is a tendency to be 
preoccupied with getting programs to work correctly. However, at the same time when 
acquiring a lot of technical knowledge, it is also important to learn what is needed to 
enter the computing profession. This includes, but is not limited to knowledge of various 
ethical issues concerning property, privacy, and responsibility. 

Initially one might not think this is important since they are just a beginner and not 
working for a major company. Although this may not seem initially significant, these 
issues become increasingly even more important as one rapidly gains new knowledge, 
even during a course of a semester. 
For example, when beginning programmers are working on their own individual 
programming assignments in a classroom environment, they will often be turned in for a 

considered to be their own property whether it is on paper or on a file in a computer. If 
be a concern of 

intellectual property rights. 

In another example, one might have the opportunity to work in the Information 
Technology (IT) department at the school, college, or university. This might entail 

 
so, one might have access to programs and files that have sensitive information which 
would concern the privacy of others. 

Also, consider the possibility that after completing a year or two of coursework, one 
might have the opportunity to work on an internship writing programs for a company. 
Then the programs are no longer merely submitted for a grade but are integral to the 
operation of that company. Mistakes are no longer just points taken off for a grade, but 
could ha

12 0  Introduction to Computing Concepts

0.4.3.3 Debugging 

Even when all attempts to write a logically correct program are followed, the possibility of 



 
 

testing and correct operation of a program is imperative and is the responsibility of the 
programmers.  

The field that includes these instances and other related issues is known as ethics. Entire 
stand-alone courses are offered, typically from the philosophy department, and 
corresponding books have been written that address the many theories and the application 
of those theories to specific instances. In addition, these ethical theories have been 
applied to paticular areas such as business ethics, medical ethics, environmental ethics as 
well as computer ethics. With respect to the latter, many colleges offer separate courses 
in computer ethics that may be given as an elective or may be required for a major in 
computer science.  

Since entire books have also been written on the field of computer ethics it would not be 
possible to discuss all the theories here. Fortunately, various professional organizations in 
many different fields provide codes of ethics. The same is true in the field of computing 
where the Institute of Electrical and Electronics Engineers (IEEE) Computer Society[3] 
and the Association of Computing Machinery (ACM) [1] have each developed a Code of 
Ethics. These codes help provide guidance when confronting various ethical situations 
within the world of computing. 

These codes are provided by their respective organizations and are available online. The 
reader is encouraged to look at least one of these codes as poss
instructor. It might also prove interesting to look at both codes to see the similarities and 
possible differences between them. 
After examining a code of ethics such as the ACM Code of Ethics, there are some 
exercises at the end of the chapter based on the discussion at the beginning of this section 
that can serve either as a discussion in the classroom or as an essay question in a 
homework assignment. Although it is beyond the scope of this text to examine the 
theories and codes in any detail, there are a number of texts that examine theories and 

Kizza. [5] 

0.6 Summary 
 Machine language and assembly language are low-level languages, where the former 

uses ones and zeros and the latter uses mnemonics. 
 High-level languages are more English-like, where C, C++, and Java are examples of 

high-level languages. 
 Compilers convert the entire high-level language program into machine language 

before executing the machine language program, whereas interpreters convert a high-
level language program one instruction at a time and then execute only the 
corresponding machine language instructions before converting the next high-level 
instruction. 

 Java is a hybrid system, where the Java instructions are converted into an intermediate 
language called bytecode using a compiler and then the bytecode is converted into 
machine language using an interpreter. 

 Computational thinking is a problem-solving process that includes decomposition, 
pattern recognition, abstraction, algorithms, and logical thinking  . The above are skills 
that you can apply in life in general. 

0.5  A Brief Look at Computer Ethics 13



 
 

 Even if one is just beginning in the field of computing, it is important to understand 
professional obligations. 

 Three important areas of computer ethics include but are not limited to property, 
privacy, and responsibility, 

 Two prominent professional Codes of Ethics are provided by the IEEE Computer 
Society and the ACM. 

0.7 Exercises (Items Marked with an * Have Solutions in Appendix  E ) 
1. A River Crossing puzzle involves a famer crossing a river with a wolf, a goat, and 

a cabbage on the way home. After the famer bought them at the market, he rented 
a boat to cross the river. The farmer could take only one of his purchases with 
him, the wolf, the goat, or the cabbage, when taking the boat. If a wolf, a goat, 
and cabbage are left unattended together, the wolf would eat the goat, or the goat 
would eat the cabbage. The farmer's challenge is to bring himself and his 
purchases to the other side of the river, leaving each purchase intact. After solving 
the problem discuss how the computational thinking concepts, decomposition, 
pattern recognition, abstraction, algorithm, and logical thinking, were used to 
come up with the answer. 

 
2. Sudoku is a number-placement puzzle. In original Sudoku, the objective is to fill a 

9 × 9 grid with numbers so that each column, each row, and each of the nine 3 × 3 
sub-grids contain all the numbers from 1 to 9. Discuss how the computational 
thinking concepts, decomposition, pattern recognition, abstraction, algorithm, and 
logical thinking, could be used to solve the puzzle. 

 
3. Compare the two codes of ethics mentioned previously in Section 0.5. Identify 

one or more elements that are similar. If possible, identify one element that 
appears in one code but does not seem to appear in the other.  
 

4. Using one of the code of ethics such as the ACM Code of Ethics, or the code 
assigned by the instructor, analyze the following scenarios as to the proper course 
of action. Be sure to indicate which element in the code applies. 

 
a. A student in a first-year course has asked a fellow student for assistance with 

their programming assignment. After starting to look over the program for the 

time. Might it be easier to just send me a copy of the file containing your 

ethics selected or assigned, what should the student who is providing the 
assistance do? What alternatives are there? 

 
b. A student is working in the Information Technology department and has been 

asked to work on a faculty members personal computer to install a new 
version of a software package. In the process, the student sees the spreadsheet 

g that it will cause 

14 0  Introduction to Computing Concepts

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1


 
 

no harm, the student worker decides to look up a grade of a friend in the 
spreadsheet. According to the code of ethics selected or assigned, should the 
student worker do this? Is it causing any harm? 

 
c. An intern at a local company is having difficulty with a small section of code 

being worked on which is a part of a much larger project. When testing the 
section of code, the intern realizes that it works over 99% of the time and 
rarely fails. Since the intern is afraid of losing the internship, the possibility of 
a failure happening is very small and the code is an insignificant part of the 
much larger project, the intern submits the code as being complete. Based on 
the code of ethics selected or assigned, should the intern submit the code as 
complete? What alternatives are there? 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.7  Exercises (Items Marked with an * Have Solutions in Appendix E) 15



 

 1 

Input/Output, Variables, and Arithmetic 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter provides an initial skeleton program from which to create subsequent programs. An introduction 
to variables, constants, assignment statements, arithmetic operations, and simple input/output using the 
keyboard and monitor is also provided. Further, there is a discussion concerning comments and a simple 
complete program is included at the end of the chapter. 

Keywords 

Input/Output, Variables, Assignment Statement, Arithmetic, Comments. 

 

1.1 Introduction 
This section introduces the reader to the basics of the Java programming language and 

helps get the first program up and running as quickly as possible. To that end, the 
explanation of some of the more complicated aspects of a Java program are deferred until 
later. Many of the OOP (Object-Oriented Programming) concepts are only briefly 
introduced, but will be discussed more thoroughly in Chapters 2, 5, and 9. For those who 
want a more detailed discussion and elaboration of some of the concepts presented in this 
chapter, it can be found in Appendix A. However, note that for some of the sections of  
Appendix A, it helps to have read at least Chapters 2, 5, and possibly 9, or have had 
previous OOP programming experience.  

1.2 Java Skeleton 

Probably the best way to understand a programming language is to start right away with a 
sample program. Although the following program does not do anything, it will serve as a 
skeleton to add instructions to in the future and provide a starting point to understand the 
basic layout of a Java program. At first the program in Fig. 1.1 might look a bit 
intimidating, but with various explanations and with time it will become more 
understandable. For now, a few of the words and symbols will be explained here and the 
rest will be discussed elsewhere in the text. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_1

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_1&domain=pdf


 
 

 
Fig. 1.1 Java skeleton program 

The first line in the program begins with the reserved word class. A reserved word is 
one that has a special meaning in a program and cannot have its meaning changed by the 
programmer nor can it be used for other purposes. As briefly discussed in Chapter 0, a class 
is a definition of a group of objects. Although classes and objects will be discussed further 
in  Chap. 2 , for now think of a class as a blueprint for a house and the houses built from 
the blueprint as objects. 

 The word Skeleton following the reserved word class, is the name of the class 
that is provided by the programmer. This name is known as an identifier and the rules for 
identifiers will be discussed in Section 1.4. Note that usually class names begin with a 
capital letter. The entire definition of the class, Skeleton, should be placed between the 
first opening brace and the last closing brace, { }. 

 
This class has one method definition starting on the second line. A method is like a 

function in mathematics which are sent values via arguments and can return a single value.  
Typically, the body of the method is indented to improve the readability of the program.  
 

 The word main is the name of the method. When a program is run, the system will 
search for the main method and start executing instructions in the main method. For now, 
the rest of the words in this line will be discussed later throughout the text and in Appendix 
A. The definition of the main method also starts with an opening brace and ends with a 
closing brace. Inside the braces, a sequence of instructions would be placed. For now, the 
method does not have any instructions and only contains a comment line. 

 Comments will not be compiled and executed when the program is run. They are used 
to make programs easier for other programmers to understand. Comments can start with 
// symbols and continue to the end of the line as shown in Figure 1.1, or be placed between 
/* and */ symbols. The // symbols are used for a single-line comment, and /* and */ 
are used when the comments run over multiple lines. Comments are discussed more 
thoroughly in Section 1.9, The above program should compile without any syntax errors 
and run without any execution errors, except unfortunately it does not do anything.  

 

Unless a program performs some type of output, it is not particularly useful and it is 
difficult to know whether the program has run. Output can be of many forms including 
output to a screen, a printer, or a disk. In this section, only output to a screen will be 
considered. Although there are several ways to output data to the screen, this section will 
examine the simplest of them to get started. 

18 1  Input/Output, Variables, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

 

1.3.1 Text-based Output 

 
One of the more common first programs written when learning a new language is the 

is writing a program correctly and using the compiler properly. This program can be written 
as shown in Fig. 1.2. 

 
Fig. 1.2 Hello World! 

The program looks very similar to the original Skeleton program in Fig. 1.1, except 
that the class name has been changed from Skeleton to Output and the comment line 
has been replaced with the System.out.println("Hello World!"); statement. 
This statement outputs the string contained within the double quotation marks to the 
monitor. Java uses System.out to refer to the standard output device which by default 
is the monitor. To perform output, one simply uses the println method to display a 
primitive value or a string to the monitor. The println method is part of the Java 
Application Programming Interface (API) which is a predefined set of classes that can be 
used in any Java program. The classes and methods in the Java API provide a variety of 
fundamental services that are not part of the language itself. 

 
The method name println 

spelled that way. The print portion of println causes the information in the 
parentheses to be output to the computer screen, and then the ln portion of println 
causes the cursor on the screen to move down to the next line. In this case, the only 
information in the parentheses is the string "Hello World!". Following the closing 
parenthesis, the statement is terminated with a semicolon. 

 
Go ahead and try typing in this program on your computer using the IDE (Integrated 

Development Environment) installed in your lab, home computer, or place of employment 
and then compile and execute the program. Provided there are no syntax errors, the output 
should appear similar to the following, where the underscore represents the ending location 
of the cursor on the screen: 

 
Hello World! 
_ 

 
Notice that the quotation marks are not output to the screen and the cursor appears on 

the next line. Also note that the cursor might not appear on the screen, since there is no 
input yet, but in this example, it serves to illustrate where any subsequent input or output 

1.3  “Hello World!” 19

would appear. 



 

1.3.2 GUI-based Output 
 

Text-based output is simple and easy to implement while learning concepts of a 
programming language and testing programs. However, when an application is written 
for customers, a Graphical User Interface (GUI) is a user-friendly way of displaying 
output.  
 
Simple GUI based output to display a message dialog box can be accomplished by using 
the showMessageDialog method as shown in Fig. 1.3. 
 
import javax.swing.*; 
 
class MsgBoxOutput  { 
   public static void main(String[] args) {       
      JOptionPane.showMessageDialog(null, "Hello World!"); 
      System.exit(0); 
   } 
} 
 
Fig. 1.3 Message Dialog Box 
 
The JOptionPane.showMessageDialog indicates that the 
showMessageDialog method is defined in the standard class JOptionPane. The 
method passes two arguments where the first argument, null, causes the dialog box to 
appear in the center of the screen. The second argument is the message to be displayed in 
the dialog box. 
    Note that since the JOptionPane class is not automatically available to Java 
programs, the import javax.swing.* statement is added at the beginning of the 
program. All the predefined classes and methods in the Java Aplication Program 
Interface (API) are organized into packages, and the import statement identifies those 
packages that are not automatically available. 
 
     Also, notice that the last statement System.exit(0) causes the program to stop 
executing since a program with JOptionPane does not automatically stop when the 
end of the main method is reached. When the program above is executed a dialog box 
shown below appears on the screen.  
 

 
 

20 1  Input/Output, Variables, and Arithmetic



 
 

When the user clicks the OK button, the dialog box will close. Both types of output, text-
based and GUI-based, will be used throughout the text, with text-based used more 
frequently due to its simplicity. 
 
 

1.4 Variables and Constants 

One of the things that often needs to be added to the skeleton are data members. Another 
name is a memory location so that data can be stored. Yet another name is a variable since 
the contents of the memory location can vary, just as a variable in mathematics. 

In order to understand variables and how data is stored in memory, it is oftentimes very 
helpful to draw a picture of the memory location. A memory location can be thought of as 
a mailbox that has two main parts. One part is the contents, which includes the letters that 
are inside the mailbox, and the other is the address of the mailbox as shown in Fig. 1.4. 

 
Fig. 1.4 Representation of memory 

The address of the mailbox is usually a number, like the address of a memory location 
in a computer. At the machine language level, the address is in ones and zeros, just like the 
machine language instructions mentioned in Chapter 0. However, using numbers to 
represent the address of a memory location can be quite confusing, especially if there are 
hundreds of memory locations in a program. Instead, it is helpful to use characters to form 
names, called symbolic addressing, to make it easier to remember what data is stored in 
what memory location as shown in Fig. 1.5. In this example, the name number is used to 
describe the contents of the corresponding memory location. This is one of the primary 
advantages of using assembly language over machine language, and this is also true of all 
high-level languages including Java. 

 
Fig. 1.5 Using names for memory locations 

Instead of a three-dimensional representation of a mailbox to represent a memory 

1.4  Variables and Constants 21



 
 

location, it is much easier to draw a two-dimensional representation. Further, instead of 
using ones and zeros to represent the contents of the memory location, it is easier to use 
the decimal number system to represent values as follows: 

 

Although not as crucial in high-level languages (like Java) as it is in low-level languages 
(machine and assembly languages), it is important to remember that a memory location has 
two features: its address and its contents. In Java, the programmer is typically concerned 
about its contents. 

Given the above representation of variables, how are they actually created or declared? 
When a variable is declared, there are two things that must be done. First, a variable needs 
to be given a name so that it can be referred to by various instructions in the program, and 
second, the type of data that will be stored in the memory location needs to be indicated. 
The reason for this is that although all the data is stored as ones and zeros as discussed 
above, different types of data are stored using different combinations of ones and zeros. A 
single one or zero is called a binary digit (abbreviated as a bit), and a group of 8 bits is 
called a byte. Typically, the more bytes that make up a memory location, the larger the 
number that can be stored in the location. Although how the data is actually stored is 
beyond the scope of this text, Table 1.1 shows some of the types of data, the size, and the 
range of values that can be stored for each type. 

Table 1.1 Data types 
 

Type Size Range 
byte 1 byte 128 to 127 
short 2 bytes 32,768 to 32,767 
Int 4 bytes 2,147,483,648 to 2,147,483,647 
long 8 bytes 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 
float 4 bytes 38 38 
double 8 bytes 308 308 
char 2 bytes one character 
String 2 or more bytes one or more characters 

Typically, the types int, double, char, and String are the ones that are used the 
most frequently. For example, should one want to declare a variable named number and 
have it store an integer, it would be declared as follows: 

 
int number; 

 
First the type is indicated, in this case int for integer, and then the identifier or name 

of the variable number is given, followed by a semicolon. An identifier or the name of 
the variable can be almost anything except for a reserved word as discussed in Section 1.2, 
but there are certain rules that need to be followed as well as some suggestions that should 
be followed. The length of the variable name can be from 1 to any number of characters 
long. Further, the variable name can be composed of letters, numbers, underscores _, and 
dollar signs $, but must begin with a letter. Also, the variable name is case sensitive, 
meaning that cat, Cat, and CAT are separate variable names and correspond to separate 

22 1  Input/Output, Variables, and Arithmetic

memory locations. 



Typically, a variable name should not be too long, because they can be difficult to read, 
but by the same token, they should not be too short either, for it could become difficult to 
remember what it represents. For example, if the letter n were used instead of number, 
then it might not be clear whether n stood for name, number, or numeral. Exceptions 
to this are for variables from a mathematical expression. For example, the variables x, y, 
and z are commonly used to represent the points of a Cartesian coordinate system, and i, 
j, or k are used for loop control variables as will be discussed in  Chap. 4 . Although most 
of the time this text will avoid the use of shorter names, on occasion shorter names might 
be used to save space or for the sake of simplicity to concentrate on other aspects of a code 
segment. If a variable is too long, it can be difficult to read as in the following: 
numberofcatsanddogs. Common practice in Java is not to capitalize the first letter of 
a variable but to capitalize the first letter in all subsequent words, as in 
numberOfCatsAndDogs. Notice that it is a little easier to read that way. Also on 
occasion, abbreviations can be used such as num instead of number, but be sure to use 
good ones. Further, this text will occasionally show some of the more commonly used 
abreviations. 

Variables of other types can be declared as well, such as a variable of type float or 
double. Although numbers of type float 
they are less precise and can sometimes cause inaccuracy in calculations. Even though they 
take up more memory, this text will use double variables to alleviate some possible 
problems later. For example, should one want to declare a variable to hold a double 
precision value, it would be declared as follows: 

 
double average; 

 
Further it could contain a value and would look like the following: 

 

Notice that instead of showing the number zero as an integer, it is represented as a real 
number with a decimal point, to indicate its type as a double. 

All of the types given in Table 1.1, other than the String type, are known as primitive 
data types, meaning that when they are declared, the memory needed to store the associated 
data is allocated at that time. However, a String data type is a reference data type. When 
a variable of type String is declared, the memory allocated is not used to store the data, 
but rather only to store a reference to the data. String data types are unique in that although 
they are technically objects, they can be used syntactically as if they were primitive data 
types. 

The first part of this text will use strings in a very limited capacity. An understanding 
of strings is much easier once one has had an introduction to objects and practice with 
objects, so a full description of how string objects are created and manipulated is presented 
in  Chap. 6 
data types, and the following shows a character primitive data type and a simplified view 
of the string data type. For example, a character and string could be declared as follows: 

1.4  Variables and Constants 23

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_6


 
 

char initial; String name; 

and would be represented with values as follows, respectively: 

 

Note that the char data type is represented using single quotation marks and that the 
String is represented using double quotation marks. Although a character could be 
represented as a String of length one, it is usually better to use the char data type. 
Further, there are also ways to extract a single char type from a String data type. Again, 
a full description will be deferred until  Chap. 6 . 

In contrast to variables, a constant can be declared so that its value cannot be changed. 
Although not nearly as useful as variables, constants have their place in a program when a 
value does not need to be changed, nor should be changed. For example, if an integer N 
needs to remain a 7, then it could be declared as follows, where the use of the reserved 
word final indicates that N is a constant: 
final int N = 7; 

Typically, constant names are declared as all capital letters to help other programmers 
distinguish them from variables. In another example, suppose a number like PI needs only 
two digits after the decimal point, then it could be declared as follows: 
final double PI = 3.14; 

Although the use of a constant might not be readily apparent at this time, their use will 
become clearer in subsequent examples after discussing assignment statements in the next 
section. 

1.5 Assignment Statements 

In the previous section, all the drawings of the memory locations had values in them. How 
did those values get there? By default, Java technically initializes all int variables to 0 
and double variables to 0.0. Also, char variables are initialized to the empty character 
indicated by two single quotation marks '' and String variables are initialized to null 
as will be discussed further in  Chap. 6 . Although this can be helpful in some instances, in 
many other languages variables do not have a default value. The variables contain whatever 
was in that memory location from the last time it was used which could be interpreted as 
junk to another program, cause logic errors, and be difficult to debug. Variables with 
unknown initial values are said to be indeterminate. As a result, many programmers do not 

default values and assume instead that the initial values of variables are 
indeterminate, which will also be the assumption of this text. So instead of initially showing 
an integer variable with the number 0 in it, this text will show the variable as indeterminate 
with a dashed line in it as shown below: 

 

Does this mean that all variables need to be initialized to some value? Not necessarily. 
As will be seen, only those variables that need an initial value for subsequent processing 

24 1  Input/Output, Variables, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_6


 
 

should be initialized. Initializing a variable to a value when it does not need to be initialized 
could be confusing to other programmers reading the code, as will be discussed later in this 
chapter and in  Chap. 4  on iteration structures. 

So, if a variable is assumed not to be initialized, how does one initialize a variable to a 
value such as 0 or any other value for that matter, such as 5? After a variable is declared, 
it can be given a value in an assignment statement using an assignment symbol. The 
assignment symbol is the equal sign. However, when one first starts to use the equal sign, 

on the right, but rather that the value on the right is copied into or assigned to the variable 
on the left. Again, this is best shown by way of an example: 
 
int number; 
number = 5; 

After the variable number is declared as type int, the second statement indicates that 
the integer 5 is assigned or copied into the variable number and the memory location 
would then appear as follows where green indicates a change: 

 

Again, the assignment statement is not really saying that number is equal to 5 or equals 
5, but rather that the variable number is assigned a 5 or takes on the value of 5. Although 
it is tempting to say that number equals 5 and even though most people will understand 
what is meant, try to avoid saying it, and there will be less difficulty in the future as shown 
in Sect. 1.8 on arithmetic statements. 

Note that it is possible to combine the previous two statements into one statement as 
shown below. It looks similar to the definition of a constant in the previous section but 
without the word final in the statement: 
int number = 5; 

The above syntax is perfectly legal and saves a line when writing a program. However, 
when first learning a language, it helps to reinforce the distinction between the declaration 
of a variable and the assignment of a 
not mind the above shortcut or if one is studying this text on their own and likes the 
shortcut, then go ahead and use it. However, this text will use the previous two-line method 
at least for the next few chapters to help reinforce the distinction between the declaration 
of a variable and the assignment of a value to a variable. 

Continuing, what if one wanted to take the contents of number, and copy it into another 
memory location named answer? For example, consider the following code segment: 
 
int number, answer; 
number = 5; 
answer = number; 

After both number and answer have been declared in the first line, the variable 
number is then assigned the value 5 in the second line and answer will still be 

5   number 

1.5  Assignment Statements 25

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

indeterminate. The memory locations would look as follows: 

 

The third line then takes a copy of the contents of number and places it into the 
memory location answer as shown below:

 

Note that the assignment statement does not remove the 5 from number and put it into 
answer, but rather it takes a copy of the 5 and puts it into answer. The original 5 in 
number does not disappear. Why does it copy and not move it? The reason is because it 
is actually faster for the computer to copy it and not take the time to delete the original. 
This is a fundamental concept in most computer languages and will become more important 
in the writing of subsequent programs. 

Again, the important point to notice is that the copying of values is from right to left, 
not left to right. This sometimes causes confusion among beginning programmers, possibly 
because they are used to reading from left to right. The reason why Java and many previous 
languages go from right to left is because they are mimicking some of the assembly 
languages on many machines. Ideally it would be nice if languages used an arrow to show 
how values are copied as shown below: 

 

However, most keyboards do not have an arrow character, so an equal sign was used. 
Just be very careful to remember that values are copied from right to left and there should 
not be any problems. 

Assigning variables of type double is similar to the above and will not be shown here; 
however, a couple of points need to be made concerning assigning variables of different 
types. For example, what would happen if a variable of type int was assigned to a variable 
of type double as shown below? 
 
int number; 
double result; 
number = 5; 
result = number; 

As before, the contents of the memory locations after the assignment of 5 to number 
would be as follows: 

 

Then when the next assignment statement is executed, the int value of 5 would be 

5   number   answer --- 

5   number answer 5 

5   number   result --- 

26 1  Input/Output, Variables, and Arithmetic



 
 

copied, converted to a double value of 5.0, and assigned to result as follows: 

 

Would the value in number be converted to a 5.0? The answer is no, as shown above, 
because only the variable to the left of the assignment symbol is altered by an assignment 
statement. The 5 in number is not converted, but rather when it is copied, it is converted 
to the proper type so that it can be assigned to result. 

If an int value can be stored in a variable of type double, is the reverse true? The 
answer is no, because, for example, how could the number 5.7 be stored as an integer 
without the fractional part? A way around this problem is to use a typecast operator. A 
typecast operator allows a value of one type to be converted to another type. In the case 
below, the typecast operator (int) converts the double value in number to type int 
so it can be assigned to result. As before, the value in number would not change and 
would still contain a 5.7. However, what happens to the fractional part? The result is that 
it is truncated and a 5 is stored in result: 
 
double number; 
int result; 
number = 5.7; 
result = (int) number; 

What if the value needed to be rounded instead? Fortunately, Java has the Math class 
which contains a method named round. As mentioned previously, a method is somewhat 
like a function in mathematics. The name of the class, Math, is followed by a period and 
the name of the method, round. Parentheses are placed after the method name and contain 
the argument, number, which is sent to the method. The code segment from above is 
rewritten below: 
 
double number; 
int result; 
number = 5.7; 
result = (int) Math.round(number); 

Unfortunately, when the round method is sent a value of type double, it returns a 
value of type long, but the typecast operator (int) can again be used to convert the 
value of type long to type int. Since number initially contains 5.7, the variable 
result would contain a 6. Again, the value in number would not change and would still 
contain a 5.7. 

 
 Of course, if the precision of the type double is needed, the better solution would be 

to change the type of result to double to preserve the fractional part of number. The 

5   number   result 5.0 

5.7   number   result 6 

1.5  Assignment Statements 27



 
 

round method is one of the many methods available in the Math class which is discussed 
in more detail in Sect. 1.8 on arithmetic statements. 

1.6 Output 

1.6.1 Text-based 

Recall from Section 1.3 that the following: 
System.out.println("Hello World!"); 

output the following: 
Hello World! 

_ 

where the cursor appeared on the next line. However, what if one wanted to split the string 
so that it appears on two separate lines? This can be accomplished by using two separate 
System.out.println statements as follows: 
 
System.out.println("Hello"); 
System.out.println("World!"); 

As one might suspect, the output would appear as follows: 
 
Hello 
World! 
_ 
 

The string "Hello" is output and the cursor moves down to the next line. Then, the 
string "World!" is output, and again the cursor moves down to the next line in 
preparation for the subsequent line to be output.  

 
 In another example, what if one wanted to output the following with a blank line 

between the two words and the cursor at the bottom? 
 
Hello 
 
World! 
_ 
 

The following code segment would accomplish this task: 
System.out.println("Hello"); 
System.out.println(); 
System.out.println("World!"); 

 
The first statement outputs the word Hello and moves the cursor down to the second 

line. The second statement does not output anything, so the ln of the 
System.out.println statement causes the cursor to move down to the third line and 
the blank line to appear on output. Lastly, the word World! is output and the cursor moves 

28 1  Input/Output, Variables, and Arithmetic



 
 

down to the fourth line. Note that usually a System.out.println() indicates that a 
blank line will be output, but there are exceptions that are discussed further in Appendix 
A. 

Although the above is useful for outputting strings and vertically formatting output, how 
does one output integers and real numbers? Combining the information learned in the 
previous two sections, one can then have a program as shown in Fig. 1.6. 

 
Fig. 1.6 Outputting an int 

This program declares the variable num to be of type int, assigns the value 5 to num, 
and then outputs the contents of the variable num. Note that the variable num is not 
enclosed in quotation marks, so the word num is not output, but rather the contents of the 
variable num are output. Unfortunately, only the integer 5 would be output to the screen 
which would not be very useful. Instead, it is helpful to output some other information for 
the user to identify and understand the information on the screen. 

The output statement in the program in Fig. 1.6 can be modified to include the string 
"The number is " followed by a plus sign prior to the variable num as shown in Fig. 
1.7. A plus sign between two strings or between a string and any other type of data means 
concatenation. In other words, the string "The number is " and the contents of num 
are output as if they are one string. It should be noted that one needs to be careful should 
only two integers be separated by a plus sign, because then it would mean addition as will 
be discussed in Sect.1.8. However, provided a string or a concatenated string appears to the 
left, then the item to the right of the plus sign will be concatenated instead of added. Note 
that there is a space within the quotes at the end of the string so that the contents of the 
variable num are separated from the word is in the string. The result is that the output of 
this program would appear as follows: 
 
The number is 5 
_ 

 
Fig. 1.7 Outputting an int with description of output 
 

1.6  Output 29



 
 

What happens if one outputs a number of type double using the same format shown 
in Fig. 1.7? For example, Fig.1.8 outputs the contents of the variable num of type double. 

 
Fig. 1.8 Outputting a double precision number without formatting 

As will be discussed further in Sect.1.8, the / means division and num will take on the 
value of one third. When the above program is compiled and executed, the screen displays 

The number is 0.3333333333333333 

Although using high precision is necessary during computation, it may not be needed 
when a number of type double is displayed. How can one limit the number of digits after 
the decimal point in a floating-point number? A predefined method in the Java API called 
printf can be used. The general syntax of the printf method is as follows: 

 
printf(control string, expr, expr, …) 

 
where control string is a string that may consist of substrings and format specifiers 
and an expr represents a variable, expression, or constant value. A format specifier 
indicates how an expr should be displayed. A specifier %d is used for a decimal integer, 
%f for a floating-point number, %c for a character, and %s for a string. For numbers, the 
total width and precision can be indicated in a specifier. For example, the specifier %10d 
outputs an integer value with a width of at least 10. The specifier %10.2f outputs a 
floating-point number with a width of at least 10 including a decimal point and two digits 
after the decimal point. The width of character and string values can also be indicated. For 
example, the specifier %3c outputs a single character and adds two spaces before it, and 
%10s outputs a string with a width at least 10 characters. If there is more than one expr 
to be output, they must match the specifiers within the control string in order, number, and 
type. Using the formatting information described above, the program in Fig. 1.8 can be 
rewritten as in Fig. 1.9. 

 

 
Fig. 1.9 Formatting a double precision number 

30 1  Input/Output, Variables, and Arithmetic



 
 

The floating-point number stored in the variable num will be output with two digits after 
the decimal point. Since a space is included before the specifier in the string after the word 
is, there will be a space between is and the number as shown below: 
The number is 0.33 

Also notice that since the printf method does not move the cursor to the next line. A 
System.out.println(); statement needs to be added at the end of the program in 
order to have the same effect as the program in Fig.1.8. 

Some characters cannot be simply included between double quotes for output. In order 
to output a double quotation mark, a back slash in front of the double quotation marks 
needs to be used, \". The following statement 
System.out.println("He said \"Hello\"."); 

will output 
He said "Hello". 

Similarly, a backslash can be output by placing an extra backslash in front of one as 
shown below: 
System.out.println("How to output a backslash, \\"); 

This will produce an output of 

How to output backslash, \ 

1.6.2 GUI-Based 

When using GUI-based output and if multiple lines of text need to be displayed in a 
message box, the control character \n
the lines as in 

 
JOptionPane.showMessageDialog(null, "Hello\nWorld!"); 
 
which results in the dialog box shown below: 

 

 
 

As can be seen, Hello, and World! are output on separate lines. The \n can also be 
used in a string with text-based output, which works similarly to the ln portion of a 
println statement. Since there is no choice with message boxes, it will be used in GUI-
based output and the ln will be used more often in text-based output. 

 

1.6  Output 31



 
 

The output of integers in message boxes is fairly easy, where the variable name needs 
to be placed in the parameter list. If one wants to identify the integer being output to the 
user, then just as with text-based output, the identifying string is concatenated with the 
integer using the + sign. Likewise, the output of double precision numbers can be 
formatted as with text-based output. The program in Figure 1.10 is the same as Figure 1.9 
except GUI-based output is used:  
 
  import javax.swing.*; 
  public class MsgBoxOutput { 
     public static void main(String[] args) { 
        double num; 
        num = 1.0 / 3.0; 
        JOptionPane.showMessageDialog(null, "The number is "  
                             + String.format("%4.2f", num)); 
     } 
  } 
 
Fig. 1.10 Outputting a double precision number using GUI 
 
The format method defined in the String class in String.format("%4.2f", 
num) will return a formatted number and display it in a dialog box. Note that the format 
method does not alter the contents of num. 
 

 

 

1.7 Input 

1.7.1 Text-based 

The ability to declare variables, assign values to them, and output strings and variables is 
very important but does not allow for many useful programs. As it stands, anytime one 
wants to change the output of a program, one has to edit the program and recompile it 
before executing the program. What is needed is a way to input data into a program. As 
with output, input can come from a variety of sources such as the keyboard, mouse, or a 
disk and this section will deal with the simplest form of input from the keyboard. 
 

As in the last section, it is best to start with a simple example based on the previous 
program in Fig. 1.7 and modified as shown in Fig. 1,11. Although the description of the 
first few lines of the following program might be a little complicated due to the nature of 
input in Java, the actual statements that perform the input are less complicated as will be 

32 1  Input/Output, Variables, and Arithmetic

seen shortly. 



 
 

 
Remember when the System.out.println and System.out.printf 

statements were used for output, the java.lang package including the System class 
was not imported at the beginning of the program. This is because the java.lang 
package, which includes the System and Math classes, is used extensively, and is 
automatically imported into all Java programs. 

 

 
Fig. 1.11 Program to input an integer 

Similar to GUI-based output, notice the addition of the import statement in the first 
line. The import statement is added in order to use a predefined method for input, but 
instead of the swing package, the util package is used for text-based input. 

In order for input to work properly, one needs a place to store the data entered. The first 
statement in the body of the main method declares the variable num as type int. The next 
statement is the declaration of the variable scanner of type Scanner as shown below: 
Scanner scanner; 

Scanner is not a primitive data type like int or double, but rather it is a class. As 
discussed briefly in Section 0.4.3.2 and will be discussed further in  Chap. 2 , a class can 
be thought of as the set of blueprints for a building. Notice that the class name begins with 
an upper-case S, whereas the variable name begins with a lower-case s. Continuing, the 
following statement 
scanner = new Scanner(System.in); 

creates a new instance of the Scanner class, or in other words a Scanner object. 
This can be thought of as how an individual building might be constructed from a set of 
blueprints. Java uses System.in to refer to the standard input device, which is the 
keyboard. Unlike output, input is not directly supported in Java; however, the Scanner 
class can be used to create an object to get input from the keyboard. The above statement 
then assigns a reference to the new object to the variable scanner. Again, although this 
might be a little confusing at this point, the important thing is be sure to include the 
import statement and the above two statements in any program that needs to input data. 

The next statement below shows how the Scanner object is used to scan the input for 

1.7  Input 33

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

the next integer. The method nextInt will make the system wait until an integer is 
entered from the keyboard, and then the integer input is assigned to the variable num: 
num = scanner.nextInt(); 

The last statement in the program is the same as before where the value of num is output 
to the computer screen. However, if one were to enter, compile, and run this program as 
given, the result might be a little confusing. The reason is that there would only be a 
blinking cursor on the screen as the system is waiting for input and there would be no 
indication of what should be input without having to look at the program. To solve this 
problem, it is usually best to provide a prompt to let the user know what should be input. 
A prompt is just an output of a message to the user to help them understand what is expected 
to be input. The program in Fig. 1.12 includes a prompt just prior to the input. 

 
Fig. 1.12 Prompting a user to input a number 

As can be seen, the prompt is nothing more than the output of a string to indicate what 
the program is expecting in terms of input. Instead of using a 
System.out.println(); notice that a System.out.print(); without the ln 
is used which causes the cursor to stay on the same line for subsequent input. Further, a 
prompt should be formatted well such as including a space after the colon so that the cursor 
is separated from the prompt. After entering the data and when the user presses the Enter 
key, the cursor then moves to the next line. 

Furthermore, a prompt should be user-friendly. A user-friendly prompt is one that 
clearly describes what the user should input, as in the case above where it asks for an 
integer. A user-
typically a prompt should avoid the use of first-

 
Now would be a good time to enter, compile, and run the program in Fig. 1.12 to see 

how it works. The results should be similar to the following: 
 
Enter an integer: 5 
The integer is 5 
_ 

In addition to nextInt, the method nextDouble reads a number of type double, 

34 1  Input/Output, Variables, and Arithmetic



 
 

the method next reads a word of type String that ends prior to a space, and the method 
nextLine reads an entire line of text of type String, including all the spaces until the 
user presses the Enter or Return key. All of these methods work similarly to the method 
nextInt. 

1.7.2 GUI-based 

A GUI input dialog box can be created by using the showInputDialog method that is 
also defined in the JOptionPane class. The following code shows how the 
showInputDialog method can be invoked: 
JOptionPane.showInputDialog(null,"What is your first name?"); 

As with the showMessageDialog method, it sends a JFrame object and a String 
object as arguments. As before, the null value causes the dialog box to appear in the 
center of the screen. The second argument is a message displayed above a text field in the 
dialog box. The text field is an area in which the user can type a single line of input from 
the keyboard. When the statement is executed, a dialog box will appear  and a user can 
enter text in the text field as in Figure 1.13. 

 

 
 Fig. 1.13 An input dialog box asking the first name 

When the OK or Cancel button is clicked, or the Enter key is pressed, which is an 
alternative to pressing the OK button, the dialog box will disappear. However, it does not 
do anything more and the value entered in the text field is gone. In order to save the value 
the user entered, a String variable needs to be declared, and in this case it is called 
firstName. Then the value returned from the method has to be assigned to a variable 
both as shown below: 
 
String firstName; 
firstName = JOptionPane.showInputDialog(null , 
            "What is your first name?"); 
 

Now, if the user enters Maya in the text field and clicks the OK button or presses the 
enter key,  a reference to the String object with the value "Maya" will be assigned to 
the String variable firstName . If the user clicks the OK button or presses the enter 
key without entering anything in the text field, firstName will reference the object of 
the String type with an empty string. If the user clicks the Cancel button regardless of 
what was entered in the text field, firstName will contain the value null. 

The following program demonstrates how to use both types of dialog boxes. Notice the 
import javax.swing.*; statement, which is not only needed for GUI-based output, 

1.7  Input 35



 
 

but GUI-based input as well. The program uses an input dialog box to ask a user to enter 
their first name and displays a greeting in a message dialog box: 
 
import javax.swing.*; 
class MsgBoxName { 
   public static void main(String[] args) { 
      String firstName; 
      firstName = JOptionPane.showInputDialog(null , 
                  "What is your first name?"); 
      JOptionPane.showMessageDialog(null, "Hello, " 
         + firstName + "!\nHow are you?"); 
      System.exit(0); 
   } 
} 
   

When the above program is executed, the input dialog box in Fig. 1.13 again appears. 
If the user enters Maya and clicks the OK button, the message dialog box in Fig. 1.14 will 
be displayed. 

 

 

Fig. 1.14 Message Dialog Box 

 

Unlike the Scanner class for text-based input that supports different input methods for 
specific data types, such as nextInt and nextDouble , the JOptionPane accepts 
only string input. Even if the user enters numeric data, the showInputDialog method 

s input as a String . For example, if the user enters the number 
18 into an input dialog box, the showInputDialog method will return the String 
value "18" . This can be a problem if the input is used later in mathematical calculations 
because mathematical computations cannot be performed on strings. In such a case, a 
conversion from a string to a number needs to be performed. Here is an example of how to 
accomplish this using the Integer.parseInt method: 

 
String str; 
int age; 
 
str=JOptionPane.showInputDialog(null, 
     "How old are you?"); 
age=Integer.parseInt(str); 
 

36 1  Input/Output, Variables, and Arithmetic



 
 

When the above code executes and  after the user enters 18 , the dialog box would look 
as shown in Fig. 1.15. 

 
 

 
 
 
 
 
 
 
 

Fig. 1.15 An input dialog box containing the value entered 

 

When the user clicks the OK button, the dialog box disappears and the String variable 
str will hold the String value "18". It will then be converted to an integer and assigned 
to the int variable age . If the user enters a string that cannot be converted to a type int, 
for example, 18.0 or the word eighteen, a NumberFormatException error will 
result (the topic of exceptions will be covered in Appendix B). Table 1.2 lists common 
methods to convert the string input to numerical data values. 

Table 1.2 Methods for converting strings to numbers 
 

Methods Description 
Byte.parseByte Convert a String to a byte 
Double.parseDouble Convert a String to a double 
Float.parseFloat Convert a String to a float 
Integer.parseInt Convert a String to a int 
Long.parseLong Convert a String to a long 
Short.parseShort Convert a String to a short 

1.8 Arithmetic Statements 

The ability to input data, copy data from one memory location to another, and output data 
is fundamental to almost every computer program. However, unless there is the capability 
to manipulate and process data to convert it into information that can be output and used, 
the power of the computer has hardly been tapped. One of the first things computers were 
used for and continue to be used for is arithmetic computation, which is the subject of this 
section. 
1.8.1 Binary Operators 

The four basic operations of arithmetic, addition, subtraction, multiplication, and 
division can be accomplished in Java by the use of the binary operators +, -, *, and /, 
respectively. The word binary in this case does not mean the binary number system, but 
rather that these operators have two operands (such as variables and constants) that are 
manipulated by the operators. As before, the best way to illustrate this is through an 

1.7  Input 37



 
 

example. Consider the following code segment: 
 
int num1, num2, sum; 
num1 = 5; 
num2 = 7; 
sum = num1 + num2; 

After the variables of num1 and num2 have been assigned the values 5 and 7, 
respectively, the contents of the memory locations would appear as follows: 

 

What occurs next is that the expression on the right side of the last assignment statement 
is evaluated. The contents of num1 are brought into the CPU, and then the contents of 
num2 are added to it in the CPU. Once the expression on the right side of the assignment 
symbol has been evaluated, the result of the expression in the CPU is then copied into the 
variable to the left of the assignment symbol. As in Sect.1.5, the copying goes from right 
to left, so the expression is always on the right side of the equal sign and there can only be 
one variable on the left side. The results of this evaluation and assignment can be seen 
below: 

Of course the values for num1 and num2 in the above segment could have been input 
from the keyboard, and the result in sum could be output to the screen, but for now simple 
assignment statements are used to initialize num1 and num2, and the value of sum is not 
output to keep the segment simple. The examples following will use this same pattern; 
however, a complete program using input and output will be shown in Sect. 1.10. 

Similar equations can be made using subtraction, multiplication, and division, and 
examples incorporating these operators will follow later in this section. Still, a few 
comments need to be made about mixing variables of different types. As shown above, 
when two variables of the same type are used, the result is of that type. However, should 
one or both of these operands be of type double, then the result will also be of type 
double. For example, if num1 is of type int and num2 is of type double, then the 
result of the expression would be of type double. Of course, if the result of the expression 
is of type double, then it could not be assigned to the variable sum of type int. Either 
the round method would need to be used or the type of sum would need to be changed to 
double. 

There is also a unique aspect to the division operation depending on the types of its 
operands. As with the other operators, if either or both of the operands are of type double, 
then the result of the division is also of type double. So, for example, 7.0 divided by 2 
would be 3.5. If both operands are of type int, the result will of course be of type int. 
Although this does not pose a problem with the other arithmetic operators, the result of 
division when performing arithmetic often has a fractional component, and one would write 

5   num1   num2 7 ---   sum 

5   num1   num2 7 12   sum 

38 1  Input/Output, Variables, and Arithmetic



 
 

it as 3½, 3.5, or possibly 3 with a remainder of 1. However, if the result of the division 
operation in Java is of type int, the fractional part is discarded and the result is simply 3. 
Although one does not get the fractional part with integer division, what if one wanted to 
determine the remainder? That can be done with the mod operator which is represented by 
the percent sign, %. To illustrate, consider the following code segment, where all variables 
are of type int: 
 
int num1, num2, quotient, remainder; 
num1 = 7; 
num2 = 2; 
quotient = num1 / num2; 
remainder = num1 % num2; 

Gven the initial values, upon completion of the segment, the respective memory 
locations would contain the following: 

 

1.8.2 Precedence 

Although it is relatively easy to create some simple instructions that contain only one 
operator, what about expressions with more than one operator? In that case, an awareness 
of the precedence of the various operators is needed. The precedence in Java is the same 
as in mathematics, on a scientific calculator, or in a spreadsheet application program. First, 
the multiplication and division operators have precedence over addition and subtraction. 
For example, given the following code segment, what are the contents in answer? 
 
int answer, x, y, z; 
x = 2; 
y = 3; 
z = 4; 
answer = x + y * z; 

Unfortunately if one guessed 20, that would be wrong. Remember that multiplication 
has precedence over addition so the result of the multiplication of y and z, which contain 
3 and 4, would be 12, plus the contents of x, which is 2, would be 14. 

However, what if one wanted to perform the addition first? As in arithmetic, one can 
always use parentheses to override the precedence of the operators, so that 
 
answer = (x + y) * z; 
 

would result in answer containing a 20. If there are more than one set of parentheses, 
then the innermost nested ones are evaluated first, and if the parentheses are not nested, the 
parentheses are evaluated from left to right. In fact, if there is a tie of any sort, such as two 
addition symbols, or an addition symbol and a subtraction symbol, the order is also from 

7   num1 

  num2 2 

3  quotient 

remainder 1 

1.8  Arithmetic Statements 39



 
 

left to right. 
Given all this information, what would be the answers in the following segment? 

 
int answer1, answer2, x, y, z; 
x = 3; 
y = 4; 
z = 5; 
answer1 = x - y + 6 / z; 
answer2 = (x * (y + 2)) % 2 – 1; 

First, note that there are some constants in the mathematical expressions on the right 
side of the assignment statement and this is perfectly acceptable. In the first expression, the 
6 / z is evaluated first and the result would be 1. After that, which operation is performed 
second? Since there is a tie in the precedence between the subtraction and the addition, and 
the subtraction is on the left, it is performed first, where 3 minus 4 is -1. Lastly, the 1 
from the division is added to the -1 from the subtraction, so the answer is 0. 

In the second expression, which operation is performed first? Since there are nested 
parentheses, the y 2 is performed first with an answer of 6. Then the 3 in x is multiplied 
by the 6 for a value of 18. Then the 18 is divided by 2, where the remainder is 0, and 
lastly the 1 is subtracted from the 0 for a final answer of -1. 

When trying to evaluate expressions, it is sometimes helpful to draw a line underneath 
each of the sub-expressions to help one remember which parts of the expression have been 
evaluated and remember their respective values. For example, the first expression above 
would appear as follows: 

 

all of the time and avoid having to remember the order of precedence? One could do that, 
but the resulting expressions would have an inordinate number of parentheses and they 
could be quite difficult to read. Further, since the precedence rules in most languages are 
fairly similar 
learn and use them correctly. For further practice, see the exercises at the end of this 
chapter. 

1.8.3 Unary Operators 
Just as there are binary operators that have two operands, there also exist unary operators 

that have only one operand. The two most common are the plus sign and the minus sign, 
where the latter is used more frequently as in the following example: 
z = -x + y; 

The thing to remember about unary operators is that they have a higher priority than 

40 1  Input/Output, Variables, and Arithmetic



 
 

binary operators. So in the above statement, the negative of the value contained in x is 
added with the value in y and the result placed in the variable z. Should one want to negate 
the entire quantity, then parentheses would need to be used as in the following example, 
where the values in x and y are added together first, then negated, and the result placed in 
z. 
z = -(x + y);  

 

1.8.4 Incrementing 

There are of course other arithmetic expressions to be learned, including how the 
contents of a variable can be incremented or decremented by 1 or more. There are a couple 
of ways to do this, and the method that is applicable in most programming languages will 
be examined first. One way is to first get the contents of a variable, add or subtract 1, and 
then copy the new number back to the variable as follows: 
 
int x, y; 
x = 0; 
y = 0; 
x = x + 1; 
y = y - 1; 

At first the fourth and fifth statements above might appear unusual to the beginning 
programmer. The fourth statement seems to be saying that x is equal to x 1, which would 
be impossible in algebra. How could a value in x be equal to itself plus 1? The answer is 
that it cannot. The reason why this might look unusual is that one might be mistaking the 
equal sign in Java as an equal sign in algebra, which it is not. If one recalls from Sect.1.5, 
the equal sign in Java is the assignment symbol which takes a copy of the result on the right 
side and places it in the variable on the left. 

In this case, the value in x, which is a 0 as shown above, plus a 1 is 1, and that is the 
value placed into x. So prior to execution of the fourth statement, the value in x is a 0, and 
after the execution of the fourth statement, the value in x is a 1. The same sort of process 
occurs with the statement using subtraction where the final value in y would be a -1. Also 
note that since both variables appear on the right side of the assignment symbol, they must 
be initialized to some value and should not be indeterminate. At first these statements might 
be a little confusing, but with time they become second nature. Statements like these are 
often used to increment and decrement variables that are used as counters and will be 
discussed in detail in  Chap. 4 . 

Since these operations are fairly commonplace, the languages C, C++, and Java have 
shortcuts for these as follows: 

    
   

; or ;
; or  ;

++x x++

--y y--
 

These operators are very convenient. The operators on the left side work the same way 
as those on the right when they are used as standalone statements. The style on the right is 
seen more often and will be used again extensively in  Chap. 4 . However, when used as 

1.8  Arithmetic Statements 41

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

part of a larger expression, the two styles have entirely different meanings. For example, 
consider the following two statements: 

 a=++x; b=y++; 

If x and y originally contain a 2, their respective memory locations would initially 
appear as follows: 

 

At first it might seem that all four variables would contain a 3, but that would be 
incorrect. When the ++ 
before the assignment or any other operation that might be in the expression. On the other 
hand, if the ++ 
performed first, including the assignment operation. The result is that in the example on 
the left, the value of x is incremented by 1, which makes x contain a 3, and then the new 
value of x would be assigned to a, which would then also contain a 3. In the example on 
the right, the value in the variable y, which is a 2, is first assigned to b . Then the value in 
y would be incremented to 3 and the value in b would still be a 2 as shown below: 

 

Using the more simple initial approach such as x x 1; is common in almost all 
languages, so this text will tend to use this initially to help reinforce how an expression like 
this works. However, as mentioned above, standalone operators, the ++ 
fairly useful and easy to use, and this text will use them more frequently in  Chap. 4 . 
Further, when these operators are used in more complicated expressions, their use becomes 
much more difficult to understand, and it is for this reason that this text will tend to avoid 
the use of the ++ that intermediate and 
advanced texts often use these operators more frequently in complicated expressions, so 
one needs to know how they work and also be careful when reading code containing them. 

1.8.5 Summing 
As shown at the beginning of this section, when two variables are added together, the 

sum is often stored in a third variable. However, similar to counting, when a constant such 
as a 1 is added to a variable in the process of trying to find a total, one variable is added to 
another variable. For example, consider the following segment: 

 
int total, num; 
total = 0; 

2   x 

 a --- 

2  y 

b --- 

3   x 

 a 3 

3  y 

b 2 

42 1  Input/Output, Variables, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

num = 5; 
total = total + num; 

where the initial contents of the respective memory locations would appear as follows: 

 

As with previously incrementing by 1, it might look a little odd to see the variable 
total on both sides of the equal sign. Again the equal sign does not mean equality but 
assignment, where the expression on the right is evaluated first and the results are then 
stored in the variable on the left. Also, since the variable total appears on both sides of 
the assignment symbol, it needs to be initialized with a value prior to the statement. After 
the 0 and 5 are added together, the results are then placed back into total as follows: 

 
    Just as with the increment operation, the ability to find a total also has a shortcut. This 

 shortcut is as follows and has the same effect as the instruction above. 
total += num; 

Similar shortcuts can also be used with the subtraction, multiplication, and division 
operators, but are used less frequently than addition. As with the previous shortcuts, this is 
only possible in languages like C, C++, and Java and does not appear in all languages. 
Likewise, since they do not appear in all languages and do not illustrate as readily how 
values can be totaled, this text will tend not to use these shortcuts as often. 

 
1.8.6 Arithmetic Functions 

Although all the basic arithmetic operation are available in the Java programming 
language, there are a number of other functions that would be helpful to have available. In 
addition to the constants PI and E for  and e, respectively, many extra functions are in 
the Math class. Including the round method previously introduced in Sect.1.5, some of 
the other methods include square root, the power function, and the trigonometric functions. 
These methods along with some others are shown in Table1.3. 

Table 1.3 Various methods in the Math class 

 

5   num   total 0 

5   num   total 5 

Method  Function Performed  Arguments  Value Returned 
cos(x)  cosine    double (in radians) double 
pow(x,y) x to the power of y  double   double 
round(x) round    float (or double) int (or long) 
sin(x)  sine    double (in radians) double 
sqrt(x)  square root   double   double 
tan(x)  tangent    double (in radians) double 
toDegrees(x) convert radians to degrees double   double 
toRadians(x) convert degrees to radians double   double 

1.8  Arithmetic Statements 43



 
 

 
Fig. 1.16 Sample Math class constants and methods 

 
     To illustrate a few of these functions, examine the program segment in Figure 1.16. 
The methods should be fairly straightforward given their descriptive names and the 

stored in the variables power, sqRoot, sine, and cosine would be 8.0, 2.0, 0.0, 
and -1.0, respectively. Note that the value in z is in terms of PI, because the 
trigonometric functions work with radians instead of degrees. If the initial value in z was 
in degrees, the method toRadians could be used. 

1.9 Comments 

Although comments were discussed briefly in Sect. 1.2, there are few more items that 
should be discussed. As mentioned previously, comments are either preceded by two 
slashes //, and the remainder of the line is considered a comment by the compiler, or a 
comment can begin with a slash and an asterisk /* and end with an asterisk and a slash */ 
allowing a comment to extend over multiple lines in a program. Single-line comments are 
helpful in explaining an individual line or multiple lines of code. Although a single-line 
comment can be placed off to the right-hand side of the statement it is describing, it can 
sometimes get crowded once code is indented as shown in  Chaps. 3  and  4 . As a result, 
this text will usually place comments just prior to a line of code or code segment being 
documented. For example, the following comment helps the reader of the program 
understand what the subsequent statement accomplishes: 
 
// calculate the area of a rectangle 
areaRect = base * height; 

Multiple-line comments are also helpful to create what are called headings at the 
beginning of programs and methods in class definitions. The format of these headings can 
vary in different computer courses and companies, so be sure to determine your local 
requirements. An example of one such heading might be as follows: 
 
/* name: your name 
class : cs 1xx 
prog : one 
date : mm/dd/yyyy 
*/ 

Once filled with the corresponding information, this heading identifies the author of the 
program, which class it was written for, the program number, and the date written. As can 

44 1  Input/Output, Variables, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_3
http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

be seen, comments are good for documenting what various sections of code do in a program 
and identify who wrote a program, among other things. Having comments within a program 
explaining what a program does is known as internal documentation, whereas having 
explanations that appear in manuals (whether online or in physical manuals) is known as 
external documentation. Internal documentation tends to be more specific and is helpful to 
programmers, whereas external documentation tends to be more general and is useful to 
users, customers, and managers who may not understand programming. 

Although at first some of the simpler programs will not appear to need comments, it 
becomes imperative to include comments as programs become larger and more complex. 
If the original programmer is on vacation or is no longer with a company, documentation 
is essential to help other programmers understand how the program works. Although many 
of the programs written in a first programming course might not be too complex, it is 
helpful to include comments to gain practice in good commenting techniques. To that end, 
the complete programs at the end of each chapter will include comments to help the reader 
understand the program and learn some commenting techniques. 

Another way to document a program is by using Javadoc. This technique is very useful 
with larger programs that have many classes and methods, and an introduction is presented 
in Appendix C. Again, many computer science departments and computer science 
professors have different documentation standards, as do many different companies. 
Although they share some commonalities, there can also be a number of differences. Find 

andards are and be sure to follow them closely. 
 

1.10 Complete Program: Implementing a Simple Program 

Combining all the material from this chapter, one can now write a simple program to 
prompt for and input various numbers, perform a wide variety of calculations, and output 
answers as needed. In this section, a program that calculates two roots of a quadratic 
equation ax2 0 will be developed and implemented. As might be recalled from 
mathematics, the following is the definition of the two roots: 

2

1
4

2
b b acr

a
 

and 

2

2
4

2
b b acr

a
 

Problem statement: Write a program to calculate the two roots of a quadratic equation. 
Assume that 0 and the relationship b 2 4ac holds, so there will be real number 
solutions for x. 

Once a problem statement has been given, the requirements can be determined by 
analyzing the problem. The program will: 

 Prompt a user to enter values for a, b, and c 
 Compute the two roots 
 Display the two roots 

1.9  Comments 45



 
 

During the design stage, pseudocode can be used to outline the program. It lists the steps 
that need to be taken to accomplish the task. At this point, one does not need to be 
concerned with the details of the implementation, such as the name of the class or the 
parameters in the main method. The following is the pseudocode for a program calculating 
two roots of a quadratic equation: 

  declare a, b, c, root1, root2 

  input (a) 
  input (b) 
  input (c) 
 root1 2 4 / 2ab b ac  

 root2 2 4 / 2ab b ac  

  output (root1, root2) 
Observe in the formulas for the roots that the expression in the square root is called the 

discriminant and is used in calculating both roots. Therefore, the square root of 
discriminant can be calculated prior to the computation of root1 and root2, so that it 
does not need to be calculated twice. The augmented pseudocode is 

  declare a, b, c, root1, root2, sqrtDiscr 
  input (a) 
  input (b) 
  input (c) 
 sqrtDiscr 2 4b ac  
  root1 -b sqrtDiscr)/(2a) 
  root2 -b sqrtDiscr)/(2a) 

  output (root1, root2) 
 
After the design phase comes the implementation phase. Consider the following program 
that is derived from the pseudocode above: 
 
 // A program to calculate two roots of a quadratic equation.  
// Assume that a <> 0 and the relationship b^2 >= 4ac holds,  
// so there will be real number solutions for x. 
 
import java.util.*; 
 
class QuadEq { 
   public static void main(String[] args) { 
 
      // declaration and initialization of variables 
      double a, b, c, root1, root2, sqrtDiscr; 
      Scanner scanner; 
      scanner = new Scanner(System.in); 
         
      // input a, b, and c 
      System.out.print("Enter a: "); 

46 1  Input/Output, Variables, and Arithmetic



 
 

      a = scanner.nextDouble(); 
      System.out.print("Enter b: "); 
      b = scanner.nextDouble(); 
      System.out.print("Enter c: "); 
      c = scanner.nextDouble(); 
 
      // compute the square root of discriminant 
      sqrtDiscr = Math.sqrt(Math.pow(b,2) - 4*a*c); 
 
      // compute the two roots 
      root1 = (-b + sqrtDiscr) / (2*a); 
      root2 = (-b - sqrtDiscr) / (2*a); 
        
      // output the two roots 
      System.out.println();  
      System.out.println("Two roots of the equation, " + a  
                        + "*x*x + " + b + "*x + " + c + " = 0, are");  
    System.out.printf("%.2f and %.2f.", root1, root2); 
  }   
}   
 

Observe the formula for the discriminant for root1 and root2 . The methods sqrt 
and pow are defined in the Math class and are used to calculate the square root of the 
discriminant and the number b raised to the power of 2. All the parentheses are necessary 
to obtain the answer, which is accurate to at least two decimal places. In the output section 
of the program, println is called at the beginning in order to have a blank line between 
the input and output. The specifiers for root1 and root2 do not include the width to 
avoid any extra space before the roots are output since an extra space is included in the 
string. Given the above program, sample input and output are shown below: 
 
Enter a: 2.0 
Enter b: -5.0 
Enter c: -3.0 
Two roots of the equation, 2.0*x*x + -5.0*x + -3.0 = 0, are 
3.00 and -0.50. 

1.11 Summary 
 
 System.out.print leaves the cursor on the same line, whereas 

System.out.println moves the cursor to the next line. 
 Just because there are no arguments in a System.out.println, it does not mean 

a blank line is output. A blank line is output with a System.out.println when 
there is no preceding System.out.print statement. 

   A Graphical User Interface (GUI) can be used for user-friendly input and output 
  with dialog boxes. 

 Remember that multiplication and division have a higher precedence than addition 
and subtraction and that unary operators have an even higher precedence. 

 Parentheses can override any operator precedence, where the innermost nested 
parentheses have the highest precedence. It is also good practice not to use 
unnecessary parentheses. 

1.10  Complete Program: Implementing a Simple Program 47



 
 

 Whenever there is a tie at any level of precedence, the operators or parentheses are 
evaluated from left to right. 

 The ++ 
However, great care must be taken when they are used in assignment statements or 
with other operators. In that case, if the ++ 
first, but if they appear after the operand, they are performed last. 

1.12 Exercises (Items Marked with an * Have Solutions in Appendix  E ) 

  1. Indicate whether the following statements are syntactically correct or incorrect. If 
incorrect, indicate what is wrong with the statement: 

  A. integer num1, num2; 
*B. double num3; 
  C. 7.8 = num3; Assume that a variable num3 has been declared correctly. 
*D. int j; 

j = 5.5; 

  2. Assume the following declaration and initialization of variables: 
 
int i, j; 
double d; 
i = 1; 
j = 5; 
d = 2.34; 

Determine the value for each of the following expressions, or explain why it is not a 
valid expression: 

*A. i / j; 
  B. j + d; 
  C. Math.pow(j); 
  D. i - j * d 
  E. i + d * (j * 3 – 2) / 4 

  3. Assuming the following declaration and initialization of variables, 
 
int i; 
double d; 
i = 3; 
d = 2.34; 

Determine the value assigned to the variable in each of the following assignment 
statements, or explain why it is not a valid assignment statement: 

  A. i = d; 
*B. d = i + d; 
  C. d = Math.pow(5, Math.sqrt(Math.pow(i, 2))); 

  4. Implement each of the following statements in the Java language: 

  A. Declare a variable weight of type double. 

48 1  Input/Output, Variables, and Arithmetic

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1


 
 

*B. Declare a constant EULER_NUMBER of type double and assign it the value 
2.7182. 

  5. Given the following Java program, what will be output to the screen? Be sure to line 
everything up properly. Use an underscore to represent a blank and the words blank 
line to represent a blank line: 
 
class OutputTest { 
  public static void main (String[] args) { 
    System.out.println("alpha "); 
    System.out.println(); 
    System.out.print(" beta"); 
    System.out.println(" gamma"); 
  } 
} 
 

*6. Write code to output the following pattern: 
 

** ** 
** ** 
 **** 
 **** 
 **** 
 **** 
** ** 
** ** 
 

  7. After the following statements are executed, what is stored in value1, value2, 
and value3? 
 
int value1 = 5; 
int value2 = 9; 
int value3 = 4; 
value1 = value2; 
value2 = value3; 
value3 = value1; 
 

  8. Write an equivalent Java assignment statement for each of these mathematical 
expressions. 

  A. 
1549x

y z
 

*B. 2 2s r r h  

  C. sin ga
c

 

1.11  Summary 49



 
 

  9.   Write a complete program to prompt for and input a number, and then compute 2 to 
        the power of the number that was input. The form of the input and output can be found 
        below, and as always be careful with the vertical and horizontal spacing. 
 

Input and Output: 
 
 Enter the number: 4.0 
 
 Two to the power of 4.0 is 16.0. 
 
10.   Repeat the previous exercise using dialog boxes. Examples of input and output 
        dialog boxes are shown below: 
 

       
 

        
 
 
11.   Rewrite the complete program in Sect. 1.10 using dialog boxes for input and output. 
 
 
 

 

 

 

 

 

 

 

50 1  Input/Output, Variables, and Arithmetic



 

2 

Objects: An Introduction 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter introduces classes and objects. Public and private data members along with value-returning 
methods and void methods with parameters are discussed. How objects are created and how methods are 
invoked are illustrated using contour diagrams. Contours help the reader have a better understanding of 
object-oriented concepts by providing visual representation of objects. Constructors are introduced along 
with multiple objects and classes. Lastly, UML (Unified Modeling Language) class diagrams are illustrated 
and a complete program implementing a simple class and client program is provided. 

Keywords 

Memory Location; Class Number; Void Method; Main Program. 

2.1 Introduction 

Having written a complete Java program in the proceeding chapter, one should have a basic 
understanding of how a program works. However, as programs get larger, they can become 
very difficult to modify. It would be similar to trying to write a paper or book as just one 
long paragraph without any chapters, sections, or paragraphs. To help make a program 
easier to read, modify, and maintain, it can be broken up into sections much like a book is 
divided up into chapters. Further, if a section of a book needed to be referred to many times, 
instead of repeating that section over and over again, it could possibly be placed in an 
appendix, and then the appendix can be referred to as necessary. Similarly, if a section of 
a program needs to be used again, the program can be broken up into subprograms. Instead 
of having to rewrite the code, a program can just call the same subprogram repetitively, 
thus saving time rewriting the code and saving memory as well. 

However, what if the repeated code is only slightly different from the code that has been 
previously written? One could rewrite the code again with only slight modifications, but 
the chance for making mistakes would increase. There would also be time wasted rewriting 
existing code and memory wasted to store the code. 

Instead of the above scenario, the programming methodology called object-oriented 
programming (OOP) could be used. OOP allows programmers to identify the common 
memory locations and code and then create what is known as a class. Then as variations of 
the class are needed, they can be made based on the original class. This allows for the reuse 
of a software that has been initially created in the original class, and the new classes are 
just variations on the theme of the original class. 

A class is essentially a definition of an object or group of objects. For example, in the 
real world, the drawings, plans, or blueprints for a house are a definition for a single house 
or a group of houses. Although blueprints could be drawn up for a single custom-built 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_2

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_2&domain=pdf


 
 

house, many times there might be a set of master blueprints for a group of houses. A 
subdivision could be built with houses that are all very similar but have various subtle 
differences so that they do not all look the same. For example, some houses might be built 
with different color siding, with windows in different locations, with one or two car 
garages, and so on. The reason for doing this is to keep the cost of the individual houses 
reasonable. Should a major change in the blueprint need to be made for all the houses, then 
only the master blueprints would need to be changed. However, if a change only needs to 
be made to some of the houses, such as only to those houses that have fireplaces, then only 
the individual supplement that contains the plans for fireplaces would need to be changed. 
This idea is called inheritance and will be explored further in  Chap. 9 . However, before 
learning more about that topic, the fundamentals of object-oriented programming must be 
discussed first. 

2.2 Classes and Objects 

In object-oriented terminology, the master blueprint would be called the class definition, 
and an actual house would be an instance of that class or what is known as an object as 
shown in Fig. 2.1. This can be a source of confusion for some beginning programmers 
which sometimes use the words class and object interchangeably. However, if one keeps 
the distinction between the plans or blueprints as the class and the individual houses as 
instances of the class or the objects themselves, it makes the learning of object-oriented 
programming easier in the long run. 

 
Fig. 2.1 Classes and objects using blueprints and houses 

Although a class can be placed in the same file right before or after the class that contains 
the main program, it is often placed into a separate file. This eventually helps when there 
are a number of different classes and when there is more than one programmer working on 
a project. However, this text will show classes immediately after the main program in order 
to save space. 

As with the initial skeleton of the main program in Chap. 0, the introduction of classes 
will also start with an empty class called Number as shown below: 
  
class Number { 
  
} 
 

Actual Houses 
(Instances of the Class or Objects) 

Blueprint 
(Class) 

52 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_9


 
 

As can be seen, a class is somewhat similar to the main program except it is much 
simpler. As before, the word class is a reserved word, Number is the name of the class, 
and the opening and closing braces indicate the body of the class. 

2.3 Public and Private Data Members 

As before, an empty class is not very useful until code is added to it. Two of the most 
important items in a class definition are its data members and methods. A data member is 
similar to the declaration of a variable in the previous chapter. An important difference is 
that data members need to be declared using the access modifiers: public or private. 
A public data member is one that can be seen and used by an object of the class in which 
it was declared but can also be used outside the object, such as the main program. A private 
data member is one that can only be seen or used within an object of the class and cannot 
be used externally, such as by the main program. As shown below, the variable or data 
member x is declared as private, and the data members y and z are declared as 
public. 
  
 class Number { 
         private int x; 
         public int y, z; 
  } 
 

At first, one might be tempted to declare all data members as public to allow for easy 
access from the calling program. However, this would be in contradiction with why one 
creates a class in the first place. One of the important aspects of OOP is data encapsulation. 
This means that the data in an instance of a class is encapsulated within the object and not 
directly accessible from the outside world. For example, in an automobile there are various 
parts which are inaccessible when one is driving, such as the fuel tank. However, through 
a gauge on the dashboard, one can tell whether there is fuel in the fuel tank. This is similar 
to public and private data members, where in many instances one does not want the main 
program having direct access to the data members. So although it is possible to declare data 
members as public, they will most often be declared as private. 

If a data member is not directly accessible when it is declared as private, how does 
one gain access to it? The answer is through a method, specifically a public method 
which can indirectly allow access to private data members. Although methods are 
sometimes declared as private, for now most of the methods will be declared as 
public. If a method is just accessing and examining the contents of a data member, it is 
known as an accessor. Should a method alter a data member, it is known as a mutator. An 
accessor method is often used to get the contents of a data member and a mutator is often 
used to set the contents of a data member. In particular, an accessor method is known as a 
value-returning method, and a mutator is known as a void method, as discussed in the 
next two sections. 

2.4 Value-Returning Methods 

First, consider a method that returns the contents of a private integer data member x as 
follows: 

2.3  Public and Private Data Members 53



 
 

 
 public int getX() { 
        return x; 
 } 
 

The word public means that the method can be accessed from the main program. If 
the data member is private, then the method invoked from the main program to access 
the data member is declared as public. (How the method is invoked will be discussed in 
Section 2.6.) The word int is the type of the value that will be returned to the main 
program. The name of the method is getX and it is used in the main program to invoke 
the method. Inside the opening and closing parentheses () is known as a parameter list 
and is used for sending information to the method. Since this method is an accessor and 
not a mutator, there is no information being sent to the method, so the parameter list is 
empty. The opening and closing braces {} indicate the body of the method that contains 
the instructions, just as in the main program. The return instruction followed by the 
variable x indicates what value will be returned to the main program. Although there can 
be more than one return statement in a method, it is a good programming practice to 
include only one return statement, and typically as the last statement in the method, as 
will be discussed later in  Chap. 3 . Returning to the automobile example, the getX 
accessor method is somewhat like the fuel gauge on the dash panel of a car that displays 
the amount of fuel in the fuel tank. 

2.5 void Methods and Parameters 

As an example of a void method, consider the following: 
  
 public void setX(int a) { 
        x = a; 
 } 
 

As with the value-returning method, the void method is also public so it can be 
invoked from the main program. The word void indicates that the method will not return 
a value. Similarly, setX is the name of the method that will be used when invoking the 
method from the main program as will be discussed Section 2.6. 

Unlike the previous method, this method has a parameter (sometimes called a formal 
parameter) between the parentheses. Notice that it looks similar to a variable declaration, 
and in a sense, it is like a variable declaration with a type and a variable name. However, 
what is unique about a parameter is that it can accept a value from the calling program. 
This is accomplished through an invoking statement, where there is another variable or 
constant called an argument (sometimes called an actual parameter) and the value of the 
argument is passed to the parameter. This is not unlike how the value on the right side of 
an assignment symbol = is copied into the variable on the left side. This copying of a value 
from an argument to a parameter is known as pass-by-value, or in other words this type of 
parameter is known as a value parameter. A value parameter provides one-way 
communication from the main program to the method. Other programming languages have 
additional parameter passing mechanisms that provide two-way communication, but Java 
has only value parameters, which makes the task of learning parameters a little easier. A 

54 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_3


 
 

visual example of how this works will be demonstrated in Section 2.7 on contour diagrams. 
Lastly, the only statement in the method is x = a; which is a simple assignment statement 
that takes a copy of the contents in the parameter a and copies it into the data member x, 
as discussed in  Chap. 1 . 

A question that might be asked is where is a good place for the data member x to be 
declared, since it does not appear in either of the two methods? If the variable is used by 
only one of the two methods, it should be declared locally in that method, but if the value 
in the variable is needed in both methods, it should be declared as a data member in the 
class. If a variable is declared in a method, it is sometimes referred to as a local variable 
since only that method has access to it. However, if a variable is declared as a data member, 
it is sometimes referred to as a global variable since it is accessible by all the methods in 
the object. In this example, since the variable x is used by both methods, it is declared as a 
data member so that both methods have access to it. To illustrate a complete class using 
both the data member x and the two previous methods, the class definition of Number is 
shown in Fig. 2.2. 

 
Fig. 2.2 Number class 

Unlike the previous skeleton, the new class Number contains the private data member 
x. Note, the order of the methods is irrelevant. Sometimes the methods are put in 
alphabetical order, but this text will typically list the mutators first followed by the 
accessors, and then order them alphabetically within each group. The use of comments and 
line spacing helps with the readability of the class, although they will sometimes be omitted 
to save space in this text. 

2.6 Creating Objects and Invoking Methods 

Given the discussion of classes and methods in the previous sections, how are instances of 
classes created and the methods invoked? The best way is to show an example of a 
complete main program. Using the skeleton program from  Chap. 1  with the appropriate 
code added, consider the program in Fig. 2.3. 

2.5  void Methods and Parameters 55

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 
Fig. 2.3 Invoking program 

Note that there are two variables named y and z declared as type int, but there is also 
a variable named num that is declared as type Number. Just like different variables can be 
declared as primitive data types, variables can also be declared as a type of a class. Similar 
to the primitive types, the contents of the class variables are initially indeterminate. In order 
to create a new instance of a class, in other words a new object, the new operator must be 
used, and then a reference to the new object is typically placed into a variable. The 
statement num = new Number(); performs these two tasks. First, a new object is created 
via the new Number() section of the statement. Then a reference to that new object is 
placed in the variable num through the assignment symbol =. It is important to remember 
that simply declaring a variable is not sufficient to create an object, but rather after the 
variable is declared, a new object must be created and then assigned to the variable. A 
shorter way of doing this is as follows: 
 Number num = new Number(); 

Although this technique might occasionally be used later in the text to save space, for 
now the two statements as shown below will be used to reinforce the concepts of variable 
declaration, object creation, and the assignment of references to variables. 
  
 Number num; 
  num = new Number(); 
 

This also reinforces the idea concerning the separate declaration and assignment of 
variables presented in  Chap. 1 
one is reading this text independently and wants to use just one statement, then of course 
do so. 

 
To invoke a method depends on what sort of method it is: void or value-returning? In 

the program in Fig. 2.3 the statement 
 
num.setX(y); 

 
illustrates how to invoke a void method. Since setX is a method accessable in the object, 

56 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

it follows the period after the variable num. Since a void method is used as an mutator, 
the variable y is the argument and the value in it is sent to the corresponding parameter in 
the method which in this case is the variable x. After the method has been executed, the 
instruction immediately following the invocation is executed. 
 
The statement immediating following shows how a value-returning method is invoked. The 
statement 
 
 z = num.getX(); 
 
again shows that the method getX is placed immediately after the period. Note that the 
argument list does not contain anything between the parentheses, Although it is possible to 
send information to a value-returning method, this is typically not done because a value-
returning main purpose is to serve as an assessor. Since it is returning a value, the value 
could be output or be used as part of an equation, but typically the value needs to be stored 
some place. In this case the value being returned, in this case the value in  x, is assigned to 
the variable z. 
 
This section shows the syntax needed to create an object and invoke methods, but how does 
it work? In other words, what are its semantics? The next section will illustrate the 
semantics of creating objects and invoking methods using contour diagrams. 

2.7 Contour Diagrams 

As indicated in the preface, contour diagrams are a very useful mechanism to visualize how 
objects, data members, methods, and parameters work. By building a good working visual 
model of objects, there will be less of chance having misconceptions as to how objects 
work. By building a solid foundation of the fundamental concepts, it makes it easier to 
understand more complex ideas in the future. 

The purpose of using contours is to not only show the data members, similar to the 
variables that were drawn in  Chap. 1 , but also to show the scope of where the data 
members are accessible. The scope of a local variable is the method where it is declared, 
and the scope of data member is all of the methods in the object. 

Although not required, it is also helpful to include the type of the variable in the contour 
to avoid confusion among the many different types of variables. In addition to the variables, 
contours can also show how parameters are represented in the methods. Lastly, contours 
show the dynamic or changing nature of a program as it executes. 

As before, it is helpful to start with an example. The program from Fig. 2.3 is combined 
with the class from Fig. 2.2 to create Fig. 2.4 with each line numbered in a comment to the 
right for convenience in the description that follows. The contour diagram in Fig. 2.5 shows 
the state of execution just prior to the execution of Line 5 in the main program. 

2.6  Creating Objects and Invoking Methods 57

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 
Fig. 2.4 Invoking program and Number class 

 
Fig. 2.5 State of execution just prior to Line 5 

The outer contour represents the class Invoke, and the inner contour around the boxes 
shows the scope of the variables in the main program. Although the contours do not 
indicate much presently, the use of the contours will become clear shortly. Further, note 
that although technically the Invoke contour should be drawn for each of the following 
figures, it is not very useful at this time and will not be drawn for the rest of this chapter in 
order to simplify the drawings. However, it will be reintroduced and discussed further in  
Chap. 5 . 

Continuing, the first column of boxes on the left indicates the names of the variables, 
and the boxes in the middle indicate the types of the variables, where y and z are of type 
int, and num is of type Number. Lastly, the boxes on the right indicate the current 
contents of the variables. Note that the state of execution is just prior to line 5, not after its 
execution. While technically y and z are initialized by the system to 0, this text will 
continue to assume that the variables do not contain an initial value and are indeterminate 
as discussed in  Chap. 1 . 

Although rather simplistic here, once Line 5 is executed, the contents of variable y now 

main 

y int --- 

z --- 

--- num 

int 

Number 

Invoke

58 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

contain the value 5. Figure 2.6 shows the state of execution just prior to the execution of 
Line 6 and also does not show the outer contour for the Invoke class. 

 
 

 
Fig. 2.6 State of execution just prior to Line 6 

However, when num=new Number(); in Line 6 is executed, things start to get 
interesting. Just like the Invoke contour was drawn in Fig. 2.5, when a new instance of 
the Number class is created, a new corresponding contour is also created. Although as 
mentioned previously the contour for Invoke is not very useful at this time, the contour 
for Number is necessary for the following discussion. Note that there is one data member 
in the class and it is shown within the Number contour. Once the instance is created, a 
reference to the object is assigned to the variable num. This reference is illustrated as an 
arrow in the contour diagram, where the arrow points to the new contour and the end of the 
arrow is placed in the variable num. Figure 2.7 shows the state of execution just prior to 
Line 7 in main. 

 

 
Fig. 2.7 State of execution just prior to Line 7 

The next line to be executed is num.setX(y); in Line 7, which invokes the method 
setX. Prior to having the flow of control go from Line 7 to Line 15 in the setX method, 
a number of things need to occur. Just like when a new object is created and a 
corresponding contour is drawn, the same holds true when a method is invoked. Since the 
method is part of the instance of the class Number, this is where the corresponding contour 
appears. A convenient way of remembering this is that whenever there is a period, or what 
is often just called a dot, in the invocation of a method, then one needs to follow the 
reference or arrow to the corresponding contour. With the instruction num.setX(y); 
one just starts with the variable num, then follows the arrow to the Number contour, and 

main 

y int 5 

z --- 

--- num 

int 

Number 

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int --- 

2.7  Contour Diagrams 59



 
 

then within the Number contour creates another contour for the setX method as shown 
in Fig. 2.8 which illustrates the state of execution just prior to Line 15 in setX. 

 

 
Fig. 2.8 State of execution just prior to Line 15 

Note that the contour setX has a memory location associated with it for the parameter 
a. As mentioned in Sect. 2.5, a parameter is essentially a variable that takes on the value 
of the corresponding argument. Since the value contained in the variable y which is used 
as an argument in the main program is a 5, then the corresponding parameter takes on a 
copy of that same value, similar to an assignment statement. This also illustrates why 
parameters in Java are called value parameters, because they merely take on the value of 
the corresponding argument. Note that an argument and the corresponding parameter can 
have the same name or different names. In this example, the argument y and parameter a 
have different names, illustrating that the two do not have to be the same. Then when Line 
15 is executed, Fig. 2.9 shows the state of execution just prior to Line 16 in setX. 

 

 
Fig. 2.9 State of execution just prior to Line 16 

Note that Line 15 is the assignment statement x a; where the contents of the parameter 
a will be copied into the variable x. However, notice that the parameter a is inside the 
contour for setX and the variable x is in the contour for the object or instance of Number. 
Is it okay for the contents of a to be assigned to x? The answer is yes. The reason is that 

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int --- 

a int 5 

setX()

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int 5 

a int 5 

setX()
i

60 2  Objects: An Introduction



 
 

when executing a statement that contains a variable, the system first looks for the variable 
within the innermost contour for the variable. If it is found, it uses that variable or 
parameter. If it is not, then the system looks at the variables contained within the next most 
encompassing contour diagram. If the variable is found, it is used. However, if the variable 
is not found, then a syntax error will be generated during compilation time. It is very 
important to note that although the system will look at any encompassing contour, it cannot 
look into another contour. In other words, it will look outside of a contour, but it cannot 
look into another contour. 

Another way of looking at this is to say that the scope of the variable a includes only 
the method setX; however, the scope of the variable x includes both the object num and 
the method setX. The word scope is just a way of expressing in which objects and methods 
a variable is accessible. Problems can occur when there are two variables of the same name, 
and examples will be illustrated later in  Chap. 5 , but for now this text will use different 
variable names to avoid this difficulty. 

Although Line 16 is not an instruction, it does represent the end of method setX. When 
the method is done executing, control is transferred back to the main program. Since setX 
is a void method, control is transferred back to the line just after the one that invoked the 
method. The result is that Fig. 2.10 represents the state of execution just prior to Line 8 in 
the main program. 

 

 
Fig. 2.10 State of execution just prior to Line 8 

Note that the contour for the setX method is shaded as light red. The reason for this 
is to indicate the contour is deallocated, where the memory locations associated with the 
method are no longer accessible. Although the contour can and is often simply erased as 
shown in Fig. 2.11, it is sometimes helpful to show the contour as shaded prior to erasing 
it so that the contents of the memory locations can still be seen by others. Although 
shading a contour might be difficult when drawing a contour by hand, an alternative is to 
just very lightly cross it out while still allowing its contents to be seen. 

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int 5 

a int 5 

setX()
i

2.7  Contour Diagrams 61

http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 
 

 
 

Fig. 2.11 State of execution just prior to Line 8 (alternative) 

So what happens when z=num.getX(); in Line 8 is executed? Similar but somewhat 
different to the invoking of the void method setX, the value-returning method getX is 
invoked, and the state of execution just prior to Line 18 is shown in Fig. 2.12. 

 
Fig. 2.12 State of execution just prior to Line 18 

Note that there are no memory locations allocated in the contour for getX. The reason 
for this is that there are no parameters in the parameter list, nor are there any local variables 
declared within the method, as will be discussed later. As a result, no memory locations 
are allocated within the contour. So what happens when the return x; statement is 
executed? Since there is no variable declared by the name x in the getX contour, the 
system looks outside the contour to see the variable x in the Number contour. The number 
5 in the variable x is the value returned to the main program. Since this is a value-returning 
method, control does not return back to the line after the line that invoked the method, but 
rather control is returned back to the same line from which it was invoked, so that the value 
returned can be assigned to a variable or possibly output. When the return is executed, 
control is transferred back to Line 8, where the number 5 is assigned to the variable z in 
the main program. 

Figure 2.13 shows the state of execution just prior to Line 9 with the contour for getX 
shaded as discussed previously. Alternatively, the contour for getX does not need to be 
shaded nor drawn as shown in Fig. 2.14. 

 

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int 5 

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int 5 

getX()

62 2  Objects: An Introduction



 
 

 
Fig. 2.13 State of execution just prior to Line 9 

 

 
 

Fig. 2.14 State of execution just prior to Line 9 (alternative) 

Since Line 9 is just a print statement and does not contribute to the understanding of 
objects, the state of execution after Line 9 is not shown here. Although almost every 
contour was drawn to illustrate the intricate details in the preceding example, this will not 
always be the case. In the future, some of the more simplistic contours might be skipped, 
but should they be needed they will be drawn in order to explain a particular concept, as in 
the next section on constructors. 

2.8 Constructors 

When a new object is created, it is sometimes nice to have the various private data members 
initialized to specific values. This is convenient and allows variables to have default values 
in case a programmer forgets to initialize them. The mechanism needed to accomplish this 
task is known as a constructor. A constructor is a special method that is automatically 
invoked once at the time an object is created via the new instruction. It looks similar to 
other methods, but instead of having its own unique name as determined by the 
programmer, it has the same name as the class. Although this can be confusing at first, it 
helps to remember that when a new object of a class like Number is created, the method 
that serves as the constructor for the class has the same name, Number, and does not have 
a return type. Again, it is best to show an example. In this case the constructor initializes 
the data member x to the default value 0, again assuming that the initial value of variables 
is indeterminate as discussed in  Chap. 1 . 
  
public Number() { 
       x = 0; 

main 

y int 5 

z 5 

 num 

int 

Number 

Number 

x int 5 

getX()

main 

y int 5 

z 5 

 num 

int 

Number 

Number 

x int 5 

2.7  Contour Diagrams 63

} 
 

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 

Including the above constructor, the previous class would look as shown in Fig. 2.15, 
where typically constructors are located after the data members but prior to all the other 
methods. 

 
Fig. 2.15 The Number class with a constructor 

Using the first 11 lines of the main program in Fig. 2.4 and replacing lines 12 through 
20 with the code from Fig. 2.15, the program in Fig. 2.16 is the revised one from Fig. 2.4 
that now incorporates a constructor. Instead of walking through the entire program as was 
done in the last section, only the first few lines of the program will be executed to illustrate 
how a constructor works. 

64 2  Objects: An Introduction



 
 

 
Fig. 2.16 Invoking program and Number class with a constructor 

After executing Line 5, the contour in Fig. 2.17 shows the state of execution just prior 
to the execution of Line 6 in the main program. If the contour looks familiar, it is because 
it is the same contour that appeared previously in Fig. 2.6. 

 
Fig. 2.17 State of execution just prior to Line 6 

However, what happens when Line 6 is executed is different from the previous program. 
As before a contour is created for an instance of the Number class which contains the 
variable x. Recall from the discussion above that a constructor is automatically executed 
when a new instance of an object is created. As a result, a contour is also created for the 
constructor as shown in Fig. 2.18 which shows the state of execution just prior to Line 15 
in the constructor for the class Number. 

 
 

main 

y int 5 

z --- 

--- num 

int 

Number 

2.8  Constructors 65



 
 

 
Fig. 2.18 State of execution just prior to Line 15 

Notice that the contour is empty, since there are no local variables or parameters as was 
the case previously with the getX() method. Also note that there is no arrow pointing to 
the contour either. That is because while the constructor is executing, the reference to the 
object has not yet been assigned to the variable num. 

After Line 15 is executed, the state of execution looks as shown in Fig. 2.19. Notice that 
the variable x has been initialized to 0 . Since there is not a variable named x in the 
constructor, the system looks outside to find the variable x in the class Number, similar to 
the setX method as discussed previously. Once Line 16 is finished, the contour for the 
constructor is deallocated and shaded in light red. The flow of control then returns back to 
Line 6 in the main program, and the reference to the object is assigned to the variable num 
as shown in Fig. 2.20. 

 

 
Fig. 2.19 State of execution just prior to Line 16 

 
Fig. 2.20 State of execution just prior to Line 7 

main 

y int 5 

z --- 

--- num 

int 

Number 

Number 

x int --- 

Constructor

main 

y int 5 

z --- 

--- num 

int 

Number 

Number 

x int 0 

Constructor

main 

y int 5 

z --- 

 num 

int 

Number 

Number 

x int 0 

Constructor

66 2  Objects: An Introduction



 
 

The program then continues to execute Line 7 just as it did previously, where the only 
difference is that the variable x has been initialized to the number 0 instead of being 
indeterminate. Although the initialization could have been accomplished by invoking the 
setX method with a parameter of 0, the advantage of using a constructor is that a 
programmer does not need to explicitly invoke a method and does not run the risk of 
forgetting to do so, which under some circumstances might cause a logic error. Although 
this is a simple example, as programs become more complicated, the role of a constructor 
will become more important. When one begins to learn more about data structures in later 
courses, the role of the constructor as just a mere initializer will diminish, and it takes on 
roles more befitting of its namesake as a constructor. For now, it is a good practice to use 
constructors when possible to gain more familiarity and become more comfortable with 
their use and function. 

2.9 Multiple Objects and Classes 

Is it possible to have more than one instance of a class or more than one class? The answer 
is yes and this section will address some of the issues with multiple objects and classes. 
For example, if one wanted to have two instances of the preceding Number class, the 
program could be written as in Fig. 2.21. In the interest of simplifying the contours, the 
number of variables has been reduced in this example. For example, instead of using local 
variables as arguments as done in the previous section, constants are used as arguments in 
Lines 6 and 7. Also, note that the values returned from getX are not stored in variables, 
but rather just simply output as shown in Lines 8 and 9. Again, these shortcuts are not 
generally encouraged, but they do save some space in the contour diagrams and hopefully 
help the reader see the points currently under consideration more clearly. 

 
class Invoke {       // Line 1 

       public static void main(String[] args) {  // Line 2 
       Number num1, num2      // Line 3 
            num1 = new Number();     // Line 4 
       num2 = new Number();     // Line 5 
       num1.setX(5);      // Line 6 
       num2.setX(7);      // Line 7 
       System.out.println("Num1 = " + num1.getX()); // Line 8 

      System.out.println("Num2 = " + num2.getX()); // Line 9  
       }         // Line 10 

}         // Line 11 
class Number {       // Line 12 

       private int x;       // Line 13 
       public Number() {      // Line 14 
          x = 0;       // Line 15 

   }         // Line 16 
       public void setX(int a) {     // Line 17 
        x = a;       // Line 18 
       }         // Line 19 

   public int getX() {      // Line 20 
          return x;       // Line 21 
       }         // Line 22  

}         // Line 23 

Fig. 2.21 Program to create multiple instances of the same class 

2.8  Constructors 67



 
 

Notice that there are now two variables of type Number on Line 3. As before, it is 
helpful to use contour diagrams to assist in the understanding of the code. In this case, only 
the first part of the code will be executed, and the remainder of the code is left as an exercise 
at the end of the chapter. Figure 2.22 shows the state of execution after Line 5 but just prior 
to Line 6. 

 
Fig. 2.22 State of execution after creating two instances prior to Line 6 

Note that after the constructor has been invoked twice, there are now two instances of 
the class Number. There are also two variables with the same name, x, but does this cause 
any problems during the execution of the program? The answer is no, because each variable 
x is in a different instance of the Number class, where one of the variables is in the object 
referenced by num1 and the other by num2. Upon completion of Line 6, Fig. 2.23 shows 
the state of execution after the execution of Line 18, but prior to the execution of Line 19 
in the setX method. 

 
Fig. 2.23 State of execution just prior to Line 19 

As before, the contents of the parameter a have been placed in the data member x. 
However, is there any confusion as to where the setX method contour should appear? No 
there is not; since the method call was num1.setX(5); the system knows to execute the 

main 

num1  

 num2 

Number 

Number 

Number 

x int 0 

x int 0 

Number 

main 

num1  

 num2 

Number 

Number 

Number 

x int 5 

x int 0 

Number 
a int 5 

setX 

68 2  Objects: An Introduction



 
 

setX method in the contour referenced by num1. As discussed previously in Sect. 2.7, an 
easy way of reading the code num1.setX(5); is to first go to the variable name in the 
contour, in this case num1, and when there is a dot after the variable name in the code, 
follow the corresponding reference or arrow to the appropriate contour. In other words, a 
dot in the line of code refers to a reference or arrow in the contour diagram. After following 
the reference to the corresponding contour diagram, the contour for the method setX is 
created. This also reinforces that it is very important to create the initial object contour and 
corresponding reference correctly when the new instruction is first executed, because all 
subsequent code is dependent upon it. 

Although the creation of two instances of the same class is fairly straightforward, one 
must be careful when manipulating the two instances. For example, what if one wanted to 
take a copy of the integer 5 in the variable x in num1 and put it in the variable x in num2? 
At first it would seem to be a simple assignment operation from  Chap. 1 , for example, a 
= b; to copy an integer from the variable b into the variable a. However, when dealing 
with objects, the results might not be what one expects. For example, what if one wrote the 
code num2 = num1? The contents of num1 would be copied into num2, but remember, 
what exactly is in num1? It is not the integer 5, but rather a reference to the corresponding 
object that contains the integer 5. What is copied is not the integer 5, but rather the result 
would be that num2 points to the same object as num1 and the previous object that num2 
referenced would be deallocated as shown in Fig. 2.24. 

 

 
 

Fig. 2.24 Results of num2 = num1; 

Given that the simple assignment statement above does not accomplish the intended 
task, how then could the integer 5 be copied from the x in num1 to the x in num2? 
Although another technique will be shown later in  Chap. 5 , for now a temporary variable 
temp could be used, and the contents of x in num1 could be retrieved using the method 
getX. Then the corresponding x in num2 could be set with the method setX as shown in 
the following code segment: 
 
 
  

main 

num1  

 num2 

Number 

Number 

Number 

x int 5 

x int 0 

Number 

2.9  Multiple Objects and Classes 69

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 
 

 int temp; 
   temp = num1.getX(); 
   num2.setX(temp); 
 

Alternatively, the temporary variable might not be used, and the getX method could be 
used as a parameter for the setX method as shown in the following shortened segment: 
 num2.setX(num1.getX()); 

Here the getX method is invoked first, and then the results returned are used as a 
parameter to be sent to the setX method. Although the above shortcut works well, for now 
this text will occasionally use a temporary variable to help make the code a little easier to 
read. 

Just as it is possible to have multiple instances of a single class, it is also possible to 
have multiple instances of multiple classes. To elaborate further on the Number class and 
make it a little more interesting, suppose there is a class defined that has methods to 
calculate the area of a square and another class has methods to define and calculate the area 
of a rectangle. Although it could be argued that a square is just a special case of a rectangle, 
for now they will be defined as two separate classes, and this will pave the way to help 
explain the concept of inheritance later in  Chap. 9 . 

The class Square will need a method to set the length of the sides and another to 
calculate the area of the square. Although the method that calculates the area could also 
return the area (see Sect. 2.11 for the alternative technique), for now an accessor method 
will be used to return the area of the square, and all three methods are shown in Fig. 2.25. 

 
Fig. 2.25 Square class 

Note that instead of a single data member as in the previous example, there are now two 

70 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_9


 
 

private data members, one for the side and one for the area. Except for the different variable 
names, note the constructor, setSide, and getArea methods are similar to the 
constructor, setX, and getX methods in the previous example. The only real difference 
is the inclusion of the calcArea method which calculates the area of the square, and it is 
implemented as a void method. 

The Rectangle class can be implemented similar to the Square class. The major 
difference between these two classes is that with a rectangle, it is possible to have the two 
sides be of different lengths, so there needs to be two variables instead of just one to 
represent the sides, in this case, sideX and sideY as shown in Fig. 2.26. 

 
Fig. 2.26 Rectangle class 

Notice the use of three variables in the bodies of the constructor and the calcArea 
method. Also, since the setSide method is modifying more than one side, the body of 
that method is also changed, but more importantly, the setSide method has two 
parameters instead of just one. Lastly, the getArea method remains unchanged. 
Both classes can now be implemented and used with a main program as illustrated in Fig. 
2.27. As with the last program and again not generally encouraged, in order to help save 
space in the contours, note that in Lines 7 and 8 constants are used as arguments and in 
Lines 11 and 12 the get methods are located in the println statements. 
 
 class Multiple  {       // Line 1 
   public static void main(String[] args) {   // Line 2 
      Square square;       // Line 3 
      Rectangle rect;       // Line 4 
      square = new Square();      // Line 5 
      rect = new Rectangle();      // Line 6 

2.9  Multiple Objects and Classes 71



 
 

      square.setSide(2);      // Line 7 
      rect.setSide(3, 4);      // Line 8  
      square.calcArea();      // Line 9  
      rect.calcArea();            // Line 10       
      System.out.println("Square = " + square.getArea()); // Line 11 
      System.out.println("Rectangle = " + rect.getArea()); // Line 12 
   }          // Line 13 
}          // Line 14 
class Square {        // Line 15 
   private int side, area;      // Line 16 
   public Square() {       // Line 17 
      side = 0;        // Line 18 
      area = 0;        // Line 19 
   }          // Line 20 
   public void setSide(int s) {     // Line 21 
      side = s;        // Line 22 
   }          // Line 23 
   public void calcArea() {      // Line 24 
      area = side * side;      // Line 25 
   }          // Line 26 
   public int getArea() {      // Line 27 
      return area;       // Line 28 
   }          // Line 29 
}          // Line 30 
class Rectangle {        // Line 31 
   private int sideX, sideY, area;     // Line 32 
   public Rectangle() {       // Line 33 
      sideX = 0;        // Line 34 
      sideY = 0;        // Line 35 
      area = 0;        // Line 36 
   }          // Line 37 
   public void setSide(int sX, int sY) {    // Line 38 
      sideX = sX;        // Line 39 
      sideY = sY;        // Line 40 
   }          // Line 41 
   public void calcArea() {      // Line 42 
      area = sideX * sideY;      // Line 43 
   }          // Line 44 
   public int getArea() {      // Line 45 
      return area;       // Line 46 
   }          // Line 47 
}          // Line 48 

 
Fig. 2.27 The main program along with the Square and Rectangle classes 

As before, in order to see the difference between instances of multiple classes, it is 
helpful to walk through the contour diagrams, at least part of the way. The contour in Fig. 
2.28 illustrates the state of execution after Line 6 and before the execution of Line 7 in the 
main program. 

 

72 2  Objects: An Introduction



 
 

 
Fig. 2.28 State of execution just prior to Line 7 

Previously in Fig. 2.22, the two object contours were identical because they were two 
instances of the same class. However, here in Fig. 2.28 the two object contours are different 
because they are instances of different classes. After executing Line 7, Fig. 2.29 shows the 
state of execution just prior to Line 23 in the setSide method. 

 
Fig. 2.29 State of execution prior to Line 23 

Is there any confusion as to where the setSide method contour appears? No, since 
the method call was square.setSide(2); the system knows to execute the setSide 
method in the Square class because square is of type Square. Although somewhat 
different, this is similar to the previous example in Fig. 2.23 where there were two variables 
of the same name, but in that example there were two instances of the same class. In this 
case, there are two methods of the same name, but they are in two different classes. As 
before, an easy way of reading the code and the contour diagram is to go to the variable 

main 

square  

 rect 

Square 

Rectangle

Square 

side int 0 

sideX int 0 

Rectangle 

sideY int 0 

area int 0 

area int 0 

main 

square  

 rect 

Square 

Rectangle

Square 

side int 2 

sideX int 0 

Rectangle 

sideY int 0 

setSide 

s int 2 

area int 0 

area int 0 

2.9  Multiple Objects and Classes 73



 
 

name, in this case square, and when there is a dot after the variable name in the code, 
follow the corresponding reference or arrow to the appropriate contour and then create the 
method contour in the corresponding object contour. 

After returning to Line 8 in the main program, the rect.setSide(3,4); statement 
is executed, and control is transferred to Line 39 in the corresponding setSide method 
in the Rectangle class. Figure 2.30 then shows the state of execution just prior to Line 
41. 

 
 

 
Fig. 2.30 State of execution just prior to Line 41 

Note that this time the setSide method contour appears in the Rectangle class 
contour, and there are two parameters instead of one. Later it will be seen that there can be 
several methods within a class with the same name; however, they can be distinguished by 
having a different number, type, or order of the types of parameters. This concept is called 
method overloading and will be discussed in detail in  Chap. 5 . In the current example, 
although there are two methods that have the same name, it is not a problem because the 
two methods are in different classes. As with the previous example, the completion of the 
contours is left as an exercise at the end of the chapter. 

2.10 Unified Modeling Language (UML) Class Diagrams 

Whereas contours are helpful in examining how a specific object works, when an 
application becomes larger and includes several classes, it is helpful to get a better picture 
of the relationship among the various classes using Unified Modeling Language (UML) 

main 

square  

 rect 

Square 

Rectangle

Square 

side int 2 

sideX int 3 

Rectangle 

sideY int 4 

setSide 

sX 

sY 

int 3 

int 4 

area int 0 

area int 0 

74 2  Objects: An Introduction

http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 
 

diagrams. UML diagrams can also help one not only see relationships between classes but 
also see the relationships among the objects of different classes. UML is a language 
specifying a graphical notation for describing software designs in an object-oriented style. 
It gives one an overall view of a complex system more effectively than a Java program 
which may provide too much detail. Again, whereas contour diagrams are helpful when 
trying to understand the execution of a program, UML diagrams are helpful when trying to 
design a program. The class definitions and objects discussed in the previous sections can 
be illustrated using UML class diagrams. Figure 2.31 shows how the Number class in Fig. 
2.16 can be displayed using UML class diagram notation. 

 
Number 

x: int 
Number() 
setX(a: int) 
getX(): int 

Fig. 2.31 UML class diagram of Number class 

In the UML class diagram, both data members and methods are included. A class is 
displayed as a box that includes three sections: The top section gives the class name, the 
middle section includes the data members for individual objects of the class, and the bottom 
section includes methods that can be applied to objects. In this example, the middle section 
represents the data member x, and the type of the data member is specified by placing a 
colon : followed by the name of the type. The methods in the Number class include the 
constructor Number, along with the two methods, a mutator setX and an accessor getX. 
Methods are denoted as the following format: 
 methodName(parameterName: parameterType): returnType 

Notice that if there is no information being sent to the method, the inside of the 
parentheses will be empty, and if the method does not return a value, the returnType 
will not be included. In Fig. 2.31, the type of the return value is specified after the colon, 
similar to the type of data members. The parameter list (a: int) for the method setX 
indicates that information is sent to the method and the value of a, which is of type int, 
is assigned to the data member. By having an empty parameter list in the parentheses, the 
getX method does not accept any information and returns a value of type int which is 
the value stored in the data member x. 

Similar to contour diagrams, but not as detailed, UML notation can also be used to 
illustrate objects graphically. In the main method of Fig. 2.16, an object named num is 
instantiated from the class Number. Then the value 5 is assigned to the data member of 
the object num through a mutator method. UML notation for the object after Line 7 is 
executed is shown in Fig. 2.32. 

 
 
 
 

2.10  Unified Modeling Language (UML) Class Diagrams 75



 
 

num: Number 
x = 5 

Fig. 2.32 UML notation for object num of the Number class 

In the diagram, the top section gives the object name followed by the class name after 
the colon, all of which is underlined. The bottom section lists the data members. In this 
example, the variable x contains the value 5. 

2.11 Complete Program: Implementing a Simple Class and Client Program 

Combining all the material from this chapter, one can now define a simple class and use an 
instance of a class in a client program. A client program is a program that creates objects 
of existing clases and uses methods defined for the objects. Thus the program that 
implements the main method is the client program. In this section, a program to calculate 
the area of a circle will be developed. 

Problem Statement: Write a program to calculate the area of a circle. 
Once a problem statement is given, the requirements can be established by analyzing 

the problem. The program will: 

 Accept a radius from the user 
 Compute the area of the circle using the given radius 
 Display the area 

Next, some further issues can be considered. Since the area of more than one circle may 
need to be calculated, a class describing a circle should be defined separately from the main 
program. In the definition of a circle, only the value of the radius which is the main 
characteristic of a circle should be kept. In some circumstances where a calculation is very 
complex, it might be better to calculate the result just once and invoke a method to get the 
result each time it is needed, thus saving compute time. But since the calculation for the 
area of the circle is not very complex, it can be computed at any time using the value of the 
radius, and it does not need to be stored in the object. 

Having addressed some of the issues, the design of the application can proceed. The 
definition of the Circle class in UML notation is shown in Fig. 2.33. 

 
Circle 

radius: double  
Circle() 

setRadius(inRadius: double) 

computerArea(): double 

getRadius(): double 

Fig. 2.33 UML class diagram of the Circle class 

According to the diagram, a Circle object has a data member radius of type 
double which is a property that characterizes a circle shown in the middle section. The 
behavior of an object is defined by the methods in the bottom section. The first method is 
a constructor which creates a new object and performs the initialization of the data 

76 2  Objects: An Introduction



 
 

members when a new object is created. Each circle can assign a value of radius by 
performing the setRadius method, invoke the computeArea method to return its 
area, and return the value of radius using the getRadius method. 

After the design phase comes the implementation phase. Figure 2.34 contains the code 
defining the class for a Circle object. 

 
Fig. 2.34 Circle class 

A client program to test the functionality of the Circle class is given in Fig. 2.35. 

2.11  Complete Program: Implementing a Simple Class and Client Program 77



 
 

 
Fig. 2.35 A client program for Circle class 

When the above program is compiled and executed using the sample input of 2.0, the 
output of the program looks like this: 
 

 Enter the radius: 2.0
The area of the circle with a radius of 2.00 cm is 12.57 square cm. 
 

In this example, an object circle was instantiated from the class Circle, and the 
user provided 2.0 for the value of the radius of the circle. The UML notation for the 
object, circle, is shown in Fig. 2.36. 

 
circle: Circle 

radius = 2.0 

Fig. 2.36 UML notation for the object, circle, of the Circle class 

As before, the top section contains the object name circle followed by the class name 
Circle after the colon, all of which is underlined. The bottom section lists the data 
member radius of the object circle. In this example, the variable radius has a value 
2.0. 

78 2  Objects: An Introduction



 

 Remember that a class is like a definition, whereas an instance of a class is an object. 
 Private data members and methods can only be accessed internally within an object 

of a class, whereas public data members and methods can be accessed both internally 
and externally. 

 A value-returning method is used to return a value back to the invoking statement. 
 It is best to use only one return statement in a value-returning method and also to place 

the return statement as the last statement in the method. 
 A void method is usually used to set values in an object. 
 Arguments in an invoking statement are used to send values to a method, and the 

corresponding parameters are used to receive values within the method. 
 Each time an object is created or a method is invoked, a corresponding contour should 

be drawn. 
 The new instruction creates a new instance of a class, and the reference to the new 

instance is often assigned to a variable. 
 A constructor is automatically invoked when the new instruction is executed and is 

often used to initialize data members. Remember that a constructor has the same name 
as the name of the class and does not have a return type. 

2.13 Exercises (Items Marked with an * Have Solutions in Appendix E) 

1. Indicate whether the following statements using the Circle class in Fig. 2.34 in 
Sect. 2.11 are syntactically correct or incorrect. If incorrect, indicate what is wrong 
with the statement: 

   *A. Circle circle = new circle(); 
     B. Circle circle 

          Circle = new Circle(5); 
   *C. circle.getRadius(); assume that an object circle has been 
                declared and created correctly. 
     D. circle.setRadius("two"); assume that an object circle has 
           been declared and created correctly. 
     E. circle.setRadius(); assume that an object circle has been 
                declared and created correctly. 

2. Draw contour diagrams to show the state of execution prior to the following line 
numbers of the CalcAreaCircle class in Fig. 2.35 in Sect. 2.11. 
 

A. Line 8 
B. Line 12 (assume an input value of 2.0) 

 
3. Draw contour diagrams to show the state of execution prior to Line 8 of the 

Invoke class in Fig. 2.21 in Sect. 2.9. 
 

4. Answer the questions A D about the following declaration of class Circle: 

2.12  Summary 79

2.12 Summary 



 
 

 

*A. Declare and create a variable of type Circle called innerCircle. 
  B. Write a statement using the setRadius method to change the value of 

innerCircle radius to 10.0. 
*C. Write a statement using the getRadius method to output the value of 

innerCircle radius, preceded by the phrase "The 
value of radius is ". 

  D. Write a statement using the computeCircumference method to output the 
value of innerCircle "The 
value of the circumference is ". 

5. Draw contour diagrams to show the state of execution prior to Line 11 of the class 
Multiple shown in Fig. 2.27 in Sect. 2.9. 
 

6. Write a complete program to calculate the volumes of a cone and a hollow cylinder. 
The shape of a hollow cylinder is shown below, where r is the radius of the inner 
cylinder and R is the radius of the outer cylinder: 

80 2  Objects: An Introduction



 
 

 

First, draw a UML diagram similar to Fig. 2.31 for a class named Cone as 
described below and then write the code to implement the Cone class. 

*A. The Cone class has two private data members, radius and height , of type 
double. 

  B. Write code for a constructor to set the data members to default values of 0.0. 
  C. Write code for the accessor methods, getRadius and getHeight, that return 

the value of the appropriate data member. 
*D. Write code for the mutator methods, setRadius and setHeight, that each 

have one formal parameter which is stored as the value of the data member. 
  E. Write a method named computeVolume to compute the volume of a cone and 

return the computed volume to the client. The formula to find the volume of a 

cone is 21
3

r h . 

Second, draw a UML diagram similar to Fig. 2.31 for a class named 
HollowCylinder as described below and then write the code to implement the 
HollowCylinder class. 

  F. The HollowCylinder class has three private data members, innerRadius, 
outerRadius, and height, of type double. 

  G. Write code for a constructor to set the data members to 0.0. 
  H. Write code for the accessor methods, getInnerRadius, 

getOuterRadius, and getHeight, that return the value of the appropriate 
data member. 

  I. Write code for the mutator methods, setInnerRadius, setOuterRadius, 
and setHeight, that each have one formal parameter which is stored as the 
value of the data member. 

  J. Write a method named computeVolume to compute the volume of a hollow 
cylinder and return the computed volume to the client. The formula to find the 
volume of a hollow cylinder is (R 2 r 2). 

Third, write a client program to test the Cone and HollowCylinder class as 
defined above. Name this class CalcVolume. The main method should perform the 
following tasks: 
  K. Allow the user to enter a radius of the cone. 

2.13  Exercises (Items Marked with an * Have Solutions in Appendix E) 81



 
 

  L. Allow the user to enter a height of the cone. 
  M. Declare and create a Cone object setting the data members to the values entered 

by the user. 
  N. Allow the user to enter an inner radius of the hollow cylinder. 
  O. Allow the user to enter an outer radius of the hollow cylinder. 
  P. Allow the user to enter a height of the hollow cylinder. 
  Q. Declare and create a HollowCylinder object setting the data members to the 

values entered by the user. 
  R. Output the phrase "The volume of the cone with a radius of 

XX cm and a height of XX cm is XX cubic cm.", where the 
XXs are the input values and the value returned from the method. 

  S. Output the phrase "The volume of the hollow cylinder with an 
inner radius of XX cm, an outer radius of XX cm, and a 
height of XX cm is XX cubic cm.", where the XXs are the input 
values and the value returned from the method. 

  Here is some sample input and output: 
Input for the cone 
Enter the radius: 2.0 
Enter the height: 3.0 
Input for the hollow cylinder 
Enter the inner radius: 2.0 
Enter the outer radius: 4.0 
Enter the height: 3.0 
The volume of the cone with a radius of 2.00 cm and 
a height of 3.00 cm is 12.57 cubic cm. 
The volume of the hollow cylinder with an inner radius 
of 2.00 cm, an outer radius of 4.00 cm, and 
a height of 3.00 cm is 113.10 cubic cm. 

  Finally, draw a UML diagram similar to Fig. 2.32 for the objects created in the main 
method. 
 

 
 
 

 

 

 

 

 

82 2  Objects: An Introduction



 

3 

Selection Structures 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

Selection structures are explained in this chapter using flowcharts, pseudocode, and the corresponding Java 
code. The if-then, if-then-else, and nested if structures, including if-then-else-if and if-then-if structures, are 
introduced. The dangling-else problem is also discussed. Logical operators are presented followed by the 
introduction of the case structure. Two complete programs are provided: one with objects and one without. 

Keywords 

If Statement, Logical Operator;Truth Table; Switch Statement; Break Statement. 

3.1 Introduction 

Chapter  1  showed how to perform input, arithmetic, and output, which are fundamental 
to many subsequent programs.  Chapter 2  introduced elementary object-oriented 
programming, which allows programs to be designed using objects and methods. Although 
invoking a method causes a program to branch to another subprogram and this alters the 
flow of control, the order in which the methods are executed can be determined by 
examining the code to see the order in which they are invoked. In other words, each time 
the program is executed, it would have the same order of execution regardless of what was 
input. What gives software some of its power is the ability to alter the flow of control of a 
program, so that during different executions of the program with different input, it will 
behave in a different fashion. This ability is a result of a program being able to use control 
structures. 

hich can 
vary from language to language. Control structures can alter the flow of control of a 
program and can be classified as two main groups, selection structures and iteration 
structures. Selection structures, sometimes also called decision structures, allow the 
program to take two or more different paths based on different conditions, whereas iteration 
structures, sometimes called repetition structures, allow a program to repeat a part of the 
code many times. In this chapter, various forms of the selection structures will be examined 
along with the associated Java statements. 

3.2 If-Then Structure 

The most basic of the selection structures is the if-then structure. If a particular condition 
is true, the then portion of the structure is executed; otherwise the then portion of the 
structure is not executed. It is very similar to natural languages, whe

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_3

83

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_3&domain=pdf


 
 

buy ice cream; otherwise one would not buy ice cream. Before looking at specific Java 
code for this example, it is helpful to look at a visual representation using a flowchart. 
There are many different types of flowcharts, where Fig. 3.1 shows the type of flowchart 
that will be used in this text. 

 

 
 
Fig. 3.1 Flowchart representing an if-then structure 

In Fig. 3.1, the diamond shape represents a selection structure and the arrows represent 
the flow of control. The arrow at the top represents entrance into the selection structure. 
The statement inside the diamond is a question and its results are either true or false. The 
two labeled arrows exiting the diamond represent the flow of control should the condition 
be true or false. The true branch is known as the then branch which contains a rectangle 
representing a statement, and there are no statements in the false branch. The rectangles 
can be used to hold various statements such as input, output, and assignment statements. 

 then or true 

false, the false branch is taken and one does not buy ice cream. 
However, the example shown in Fig. 3.1 is not very precise for writing a program. It is 

not clear what is classified as hot, so it might be better to specify a particular temperature. 
To make it easier to write a program, it would be best to use a variable such as temp for 
temperature, where temp would first need to be input. It could then be tested in an if-then 

be output. Although not necessary now, but for convenience later, a message indicating 
3.2. 

 
 
 
 
 
 
 
 
 
 

True 

False 

Is it hot? 

Buy 
Ice Cream 

84 3  Selection Structures



 

 
Fig. 3.2 Flowchart using the variable temp 

Specifically, the flowchart in Fig. 3.2 first inputs the value of temp. Next it tests if the 
value in temp 

the flow of control continues on to the end of the if-then structure and the message 
 

The comparison between temp and 90 is known as a conditional expression, and the 
greater than or equal to symbol is known as a relational operator and it could be any of the 
relational operators that one has previously learned in mathematics. For example, one could 
also say temp 

temp temp was of 
type double? Then, a temp of 89.5 would cause the 
output, and this might not be what was intended. As a result, it is a good idea not to change 
what is given and to implement what was originally intended. 

Although flowcharts are good for visually depicting the logic of a program, sometimes 
they are cumbersome to draw. As an alternative to flowcharts, pseudocode can be used to 
create the logic for a program as discussed previously in  Chap. 1 . The above flowchart 
could be implemented in pseudocode as follows: 
      
       input temp 
  if temp  90 then 
        
   

After temp is input, the word if indicates an if-then structure. The condition appears 
between the words if and then and the word then is optional. If the condition is true, the 
statement immediately following the if statement is executed, and execution proceeds to 

True 

False 

temp ≥ 90 

Output 
 “Buy Ice Cream” 

Input temp 

Output 
“End of Program” 

3.2  If-Then Structure 85

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

the statement following. Note that the true section of the structure is indented to visually 
indicate the then section. If the condition is false, control branches or jumps over the 
indented then section and the last statement is executed. 

Given the above flowchart and pseudocode, how could they be implemented in Java? 
The code would look as shown below: 
 
System.out.print("Enter a temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 90) 
   System.out.println("Buy Ice Cream"); 
System.out.println("End of Program"); 
 

The input and output statements should look familiar from  Chap. 1 . What is new and 
different is the if-then statement. Note that there are parentheses around the conditional 
expression and the word then does not appear in the code. Although the word then does 
not and should not appear in Java, the true section of an if-then statement is still referred 
to as the then section. Also, just like the pseudocode, it is a good idea to indent the true or 
then section, but be aware that indenting the code does not affect the flow of control in the 
program. It is done as a courtesy for other programmers to help improve the readability 
and maintainability of the code. 

een replaced with the >= symbols. This is because 
>= 

symbols need to be used instead. As one might suspect, some of the other mathematical 
symbols do not exist in Java as well as indicated in Table 3.1. 

Table 3.1 Relational symbols 
 

Mathematical symbol Java symbol 
> > 

 >= 
< < 

 <= 
= == 

 != 

this is to distinguish the check for equality == from the assignment symbol =. This is a 
common mistake for beginning Java programmers to use the wrong symbol, so extra care 
must be taken when writing a conditional expression in a control structure. Although not 

!=. 
To illustrate a complete program that can be keyed into the computer to test the current 

if-then statement, see Fig. 3.3. This program can also be modified to test subsequent 
selection statements introduced in this chapter. 

86 3  Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 
Fig. 3.3 Complete program using the if-then statement 

It should further be pointed out that syntactically there can be only one statement in the 
then section of an if statement in Java. But if there can be only one statement in Java, 
how can more than one statement be placed in the then section? Taking a minute to think 
about it, a way this problem can be solved has already been presented in  Chap. 2 . Yes, 
multiple statements could be placed in a method and then an invoke statement could be 
placed in the then section. However, if a method was not being used to solve this problem, 
how could more than one statement be put into the then section? 

With flowcharts and pseudocode, there are no restrictions to using only one statement 
as there is in Java. In a flowchart, additional boxes can be placed in the then branch and 
each box represents a new statement. For 

3.4. 
 
 
 
 
 
 
 

3.2  If-Then Structure 87

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

 
Fig. 3.4 Flowchart with two statements in the then section 

In pseudocode, if more than one statement is needed in the then section, it is simply 
inserted and indented to visually indicate to the reader that the additional statements are 
part of the then section and do not belong after the then section, such as in the following: 
   
        input temp 
  if temp  90 then 

        
        

   

However, if one attempted to write the above pseudocode in Java as follows, there 
would be a logic error: 
 
// *** Caution: Incorrectly Implemented Code *** 
System.out.print("Enter a temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 90) 
   System.out.println("Buy Ice Cream"); 
   System.out.println("Buy Lemonade"); 
System.out.println("End of Program"); 
 

Although this might look correct, it is sometimes a common error made by beginning 
 to the left as shown 

below, there is no change in the logic of the segment, and the true flow of control is made 
 

 

True 

False 

temp ≥ 90 

Output 
 “Buy Ice Cream” 

Input temp 

Output 
“End of Program” 

Output 
“Buy Lemonade” 

88 3  Selection Structures



 
 

// *** Caution: Incorrectly Implemented Code *** 
System.out.print("Enter a temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 90) 
   System.out.println("Buy Ice Cream"); 
System.out.println("Buy Lemonade"); // <--- Unindented 
System.out.println("End of Program"); 
 

As stated previously, the indentation of the code does not affect the flow of control of 
the program in Java. So how does one indicate that there is more than one line of code in 
the then section? The answer is through the use of a compound statement. A compound 
statement is indicated by the use of opening and closing braces, { and }. For example, the 
above pseudocode would be correctly implemented as follows: 
 
// *** Correctly Implemented Code *** 
System.out.print("Enter a temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 90) { 
   System.out.println("Buy Ice Cream"); 
   System.out.println("Buy Lemonade"); 
} 
System.out.println("End of Program"); 
 

The compiler sees the compound statement which allows more than one statement to be 
in the then section. Although syntactically to the compiler there is still only one statement, 
specifically the compound statement, there are now logically two statements in the then 
section. Notice that the opening brace appears just after the closing parentheses of the 
conditional expression and the closing brace lines up with the if statement. Although there 
are a number of other styles, this text will use the style shown above. However, should 

 

3.3 If-Then-Else Structure 

The if-then structure is helpful when there is something that needs to be done in addition 
to the normal flow of control. However, what if one wanted to have a program do one thing 
in one case and another thing in an alternative case. Using a new example, assume that if 
the number of credit hours input, using the variable credits, is 120 or greater, the 
program should outp

 
Is it possible to solve this problem using only if-then structures? The answer is yes, by 

using two if-then structures in the pseudocode that follows: 
  
       if credits  120 then 

     
  if credits < 120 then 

     

Although this solution works, the problem with this method is that it has to ask two 
questions. For example, if the number of credit hours is equal to 120, then the message 

3.2  If-Then Structure 89



 
 

ut, 
the code still needs to check to see if the number of credit hours is less than 120 and branch 

is true, the other one is false, so there is no need to check the opposite condition. This can 
be accomplished with the use of the if-then-else structure. An example of the flowchart for 
this scenario is as shown in Fig. 3.5. 

 
 

Fig. 3.5 If-then-else structure 

Note that unlike the flowchart in the previous section, the false section is no longer 

section of the flowchart is also called the else section. The pseudocode for this flowchart 
is shown below: 
   
        input credits 
   if credits  120 then 

       
  else 

       
   

Notice that the word else lines up with the word if and that the else section of the 
pseudocode lines up with the then section. The Java code to implement the pseudocode is 
as follows: 
 
System.out.print("Enter the credit hours: "); 
credits=scanner.nextInt(); 
if(credits >= 120) 

True 

False 

 credits 
  ≥120 

Output 
“Graduate” 

Input credits 

Output 
“End of Program” 

Output “Does not 
graduate” 

90 3  Selection Structures

   System.out.println("Graduate"); 
else 
   System.out.println("Does not graduate"); 
System.out.println("End of Program"); 
 



 
 

As with the pseudocode, notice that the word if and the word else line up and the 
then and else sections line up. What if there needs to be more than one statement in either 
the then or else sections? As before with the if-then statement, a compound statement 
must be used. 

It is possible to reverse the above then and else sections, but one needs to be cautious 
and reverse the conditional expression correctly. What is the opposite of greater than or 
equal to? Be careful, it is not less than or equal to. If one used less than or equal to, then 
those students who had exactly 120 credit hours would be listed as not graduating, much 
to their dismay! Instead, the opposite of greater than or equal to is simply less than as shown 
below: 
 
System.out.print("Enter the credit hours: "); 
credits=scanner.nextInt(); 
if(credits < 120) 
   System.out.println("Does not graduate"); 
else 
   System.out.println("Graduates"); 
System.out.println("End of Program"); 
 

Although the above code performs identically to the previous code, why should one be 
chosen over the other? Unless there is a compelling reason to do otherwise, such as the 
original description is unduly confusing, it is usually better to write the code to follow the 
original specifications as given. However, if either way is acceptable, then code is often 
written to have the most common occurrence in the then section and the exception in the 
else section. In the above example, most seniors will more than likely have 120 credit 
hours or more at graduation, so using the original code segment is probably the best choice. 

When writing if-then structures, it is important to write them so that they not only work 
correctly but they are also efficient in terms of memory utilization. For example, consider 
the following code segment: 
 
if(a > 0) { 
   b = b + 1; 
   a = a - b; 
   c = c + a; 
} 
else { 
   b = b + 1; 
   a = a + b; 
   c = c + a; 
} 
 

Note that the first and last statements in both the then and else sections are the same. 
The only statement that is different between the two is the middle statement in each 
segment. Given that the other statements are the same, why are they duplicated in the then 

3.3  If-Then-Else Structure 91



 
 

and else sections? The answer is that they should not be and they can be moved. Not only 
are they taking up more memory, they also present a possible problem when someone 
attempts to modify the code, where a programmer might accidently modify a statement in 
one section and fail to modify the other statement in the other section which might lead to 
a subsequent logic error. Although this does not appear to present as much of problem here 
in a small code segment, it could be much more serious in larger code segments. 

If the duplicate statements are to be consolidated and moved, where should they be 
relocated? By examining the above code segment, the variable b modified in the first 
statement in each segment is used by the second statement, so it should be moved prior to 
the if statement. Similarly, the variable a used in the last statement is modified by the 
middle statement, so it should be relocated after the if-then-else statement. In other words, 
care must be used to ensure that the logic is not altered when moving statements to optimize 
an if-then-else statement or any code segment for that matter. Below is the modified code 
segment that clearly is less cluttered without the braces, uses less memory, and would be 
easier to modify in the future. The result is that once one has written code that works 
correctly, be sure to take the time to ensure that it is also a well-written code. 
 
b = b + 1; 
if(a > 0) 
   a = a - b; 
else 
   a = a + b; 
c = c + a; 
 

Note further that it is also possible to write an if-then structure as an if-then-else with 
either an empty else section or an empty then section. In both cases, leaving an empty 
else or then section in Java requires a semicolon in either section, which might lead 
subsequent programmers to wonder what might have been accidently left out. Unless there 
is intent to fill in the empty section in the immediate future, it is best to just write the code 
simply as an if-then. If code is written with an empty else section, the else section should 
be removed. In the case of an empty then section, it is usually best to carefully reverse the 
conditional expression and again write the code as an if-then. 

3.4 Nested If Structures 

If there is only one selection, the if-then is the best choice, and should there be two 
selections, the if-then-else structure is the obvious choice. But what if there are three or 
more choices? Sure, a series of if-
it is a very inefficient solution as discussed in the previous section. Instead, a series of if-
then-else structures could be nested. There are two ways if-then-else structures can be 
nested: the subsequent if-then-else statements could be nested in the else section or in the 
then section of the previous if-then-else. The first form of nesting is called an if-then-else-
if structure and the second is called an if-then-if structure. Note that there are no Java 
statements that correspond to each of these two structures, but rather they can be created 
fairly easily from a pair of if-then-else statements. Of the two, the former tends to be used 
more often and will be discussed first. 

92 3  Selection Structures



 

As mentioned above, an if-then-else-if structure is created when an if-then-else is nested 
in the else section of an if-then-else. Using a new example, assume that the temperature is 
input in degrees Celsius and messages are to be output as to whether water is in the form 
of steam, water, or ice. At 100° or greater, water is in the form of steam, and at 0° or less, 
it is in the form of ice; otherwise it is in its liquid state. As before, it is helpful to view the 
structure in the form of a flowchart as shown in Fig. 3.6. 

 
Fig. 3.6 Nested if-then-else-if structure 

Notice that the second if statement appears in the else section of the first statement. The 
dotted lines are not part of the flowchart, but rather are included to help one see that the 
inner if-then-else is contained in the else section of the outer if-then-else. If the first 

first condition is false, then further testing occurs in the nested if-then-else structure. Given 
the flowchart in Fig. 3.6, the corresponding pseudocode would appear as follows: 

False 

True 

temp≥100 

Output “Steam” 

Input temp 

Output 
“End of Program” 

Output “Water” Output “Ice” 

False 

True 
temp>0 

3.4  Nested If Structures 93

3.4.1 If-Then-Else-If Structure 



 
 

 

As with the flowchart, the dashed lines are not part of the pseudocode. Rather, they are 
included to allow one to see how the inner if-then-else structure is nested in the else portion 
of the outer if-then-else structure. In particular, note that the nested if and else line up 
with the output statement in the then section of the outer if-then-else structure. Again, if 
the first condition is true, the then section is executed and no further testing occurs, but if 
the first condition is false, the nested if is executed. 

As would be expected, the Java code looks very similar: 
 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 100) 
   System.out.println("Steam"); 
else 
   if(temp > 0) 
      System.out.println("Water"); 
   else 
      System.out.println("Ice"); 
System.out.println("End of Program"); 
 

The dashed lines are not included in the Java code so that one can concentrate on the 
indentation and the syntax. As with the pseudocode, note how the inner if and else line 
up with the System.out.println statement in the then section of the outer if 
statement. 

Since there appears to be more than one statement in the else section of the outer if-
then-else structure, does there need to be a pair of braces, { and }, in that section? In other 
words, does a compound statement need to be used? The answer is no, because an if-then-
else statement is syntactically considered to be a single statement. Although it would not 
cause a syntax error to include the braces, it could cause some programmers to wonder if a 
second statement was forgotten and not included. Some instructors might not care whether 
the extra pair of braces is included, but this text will omit them to help the reader get used 
to this programming style. 

Does it matter which test is first? If all the groups are equal, then the answer is no. 
However, if one of the groups occurs more frequently, then it would be best to put it first 
so that fewer tests would need to be done. This is especially true when an if statement is 
inside an iteration structure as will be seen in  Chap. 4 . What if the middle section occurs 
more often? This could prove to be a problem at this point, but it will be discussed further 
in Sect. 3.5 on logical operators. 

94 3  Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

3.4.2 If-Then-If Structure 

Since it is possible to nest an if-then-else structure in the else section of an outer if-then-
else structure, is it possible to nest an if-then-else structure in the then section of an outer 
if-then-else structure? The answer is yes, and this type of structure is called an if-then-if 
structure. Again, there is no Java statement called an if-then-if, but rather this name merely 
indicates what section the subsequent if-the-else is nested. The flowchart for an if-then-if 
that implements the example from the previous section is shown in Fig. 3.7. 

 
Fig. 3.7 Nested if-then-if structure 

As before, the dashed lines are not part of the flowchart but help indicate how the if-
then-else is nested in the then section of the outer if-then-else. In particular, notice how 
the relational expression in the first if 100 to >0. The reason for this is 
because previously when the temp was at 100 or greater, the then section would be 

-then-if structure, 
the then section now contains a nested if and has two groups that need to be further 
subdivided. The relational expression in the outer if structure is changed to >0, so when 
temp is zero or less than zero, execution proceeds to the else section. As discussed 
previously in Sect. 3.2, be careful to write the relational expression properly, otherwise a 
logic error could occur. After checking for a temperature greater than zero, the nested if 
checks whether the temperature is greater than or equal to 100, and if so the message 

the nested if-then-if can be found below: 

False 

True 

temp>0 

Output “Ice” 

Input temp 

Output 
“End of Program” 

Output “Steam” Output “Water” 

False 

True 

temp≥100 

3.4  Nested If Structures 95



 
 

 

Notice the nested if-then-else in the then section of the outer if-then-else and note the 
level of indentation. As should be expected, the Java code follows. Again pay attention to 
the indentation and the absence of braces: 
 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0) 
   if(temp >= 100) 
      System.out.println("Steam"); 
   else 
      System.out.println("Water"); 
else 
   System.out.println("Ice"); 
System.out.println("End of Program"); 
 

Since the if-then-else-if and the if-then-if structures can perform the same tasks, which 
is the better choice? In one sense it depends on the circumstances. If the original 
specifications are written in such a fashion to make it easier to implement with one or the 
other structure, then the most appropriate structure should be used. However, often the 
original specifications are written in a way that is easier to communicate to other users and 
programmers, and this tends to be in an if-then-else-if fashion. For example, assume there 
were an equal number of different denominations of coins and someone wanted to move 
all of the one cent pieces. Ordinarily a person would not try to remove all the other coins 
to leave only the one cent coins, but instead it would be easier to merely remove the one 
cent coins. If there were subsequent coins to be removed, such as the five cent pieces, they 
would be the next to be removed and so on. 

 

 

 

This is similar to the previous example, where instead of checking for temperatures 
above freezing and then checking for temperatures that produce steam or water, it is more 

1

1 1 5  

25  

25 

5  5 If coin equal to 1? 

25  

96 3  Selection Structures



 
 

natural to check for the temperatures that are greater than or equal to 100°. In other words, 
the if-then-else-if structure is often chosen over the if-then-if structure because that is the 
way people often speak and tend to write specifications. Further, it is helpful to have the 
program written similar to the specifications to assist other programmers who might be 
maintaining and modifying the program in the future. There is yet another reason why the 
if-then-else structure is used more often than the if-then-if as discussed in the next section. 

3.4.3 Dangling Else Problem 

The if-then-if structure also suffers from an occasional problem due to the nature of the 
Java syntax. For example, assume that one wanted to modify the previous temperature 
example to implement the flowchart in Fig. 3.8 which only the mess

 

  
Fig. 3.8  

The flowchart can also be implemented as shown in the following pseudocode: 

 

False 

True 

temp>0 

Output “Ice” 

Input temp 

Output 
“End of Program” 

Output “Steam” False 

True 

temp≥100 

3.4  Nested If Structures 97



 
 

In both cases, what is intended is that if the temperature is greater than or equal to 100, 
then the first and second if 
temperature is 0 or less than 0, the first if 
if the temperature is greater than 0 or less than 100, then the first if statement would be true, 
and the second if would be false, and since there is no code in the else section of the second 
if, no message is output. It would appear that the code for the above could be implemented 
as follows: 
 
// *** Caution: Incorrectly Implemented Code *** 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0) 
   if(temp >= 100) 
      System.out.println("Steam"); 
else 
   System.out.println("Ice"); 
System.out.println("End of Program"); 
 

However, what appears to be correctly implemented code is not accurately 
implementing the logic from the flowchart and pseudocode. If the pseudocode follows from 
the flowchart, and the code follows from the pseudocode, how can this be? The problem is 
that the pseudocode is relying on indentation to indicate which parts belong in the then 
and else sections, but recall from Sect. 3.2 that indentation does not affect the flow of 

problem. It might not be clear which if statement the else statement is paired. If the 
above code segment has the else and the subsequent System.out.println 
indented, note that the code presents itself entirely differently: 
 
// *** Caution: Incorrectly Implemented Code *** 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0) 
   if(temp >= 100) 
      System.out.println("Steam"); 
   else     // Indented ----> 
      System.out.println("Ice");         // Indented ----> 
System.out.println("End of Program"); 
 

Instead of the else appearing to belong to the outer if, it now seems to belong to the 
inner if 
code segments is correct? The answer is neither, but the second one more accurately 
represents the flow of control, because an else is always matched with the closest if 
statement. The result is that the flowchart for the above code segment is as shown in Fig. 
3.9. 

 
 
 
 

98 3  Selection Structures



 
 

 
 

 
Fig. 3.9  

If temp is less than or equal to 0, then nothing is output, and if the temperature is greater 

Although indenting is a useful way of indicating flow of control in pseudocode, it is only 
useful in illustrating the flow of control in Java when it is done properly. If indenting will 
not help correct the above problem, what can be done to correct the code? There are a 
couple of solutions. One is to include braces to force the else to match up with the outer 
if instead of the inner if as shown below: 
 
// *** Correctly Implemented Code *** 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0) { 
   if(temp >= 100) 
      System.out.println("Steam"); 
} 
else 
   System.out.println("Ice"); 
System.out.println("End of Program"); 
 

Note that in addition to the braces, the else is moved to the left to line up with the 
outer if 
suggestion from Sect. 3.2 to not use braces for a single statement and use them only when 
they are necessary? No, not in this case, because although the if-then structure in Java is 

False 

True 
temp>0 

Input temp 

Output 
“End of Program” 

Output “Steam” Output “Ice” 

False 

True 

temp≥100 

3.4  Nested If Structures 99



 
 

only a single statement, the braces are necessary in this case to force the else to match 
with the proper if statement. 

In fact, some might suggest that braces should always be used to avoid a special case 
such as this. However, it seems somewhat counterintuitive to use braces everywhere for 
only a single potential error, since too many braces might clutter up a program and hurt the 
overall readability. There is another solution and that is to generally avoid the use of the if-
then-if structure and instead primarily use the if-then-else-if structure, which does not 
suffer from this problem, as shown below: 
 
// *** Correctly Implemented Code *** 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 100) 
   System.out.println("Steam"); 
else 
   if(temp <= 0) 
      System.out.println("Ice"); 
System.out.println("End of Program"); 
 

Again, does this mean one should never use the if-then-if structure? No, as mentioned 
previously use the if-then-if structure only when the nature of the problem lends itself to 
its usage and use extra caution to ensure that the code written actually implements the 
intended logic. Further, an example of the use of the if-then-if structure is shown in the 
next two sections. 

However, it might appear that the initial cause of the above problem results from the 
indentation used in the previous pseudocode. Does this mean that one should not rely on 
indentation when writing pseudocode and braces should be used to help indicate nesting? 
The answer is largely left up to the individual, the instructor of a class, or the standards in 
a company. As long as one is aware of the potential problem, indentation can be used in 
pseudocode to indicate the flow of control. Also, if one wants to ensure that a mistake does 
not occur in writing subsequent Java from the pseudocode, then the inclusion of braces in 
the above instance would provide extra insurance that the pseudocode is not accidently 
implemented incorrectly. However, this text will not use braces in pseudocode to save 
space and help the reader better understand the potential problems. 

3.5 Logical Operators 

Although nested if statements are very useful in the circumstances discussed in the 
previous section, there are techniques that can make them even more useful. For example, 
assume that the only message needed to be output was the opposite of the example 
presented in the previous section. If the temperature is greater than 0° and less than 100°, 

-then-if 
structure or an if-then-else-if structure, where the former is shown below: 
 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0) 
   if(temp < 100) 
      System.out.println("Water"); 

100 3  Selection Structures

System.out.println("End of Program"); 



 

However, does the use of an if-then-if above go against the suggestion in the previous 
section to use the if-then-else-if? No not really, because this is one of those cases that lend 
itself better to the use of the if-then-if. The use of an if-then-else-if would result in an empty 
then section which should be avoided as discussed in Sect. 3.3 and as shown below: 
 
System.out.printl("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp >= 100); 
else 
   if(temp > 0) 
      System.out.println("Water"); 
System.out.println("End of Program"); 
 

Note the semicolon at the end of the first if statement indicating an empty then section, 
which can be quite confusing. Clearly in this instance the if-then-if structure is a better 
solution than the if-then-else-if structure. However, by using logic there is an even better 
solution to this problem, and before presenting the solution, it is best to look over the 
fundamentals of logic operations. 

Logical operators are also known as Boolean operators, which are named after George 
Boole (1815 1864) an English-born mathematician and logician. The results of Boolean 
operations are the values true or false which can be stored in variables of type 
boolean as shown below: 
 
boolean flag; 
flag = true; 
 

Further, any relational or logic operation can be assigned to a boolean variable, and 
that variable can be used subsequently in an if statement. Although not used as often, it 
is sometimes helpful to have a relation in one part of a program, set a boolean variable 
(often called a flag and coded as flag), and then test the flag later in another part of the 
program. The result is that both of the following code segments are equivalent: 
 
if(x == 0) 
   System.out.println("x equals 0"); 
flag = x == 0; 
if(flag) 
   System.out.println("x equals 0"); 
 

Although at first the assignment statement of the second segment might look a little 
strange, if one thinks about it for a minute, the comparison of x == 0 results in either 
true or false. The true or false is then assigned to the boolean variable flag. 
Lastly, when the if statement is executed, should the value in flag be true, the then 
portion of the if is executed. Otherwise the value in flag is false, the then portion is 
skipped, and any statement that might follow is executed. In the second instance, does the 
variable flag need to be compared to the Boolean values of true or false? The answer 

3.5  Logical Operators 101



 
 

is no, because the variable flag is of type boolean and already contains either the value 
true or false, so the comparison is unnecessary. Although the first example is more 
common, again the second is useful to set a flag in one part of a program and test it in 
another part of a program. 

Continuing, there are three fundamental logic operations called and, or, and not. The 
first of these three has a value of true when both conditions are true. For example, a 
graduation requirement for a major in computer science might include that a student takes 
both a course in calculus and discrete mathematics. If one takes one course but not the 
other, or takes neither course, then the major will not be complete. This can be represented 
in the form of a truth table, where all the possible combinations of the two courses are listed 
on the left side and the result of the and operation is listed on the right in Table 3.2. The 
variables c and d are used to represent the calculus and discrete mathematics courses, 
respectively, and the letters T and F are used to represent the values true and false, 
respectively. Note that result is true only when both c and d are true. 

Table 3.2 Truth table for the and operation 
 

c d c and d 
F F     F 
F T     F 
T F     F 
T T     T 

As an example of the or operation, suppose that in order to complete a major in computer 
science a student must take one of two electives, such as a course in artificial intelligence 
or a course in computer graphics. If a student takes one course or the other, then the student 
has fulfilled the requirement. But what if both courses are taken? In the case of the or 
operation under consideration here, known as an inclusive-or, the results are true when one 
or the other, or both are true. The result is that a student would have also fulfilled the 
requirement if both courses were taken. On the other hand, an exclusive-or is true when 
only one or the other is true, but not both. Although some other languages have both types 
of or operators, Java only has the inclusive-or as illustrated in the truth table in Table 3.3, 
where the letter a represents artificial intelligence and the letter c represents computer 
graphics. As can be seen, if either a or c is true, or both are true, the result is true. If neither 
is true, the result is false. 

Table 3.3 Truth table for the or operation 
 

a c a or c 
F F      F 
F T    T 
T F     T 
T T    T 

The last of the logic operators is the not operator, which when applied to something that 
is true initially, the result is false and vice versa. For example, if one has taken an 
introduction to computer science course, then the result is true, but if one has not taken the 
course, the result is false. In Table 3.4 the letter c represents the introduction to computer 
science course. Since there is only one variable, there are only two entries in the truth table. 
In fact, to determine the number of entries needed in a truth table, just count the number of 

102 3  Selection Structures



 
 

variables in the expression and raise 2 to that power. For example, if there were three 
variables in a logical expression, how many entries would be needed? The answer is 2 
raised to the 3rd power which is equal to 8. 

Table 3.4 Truth table for the not operation 
 

c not c 
F   T 
T   F 

In Java the and, or, and not operations are represented using the &&, ||, and ! symbols, 
as shown in Table 3.5. 

Table 3.5 Logic operations and Java symbols 
 

Logic operation Java symbol 
And &&  
Or || 
Not ! 

Using this information, how can the if-then-if structure presented at the beginning of 
this section be simplified? Instead of checking first whether temp is greater than 0 and 
subsequently checking whether temp is less than 100, it would make sense to use the and 

mathematics, note that this would cause a syntax error in Java. Instead, the relation must 
be written with two separate comparisons each using the variable temp as in temp > 0 
&& temp < 100. The previous if-then-if structure can now be written as follows: 
 
System.out.print("Enter the temperature: "); 
temp=scanner.nextInt(); 
if(temp > 0 && temp < 100) 
   System.out.println("Water"); 
System.out.println("End of Program"); 
 

Could the above if statement been written as if(temp >= 1 && temp <= 99)? 
Given that the variable temp is of type int in the past couple of examples, the answer is 
yes. However, what if the variable temp was a double? Then, a temperature such as 0.5° 

in Sect. 3.3, it is usually better to write a program with the proper endpoints and relations 
even when programming with integers to help prevent a possible future logic error should 
a program be modified later. 

Although the basic operations of logic are fairly simple, expressions can become quite 
complex as the number of operations increase, so extra care must be taken when creating 
Boolean expressions. For example, suppose someone had originally coded the following 
if statement with an empty then section to check for a correct battery voltage in order for 
a system to operate correctly. Further, suppose that one wanted to convert the if-else 
structure to an if-then structure, how could that be accomplished? 

 
 

3.5  Logical Operators 103



 
 

 
if(voltage < 10.5 || voltage > 14.0); 
else 
   System.out.println("Correct Voltage"); 
 

The message needs to be moved from the else section to the then section. In other 
words the message should be output when the condition is true, not when it is false. The 
simple way to convert the condition is to simply add a not operator in front of the 
conditional expression and remember to remove the semicolon from the end of the if 
statement as follows: 
 
if(!(voltage < 10.5 || voltage > 14.0)) 
   System.out.println("Correct Voltage"); 
 

However, one must be careful with the not, because just as arithmetic operators have 
precedence rules, so to do logical operators. The not operator has the highest priority, the 
and operator has the second highest priority, and the or operator has the lowest priority. 
Further, just as with arithmetic operators, when there is a tie between two operators, the 
order is from left to right, and parentheses can be used to override any precedence rules 
where the expression in the innermost nested parentheses is evaluated first. The order of 
precedence for logical operators is summarized in Table 3.6. 

Table 3.6 Logical operator precedence 
 

Operator Precedence 
innermost nested () Highest 
!  
&& 
|| 
Tie  left to right Lowest 

As a result, note that when the not is added, there are a set of parentheses around the 
original logical operator and its operands from the previous if statement, because without 
them the result would be different. A truth table is a convenient way to prove that the two 
are different. To simplify the above relations, the Boolean variables a and b are used in the 
truth table below: 

 

 

Notice that the intermediate columns are shown to help ensure that there are no 
mistakes, or if one is made, it is easy to see where it occurred. Further, note that the arrow 

a b !a !a || b         a||b !(a||b) 
F F      T      T            F                    T 
F T  T      T            T                    F 
T F  F      F            T                   F 
T T  F      T            T                   F 
 

≠

104 3  Selection Structures



 
 

pointing to the two columns shows that !a || b is not equal to !(a || b). Specifically, the 
values in the second and fourth line down are not equal, and although the other two are 
correct, it takes only one instance to prove that they are not equal. Further, something like 
this might be difficult to catch when testing a program. If these particular instances are not 
tested, a program could subsequently have a logic error and no error message would be 
generated. 

Returning to the if not symbol in the if 
statement. Could it be rewritten without the ! symbol? The answer is yes, but again one 
must be careful when changing a logical expression. Similar to what can be done in 
arithmetic with a minus sign, the not symbol can be distributed over the terms in the 

be used, which were formulated by Augustus De Morgan (1806 1871), a British 
mathematician and logician. Simply stated, if a not is distributed over either an and 
operator or an or operator, the operands must be complemented. Further, the operators must 
be changed to an or operator or an and operator, respectively. To help understand these 
laws better, they are listed in Table 3.7. 

Table 3.7  
 

 
 

To show that the laws are indeed correct, a truth table can be used to prove that they are 
equal using the techniques shown above, and this is left as an exercise at the end of the 

if statement, 
first the ! symbol is distributed over the operands and then the || operator is changed to 
an && operator as shown below: 
 
if(!(voltage < 10.5) && !(voltage > 14.0)) 
   System.out.println("Correct Voltage"); 
 

Since there are now two not symbols, the relations can be changed to their opposites, 
thus eliminating the need for the two not symbols. Of course, one has to be careful to 
reverse the relationals correctly as has been discussed previously. The final if statement 
without the ! symbols is shown below: 
 
if(voltage >= 10.5 && voltage <= 14.0) 
   System.out.println("Correct Voltage"); 
 

Given some of the potential problems above, if a code segment can be written without 
using logical operators, then generally it is better to do so to avoid the added complexity 
and the potential for errors. When creating nested if structures, it is helpful not to have the 
first if contain a logical operator and instead rewrite the if structure to use a simple 
expression first. For example, in a code segment concerning temperatures, instead of 
starting with the water range and using an and operator, it is better to start with the steam 
or ice range which do not require a logical operator. 

Another potential complexity often occurs when some beginning programmers feel 
compelled to include a logical operator on subsequent if statements. However, this is 

3.5  Logical Operators 105



 
 

often unnecessary as shown previously in the temperature example where the first if 
checks for temperatures of 100° and above. Since the higher temperatures have already 
been removed by the first if statement, it is not necessary to include the logical operators 
in the subsequent if statement to check whether the temperatures are below 100°. As a 
general rule, if the logical operators are necessary or they help to reduce the number of if 
statements, then they should be included. However, if the code can be written without the 
use of logical operators, it is best not to include them. An example of when to use or not 
use logical operators can be found at the beginning of the next section. 

As one writes logical operators with conditional expressions as operands, care must also 
be taken which conditional expression comes first. For example, the following code 
segment checks to make sure that i is not equal to 0 and that the results of the division 
operation are positive before outputting a message. What would happen if both i and 
total contained a 0? 
 
if(i != 0 && total / i >= 0 ) 
   System.out.println("The average is positive"); 
 

Since i is equal to 0, the result of the first operand is false. However, does it matter 
what the results of the second operand are? Since false && false is false and false && true 
is also false, there is no need to check the second operand. This averts the division by zero 
error and the then portion of the if statement would not be executed. This is known as a 
short circuit, where if the first operand of an && operation is false, there is no need to check 
the second operand. 

So given the above, what would happen if the operands were reversed as follows and 
the value i and total were still 0? 
 
if(total / i >= 0 && i != 0) 
   System.out.println("The average is positive"); 
 

At first, it seems to be okay because the if statement is still checking to see if i is not 
equal to 0. However, although both tests are included in the if statement, recall from the 
discussion above that the operand on the left is evaluated first. Further if i was not equal 
to 0, there would not be a problem, but in the instance where i is equal to 0, there would 
be a division by zero error before the comparison of i to 0 in the second operand. 

A similar problem can occur with the || operator, where if the first operand is true, 
there is no need to check the second operand. The reason this occurs with both the && and 
|| operators is the result of the underlying machine language generated by the compiler 
and the interpreter. For a further explanation, see Guide to Assembly Language: A Concise 
Introduction [10]. Although this short circuit evaluation of statements can be helpful in 
some instances, it can cause a problem if one is not careful with the order of the operands. 
So when writing logical operators, in addition to being careful with the precedence of 

operands. 

106 3  Selection Structures



 
 

As can be imagined, if the number of nested if statements becomes too deep, the resulting 

score is input and a message is output indicating how well the student performed as 
implemented in the following code segment: 

 

Notice the use of an or operation in the first if statement to test for a score of either 9 
or 10 and operator could have 
been used instead as in if(score >= 9 && score <= 10), but since the range is 
only two integers, it is probably better represented using an or operator. However, with the 
last if statement above, it is easier to use the and operator to test for the range of numbers 
instead of listing out each of the possibilities. Lastly, notice that if the score does not fall 
between 0 and 10 inclusive, then a message is output indicating that it is an invalid quiz 
score. 

Although the above code segment works, what if there were more levels of scores to 
check and corresponding messages to be output? The level of indentation could become 
quite ungainly and the code might become more difficult to read and modify. Luckily, most 
languages have what is known as a case structure to help with these situations. In Java this 
structure is known as the switch statement. A switch statement is like a multi-way if 
statement. The contents of a simple variable or the result of an expression causes the flow 
of control to branch to one of the many particular cases, and the corresponding code is then 
executed. The above nested if-then-else-if structure can be implemented using a switch 
statement as follows: 

3.6  Case Structure 107

3.6 Case Structure 



 
 

 

The first thing to be aware of is that the variable score cannot be of type double or 
float. Although it is possible to use typecast operators with these types, in these instances 
the use of nested if structures might be a better choice. This is one of the drawbacks of the 
switch statement, where typically only variables or expressions of type int and char 
can be used. The second thing to note in the switch statement is that the variable score 
is not part of a relational expression (using >, >=, etc.) as it can be in an if statement. 
Instead, the contents of the variable score are compared with each of the case 
statements that follow. If a match is found, then control is transferred to the corresponding 
case statement, and the code that follows is executed. For example, if the value in the 
variable score is a 10, then control is transferred to case 10: and the code that follows 
is executed. As mentioned above, an expression can be used instead of a variable, and an 
example of this follows later. 

Syntactically, there is one set of braces which indicate the beginning and end of the 
entire switch statement; however, note that there are no braces in each of the individual 
case sections even when there is more than one statement. The reason for this is that at 
the end of each case section, a break statement is included. The use of the break 
statement causes the flow of control to be transferred to the end of the switch statement. 
Without it, the flow of control would fall through to the code that follows the next case 
statement. Although it is legal to write code that does not use a break statement, the need 
to do so is very rare and is considered to be of poor programming style. Doing so usually 
makes code difficult to debug or modify and should be avoided. 

The last section of the switch statement is the default statement, which is executed 
when a matching case is not found. Although a default can be placed anywhere within 

108 3  Selection Structures



 
 

the switch statement, it is typically placed at the end of the switch statement. It should 
be noted that switch statements are not required to have a default statement. 
However, if a switch statement does not have a default statement and the particular 
value is not found in the cases given, then nothing will be executed in the switch statement, 
and in the previous example, nothing would be output. Although this might be what was 
intended, a value that is not part of the data to be processed might cause a logic error later 
on in the program. As a result, default statements are usually included as a 
precautionary measure. 

Notice that the default case does not have a break statement. If there were no 
default statement, then the last case section would not need to have a break 
statement either. The reason is that upon completion of executing the code in the last case 
or default, the flow of control will simply fall through to the next statement following 
the switch statement. Although a break statement could be included, it is not necessary 
and will not be included in this text. 

With respect to indenting, there are a number of styles that can be followed, but typically 
the individual case statements are indented three spaces, and the code in each section is 

different style, be sure to follow that style. 
Also, note that each of the individual possible values of the variable score has its own 

case statement. Unfortunately a relation cannot be used in the case statements and this is 
another of the switch 
around this limitation as will be seen later. 

For example, instead of having quiz scores of 10 through 0, what if the variable score 
was used to hold an exam score from 100 through 0, where a score of 100 through 90 

checking for one or two integers as in the previous nested if structure, it could be modified 
to check for a range of integers using an and logical operator as in the following segment: 

 

3.6  Case Structure 109



 
 

Note that each if statement has an && 
it suggested in Sect. 3.5 to avoid this? Yes it was, but in previous examples, such as the 
temperature example, there were no upper and lower bounds, but in this case there are the 
bounds of 0 and 100. Although it appears necessary to include a range in each if statement 
in this example, is there a way that it could be rewritten to avoid having to include an and 
operator in every if statement? The answer is yes, where an extra if statement can be 
placed prior to the other if statements. This can be written as an if-then-else-if structure 
starting with if(score < 0 || score > 100) and with the error message at the 
beginning, or it can be coded as an if-then-if, which allows for the error message to be 
written at the end. To reflect the preferred order of the switch statement, the latter if 
structure is chosen as shown in the following segment: 

 

if statement where the || is replaced 
with an && and the relations are reversed. With an if statement checking the range of the 
scores added at the beginning, there is no longer a need to have an and operator in each of 
the subsequent if statements, which simplifies the code. Also, the extra if at the 
beginning makes it so the last if statement checking for the range from 0 to 59 can be 
eliminated, since after all the previous if statements, the only scores left would be in that 
range. Although an if-then-if is used as the outer if, the last nested if has its own else 
statement and therefore the problem of a dangling else is avoided. 

As can be seen, the exam score problem can be implemented relatively easily using 
nested if statements, but how could this be implemented using a switch statement? 
Does there need to be a separate case for each of the 101 possibilities? Without using an 
arithmetic expression, the answer would be yes. However, since the messages output are 
based upon exam scores in multiples of 10, if one thinks about it for a minute, there is a 
solution to this problem. What if each number is divided by 10? For example, if the score 
98 is divided by 10, then the answer 
the switch 

110 3  Selection Structures



 
 

However, recall that an integer divided by an integer is an integer, so the answer above 
would be just 9, not 9.8. Since each division results in an integer, the control can be 
transferred to the appropriate case. As another example, what if the value in score is a 

be output. 
But wha

default 

would result in 0 and 10, respectively, so clearly this would not work. The solution is 
similar to the preceding nested if structure as shown below: 

 

Notice that there are no braces around the switch statement in the then section of the 
if-then-else statement because it is syntactically only one statement. Since the value in 
score is being divided by 10, will the value in score be altered? No, because as 
discussed in  Chap. 1 , the variable score is not being assigned a new value. Also notice 
that there is no default statement because the error message is part of the else section 
of the if-then-else statement. Lastly, note that since case 0: is the last statement, the 
break statement is not included prior to the closing brace of the switch statement. 

Given that it appears that the switch statement can solve this problem, when should 
the switch statement be used instead of nested if statements? Granted the above 
solution was helpful in this instance, because each of the message categories were multiples 
of 10. If other problems are multiple of other particular values, then the switch statement 
can be just as useful. However, if each of the categories are not of the same multiple, then 
the switch statement might not be as useful and nested if statements are probably a 

3.6  Case Structure 111

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

better solution to the problem. 
In general, if statements can work in all instances and the switch statement has 

various limitations. If there are only one or two alternatives, then the if-then or if-then-else 
structures are probably the best choice, because using the switch statement could be 
considered overkill. Likewise, if there are only three or possibly four alternatives, then the 
if-then-else-if will be used by this text to give the reader practice with using nested if 
statements. If the problem has five or more of alternatives, then the switch statement can 
be the better choice. However, if the number of cases for each alternative are too numerous, 
then nested if statements might again provide the best solution. 

3.7 Complete Programs: Implementing Selection Structures 

The first program in this section is a simple program that does not include objects, whereas 
the second program incorporates objects to help reinforce concepts learned in  Chap. 2 . 

3.7.1 Simple Program 

Hurricanes are classified into five categories by the US National Oceanic and Atmospheric 
Administration (NOAA) based on the speed of the wind as shown below: 
 
Category Wind speed (mph) 
1 74 95 
2 96 110 
3 111 130 
4 131 155 
5 Over 155 

In this section a program using selection structures which will categorize a hurricane 
will be developed. As in the past two chapters, this program will be developed step by step. 
First, the problem that will be solved is: 

Problem Statement: Write a program to classify a hurricane. 
Once a problem statement is given, the requirements can be established by analyzing 

the problem. The program will: 

 Accept the wind speed of a hurricane from a user 
 Determine the category of the hurricane 
 Display the category of the hurricane 

Because of the nature of the problem, a selection structure will be used. Since there are 
five alternatives, five separate if statements could be used to check the range of the wind 
speed. Assuming the wind speed is stored in the variable windSpeed, a possible solution 
is shown below: 
 
if(windSpeed >= 74 && windSpeed <= 95) 
   System.out.println("The hurricane is category 1."); 
if(windSpeed >= 96 && windSpeed <= 110) 
   System.out.println("The hurricane is category 2."); 
if(windSpeed >= 111 && windSpeed <= 130) 
   System.out.println("The hurricane is category 3."); 
if(windSpeed >= 131 && windSpeed <= 155) 
   System.out.println("The hurricane is category 4."); 

112 3  Selection Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

if(windSpeed > 155) 
   System.out.println("The hurricane is category 5."); 
 

Is this a good design? The answer is no, because all five conditions will be checked 
every time the program is run as was discussed in Sect. 3.3. This means a nested if structure 
would be a better choice. How can the conditions be nested? Here is one solution: 

 

Is this a good design? It is better than the first solution because whenever the condition 
becomes true, the rest of the conditions will not be checked. However, it is always a good 
idea to reduce the number of logical operators. The complete code shown below will check 
the wind speed in reverse order so that a logical operator is not required in the first if 
statement nor in the subsequent if statements: 

3.7  Complete Programs: Implementing Selection Structures 113



 
 

 

Notice that the code is indented only two spaces instead of three to help conserve space. 
Although three spaces is preferred, when using a number other than three, be sure to be 
consistent. When the above program is compiled and executed using the sample input of 
125, the output of the program looks like this: 
 
Enter the wind speed (mph): 125 
The hurricane is category 3. 
 

The first two conditions returned false, and since the third condition was true, it found 
the hurricane was category 3. The flow of control skipped the rest of the conditions in the 
nested selection structure and reached the end of the program. The program also checks for 
an invalid wind speed, which is any negative value. When the program is executed with 
50 as a wind speed, the output looks as shown below: 

 

114 3  Selection Structures

Enter the wind speed (mph): -50 
Invalid wind speed. 



 

3.7.2 Program with Objects 

How can the concept of objects, discussed in  Chap. 2 , be incorporated into the program 
in the previous section? If an object for a hurricane is created, information about a particular 
hurricane such as a wind speed and a category can be stored inside of the object, and two 
hurricanes can be compared. Figure 3.10 contains the code defining the class for a 
Hurricane object. 

 

3.7  Complete Programs: Implementing Selection Structures 115

Fig. 3.10 Hurricane class 

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 

Notice the setCategory method uses the value of windSpeed which is stored in the 
object to determine the category of the hurricane. As a result, the setCategory 
method does not require any parameters. In the main program shown in Fig. 3.11, two 
hurricane objects are created. After a user enters the wind speed of both hurricanes, the 
program determines the categories and outputs them. Then, it compares the categories of 
the two hurricanes. 
 
// a program to classify and compare hurricanes 
 
import java.util.*; 
class Hurricanes { 
   public static void main(String[] args) { 
 
      // declaration and initialization of variables 
      Hurricane hurricane1, hurricane2; 
      int windSpeed; 
      Scanner scanner; 
      hurricane1 = new Hurricane(); 
      hurricane2 = new Hurricane(); 
      scanner = new Scanner(System.in); 
         
      // input wind speeds and set both windSpeed and category 
      System.out.print("Enter the wind speed (hurricane1): "); 
      windSpeed = scanner.nextInt(); 
      hurricane1.setWindSpeed(windSpeed);  
      hurricane1.setCategory();  
      System.out.print("Enter the wind speed (hurricane2): "); 
      windSpeed = scanner.nextInt(); 
      hurricane2.setWindSpeed(windSpeed);  
      hurricane2.setCategory();  
         
      // output the categories of the hurricanes 
      System.out.println("Hurricane1 is category " +  
                          hurricane1.getCategory()); 
      System.out.println("Hurricane2 is category " +  
                          hurricane2.getCategory()); 
         
      // compare two hurricanes 
      if(hurricane1.getCategory() > hurricane2.getCategory()) 
         System.out.print("Hurricane1 is stronger."); 
      else 
         if(hurricane1.getCategory() < hurricane2.getCategory()) 
            System.out.print("Hurricane2 is stronger."); 
         else 
            System.out.print("Hurricane1 and 2 are the same."); 
   } 
} 

Fig. 3.11 A client program for Hurricane class 

116 3  Selection Structures



 
 

 

The stronger hurricane can be found by comparing the categories of the two hurricanes. 
Since the value of the category is stored in each object, it can be retrieved by using an 
accessor, the getCategory method. When the above program is compiled and executed 
using the sample input of 100 and 160, the output of the program looks as given below: 
 
Enter the wind speed (hurricane1): 100 
Enter the wind speed (hurricane2): 160 
Hurricane1 is category 2. 
Hurricane2 is category 5. 
Hurricane2 is stronger. 

3.8 Summary 

 The then and else sections of an if statement can syntactically contain only one 
statement. Should more than one statement need to be included, use a compound 
statement by putting two or more statements in braces. If there is only one statement 
in the then or else section, braces are not needed and should not be used. 

 Empty then or else sections should be avoided in if-then-else statements and the code 
should be rewritten as an if-then. 

 When nesting if statements, the if-then-else-if structure tends to be used more often 
than the if-then-if structure. When using the if-then-if structure, be careful to avoid 
the dangling else problem. 

 Logical operator precedence from highest to lowest is ()  innermost nested first, !, 
&&, ||, and in a tie  left to right. 

 not (a and b) = not a or not b and not (a or b) = not a and 
not b. 

 The switch statement works well with integer and character data but is not as useful 
with floating point or double precision data. 

 Generally, be sure to include a break statement after every case section, except for 
the last one, unless there is a default statement at the end. 

 Although a default statement is not required in a switch statement, it is usually 
a good idea to include one at the end and it does not need a break statement. 

 Should there be only one or two alternatives, use an if-then or if-then-else statement 
respectively and avoid the use of a switch statement. If there are three or four 
alternatives, a switch could be used, but in this text nested if statements will be 
used. Lastly, if there are five or more alternatives, a switch statement should be 
used if possible. 

3.9 Exercises (Items Marked with an * Have Solutions in Appendix  E ) 
    1. Given the code segment below, indicate the output for the following initial values 

  of y: 
 
 int x = 50; 
 if(y > 10) 
   x = 30; 

3.7  Complete Programs: Implementing Selection Structures 117

if(y < 20) 
   x = 40; 
System.out.println(x); 

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1


 

*A. What is the output if the integer variable y contains 10? 
  B. What is the output if the integer variable y contains 15? 
  C. What is the output if the integer variable y contains 30? 

   2. Given the code segment below, indicate the output for the following initial values of 
x and y: 

 

  A. What is the output if the integer variable x contains 10 and y 15? 
*B. What is the output if the integer variable x contains 100 and y contains 

20? 
  C. What is the output if the integer variable x contains 200 and y contains 

100? 

  3. Given the code segment below, indicate the output for the following initial values of 
x, y, and z: 

 

118 3  Selection Structures



 
 

  A. What is the output if the integer variable x contains 1, y contains 0, and z 
contains 2? 

  B. What is the output if the integer variable x contains 0, y contains 1, and z 
1? 

*C. What is the output if the integer variable x contains 1, y contains 2, and z 
contains 1? 

  4. Declare a Boolean variable, isEligible, and assign it a value of false. 
  5. Evaluate each Boolean expression as true or false. Show intermediate steps. Assume 

int num1 = 5, int num2 = -2, int num3 = 0, boolean flag1 
= true, and boolean flag2 = false . 

*A. num1 > num2 || flag2 
  B. num1 < num2 && num3 >= 0 
*C. num2 < 0 || flag1 && flag2 
  D. (num2 < 0 || flag1) && flag2 
*E. (num2 < 0 || !flag1) && flag2 
  F. num1 != 0 && num2 != 0 && num3 != 0 

  6. 3.5 is 
correct. 

  7. 3.5 is 
correct. 

*8. Write a code segment to ask a user to enter a number between 1 and 4, and print the 
name of the class (First-Year, Sophomore, Junior, and Senior) corresponding to the 
number. Use a case structure. 

*9. Repeat the previous exercise using a selection structure instead of a case structure. 
10.   Repeat the previous exercise using dialog boxes for input ajnd output. 
11. Write a code segment to ask a user to enter a number between 1 and 12, and print the 

name of the month corresponding to the number. Use a selection structure. 
12. Repeat the previous exercise using a case structure instead of a selection structure. 
13.   Repeat the previous exercise using dialog boxes for input ajnd output. 
14. In Sect. 3.5 

would cause a syntax error if used as a condition in an if-then structure in a Java 
program. Explain why. 

15. The dew point temperature is a good indicator of how humid it feels during a hot day. 
The US National Weather Service (NWS) summarizes the human perception of 
humidity using the dew point temperatures shown in the table below. 

 
Dew point temperature (°F) Human perception 
75 or higher Extremely uncomfortable 
70 74 Very humid 
65 69 Somewhat uncomfortable 
60 64 OK 
55 59 Comfortable 
50 54 Very comfortable 
49 or lower A bit dry 

Write a complete program using a selection structure to output how a person feels 

3.8  Summary 119



 
 

for a given dew point temperature. The program should perform the following tasks: 

a. Allow the user to enter a dew point temperature. 
b. Determine the human perception for a given dew point temperature. 
c. Output the corresponding phrase from the table. 

Here is some sample input and output: 
 

  Enter a dew point temperature (F): 55 
  Comfortable 
  Enter a dew point temperature (F): 30 
  A bit dry 
  Enter a dew point temperature (F): 90 
  Extremely uncomfortable 
  Enter a dew point temperature (F): 65 
  Somewhat uncomfortable 

 
16. Repeat the previous exercise using a case structure instead of a selection structure. 
17.   Repeat the previous exercise using dialog boxes for input ajnd output. 
18. Write a complete program to compare the temperatures of three different cities and 

find the hottest city. First, implement a class called Thermometer as described 
below: 

A. Thermometer has one private data member, temperature of type 
double. 

B. Write code for a constructor to set a data member to the default value of 
0.0. 

C. Write code for an accessor method, getTemperature, which returns the 
value of the appropriate data member. 

D. Write code for a mutator method, setTemperature, which has one 
formal parameter, and store it as the value of the data member. 

Then, write a client program to test the Thermometer class defined above. Call 
this class Temperatures. The main method should perform the following tasks: 

 E. Allow the user to enter the temperatures of three cities. 
 F. Declare and create three Thermometer objects setting the instance data 

member to the values entered by the user. 
 G. If city1 is the hottest city among the three cities, output a phrase like 

"City1 is the hottest city." 

Here is some sample input and output: 
   
  Enter the temperature of city1: 93.4 
  Enter the temperature of city2: 76.1 
  Enter the temperature of city3: 85.8 
City1 is the hottest city. 
Enter the temperature of city1: 76.5 
Enter the temperature of city2: 85.2 
Enter the temperature of city3: 66.9 
City2 is the hottest city. 

120 3  Selection Structures



 

 4 

Iteration Structures 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter shows how iterations structures work using flowcharts, pseudocode and Java. It includes pretest 
indefinite loop structures, both count and sentinel controlled while loops. The posttest indefinite do-
while loop and the definite iteration for loop are also discussed. Nested loops and potential problems are 
examined, and complete programs both with and without objects are included. 

Keywords 

Loop Structure; Loop Control Variable (LCV); Pre-test Loop; Post-test Loop, Sentinel Controlled Loop. 

4.1 Introduction 

Selection structures were discussed in  Chap. 3 , which allows a program to follow one of 
two or more paths. Iteration structures, sometimes called repetition structures, allow a 
program to repeat a section of code many times. It is this capability to repeat or loop that 
gives the computer the ability to perform a task over and over again. 

In creating any type of loop, it will generally have three parts: initialization, test, and 
change. When performing a repetitive task, one typically does not think about the particular 
steps of the repetition, but taking a moment to think about the process, one can recognize 
these three components. For example, if a student needs to do a number of homework 
problems for a mathematics class, they might count each of the problems, starting with the 
number one. This can be seen as the initialization phase which is performed just once. As 
the student starts to do the first problem, they might look at their notes to see how many 
problems they need to do, where in this example the student might need to do ten problems. 
Noticing that the count one has not passed the number ten, the student realizes the assigned 
homework is not completed. This is known as the test phase. As the student finishes the 
first problem, the student then counts to the next number, two, and this act of counting is 
the change phase of the repetitive process. The student again compares the count to the 
number of problems to be completed. This process of counting and comparing is the 
repetitive process of change and test. The process continues until the student has finished 
the tenth problem and the iterative process stops. Although this detailed analysis is much 
more than what a person does when performing a repetitive task, it is what the computer 
needs to do to perform a loop. 

In particular, this chapter will examine indefinite and definite loop structures. The first 
type of loop iterates an unknown number of times, whereas the second type of loop 
structure loops a fixed number of times. The first of these two loops can be divided into 
what are known as pretest and posttest loop structures, where the first has the test or 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_4

121

http://dx.doi.org/10.1007/978-1-4471-6317-6_3
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_4&domain=pdf


 
 

conditional expression at the beginning of the loop and the second has the conditional 
expression at the end of the loop. Since the pretest indefinite loop structure is probably the 
most versatile, it is discussed first. 

4.2 Pretest Indefinite Loop Structure 

A pretest indefinite loop structure is a loop that has the test or conditional expression at the 
beginning of the loop and can iterate an indefinite number of times. An indefinite loop 
structure can also be made to loop a fixed number of times, and this is one of the reasons 
it is a very useful loop structure. The pretest indefinite loop structure in Java is known as a 
while loop. The while loop can generically be represented in a flowchart as shown in Fig. 
4.1. 

 
Fig. 4.1 Generic while loop 

At first glance, the flowchart of the while loop might appear similar to the flowchart for 
the if structure presented in the last chapter. The reason for this might be because of the 
diamond-shaped conditional expression near the top of the flowchart, but upon closer 
examination, one should be able to see a number of differences. The first box is for the 
initialization of a variable which occurs just once. That is followed by the diamond-shaped 
box where the test of the variable occurs. Note that like the if structure, there is a true and 
a false branch, but instead of the true branch going off to the right, it is pointing downward. 
Further, note that the two branches do not meet together at the bottom, but instead the false 
branch goes to the box with the  message and the true branch ultimately 
ends up going back to the test. It is the true branch that forms the actual loop. The first 
section in the loop is known as the body of the loop. It is here that any task or tasks that 
need to be performed repetitively can be placed. This can be any sort of input, processing, 
or output that needs to be performed. The body of the loop can also include nested if 
structures or even nested loops as will be shown later in this chapter. Lastly, the change to 

True 

False 
Test 

Change 

Initialize 

Output 
“End of Program” 

Body of Loop 

122 4  Iteration Structures



 
 

the variable occurs before the flow of control loops back to the test. Although the change 
can occur anywhere in the loop, it is best to be consistent in its placement, and for now it 
is the last thing that is done in the loop. 

4.2.1 Count-Controlled Indefinite Iteration Structure 

Although the generic flowchart is fine for understanding the basic layout and concept of a 
loop, it is helpful to see exactly how the loop performs. In the next flowchart, the initialize, 
test, and change are replaced with more specific statements. In this case, the loop is known 
as a count-controlled loop and the variable controlling the loop is sometimes called the 
Loop Control Variable (LCV). In this example, the LCV will be the variable i as shown in 
Fig. 4.2. 

 
Fig. 4.2 Count-controlled while loop 

To understand the loop, the best thing to do is walk through the logic. First, the variable 
i in the flowchart is initialized to 1. Then, the variable i is tested to see if it is less than or 
equal to 3, which is true. The body of the loop is executed for the first time and the value 
of i is incremented by 1, so that the value of i is equal to 2. The flow of control is returned 
back to the test, where i is less than or equal to 3. The body of the loop is executed for the 
second time, and the value of i is incremented to 3. The value is tested again and i is still 
less than or equal to 3, so the body of the loop is executed for the third time and the value 
of i is incremented to 4. The next time the value is tested, it is no longer less than or equal 
to 3, so the false branch is taken and the message  is output. In the end, 
the final value of i is 4 and the body of the loop was executed three times. 

As in the previous chapter on if structures, it is nice to examine the pseudocode 
equivalent of the while structure as seen below: 

 

True 

False 
i  ≤  3 

i ←  i + 1 

Output 
“End of Program” 

Body of Loop 

   i ← 1 

4.2  Pretest Indefinite Loop Structure 123



 
 

 
  i 1 
  while i  3 do 

    //body of loop 
     i i + 1 

   

First, note that the while is written as while i  3 do, where while-do is a common way 
to describe the while loop structure. Of course, if one wanted to write it as while (i  3) to 
make the pseudocode look a liitle more like the Java language as will be seen shortly, that 
is okay. However, it is recommended that whatever style of pseudocode is chosen, it should 
be consistent. As with if structures, note that the body of the loop, including the increment, 
is indented approximately three spaces. Lastly, note that the output statement is not in the 
loop so it is not indented. 

As one might suspect, the Java syntax is similar to the pseudocode as shown below: 
 

i = 1; 
while(i <= 3) { 
   // body of loop 
   i = i + 1; 
} 
System.out.println("End of Program"); 
 

The first line is the initialization, the second line is the test with the conditional 
expression in parentheses like an if statement, and the increment of the variable i is inside 
the compound statement. Note that the statement i++ could be used instead as shown in  
Chap. 1 , and this style is often used in loops. Notice that braces are being used around the 
comment concerning the body of the loop and also the increment. Are these braces required 
in this particular code segment? At first the answer might seem to be yes, because there 
appear to be two statements in the loop. However, recall from  Chap. 1  that comments are 
ignored by the compiler, so technically there is only one statement in the loop and the 
answer to the question is no. Why then are there braces included in the above segment? 
The reason is that in addition to the increment, there are usually other statements in the 
body of the loop. It is uncommon to see only one statement in a while loop, so braces are 
included in the above example in anticipation of more statements being added later. 

What if the user wanted to loop a different number of times other than three? That would 
require the user to modify and recompile the program, but many users do not have 
knowledge of programming. To expand upon the above, the value 3 could be changed to 
an integer variable n, and the value for n could be prompted for and input from the user as 
shown below: 

 
System.out.print("Enter the number of times to loop: "); 
n = scanner.nextInt(); 
i = 1; 
while(i <= n) { 
   // body of loop 
   i = i + 1; 
} 
System.out.println("End of Program"); 

124 4  Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 
If the user entered the value 3, the loop would still iterate three times as it did before. 

Further, the user now has the option to enter any other number for the value of n which 
allows the loop to have more versatility. However, what if the user entered a value of 0 
instead? One other important thing about a while loop is that it is known as a pretest loop, 
meaning that the test is at the beginning of the loop. In this particular case, the variable i 
is initialized to 1 and then the comparison would be performed. Since the 1 in the variable 
i is not less than or equal to the 0 in the variable n, the result would be false and the body 
of the loop would not be executed. This is one of the important features about a pretest 
loop because the body of the loop might be executed anywhere from zero to many times. 
This is a reason why the while loop is one of the more versatile loops as will be seen 
below. 

As an example of how the while loop structure can be used to solve a problem in the 
Java language, consider a user who wants to add a series of numbers. If there are a relatively 
small fixed number of integers to be added, then a loop might not be necessary. Consider 
the following code segment that would add three numbers entered by the user: 

 
int num1, num2, num3, total; 
System.out.print("Enter an integer to be summed: "); 
num1 = scanner.nextInt(); 
System.out.print("Enter an integer to be summed: "); 
num2 = scanner.nextInt(); 
System.out.print("Enter an integer to be summed: "); 
num3 = scanner.nextInt(); 
total = num1 + num2 + num3; 
System.out.println("The total is " + total); 
 

Although the above works, what if there were a large number of integers to be added, 
say 1,000? The number of variables, prompts, and inputs would be overwhelming when 
writing the code, and the program would also take up a lot of memory. Returning to the 
example above where only three numbers need to be added, the number of variables used 
to store the input could be reduced to one. This would make the task a little easier, but more 
importantly it paves the way to see how the problem could be solved using a loop. 

Using only a single variable num instead of three variables, the first integer could be 
prompted for, input, and placed into the variable total. The second integer could be input 
into the variable num and added to the variable total. The same would occur with the 
third integer and then the sum in total is output. 

4.2  Pretest Indefinite Loop Structure 125



 
 

 

In the code above, the three prompts and inputs look the same, but the assigning of the 
first integer input into total makes it different from the subsequent assignment 
statements. The last two groups of statements indicated by the brackets could be placed in 
a loop, but the first group could not be placed in the loop. It would be convenient if there 
did not need to be this exception, so instead of assigning the first value input into total, 
the variable total could be initialized to zero; thus, the first value input into num could 
be added to the variable total just as all the other integers. 

 

The first group is no longer a special case, so it can also be put into a loop that iterates 
three times. The body of the loop would contain a prompt and input for the integer num 
followed by the variable num added to the variable total. However, to allow for the first 
time num is added, the variable total would need to be initialized to zero prior to the 
loop. Then each time through the loop, the current value in num could be added to the 
previous value in the variable total. The first time through the loop, the value in num 
would be added to the zero in total, the second time to the previous value in total, 
and so on until the loop terminates, and the final value in the variable total is the sum of 
all the integers input. 

126 4  Iteration Structures



 
 

 

Notice that the basic loop is the same as the loop presented earlier, with the initialization, 
test, and change of the variable i. Also note that the variable total is initialized to zero 
so that the integers input can be summed. Lastly, notice that three statements from the 
previous code segment are no longer written three times, but rather only once, because the 
loop will iterate three times and accomplish the same task. 

How does one know what belongs inside the loop and what belongs outside the loop? 
If outside the loop, does it belong before or after the loop? By looking for patterns on a 
smaller number of items, one should be able to see those items that need to be repeated and 
those items that need to be executed only once. In the above example, the variables for 
counting and the total need to be initialized only once, and they should be placed prior to 
the loop. Since the output of the total needs to occur only once, it should be placed outside 
and after the loop. Further, since there are three integers to be prompted for, input, and 
summed, that code should be placed inside the loop. An advantage of the above code 
segment is that if just three values were being input or 1,000 values were being input, the 
only thing that would need to be changed is the number 3 in the while statement. This 
version of the code is much easier to write than straight line code and also takes up less 
memory. 

The previous code segment is a significant step forward by utilizing the power of the 
computer to perform repetitive tasks; however, it can be improved. As it is currently 
written, if the user wants to input and sum four integers instead of three, the user would 
have to edit and recompile the program. Since most users are not programmers, is there a 
way to make this program easier to use? The answer is yes. As before, a prompt and input 
can be placed prior to the loop to allow the user to input the number of integers to be 
summed as shown below: 

 
int num, total, i, n; 
total = 0; 
i = 1; 
System.out.print("Enter the # of integers to be summed: "); 
n = scanner.nextInt(); 
while(i <= n) { 
   System.out.print("Enter an integer to be summed: "); 
   num = scanner.nextInt(); 
   total = total + num; 
   i = i + 1; 
} 
System.out.println("The total is " + total); 

4.2  Pretest Indefinite Loop Structure 127



 
 

 
Notice the prompt and input of the variable n prior to the while statement, and also 

notice that the number 3 in the while statement has been changed to the variable n. Again, 
this makes the program much more useful since it does not require the user to make changes 
to the program. For example, if the user started the program and then decided that they did 
not want to sum any integers, the user could just enter the number 0, and since the while 
loop is a pretest loop, the user would never be prompted to input any integers. Further, 
since total was initialized to 0, the message indicating a total of 0 would be output 
also. 

There are of course other tasks that could be added to the above program. For example, 
what if the user wanted to find the average of the integers entered, how would this be 
written? Since total needs to be divided by the number of items, one thought is to use 
the value in the variable i. However, its final value is one more than the number of items 
entered. If three items were input and since it was initialized with a 1, it would contain the 
number 4 at the end of the loop. That value could be decremented by one to make it the 
correct number, but why use the counter when the variable n contains the number of items 
which was originally entered by the user? The answer is that the use of the variable n is 
the better choice as shown in the following code segment: 

 

First, notice that average is declared as type double. Also, note that the calculation 
of the average is outside the loop at the end of the segment because the average only needs 
to be calculated once. Offhand, the above segment appears to be fairly good. However, 
there are a few problems with it. If the program was executed using a 3 for the first prompt 
and then using the three integers 5, 7, and 8 for the values to be summed and averaged, 
what would the answer be? Using a calculator one would say 6.666…, but is this the 
answer that the program would generate? The answer is no because the program would 
output the answer 6.0, which is incorrect. The variable average is type double so that 
is not the problem. However, look carefully at the division on the right side of the 
assignment symbol. Recall from  Chap. 1 , an integer divided by an integer is an integer, 
which in this case is 6. The assignment of the integer to a variable of type double causes 
the 6 to be changed to 6.0, which is the number that is output. How can this be corrected? 
The answer from  Chap. 1  is to use a (double) typecast operator on one of the variables 

128 4  Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

involved in the division which will force the answer to be of type double. Also, it would 
help to format the output so that it would not be a repeating decimal. 

There is another problem with the previous code segment that might not be as readily 
apparent. What would happen if the user entered a 0 for the number of items to be summed 
and averaged? As discussed previously, the user would not be prompted for integers to be 
entered. The problem occurs after the loop in the division statement. The value in n would 
be a 0 which would cause an execution error, or in other words a run-time error. How could 
this problem be solved? An if statement could be included so that division would not 
occur unless the value in n is positive. Should the average message still be output? That 
would depend on the original specifications. In this case it would not hurt to still output the 
message, but it would probably be a good idea to ensure that the variable average 
contained the value 0. The updated program with all of the above changes can be seen 
below: 

 

Although typically users will not enter a negative number or the number 0 as the number 
of items to be summed, programmers need to write programs that work correctly under 

development as well. As a result, these sorts of possibilities should also be addressed in the 
design and specifications of programs so that they will be taken care of properly when a 
program is written. This sort of programming is known as robust programming and will be 
discussed at various points throughout the text. However, at other times it will not be 
included when introducing a new concept and to save space. When encountering an 
assignment or specifications for a programming project that lack robustness, it is always 
advisable to check with the user or the instructor when in a classroom setting. 

4.2.2 Sentinel Controlled Loop 

The use of a prompt in the previous program to indicate how many integers will be entered 

previous loop structure is that it requires the user to know in advance how many integers 
will be entered prior to running the program. If the user miscounts the number of integers, 

4.2  Pretest Indefinite Loop Structure 129



 
 

the program will not work correctly. For example, if the user overcounts the number of 
integers, then the user will have one or more extra prompts to enter data and the average 
will be off, which is unacceptable. If the user undercounts the number of integers, then the 
user will have leftover data and again the average will be off. In these cases the only real 
alternative is for the user to restart the program from the beginning. Although this is not 
much of a problem for a small data set, it is clearly impractical for a large number of data 
items. 

it be useful to have the program do the counting for the user? This can be accomplished 
using a sentinel controlled loop, or what is sometimes called an End of Data (EOD) loop, 
which is usually implemented using a while loop. The idea is that the user continues to 
enter data until a sentinel value or end of data indicator is entered indicating that the end 
of data has been reached. The key is that the sentinel or EOD indicator must be a value that 
is different from the other data values. Using the above example, if only nonnegative 

1 could be used as a sentinel. The 
main disadvantage of this method is that sometimes there is not an acceptable value that 
can serve as a sentinel, but in those instances where a sentinel is available, the sentinel 
controlled loop is better than the previous count-controlled loop. Although a count is not 
necessary to control the loop anymore, a count can be added to the program to help 
calculate the average as will be seen later. 

As always, it is helpful to begin with an example as shown in the following code 
segment: 

 
System.out.print("Enter a non-negative integer or -1 to stop: "); 
num = scanner.nextInt(); 
while(num != -1) { 
    // body of loop 
    System.out.print("Enter a non-negative integer or -1 to stop: "); 
    num = scanner.nextInt(); 
} 
System.out.println("End of Program"); 
 

The first thing to notice is that the variable i is no longer controlling the loop. Since the 
while loop does not need a counter, it is called an indefinite loop structure. Whereas in the 
previous section one could tell how many times the loop would iterate merely by looking 
at it, such as looping 3 times or in some cases n times, here the number of times is not 
readily apparent and the code could loop indefinitely. 

At first this loop might appear a little confusing because the value num is prompted for 
and input in two places, once outside prior to the loop and another time inside at the end of 
the loop. However, if one takes a little time to think about the loop, it is not as confusing 
as it looks. First, the prompt and input outside prior to the loop is sometimes called a 
priming read. This can be thought of as the initialization section of the loop. The test 
portion of the loop includes the comparison of the value input into the variable num to the 

1. If the value input is equal to the sentinel, then the loop is not executed, 
otherwise the data can be processed in the body of the loop. The second prompt and input 
is the change portion of the loop, where all subsequent values are input. Again, if a 
subsequent value input is not equal to the sentinel, the value is processed, otherwise the 

130 4  Iteration Structures



 
 

loop terminates. 
1 will terminate 

2? As can be seen, all other negative 
values would be processed in the body of the loop, which might not be what was intended. 
Instead, the prompt and test could be rewritten to include all negative numbers as sentinel 
values as shown below: 

 
System.out.print("Enter a non-negative integer "); 
System.out.print("or a negative integer to stop: "); 
num = scanner.nextInt(); 
while(num >= 0) { 
       // body of loop 
       System.out.print("Enter a non-negative integer "); 
       System.out.print("or a negative integer to stop: "); 
       num = scanner.nextInt(); 
} 
System.out.println("End of Program"); 
 

Note that due to the length of the prompts, they are split into separate print statements 
and that the while statement now checks to see if num is greater than or equal to 0. Again, 
as long as the sentinel value is not part of the data to be processed, the sentinel controlled 
loop can prove to be a nice alternative to count-controlled loops. To help illustrate the 
usefulness of this loop, the following code segment shows how it can be used to implement 
the calculation of total in the example from the previous section: 

 
int num, total; 
total = 0; 
System.out.print("Enter a non-negative integer to be summed "); 
System.out.print("or a negative integer to stop: "); 
num = scanner.nextInt(); 
while(num >= 0) { 
     total = total + num; 
     System.out.print("Enter a non-negative integer to be summed "); 
     System.out.print("or a negative integer to stop: "); 
     num = scanner.nextInt(); 
} 
System.out.println("The total is " + total); 
 

As before, the value of total should be initialized to 0 prior to the loop. Notice that 
adding num to total is the first line in the body of the loop. Is this correct? At first this 
might look a little strange, but it is correct. Remember that the priming read will input the 
first value to be summed. Also, sometimes beginning programmers think there should be 
an if statement before adding num to total because they think that the sentinel value 
might be included in the total. However, an if statement is not necessary because the 
while loop is a pretest loop, and if a sentinel value is input, the loop would terminate. 

Can this loop be further expanded to include the calculation of the average as done 
previously? Yes, but a count will need to be added to the loop so that the total can be 
divided by the number of integers that are input as shown below: 

4.2  Pretest Indefinite Loop Structure 131



 
 

 

First notice that the value of i is initialized to 1 as has been done previously, and again 
it is incremented at the beginning of the loop prior to when total is calculated. Although 
the increment could be placed elsewhere, it is usually a good idea to keep all calculations 
together for ease of reading and modification of the code. Another thing to notice is that 
the variable i does not appear in the parentheses of the while statement. This again is 
because it is a sentinel controlled loop and not a count-controlled loop. Further, note the 
i-1 in the if statement, because the final value in i is one more than the number of times 
the loop was executed. Also notice that the total is divided by (i – 1), because without 
the parentheses the division would be incorrect. However, instead of using i - 1 twice, 
it might be more convenient to subtract 1 from i and then use just i as shown in the code 
segment below: 
 
i = i - 1; 
if(i > 0) 
       average = (double) total / i; 
else 
       average = 0.0; 

 
Although this method works, there is a more convenient way of solving this problem. 

Even though individuals tend to start counting from the number 1, it is often more helpful 
to have programs start counting from the number 0. By starting the count from 0, the final 
value in i will no longer be off by 1 at the end of the segment. This will become even more 
apparent in  Chap. 7  on arrays, because an array actually starts at location 0. The following 
code segment reflects this change: 

132 4  Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

 

So far the count-controlled loop and the sentinel controlled loop have been introduced 
separately. Is it possible to combine both in one loop? Given the information presented in  
Sect. 3.5  on logic operations, the answer is yes. For example, what if one wanted to have 
a sentinel controlled loop that would accept up to a maximum of 10 numbers? In other 
words, the user could keep entering data until a sentinel value was entered, but if a sentinel 
value was not entered, the loop would stop after 10 numbers had been entered. The result 
is that the tests for the sentinel value and the count would need to occur in the while 
statement. Looking at a portion of the previous program, an && operator could be added to 
the while statement so that the body of the loop is executed only when both the value in 
num is not equal to a sentinel value and the count is less than 10. 

 

Note that the test for i is less than 10 instead of less than or equal to 10. This is because 
the variable i now begins at 0 instead of 1. If the value in num is greater than or equal to 
0 and the count is less than 10, then the body of the loop is executed. However, if either 
the value in num is a sentinel value or the value in i is 10 or greater, then the loop will not 
be executed. 

4.2  Pretest Indefinite Loop Structure 133

http://dx.doi.org/10.1007/978-1-4471-6317-6_3#Sec8
http://dx.doi.org/10.1007/978-1-4471-6317-6_3#Sec8


 
 

possibility is to repeatedly prompt the user and ask if there is any data to be entered. A 
prompt asking the user to enter a Y or N, for yes or no, respectively, could be output using 
a sentinel controlled loop. Then, if there is more data, the user could be prompted to input 
data for each iteration through the loop as shown below: 

 

Note that the while loop checks for either an uppercase Y or a lowercase y to make it 
convenient for the user. Also, notice that if the user does not respond with either Y or y, it 
is assumed that the user entered either N or n and the loop terminates. Further, the prompts 
for more data can be different as necessary, as shown by the inclusion of the word more 
in the last prompt above. The disadvantage to this program segment is that the user has to 
enter a character each time before entering the actual data to be processed, but if a suitable 
sentinel value cannot be found, then this might be the only alternative. 

4.3 Posttest Indefinite Loop Structure 

In addition to the pretest indefinite loop structure of the previous section, Java also has a 
posttest indefinite loop structure called the do-while structure. Whereas a pretest loop has 
its test at the beginning and the body of the loop may be executed zero to many times, the 
posttest loop structure has its test at the end of the loop and the body of the loop will be 
executed one to many times. In other words, regardless of the result of the test, the body of 
the posttest loop will be executed at least once. As before, looking at the flowchart is a 
good place to start as shown in Fig. 4.3. 

134 4  Iteration Structures



 
 

 
Fig. 4.3 Count-controlled do-while loop 

It is easy to notice that the test condition is now located at the end of the loop instead of 
the beginning, thus showing it is a posttest loop structure. The body of the loop is executed 
while the condition is true, and when it is false, the flow of control falls through to the next 
statement. The above flowchart can be written in pseudocode as follows: 
  
 i 1 
  do 

     //body of loop 
      i i + 1 

  while i  3 
   

 

As with previous pseudocode, the indenting indicates the body of the loop. As should 
be suspected, the Java code looks similar as follows: 
 
i = 1; 
do { 
       // body of loop 
       i = i + 1; 
} while(i <= 3); 
System.out.println("End of Program"); 
 

Notice the use of a compound statement, the { }, which is not optional within the do-
while statement. Even if there is only one statement between the words do and while, a 
compound statement must be included. However, since the body of a do-while almost 
always has more than one statement, it is unlikely that one would forget to include the 
braces. Modifying the above code segment to prompt the user to enter the number of times 
to loop, similar to the last section, results in the code segment below: 
 

False 

i ←  i + 1 

Output 
“End of 

Body of Loop 

   i ← 1 

i  ≤  3 

True 

1354.3  Posttest Indefinite Loop Structure



 
 

System.out.print("Enter the number of times to loop: "); 
n = scanner.nextInt(); 
i = 1; 
do { 
       // body of loop 
       i = i + 1; 
} while(i <= n); 
System.out.println("End of Program"); 
 

How many times would the body of the loop be executed in the above code segment if 
the user entered a value of 0 for n? The answer is one. Unlike the answer of zero for the 
pretest loop structure, the body of the loop is executed at least once with a posttest loop 
structure, because the comparison is at the end after the body of the loop has been executed. 
If one did not want the above code to iterate once in the event that someone entered a value 
of 0 for n, how would the code need to be modified? If one thinks about it, an if statement 
would need to be added at the beginning of the body of the loop or just prior to the loop to 
check for a value of zero or a negative number. Of these two choices, the if would be 
better placed outside the loop so that it does not need to be checked through each iteration 
of the loop and is executed only once prior to the loop as shown below: 

 
System.out.print("Enter the number of times to loop: "); 
n = scanner.nextInt(); 
if(n >= 1) { 
    i = 1; 
    do { 
       // body of loop 
        i = i + 1; 
 } while(i <= n); 
} 
System.out.println("End of Program"); 
 

Although the above code segment solves the problem of iterating once through the loop 
when the value of n is 0 or negative, it does appear a little cumbersome with the use of 
both an if and a do-while statement. The above code segment can be easily implemented 
using a simple while loop as presented in the previous section and repeated below: 

 
System.out.print("Enter the number of times to loop: "); 
n = scanner.nextInt(); 
i = 1; 
while(i <= n) { 
 // body of loop 
 i = i + 1; 
} 
System.out.println("End of Program"); 
 

Clearly, the second example above using only the while loop is simpler than the 
previous example using an if and do-while statements. This is not to say that the many 
examples in the previous section and other problems cannot be implemented using the do-
while and an if statements (see the exercises at the end of the chapter). Rather it is 

136 4  Iteration Structures



 
 

oftentimes simpler to use just the while statement instead. It is for this reason that the 
while statement tends to be used more often than the do-while statement. 

Although in most cases having the test at the beginning is more convenient, there are 
some special cases where the do-while can be quite useful. For example, assume that for 
input a user has to input an integer between 0 and 10, inclusive. If the user enters a number 
outside the range, then the user needs to be re-prompted to input the number again. At first 
this might seem to be a good application for the if statement, but what if the user continues 
to enter the wrong number? A single if statement would allow the user only one chance 
to reenter a correct number. Instead, a loop would be a better choice. The problem could 
be solved using a while loop, but since the user has to be prompted at least once, the do-
while might be a good choice as seen below: 
 
do { 
   System.out.print("Enter a number between 0 and 10, inclusive: "); 
   number = scanner.nextInt(); 
} while(number < 0 || number > 10); 
 

The above loop provides a simple way to give a user multiple attempts to correct a 
problem with the input data. However, a disadvantage of the above loop is that the user 
might continue on indefinitely entering the wrong number. A solution is that a counter 
could be added so that after a certain number of attempts, the loop stops. Then, an if 
statement after the loop could check the number of attempts and either use a default value 
or exit the program. 

Another disadvantage of the above code segment is that the subsequent message output 
is the same as the first one, so the user might not understand what they did incorrectly. If a 
more detailed message is needed, an if could be added to the body of the loop to check a 
flag and offer a different message. 

 
firstAttempt=true; 
do { 
   if(firstAttempt) 
      firstAttempt=false; 
   else 
      System.out.println(number + " is an incorrect number"); 
   System.out.print("Enter a number between 0 and 10, inclusive: "); 
   number = scanner.nextInt();  
} while(number < 0 || number > 10); 

 
Note the firstAttempt flag is set to true prior to the loop in order to indicate the 

first attempt, and once in the loop, the flag is set to false to indicate subsequent attempts. 
In the case of a subsequent attempt, a message is output to the user indicating what was 
input so that they might see what was incorrect. Notice that regardless of whether it was 
the first attempt or a subsequent attempt, a number needs to be prompted for and input, so 
the prompt and input statements come after the if statement. However, the use of the flag 
and if statement might seem a little clumsy, so possibly a while loop could be used 
instead. The advantage here is that the message in the body of the loop could be different 
than the initial message used in the priming read as follows: 

 

1374.3  Posttest Indefinite Loop Structure



 

number = scanner.nextInt(); 
while(number < 0 || number > 10) { 
       System.out.print(number + " is an incorrect number, try again"); 
   System.out.print("Enter a number between 0 and 10, inclusive: "); 
   number = scanner.nextInt(); 
} 
 

As suggested previously, a count could also be added so that after a certain number of 
attempts, the loop would stop. Again in this case, the pretest loop seems to be a little more 
appropriate than the posttest loop. In any event, a programmer should analyze the 
requirements and specifications of the program to be written and use the type of loop that 
best suits the task at hand. 

4.4 Definite Iteration Loop Structure 

As discussed in Sect. 4.2.1, the while loop can be used as a count-controlled loop. Since 
loops often need to iterate a fixed number of times, most languages include what is known 
as a definite iteration loop structure or what is sometimes called a fixed iteration loop 
structure. In Java, this is called a for loop, and like the while loop, it is a pretest loop. 

The for loop has a flowchart similar to the one shown previously in Fig. 4.2. However, 
instead of having the initialization and test as separate statements as they are in the while 
loop, they are included as part of the for loop statement. To help illustrate this in flowchart 
form, the diamond that has only the test portion of a while loop can be replaced with a 
rectangle that contains all three parts typically present in a loop (Fig. 4.4). 

 

 
Fig. 4.4 Definite iteration loop flowchart 

Notice that the initialization, test, and change are all located in one rectangle signifying 
that all three operations are written in the same statement. The optional internal arrows 
illustrate how the flow of control occurs within the statement. Notice that the order of 
operations is the same as with the previous flowchart for the while statement. The 
initialization is done just once prior to the loop. The test is done prior to the body of the 
loop and the change occurs after the body of the loop. 

The pseudocode for the for loop can be written as follows: 

True 

i ←  i + 1 

Output 
“End of Program” 

Body of Loop 

   i ← 1  False 
i  ≤  3 

138 4  Iteration Structures

System.out.print("Enter a number between 0 and 10, inclusive: "); 



 

 
  for i 1 to 3 incremented by 1 do 

    //body of loop 
   

In the for loop, the initialization is indicated as i 1, the to 3 is the test, and the change 
is the incremented by 1. Note that the use of the word do is optional and the body of the 
loop is indented. As before, the Java code template follows: 

 
for(i=1; i<=3; i++) 
  // body of loop 
System.out.println("End of Program"); 

Note that it is possible to have more than one statement in each of the three sections that 
are separated by semicolons within the parenthesis and each statement would be separated 
by commas. This gives the for statement quite a bit of flexibility, but this can become 
quite confusing and is considered by some to be poor programming practice. Since 
anything that can be done with a for loop can also be done by the while loop, should 
such a complex for loop need to be written, the programmer is usually better off writing 
the loop as a while loop. That being said, when should the for loop be used instead of a 
while loop? Since the for loop is typically thought of as a fixed iteration structure, it is 
in those situations where a fixed number of tasks need to be done that the for loop should 
be used. 

As an example of using the for loop, assume that Java did not contain the pow function 
in the Math class. How could the power function be implemented using iteration? As 
before, whenever trying to solve a problem using iteration, it helps to write down an 
example using specific values to see if a pattern can be found, followed by a more general 
solution. For example, when trying to calculate xn , where x is the number 2 and n is an 
integer greater than or equal to zero, then the following is a list of possible results: 
  20 = 1 
  21 = 1 * 2 = 2 
  22 = 1 * 2 * 2 = 4 
  23 = 1 * 2 * 2 * 2 = 8 
  . 

4.4  Definite Iteration Loop Structure 139

After the for in the parentheses are the initialization i=1, the test i<=3, and the 
change or increment i++, all separated by semicolons. Note that the increment is using the 
shortcut i++ which is common in a for statement. Also notice that there are no braces in 
this example around the body of the loop, because if there is only one statement, they are 
unnecessary. Since the change or increment of the variable i is in the for statement itself, 
it is not uncommon that there might be only one statement in the body of a for loop. 
However, if there is more than one statement in the body of the loop, the use of a compound 
statement is necessary. In the above example, it is assumed that the variable i is declared 
elsewhere, but it is also possible to declare the variable i within the for statement itself 
by preceding the initialization of i with the word int as in for(int i=1; i<=3; 
i++). This is also a fairly common practice and will be used on many occasions in the 
future. 

. 
2 n n times) 



 
 

Further, if x is considered to be a positive nonzero integer in this example, then the 
above can be rewritten more generally as follows: 

  x0 = 1 
  x1 = 1 * x 
  x2 = 1 * x * x 
  x3 = 1 * x * x * x 
  . 
  . 
  x n = 1* x * x * x x (n times) 

As stated above, when solving a problem, it is helpful to try and see if there is a pattern 
present. In the above example, it can be seen that 20 and x0 are defined to be 1, so that might 
be a good starting point for initialization. Further, note that for any value of n, there appears 
to be that number of multiplications present. For example, 23 is 2 multiplied by itself 3 
times. This might be useful in the test part of the loop where the loop might need to iterate 
n times. Further, since the loop will iterate a fixed number of times, this would be a good 
fit for the for loop. Using this information, the loop skeleton from above can be modified 
to solve the problem. 

First, four variables will need to be declared, the loop control variable i, variables for 
both x and n, and a variable for the result which could be named answer as shown below: 
 
   int i,x,n,answer; 

 
The values for x and n would need to be prompted for and input from the user as in the 

following: 
 

  System.out.print("Enter a value for x: "); 
  x = scanner.nextInt(); 
  System.out.print("Enter a value for n: "); 
  n = scanner.nextInt(); 
 

Next, if the loop needs to loop n times, then instead of having the relational expression 
compare the loop control variable i to 3 
compared to n? The answer is yes, where the loop would not iterate 3 times, but rather n 
times. Also note that the answer for x0 is 1. Further, each line in the definition for xn  begins 
with the number 1, so this might be a good initial value for the variable answer. The 
result is that the following code segment could implement the power function: 

 
int i,x,n,answer; 
System.out.print("Enter a value for x: "); 
x = scanner.nextInt(); 
System.out.print("Enter a value for n: "); 
n = scanner.nextInt(); 
answer = 1; 

140 4  Iteration Structures

for(i=1; i<=n; i++) 
        answer = answer * x; 
System.out.println(x + " raised to the " + n + " power = " + 
answer); 
 



 
 
 

Notice that answer is initialized to 1, that the loop iterates n times, and that each time 
through the loop answer is multiplied by x. Also note that there is only one statement in 
the body of the for loop so a compound statement is not used. What would happen if 0 or 
a negative value were entered for the value of n? The result would be that the initial value 
1 in the variable i would not be less than or equal to the value 0 in n. Since the for loop 
is a pretest loop structure, the loop would not iterate, and the initial value 1 in answer 
would be output. Could this problem have been solved using a count-controlled while 
loop? Yes, but since the loop needs to iterate a fixed number of times, the for loop is the 
better choice. As will be seen later, the for loop will be especially useful with arrays in  
Chap. 7 . 

4.5 Nested Iteration Structures 

As seen in Sect. 4.3, iteration structures can be nested within selection structures, and the 
reverse can also occur. Further, iteration structures can also be nested within other iteration 
structures, and when using nested loops, they require some special considerations. To start, 
consider the following nested while loops: 
 
int i,j; 
i = 1; 
while(i <= 3) { 
 j = 1; 
 while(j <= 2) { 
       System.out.println("i = " + i + " j = " + j); 
       j = j + 1; 
   } 
   i = i + 1; 
} 
System.out.println("End of Program"); 
 

First, notice that the loop control variable for the outer loop is the variable i and the 
loop control variable for the inner loop is the variable j. Although it is okay to reuse the 
same variable when the loops are not nested, if the same variable is used in a nested loop, 
it might cause what is known as an infinite loop as discussed in the next section. Given the 
above code segment, how many times will the inner println output its message? The 
answer is six times. If the outer loop iterates 3 times and the inner loop iterates 2 times, 
then one can multiply the number of times each loop iterates to get the answer, where 3 
times 2 is 6. The output of the above code segment can be seen below: 

 
  i = 1 j = 1 
  i = 1 j = 2 
  i = 2 j = 1 
  i = 2 j = 2 

4.4  Definite Iteration Loop Structure 141

  i = 3 j = 1 
  i = 3 j = 2 
  End of Program 

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 

Note that the variable j counts to 2 and then starts over again when the value of i 
changes. It is often said in a description of this behavior that the value of the inner loop 
control variable varies more rapidly than the outer loop control variable which varies more 
slowly. Looking at another segment, how many times would the message generated by the 
inner println be output in the following example? 

 
int n,count; 
System.out.print("Enter a value for n: "); 
n = scanner.nextInt(); 
count = 0; 
for(int i=1; i<=n; i++) 
 for(int j=1; j<=n; j++) 
  System.out.println("count = " + count++); 
System.out.println("End of Program"); 
 

Although one might answer that it depends on the value in n, one can still give answer 
in terms of n. Given the previous example where the number of times the body of the loop 
was executed was equal to the number of times iterated by the outer loop times the inner 
loop, the same principle applies here. The outer loop is n and the inner loop is n, so n times 
n equals n2 . As a particular example, if the value of n was 6, then the body of the inner 
loop would execute 36 times. 

First, note that the variables i and j are declared in the for statements. Second, notice 
that there are no compound statements in either for loop in the above code segment. The 
reason is that the inner for loop has just one statement in the body of its loop and the inner 
for loop is just one statement in the body of the outer for loop so braces are unnecessary. 
Lastly, note the use of count++ which increments the value of count after it has been 
output. 

At present, the need for nested loops is not as great, but later in  Chap. 7  nested loops 
will be important when data needs to be sorted, for example, in ascending order. Nested 
loops will also be important when dealing with what are known as two-dimensional arrays. 

4.6 Potential Problems 

There are a number of problems that can occur with loops, some of which have already 
been alluded to earlier in this chapter. For example, if the relation in the test section of a 
loop is incorrect, the loop might iterate more or less times than was originally intended. 
The best way to check for this is try going through the code segment using a small enough 
number so that it is easy to walk through the segment but a big enough number so that any 
pattern in the code can be observed. A good number to test with is the number 3 as has 
been used frequently in this chapter. 

Just as it is important to check that the final number is correct, it is also important to 
ensure that the initial value is correct. For example, switching from the number 1 to the 
number 0 as the initial value usually requires a change in the relation in the test as discussed 
in Sect. 4.2. 

142 4  Iteration Structures

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

Other considerations are to be sure that the loop control variable is initialized in the first 
place. If one forgets to initialize it, then the value in the loop control variable would be 
indeterminate and the loop would iterate an unknown number of times. Probably a more 
serious problem is when one forgets to include a change in the body of a loop. Even though 
the loop control variable has been initialized properly and tested correctly, if there is no 
change in the loop, one has what is called an infinite loop, meaning the loop never stops. 

sponding, or the program 
might ask for input or messages are output without stopping. 

Other concerns happen when incrementing the loop control variable by a value other 
than 1, such as counting by 2 and testing for only a particular value instead of a range of 
values as in the following code segment: 

 
i = 0; 
while(i != 3) { 
       // body of loop 
       i = i + 2; 
} 
System.out.println("End of Program"); 
 

Notice that the value of i starts with the number 0, then is incremented to 2, and then 
4, so the value in i is never equal to the number 3. Although it is okay to increment by 
values other than 1, it is important that the comparison is in a range of numbers such as 
<=3 and that the loop iterates the expected number of times. 

One might have noticed that the loop control variables used have always been integers. 
A variable of type char can also be used as will be shown in the next section. Although 
real numbers can be used, sometimes the computer cannot represent real numbers 
accurately. For example, the number 0.1 cannot be represented exactly on a computer, 
because it is a repeating fraction in the binary number system (base 2) and is less than 0.1. 
If one wrote a program such as the following and added the value of 0.1, ten times, the 
result would not be equal to 1.0: 

 
double i; 
i = 0.0; 
while(i < 1.0) { 
       // body of loop 
       i = i + 0.1; 
} 
System.out.println("End of Program"); 
 

Instead of looping ten times as might be expected, the above program actually iterates 
eleven times. Again, real numbers can be used, but it is generally not good practice. 

As said previously, when writing loops, or any code for that matter, it is important to 
check programs carefully with smaller data sets and to also test the program thoroughly 
with actual data on the computer to help avoid the possibility of logic errors. 

4.7 Complete Programs: Implementing Iteration Structures 

As in  Chap. 3 , the first example does not use objects and the second example includes 

4.6  Potential Problems 143

objects. 

http://dx.doi.org/10.1007/978-1-4471-6317-6_3


 

4.7.1 Simple Program 

Using iteration structures and selection structures, one can write programs that are more 
complex and robust. Suppose that a program needs to be developed to find an average and 
the highest test scores in a course. This program will: 

 Allow a user to enter student exam scores assuming a score is an integer value between 
0 and 100 

 Compute the average and find the highest score 
 Display the average and the highest score 

Since there will be more than one score that needs to be processed, instead of storing 
each score in different variables, a loop will be used to input them. What kind of loop 
should be used? Because most likely every class has a different number of students, the 
number of iterations will not be known in advance. The program could ask the user to enter 
the number of students before the loop and use a while loop or a for loop. On the other 
hand, since the range of scores is given, a sentinel value can be easily identified in order to 
use a sentinel loop. It is not a good idea to use a do-while loop, because there may be no 

1, a pretest indefinite sentinel controlled loop 
structure will be used here. When no score is entered, there is no reason to compute an 
average, find the highest score, or display them. Therefore, in that case the message, "No 
scores were entered." will be output. Finding the average of numbers using a 
loop was discussed in Sect. 4.2, but what about finding the highest score? Since all of the 
scores are not saved, the highest value cannot be determined after the loop is terminated by 
looking at all the data at once. Then, how can the highest score be found as the scores are 
input? The answer is to keep the highest score among the scores entered so far. Assuming 
all the variables are declared appropriately, the following code finds the highest value 
entered: 

 
// priming read 
System.out.print("Enter a score or -1 to stop: "); 
score = scanner.nextInt(); 
highestScore = score; 
// loop to enter scores 
while(score != -1) { 
      if(highestScore < score) 
             highestScore = score; 
      System.out.print("Enter a score or -1 to stop: "); 
      score = scanner.nextInt(); 
} 
 

Notice that the first score input is used to initialize the variable highestScore which 
1, then in the loop the 

score is checked against the highest score. At this point, only one test score has been 
entered; therefore, the values of score and highestScore are the same, meaning the 
condition of the if statement is false 1, the 
body of the loop will be executed again. The second input is compared with the value of 

144 4  Iteration Structures



 
 

highestScore, which has the first value input at this point. If the condition is false, 
it means the first value input is greater than the second. If the condition is true, it means 
the most recent value input is greater than the highest one so far, so highestScore 
needs to be updated. This process is repeated until 1. 
At the end, the value of highestScore is the largest value of all the scores input. The 
complete program is shown below: 

 

First, notice the prompt and input prior to the loop which is the priming read. It is 
necessary to determine whether to enter the loop or not by checking the first input value 

4.7  Complete Programs: Implementing Iteration Structures 145



 
 

against the sentinel. The prompt and input in the loop determine if the loop should continue 
to iterate. As was discussed in Sect. 4.6, it is important to make sure that the loop will 

1 will 
1 at the very beginning, the 

program will not execute the body of the loop in the else section of the if-then-else, thus 
ensuring that division by 0 will not occur for the calculation of the average. With the input 

1 the output is as follows: 
 
Enter a score or -1 to stop: -1 
No scores were entered. 
 

1, the variable count is incremented by 1 inside the loop body 
to keep track of the number of scores and is used to find the average. Notice that sum, 
which has the total of all the scores, is declared as type double. Although score is of 
type int, by declaring sum as type double, the result of the calculation sum/count to 
find the average will be of type double since it is a double divided by an int. An 
example of the output with three scores is shown below: 
 
Enter a score or -1 to stop: 88 
Enter a score or -1 to stop: 97 
Enter a score or -1 to stop: 65 
Enter a score or -1 to stop: -1 
Average score is 83.33. 
The high score is 97. 

4.7.2 Program with Objects 

Next consider an example that involves objects. An object that keeps a distribution of 
scores for a particular exam is useful to figure out how many students made a grade of A, 
B, C, D, or F. The Grades class defines data members, a constructor, and three methods, 
enterGrade, getNumStudents, and getPercent. The definition of the Grades 
class is shown below and the actual implementation of the three methods is discussed 
shortly: 

146 4  Iteration Structures



 
 

 

Since the cutoff for the grade of A is 90, scores between 90 and 100 will receive a grade 
of A. Scores between 80 and 89 will result in a grade of B because the cutoff for the grade 
of B is 80, and so on. If the score is outside the range of 0 100, it is simply ignored in the 
enterGrade method. For example, what happens if the score is 95? Since it is a valid 
input inside the range of 0 100, the count is incremented by 1 to keep track of the number 
of scores entered. Then, it will increment the counter for the A group by 1. The 
enterGrade method shown in Fig. 4.5 is used to distribute the scores entered by the 
instructor into the correct grade group. 

4.7  Complete Programs: Implementing Iteration Structures 147



 
 

 
Fig. 4.5 Implementation of enterGrade method 

The getNumStudents method in Fig. 4.6 returns the number of scores assigned to a 
particular grade and is implemented using a switch statement. It takes a grade (A, B, 
etc.) in a variable of type char as a parameter and returns a value of type int. 

 
Fig. 4.6 Implementation of getNumStudents method 

The getPercent method in Fig. 4.7 finds the percentage of scores assigned to a 
designated grade level and is also implemented using a switch statement. It takes a char 
value and returns a value of type double. Notice that the value 100.0 of type double is 
multiplied by the number of scores for the particular grade which is a value of type int, 
to make the result of type double. The result is divided by a value of type int stored in 
count, which results in the percentage of type double. If an invalid character is passed 

148 4  Iteration Structures



 
 

1, which represents an invalid value, is returned. 

 
Fig. 4.7 Implementation of getPercent method 

Like the previous Scores program, the client program using a Grades object outputs 
the message "No scores were entered.", if there were no scores as shown below: 

 
An example of the output with eight scores is shown below: 

 

The client program will create an object of the Grade class named class1 and each 
score is processed as it is entered. The exam scores are input using a while loop since the 
number of scores is indefinite. The result is output using a for loop because the number 

4.7  Complete Programs: Implementing Iteration Structures 149

 
Enter a score or -1 to stop: -1 
No scores were entered. 



 
 

of lines is known. The table displays the distribution and percent for each grade. The 
complete client program is shown below: 

 
// a program to find the distribution of the grades 
 
import java.util.*; 
 
class ClassGrades { 
   public static void main(String[] args) { 
 
      // declaration and initialization of variables 
      Grades class1; 
      int score; 
      char letter; 
      Scanner scanner; 
      class1 = new Grades(); 
      scanner = new Scanner(System.in); 
         
      // priming read 
      System.out.print("Enter a score or -1 to stop: "); 
      score = scanner.nextInt(); 
 
      if(score == -1)  
         System.out.println("No scores were entered."); 
      else { 
         // loop to enter scores 
         while(score != -1) { 
            class1.enterGrade(score); 
            System.out.print("Enter a score or -1 to stop: "); 
            score = scanner.nextInt(); 
         } 
        
         // print distribution and percent 
         System.out.println(); 
         System.out.println("Grade     Distribution     Percent(%)"); 
         for(letter='A'; letter<'E'; letter++) { 
            System.out.printf("%3c       %6d           %7.1f",  
               letter, class1.getNumStudents(letter), 
               class1.getPercent(letter)); 
            System.out.println(); 
         } 
         System.out.printf("%3c       %6d           %7.1f",  
            'F',class1.getNumStudents('F'),class1.getPercent('F')); 
         System.out.println(); 
      } 
   } 
} 

The first line of the table contains column titles that are printed prior to the for loop. 
The second through fifth lines output the grade, distribution, and percent for grades for A, 
B, C, and D using a for loop. Notice that the char variable' letter is used as a loop 
control variable in the for loop. It is initialized to "A" at the beginning of the for loop, 
and when it is incremented by one, the value of letter is updated to the next character 
in alphabetical order such as A to B, and B to C. Because there is a gap between D and F, 

150 4  Iteration Structures



 
 

the information for the grade of F needs to be printed outside the for loop at the end. 
Control characters, c, d, and f, are used in the control string of the first printf statement 
to output the variables of type char, int, and double, respectively, in order to format 
the table as described in  Chap. 1 . 

4.8 Summary 

 The while loop and the do-while loop are known as indefinite iteration loop 
structures. 

 The for loop is known as a definite or fixed iteration loop structure. 
 The do-while loop is a posttest loop structure and can iterate one to many times. 
 The while loop and the for loop are pretest loops which can iterate zero to many 

times. 
 The do-while loop must always use a compound statement in the body of the loop 

whether there are one or many statements. 
 The body of the for and while loops only need to use a compound statement when 

there is more than one statement in the body of the loop. If there is only one statement, 
the compound statement is unnecessary. 

 When nesting loops, be sure to use a different loop control variable for each loop. 

4.9 Exercises (Items Marked with an * Have Solutions in Appendix E) 

 1. Identify the syntax errors in the following code segment: 
 
int sum, i; 
sum = 0; 
i = 0; 
while(i >= 0); { 
      sum = sum + i; 
      i = i + 2; 
} 
 

*2. Identify the syntax errors in the following code segment: 
 
int product; 
product = 1; 
for(i=1, i <= n, i++) 
        product = product * i; 

4.8  Summary 151

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 

 

 

 4. Determine the output from the following code segment: 

 

 5. Determine the output from the following code segment: 

 

*6. Determine the output from the following code segment: 

 
int i, j; 
for(i=1; i<=5; i++) { 
       for(j=1; j<=5-i; j++) 
              System.out.print(" "); 
       for(j=1; j<=2*i; j++) 
             System.out.print("*"); 
       System.out.println(); 
} 
 

152 4  Iteration Structures

 
*3. Determine the output from the following code segment: 



 
 

  7. Rewrite the following for loop as a 

  A.  loop while
*B. do-while loop 
 

int total, count; 
total = 0; 
for(count = 1; count <= 40; count+=3) 
        total += count; 
 

 8. Assuming n is input, rewrite the following while loop as a(n) 

*A. for loop 
  B. if statement and a do-while loop 
 
int total, count, n; 
total = 0; 
count = 0; 
n = 5; 
while(count < n) { 
       total += count; 
       count++; 
} 
 

 9. A store is having a sale and items are either 30, 50, or 70 % off. Assuming all the 
items priced between $5.00 and $50.00 are on sale, output the following table using 
nested loops. Using correct formatting, make sure that the output is exactly as 
shown below: 

 
Original Price 30% off 50% off 70% off 
$ 5.00 $ 3.50 $ 2.50 $ 1.50 
$10.00 $ 7.00 $ 5.00 $ 3.00 
$15.00 $10.50 $ 7.50 $ 4.50 
$20.00 $14.00 $10.00 $ 6.00 
$25.00 $17.50 $12.50 $ 7.50 
$30.00 $21.00 $15.00 $ 9.00 
$35.00 $24.50 $17.50 $10.50 
$40.00 $28.00 $20.00 $12.00 
$45.00 $31.50 $22.50 $13.50 
$50.00 $35.00 $25.00 $15.00 

10. Repeat Exercise 15 in  Chap. 3  to allow the user to enter temperatures for any 
number of cities using the best iteration structure. 

 
      11. Repeat Exercise 15 in Chap. 3 to allow the user to find the hottest city for any 
            number of sets of 3 cities. Use input, message, and confirmation dialog boxes. 
            Confirmation dialog boxes are discussed in Appendix A.6. Three input dialog 
            boxes are used to input temperature of three different cities. Then, a message 
            dialog box displays the hottest city. After that a confirmation dialog box should 
            appear to see if the user would like to continue. Use the best iteration structure.  

4.8  Summary 153

http://dx.doi.org/10.1007/978-1-4471-6317-6_3


 
 

 
12. The Fibonacci sequence is the series of numbers which can be found by adding up  

the two numbers before it as shown below: 

   

            Write a complete program to compute the Fibonacci number for an integer. 

 
      13. Repeat Exercise 12 to allow the user to repeat finding the Fibonacci number for 
            an integer. Use input, message, and confirmation dialog boxes. Confirmation 
            dialog boxes are discussed in Appendix A.6. An input dialog box is used to input 
            an integer. Then, a message dialog box displays the Fibonacci number for the 
            integer. After that a confirmation dialog box should appear to see if the user 
            would like to continue. Use the best iteration structure.  
 
      14. Given two numbers, the largest divisor among all the integers that divide the two 
            numbers is known as the greatest common divisor. For example, the positive 
            divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 36, and the positive divisors of 8 are 
            1, 2, 4, and 8. Thus, the common divisors of 36 and 8 are 1, 2, and 4. It follows that 
            the greatest common divisor of 36 and 8 is 4. Write a complete program to compute 
            the greatest common divisor of two integers. 

 
     15. The product of the first 5 integer is 120. Identify the problem with the following 
           code segment and discuss how to fix it. 
 
      int answer, count, number; 
      count = 0; 
      answer = 0; 
      number = 1; 
      while(count <= 5) { 
         answer = answer * number; 
         count++; 
         number++; 
      } 

 

 

 

 

 

 

 

 

 

 

154 4  Iteration Structures



 

 5 

Objects: Revisited 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

Objects are revisited in this chapter. The sending and returning an object to and from a method is illustrated 
using contours. Overloaded constructors and methods are discussed and the reserved word this is 
introduced. Local, instance, and class constants and variables along with class methods are shown using 
contour diagrams. Two complete programs, one with focus on overloaded methods and another with class 
data members and methods are included. 

Keywords 

Passing Objects, Overloading, Class Data Members, Reserved Word this, Contour Diagram. 

Having learned in the previous two chapters about selection and iteration structures, both 
of which allow for more complex programs, it is time to return to the topic of objects that 
was introduced in Chap.  2 . Objects allow programs to be created in a more modular way 
that makes complex programs easier to understand. In this chapter, topics such as passing 
objects to and from a method, constructor and method overloading, class data members 
and methods, and the use of the reserved word this will be discussed. At first, this chapter 
will use only simple objects to illustrate these concepts so that the details can more readily 
be understood and then more complex examples will be included in the complete programs 
at the end of the chapter. 

5.1 Sending an Object to a Method 

So far all that has been discussed is how primitive data types can be sent to a method. 
However, data is often more complex than just a simple data type, so it would be helpful 
to have a way to send not just an item or two but rather an entire object to a method. For 
example, consider a method to determine the length of a line segment. It would need to be 
sent the two endpoints of the line, each consisting of x and y coordinates, which would 
require four arguments to be sent to the method. Since each point has two coordinates, this 
would lend itself to the creation of a simple class. Although in Java there is a Point class 
in the java.awt package, a point is a simple enough concept to help explain the sending 
of an object to a method that this text will define its own class for a point. Whereas the 
Java class Point uses integers, the class defined here will use double precision numbers 
and will be called PointD. Consider the preliminary definition of the class in Fig. 5.1. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_5

155

http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_5&domain=pdf


 
 

 
Fig. 5.1 Preliminary definition of PointD class 

The PointD class definition is fairly simple with the usual get and set methods. 
However, what will make it more interesting is the introduction of a method which allows 
an invocation to send an object of type PointD. For this example, assume the existence 
of a method called distance which will calculate the distance between two points. Since 
the method will be defined within the PointD class, it can be invoked by an object of type 
PointD and also use an argument of type PointD. Assuming the existence of two points 
p1 and p2 of type PointD, the method could be invoked as 
dist=p1.distance(p2);. What would such a method look like? Recall from algebra 
that the distance formula is 

2 2
1 2 1 2dist x x y y  

Then the code for the method could be as follows: 
 
public double distance(PointD p) { 
   double dist; 
   dist = Math.sqrt(Math.pow(x-p.getX(),2) 
          + Math.pow(y-p.getY(),2)); 
   return dist; 
} 
 

First, notice that the method returns a value of type double. Second, note that the 
parameter is not of type double but rather of type PointD. Lastly, although the local 
variable dist is not required to be declared as local, it makes the subsequent contour 
diagram easier to follow when illustrating how objects are passed. Using all the information 
above and combined into a complete program, it could appear as shown below: 

156 5  Objects: Revisited



 
 

 

Utilizing contour diagrams, the passing of objects can easily be illustrated. Note that 
some steps will be skipped since many of them were discussed thoroughly in Chap.  2 . 
The state of execution prior to Line 11 in the main program would be as shown in Fig. 5.2. 

5.1  Sending an Object to a Method 157

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

 

 
Fig. 5.2 State of execution prior to Line 11 

Since the method distance is invoked from p1, the contour for the method appears 
in the contour referenced by p1 as shown in Fig. 5.3, indicating the state of execution just 
prior to Line 40 in the distance method. 

 
Fig. 5.3 State of execution prior to Line 40 

In addition to the local variable dist, the method also contains a memory location for 
the parameter p. Note that when passing an object to a method via a parameter, the 
parameter does not contain the entire object. Rather, since the argument p2 has a reference 
to an object, the parameter p contains a copy of the reference to that same object. Although 
a straight arrow could have been drawn directly to the object, it would have covered up 
some of the information within the contour, so in this example, it is drawn around the 
contour diagram for the sake of neatness. However, in the future the arrows may be drawn 

main 

dist --- 

 p1 

double 

PointD 

PointD 

double 4.0 

x double 8.0 

PointD 

p2 PointD  

x 

y 

y 

double 

double 

4.0 

7.0 

main 

dist --- 

 p1 

double 

PointD 

PointD 

double 4.0 

x double 8.0 

PointD 

p2 PointD  

x 

y 

y 

double 

double 

4.0 

7.0 

dist 

p PointD

5.0 

 

double 

distance 

158 5  Objects: Revisited



 
 

over parts of contours in order to save space. Note that both the argument p2 and the 
parameter p are pointing to the same contour. When the calculation for the dist is 
performed, the references to x and y are to the ones globally accessible within the object 
pointed to by p1, whereas the getX and getY methods access the variables in the object 
referenced by p. 

5.2 Returning an Object from a Method 

If an object can be passed to a method, can an object be returned from a method? The 
answer is yes, as will be demonstrated in the example that follows. Whereas the previous 
example returned the dist of type double, this example will determine the midpoint of 
a line. The equations to determine the midpoint are as follows: 

1 2 1 2

2 2
x x y ymidx midy  

Since the midpoint consists of x and y coordinates, this lends itself to the creation of a 
method to return an object of type PointD. The method midPoint below implements 
the equations above: 
 
public PointD midPoint(PointD p) { 
   PointD mid; 
   mid = new PointD(); 
   mid.setX( (x+p.getX()) / 2 ); 
   mid.setY( (y+p.getY()) / 2 ); 
   return mid; 
} 
 

Notice that in addition to the parameter, the return type is also of type PointD. The 
method also creates an instance of type PointD and assigns the reference to the variable 
mid which is also declared of type PointD. The method then calculates the midpoint and 
sets the x and y coordinates in mid prior to the return of the object to the invoking program. 

This method can be added to class PointD, and in Fig. 5.4, it replaces the previous 
method distance in order to save space. 

5.2  Returning an Object from a Method 159



 
 

 
Fig. 5.4 Complete program returning an object from a method 

Prior to the execution of Line 11, the contour diagram would look similar to Fig. 5.2 in 
the previous example, except the variable dist of type double would be replaced with 
the variable middle of type PointD. After invoking the midPoint method, the contour 
diagrams would appear similar to the ones shown in Fig. 5.3 in the previous section, except 
that in addition to the variable middle appearing in the main program, the distance 
contour would be replaced with the midPoint contour and the variable dist in the 

160 5  Objects: Revisited



 
 

contour would be replaced with the variable mid of type PointD which would be 
indeterminate. However, once the body of the method midPoint is executed, that is when 
the significant differences can be seen when a new object is created in Line 39. Figure 5.5 
illustrates this by showing the state of execution prior to the return statement in Line 42. 

 

 
 

Fig. 5.5 Contour just prior to the execution of the return statement in Line 42 

Notice that in addition to the contour referenced by the parameter p, there is another 
contour referenced by the local variable mid that contains the coordinates of the midpoint. 
As with the passing of a reference to an object via a parameter, the entire contour will not 
be returned to the main program, but rather only the reference to the contour will be 
returned as illustrated in Fig. 5.6 which shows the state of execution prior to Line 12. 

 

main 

middle --- 

 p1 

PointD 

PointD 

PointD 

double 4.0 

x 

PointD 

p2 PointD  

x 

y 

y 

double 

double 

4.0 

7.0 

mid 

p PointD

 

 

PointD 

midPoint 

6.0 double x 

double 

y 

8.0 

double 5.5 

PointD 

5.2  Returning an Object from a Method 161



 
 

 
 

Fig. 5.6 Contour after returning to the main program prior to Line 12 

Notice that the contour for the method midPoint no longer exists after returning to 
the main program. However, the value in mid was returned back to the invoking statement 
on Line 11 and assigned to the variable middle, which now contains the reference to the 
object containing the midpoint values. When the output statements refer to the getX and 
getY methods of the appropriate objects, the correct values will be output. 

5.3 Overloaded Constructors and Methods 

This section looks at overloaded and default constructors, as well as overloaded methods. 

5.3.1 Overloaded Constructors 

The constructor in the previous example initializes the variables x and y to 0.0 as a default 
value. In addition, a constructor could have been created to initialize the instance variables 
to the values wanted by a programmer as shown in the following: 
 
public PointD(double xp, double yp) { 
   x = xp; 
   y = yp; 
} 
 

A programmer could then initialize x and y via the constructor when the object was 
created as shown below: 
p1 = new PointD(4.0,4.0); 

The advantage of this method is that a programmer does not need to invoke the setX 
and setY methods to initialize the variables in the object. Does this mean that the set 
methods could be deleted from the class definitions? If the values in the variables did not 
need to change, then yes the set methods could be deleted. However, what if after 

main 

middle  

 p1 

PointD 

PointD 

PointD 

double 4.0 

x 

PointD 

p2 PointD  

x 

y 

y 

double 

double 

4.0 

7.0 

6.0 double x 

double y 8.0 double 5.5 

PointD 

162 5  Objects: Revisited



 
 

initializing the variables, their values needed to be changed later in the program? Then of 
course the set methods would need to be retained in the class definition. 

Given the previous constructor and the new constructor above, which of the two is better 
and which one should be included in the class definition? The answer depends on what 
needs to be done. For example, if the values are going to be changed often, then the first 
constructor and the set methods are the best choice, but if the values are going to be set just 
once, then the second constructor is probably the better choice. 

However, when the class is written, it might not be known which type of constructor 

the programmer a choice? But further, could this cause a syntax error by having two 
constructors with the same name? The answer to the first question is yes and the answer to 
the second question is no. The reason why this would not cause an error is because even 
though the name of the constructor is the same, the number of parameters is different 
because the first constructor does not have any parameters and the second one has two 
parameters. This is known as overloading. In other words, even though constructors have 
the same name, they can differ by the number of parameters, the types of the parameters, 
or the order of the different types of parameters. When used carefully, overloading can be 
a very useful technique. 

Using the knowledge gained from Sect. 5.1, it is also possible to pass an object to a 
constructor. For example, if an object was already created and a copy of that object was 
needed, then that object could be passed via a parameter to another constructor to create 
the copy. Such a constructor would look as shown below: 
 
public PointD(PointD p) { 
   x = p.getX(); 
   y = p.getY(); 
} 
 

Notice that instead of two parameters of type double, there is now only one parameter 
of type PointD. In the body of the constructor, the coordinates are retrieved from the 
object sent using the getX and getY methods and placed into the x and y variables of the 
current object. The result is that if one wanted to create two objects with the same set of 
coordinates; instead of writing the following code: 
 
p1 = new PointD(1.0,1.0); 
p2 = new PointD(1.0,1.0); 
 

one would merely need to write the following: 
 
p1 = new PointD(1.0,1.0); 
p2 = new PointD(p1); 
 

Given the two new constructors, the original PointD class could be rewritten as 
follows: 

5.3  Overloaded Constructors and Methods 163



 
 

 

Using this new class, a programmer could create three different instances of the 
PointD class as follows: 
 
PointD p1, p2, p3; 
p1 = new PointD(); 
p2 = new PointD(1.0,1.0); 
p3 = new PointD(p2); 
 

Notice that the objects are being created using three different constructors. The only 
difference is the number of arguments. Further, since the first constructor ensures that 
coordinates referenced by p1 will be initialized to 0.0, the second constructor initializes 
the variables referenced by p2 via the arguments, and the third constructor makes a copy 
of the previous object which will be referenced by p3, the set methods do not need to be 
called. However, if the values in the points need to be changed later, the set methods are 
still there if necessary. 

 
5.3.2 Default Constructors 

 
Note that if a constructor is not included in a class by the programmer, the system will 

generate a default constructor. Should the programmer include a constructor without any 
parameters, then this constructor overrides the default constructor generated by the system. 

164 5  Objects: Revisited



 
 

Although a bit confusing, this constructor provided by the programmer is also sometimes 
called a default constructor since it overrides the system default constructor. However, if 
one writes only the two new constructors above, and a default constructor is not included 
by the programmer, then the system will not generate a default constructor. In such a case, 
were one to code a p1=new PointD(); statement, a syntax error would occur. The 
result is if one wants to override the system default constructor, it is a good idea to override 
it with a programmer-defined default constructor to avoid a possible syntax error. Even if 
overloading is not being used in the class, it is generally best for a programmer to include 
a default constructor and not rely on the system default constructor. 

 
5.3.3 Overloaded Methods 

 
Just as constructors can be overloaded, so can methods. As with constructors, the name 

of the method can be the same, but the number of parameters, the types of the parameters, 
or the order of the different types of parameters must be different. For example, take the 
distance method from Sect. 5.1 which requires one parameter as shown again below: 
 
public double distance(PointD p) { 
   double dist; 
   dist=Math.sqrt(Math.pow(x-p.getX(),2) 
        + Math.pow(y-p.getY(),2)); 
   return dist; 
} 
 

What if another method was needed to determine the distance of a point from the origin? 
Certainly one could invoke the method above by having one of the two points as the origin 
using the new constructors introduced in this section as follows: 
 
PointD p1, p2; 
p1=new PointD(); 
p2=new PointD(3.0,4.0); 
dist = p2.distance(p1); 
 

In this example, the default constructor initializes the coordinates of p1 to 0.0, and the 
second constructor initializes the coordinates of p2 to 3.0 and 4.0. But the assumption 
could be that the distance will be calculated from the origin, and it would be convenient 
not to need it as a parameter in the distance method. Such a method would look as follows: 
 
public double distance() { 
   double dist; 
   dist = Math.sqrt(Math.pow(x,2)+ Math.pow(y,2)); 
   return dist; 
} 
 

Instead of invoking the previous method with the dist = p2.distance(p1); 
statement, it could be invoked using the new method as follows: 
dist = p2.distance(); 

5.3  Overloaded Constructors and Methods 165



 
 

Again, the name of the method is the same, but the number of parameters is different. 
As mentioned earlier, it is also possible to have the same number of parameters but different 
types of parameters or a different order of the different types of the parameters. 

For example, assume a method of the Student class was to be sent two parameters: 
one for the number of credit hours and another to indicate whether the student has 
graduated. In the main program below, notice that in one case, an integer is in the first 
argument position and in the second case a Boolean value is the first argument position. 
Would this cause a problem? 

 

If there were only one method named setInformation, the answer would be yes. 
However, notice the setInformation method is overloaded. The parameters are 
reversed in the second method so that the order of the arguments in the calling program 
does not matter. Thus, if a programmer accidently puts the arguments in the wrong order, 
there is no error. As stated previously, overloading can sometimes be helpful if used 
carefully and not excessively. 

5.4 Use of the Reserved Word this 
In looking at portion of the original PointD class from Fig. 5.1 shown below, the 
parameter names in the constructor and in the two set methods are listed as xp and yp. 
 

166 5  Objects: Revisited



 
 

class PointD { 
   private double x, y; 
   public PointD(double xp, double yp) { 
      x = xp; 
      y = yp; 
   } 
   public void setX(double xp) { 
      x = xp; 
   } 
   public void setY(double yp) { 
      y = yp; 
   } 
} 
 

What would happen if the names of the variables xp and yp were changed to x and y, 
respectively? What would x and y refer to, the data members or the parameters? 
 
/** Caution: Incorrectly Implemented Code **/ 
 
class PointD { 
   private double x, y; 
   public PointD(double x, double y) { 
      x = x; 
      y = y; 
   } 
   public void setX(double x) { 
      x = x; 
   } 
   public void setY(double y) { 
      y = y; 
   } 
} 
 

The answer to the second question is that the parameters and local variables declared in 
a method take precedence over any globally declared variables in the object. The answer 
to the first question is that the contents of the parameters x and y would merely be assigned 
back into the memory locations associated with the parameter. The result is that the private 
data members would not contain the new values sent from the invoking program, and this 
is probably not what was intended. 

Is it possible to use the same variable names for both the parameters and the instance 
data members? The answer is yes. In any particular instance, the reserved word this can 
be used to refer to the instance. Java uses this as a self-referencing pointer to refer to the 
current object. Using the reserved word this, the previous class can be rewritten as shown 
below: 
 
class PointD { 
   private double x, y; 
   public PointD(double x, double y) { 
      this.x = x; 
      this.y = y; 

5.3  Overloaded Constructors and Methods 167

   } 



 
 

   public void setX(double x) { 
      this.x = x; 
   } 
   public void setY(double y) { 
      this.y = y; 
   } 
} 
 

So, for example, consider the shortened skeleton of the program presented at the 
beginning of this chapter that uses only the setX and getX methods shown below: 

 

In the setX method, x refers to the parameter, and the value in x is assigned to this.x 
which is the data member x in the object. In a sense, this is a pointer to the current object 
as illustrated in the contour in Fig. 5.7 showing the state of execution just prior to Line 17. 

 

168 5  Objects: Revisited



 
 

 
Fig. 5.7 State of execution prior to Line 17 

Notice the arrow pointing back to the object PointD. It illustrates the word this and 
shows how the data member x is referenced. Although the example in Fig. 5.7 includes the 
cell for this and a self-referencing arrow, it tends to clutter up the contour diagrams, so 
in general it will not be included because its existence is understood. Notice that the 
constructor and the getX do not use the reserved word this on Lines 12, 13, and 19. In 
this case the word this is not necessary. Although one could still include the word this, 
it can be distracting to use it when it is not needed. As a result, this text will not use the 
word this unless it is necessary. 

The reserved word this can also be used in situations beyond just referring to 
variables. It can refer to constructors and methods as well. For example, consider the three 
constructors presented in the previous section and relisted below using the reserved word 
this in the second constructor: 

 

In one sense, the first constructor is just a special case of the second constructor, so it 
could be defined in terms of the second constructor. In other words, it could invoke the 
second constructor with the values 0.0 for the x and y coordinates. But how could it 
invoke the second constructor? Again, since it is the current object that needs to be 
referenced, the reserved word this could be used as shown below: 

main 

 p1 PointD

PointD 

double 4.0 

setX 

x 

y double 0.0 

this 

x 

pointD 

double 4.0 

 

5.3  Overloaded Constructors and Methods 169



 
 

 
public PointD() { 
   this(0.0,0.0); 
} 
 

Even the third constructor could be written to invoke the second constructor as: 
 
public PointD(PointD p) { 
   this(p.getX(),p.getY()); 
} 
 

Since an object of type PointD is being passed to the constructor, the methods getX 
and getY can be invoked to retrieve the values in x and y, which in turn can be sent as 
arguments to the second constructor. In order to invoke the second constructor, it is referred 
to using this. 

The advantage of the above technique is that if later a change needs to be made to the 
constructors, it might not need to be made to all three constructors, but possibly only one 
of them. This reduces the possibility of introducing unintended errors into the program, 
and the result of the modifications introduced in this section can be seen below: 

 

As with variables and constructors, it is possible to use the word this when referring 
to methods in the same object. For example, suppose that a method needed to access 
another method such as the previous distance method within the same class. It could 
be invoked as this.distance(). Although the method can be invoked using the 
reserved word this, there is no need to do so. As a result, the use of the word this prior 
to the invoking of a method should be avoided. 

5.5 Class Constants, Variables, and Methods 

This section will discuss how constants, variables, and methods can be declared not only 
within a method and in each instance of a class but also how they can be declared in the 
class itself. First, it looks at constants, then variables, and lastly methods. 

5.5.1 Local, Instance, and Class Constants 

If a constant needs to be used only within a single method, then it can be declared within 

170 5  Objects: Revisited



 
 

that method. However, if several methods in the same class use the same constant, it could 
be declared within each method but that could take up more space. If that constant needs 
to be changed, then it will need to be changed in more than one location. Although there 
already exists the Math.PI constant discussed in Sect. 1.7, consider for example, the 
following program which includes the user-defined constant PI: 

 

In addition to the existence of the local variables c and a to help with understanding the 
contour diagrams, notice that both methods have their own locally declared constant PI at 
Lines 24 and 30. When each method is executed, its own copy of the constant is allocated. 
The contour diagram in Fig. 5.8 illustrates that each method has its own copy and shows 
the state of execution prior to Line 33. 

 

5.5  Class Constants, Variables, and Methods 171

http://dx.doi.org/10.1007/978-1-4471-6317-6_1#Sec7


 
 

 
Fig. 5.8 State of execution prior to Line 33 

Even though one contour is deallocated (indicated by the light red contour) before the 
next one is invoked, it still had to allocate the constant. While this is only a minor problem 
now, any local constants can take up much more space in a recursive algorithm as will be 
discussed in Chap.  8 . Since there is a potential for wasted memory, it would be better if 
the constant were not associated with each method, but rather with the object as illustrated 
in the following section showing the Circle class: 

 

Only the class is shown here because the main program has not changed and again the 
local variables in the method remain to help with the contour diagrams. Notice that the 
declaration of the constant is no longer within each method, but rather in the class at Line 
16. An immediate obvious advantage is that should the constant need to be changed, it 

main 

radius  3.0 

 c 

double 

Circle 

Circle 

double 3.0 r 

circumference 

area 

PI 

c 

double 3.14 

double 

double PI 

a 

3.14 

18.84 

28.26 

double 

172 5  Objects: Revisited

http://dx.doi.org/10.1007/978-1-4471-6317-6_8


 
 

needs only to be changed in one location. The contour diagram representing the state of 
execution prior to Line 32 is shown in Fig. 5.9. 

 
Fig. 5.9 State of execution prior to Line 32 

Note that the constant PI no longer appears in each of the methods, but rather is located 
in an instance of the Circle class. The advantage to declaring the constant in the class as 
opposed to each individual method is that the constant only needs to be allocated once. 

However, what if more than one object was declared? Then there would be one constant 
allocated within each of the objects. Consider the following modification to the main 
program that declares and allocates two objects: 
 
double radius1, radius2;       // Line 3 
Circle c1,c2;                  // Line 4 
c1 = new Circle();             // Line 5 
c2 = new Circle();             // Line 6 
radius1 = 3.0;                 // Line 7 
radius2 = 4.0                  // Line 8 
c1.setRadius(radius1);         // Line 9 
c2.setRadius(radius2);         // Line 10 
 

Using the same Circle class as before, without invoking any of the methods except 
for the constructor, note the state of execution just prior to Line 9 in the main program in 
Fig. 5.10. 

 
 
 

main 

radius  3.0 

 c 

double 

Circle 

Circle 

double 3.0 r 

circumference 

area 

c 

double 

double a 

18.84 

28.26 

double 

PI 3.14 

5.5  Class Constants, Variables, and Methods 173



 
 

 
Fig. 5.10 State of execution prior to Line 9 

Notice that the constant PI appears in both instances of the Circle class. Just like 

be nice if the constant could be moved so that it would be accessible by both objects? This 
can be accomplished by using what is known as a class constant. Showing the new 
complete program below, a class constant is created by using the reserved word static 
as shown in Line 24 below: 

main 

radius1  3.0 

c1 

double 

double 

Circle 

double 0.0 r 

double PI 3.14 

c2 

radius2 

Circle 

 4.0 

  Circle 

 

r 

PI 

double 

double 

0.0 

3.14 

Circle 

174 5  Objects: Revisited



 
 

 

Executing the first few lines of the program as done previously, the contour diagram in 
Fig. 5.11 shows the state of execution just prior to Line 9. Notice that each of the instances 
does not have a local constant PI. As mentioned previously in Sect.  2.7 , just as the main 
program has a contour around it, as shown in Fig. 5.11, so does the class Circle. Using 
the word static creates the class constant PI that does not get allocated each time a new 
instance of the class Circle is created. When there is a reference to the constant PI, it is 
not found in the instance, but rather in the class. As can be seen, this saves memory, 
especially when many objects are created. 

In contour diagrams, how can one distinguish the contour for the class itself from the 
contours associated with the instances of the class? One way is to note that variables of 

5.5  Class Constants, Variables, and Methods 175

http://dx.doi.org/10.1007/978-1-4471-6317-6_2#Sec7


 
 

type Circle point to the instances of the Circle class. However, another way to help 
the reader is to allow the contour associated with the class itself to have the name of the 
class (in this case Circle) and then use a superscript for each instance of the class to 
indicate the order in which the objects were created as shown in Fig. 5.11. When necessary 
to help make this distinction clear, this text will use superscripts. 
 

 
Fig. 5.11 State of execution prior to Line 9 

Just as this text has previously not drawn the contour around the main program in the 
interest of saving space, it would also help to save space to not draw the contour around all 
the instances of each object. As can be seen in Fig. 5.11, it could get rather cumbersome to 
draw such large contours. However, on occasion it is still helpful to draw a contour to 
represent the class, so instead of drawing it around all the instances, it is sometimes 
convenient to draw it separately, with the understanding that all the instances are within 
that contour. This second alternative is shown in Fig. 5.12. 

 

main 

radius1  3.0 

c1 

double 

double 

Circle 

double 0.0 r 

double PI 3.14 

c2 

radius2 

Circle 

 4.0 

  Circle 

 

r double 0.0 

Circle1 

Circle2 

Example 

main 

radius1  3.0 

c1 

double 

double 

Circle 

double 3.0 r 

double PI 3.14 

c2 

radius2 

Circle 

 4.0 

  Circle 

 

r double 4.0 

Circle1 

Circle2 

176 5  Objects: Revisited

Fig. 5.12 Alternative contour diagram illustrating class constants 



 

Figure 5.11 is the ideal drawing and it will be used as necessary. However, generally 
and if needed, the contour for the class using a class constant will be drawn as shown in 
Fig. 5.12, with the understanding that all instances will be within that contour. 

5.5.2 Local, Instance, and Class Variables 

Local and instance variables are similar to local and instance constants. In fact, the 
variables c and a representing the circumference and area in the previous section are local 
variables in the methods, and the variable r representing the radius in a Circle object is 
an instance variable. In trying to decide where a variable needs to be declared, it helps to 
ask which methods need access to the variable. For example, the variables c and a were 
used only by the circumference and area methods, so it made sense to declare them 
there. However, the variable r is used by both methods; hence, it makes sense to declare it 
once within the object instead of in both methods. 

Although using the two local variables wasted a little memory, it made understanding 
the contours easier, and in this case it is not much of a problem. In fact, these variables are 
not even needed, because the expression to calculate each value could have been included 
in the return statement, as shown below: 
 
public double circumference () { 
   return 2 * PI * r; 
} 
public double area() { 
   return PI * r * r; 
} 
 

It is sometimes benificial to write the initial version of the code using extra memory to 
help understand how it works and assist in debugging any logic errors, and then later the 
extra memory locations can be removed to make the code more efficient. This technique 
will become even more helpful when learning about recursion in Chap.  8 . 

As with the constants in the previous section, just as some variables are better placed in 
the object as instance variables instead of as local variables in the methods, there are cases 
where some variables should be declared as class variables instead of as instance variables. 
For example, what if one wanted to count each time a new object was created? Although 
this could be done in the main program, what if an object other than the main program was 
also creating the objects to be counted? In this case, the main program could not count 
them, nor could an instance variable be used, because each instance could not count how 
many other objects of its own type were created. As one might suspect, this would be a 
good candidate for a class variable. 

A class variable is declared similarly to a class constant except the reserved word 
final is not used as shown in Line 15 of the following program which simulates a 
program that creates objects for charge cards that contain an account number: 

5.5  Class Constants, Variables, and Methods 177

http://dx.doi.org/10.1007/978-1-4471-6317-6_8


 
 

 

Although it would be nice to create an indefinite number of objects, that would be 
difficult to illustrate using contours and would also be difficult to implement without the 
use of arrays which will be introduced in Chap.  7 . Instead, this program creates only three 
ChargeCard objects to help illustrate the class variable cardCount. Notice that their 
class variable is initialized by the compiler to 0 in Line 15. Then each time a new instance 
of the class is created, the class variable cardCount is incremented in the constructor. 
The contour in Fig. 5.13 illustrates the state of execution just prior to Line 10 in the main 
program. 

 

 

178 5  Objects: Revisited

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

 
Fig. 5.13 State of execution prior to Line 10 in main 

As can be seen, the class variable is shown in the ChargeCard contour which is 
accessible by all of the instances of that class, as discussed in the previous section. Also 
note that instead of using a variable such as card1 to gain access to a class variable, the 
name of the class ChargeCard in Line 11 is used instead. Further, the reader might have 
noticed that whereas the class constant in the previous section was declared as private, 
the class variable cardCount is declared as public. In one sense this might seem 
convenient, because the class variable is accessible in the main program in Line 11. 
However, as mentioned in Chap.  2  and as will be discussed in the next section, it is usually 
better to declare variables as private and access them using a public method. 

5.5.3 Class Methods 

Although declaring a class variable as public allowing it to be accessed from the main 
program works, it is not necessarily the best way to access class variables. Just as it is not 
a good idea to declare instance variables as public, the same applies to class variables. 
As before, it is better to declare class variables as private and then access them via a 
public class method. This is accomplished by declaring a method using the reserved 
word static as shown in the following modified program: 

main 

card1   

card3 

ChargeCard 

ChargeCard 

ChargeCard 

int 12345678 accNum 

int cardCount 3 
card2   

  ChargeCard 
ChargeCard1 

ChargeCard2 

accNum 

ChargeCard3 

accNum 

int 

int 

23456789 

34567890 

5.5  Class Constants, Variables, and Methods 179

http://dx.doi.org/10.1007/978-1-4471-6317-6_2


 
 

 

First, notice that the method getCardCount has been added at Line 27. The use of 
the reserved word static makes it a class method instead of an instance method. Also 
note that the method is declared as public and the class variable cardCount at Line 
15 is now declared as private. Next, notice in Line 11 that instead of accessing the class 
variable, the class method getCardCount is invoked to return the value of 
cardCount. As before, the class method is invoked using the class name ChargeCard. 

What is interesting to see is that when the main program invokes the class method 
getCardCount, the contour is not in one of the objects, but rather in the contour for the 
class ChargeCard as illustrated in Fig. 5.14 which shows the state of execution prior to 
Line 28 in the class method getCardCount. When Line 28 in the class method 
getCardCount is executed, it has access to the private class variable cardCount and 
will return the value 3 back to Line 11 in the main program. 

 
 

180 5  Objects: Revisited



 
 

 
 

Fig. 5.14 State of execution prior to Line 28 in the getCardCount method 

Given the above, one needs to plan carefully where various constants, variables, and 
methods are declared. As a general rule, it makes sense to declare constants as class 
constants since they cannot be modified, they are accessible to all methods in the objects 
within the class.. As another rule of thumb, it is generally a good idea to declare all 
variables as locally as possible. This helps organize a program and makes it easier to 
understand and maintain. However, if a method or object needs to communicate 
information with other methods or objects, then declaring the variables as instance or class 
variables makes sense. Although it might seem easy and be tempting to declare all variables 
as instance and class variables, this can make a program difficult to maintain and debug in 
the future. Likewise with methods, they should usually be declared as instance methods 
unless individual objects need to share a method, and then it should be declared as a class 
method. The key is to take the time when designing and creating a program to determine 
where each variable and method should be declared. 

5.6 Complete Programs: Implementing Objects 

The first complete program implements overloaded methods, and the second utilizes class 
data members and class methods. 

5.6.1 Program Focusing on Overloaded Methods 

After defining the PointD class earlier this chapter which represents a point, a class that 
represents a line will be developed in this section. Since a line consists of points, the 
PointD class can also be used. The main program will: 

main 

card1   

card3 

ChargeCard 

ChargeCard 

ChargeCard 

int 23456789 accNum 

int cardCount 3 
card2   

  ChargeCard 
getCardCount 

ChargeCard2 

accNum 

ChargeCard3 

accNum 

int 

int 

12345678 

34567890 

ChargeCard1 

5.5  Class Constants, Variables, and Methods 181



 

 Compare two lines 
 Find the distance between a line and a point 

A line can be defined in slope-intercept form , where m is the slope and b is 
the y-intercept, and the class will be named LineSI. The slope and y-intercept are kept in 
private instance variables, slope and intercept. 

Because a user may like to define a line in several different ways and to reinforce the 
concept of overloaded constructors, six constructors will be provided. The default 
constructor without any parameters will set the value of the slope and the y-intercept to 
0.0. The next constructor accepts the value for the slope as a parameter and sets the y-
intercept to 0.0 creating a line going through the origin. The third constructor receives a 
LineSI object and copies the slope and y-intercept of the line to the new object, 
essentially creating an identical line. This constructor is sometimes referred as a copy 
constructor. The fourth constructor accepts two parameters and assigns these values to the 
instance variables, slope and intercept. A line can also be defined in two-point form 
as 

1 0
0 0

1 0

y yy y x x
x x

 

where (x0, y0) and (x1, y1) are two different points on the line. So, the fifth constructor 
accepts two PointD objects, calculates the slope and the y-intercept, and assigns the 
results to appropriate data members. The last constructor receives the x and y coordinates 
of two points and calculates the slope and y-intercept. Initial implementations for the six 
overloaded constructors are shown below: 

182 5  Objects: Revisited

 Set points and lines 



 
 

 

All six overloaded constructors have the same name as the class and they are 
differentiated by their parameter lists. The first constructor has no parameters, the second 
and third constructors have one parameter, the fourth and fifth constructors have two 
parameters, and the sixth constructor has four parameters. Although both the second and 
third constructors have one parameter, the types are different; the second has one of type 
double and the third has one of type LineSI. The fourth and fifth constructors have two 
parameters; the fourth has two parameters of type double and the fifth has two parameters 
of type PointD. 

The reserved word this in a constructor invokes the other constructor with the 
corresponding parameter list within the same class. So, calling the default constructor in 
the main method to create a LineSI object causes the fourth constructor to be called as 
well. The second, third, fifth, and sixth constructors also call the fourth constructor by using 
the reserved word this. As was discussed in Sect. 5.4, the advantage of using the word 
this is that if a change needs to be made to a common feature of all the constructors, only 

5.6  Complete Programs: Implementing Objects 183



 
 

the fourth constructor needs to be modified. Also, notice that in the fourth constructor, the 
keyword this is used in order to distinguish between the data member and the parameter. 
This ensures that values in the parameters are correctly copied into the data members. 

There will be two usual mutators to set each instance data member and two accessors to 
get the value of two data members as shown below: 

 

In addition to the two mutators above, there will be three more mutators named 
setLine to set both instance data members at the same time. Like constructors, methods 
can also be overloaded. The setLine method is overloaded; one takes the values of the 
slope and the y-intercept, another takes the x and y coordinates of two points as parameters, 
and the last takes two PointD objects. Even though the first and the second setLine 
methods have the same number of parameters, the types are different; the first setLine 
method has two parameters of type double and the second has two parameters of type 
PointD. The detailed implementations of these three overloaded methods are shown 
below: 

184 5  Objects: Revisited



 
 

 

First, notice that the second and third setLine methods use the first setLine 
method. This is similar to the constructors, where all the other constructors invoked the 
fourth constructor. 

If one looks carefully, it can be seen that the implementation of the fourth constructor 
and the first setLine method is the same. Also, notice that the code for the fifth 
constructor appears similar to the code for the second setLine method except that the 
constructor is invoking the fourth constructor and the setLine method is calling the first 
setLine method with the corresponding parameter list defined within the class. The 
calculations for the slope and y-intercept used as the formal parameters in the methods are 
exactly the same. The same thing can be said for the sixth constructor and the third 
setLine method. How can one avoid having duplicate code in the program? The answer 
is to invoke the setLine method in the constructor instead of repeating the same code 
twice. This would make sense when more complex computations need to be performed 
several times in the separate methods within the class as in the second and third setLine 
methods. The modification to the fourth, fifth, and sixth constructors is illustrated below: 

5.6  Complete Programs: Implementing Objects 185



 
 

 

The first setLine method can be further modified to avoid duplicate code. Notice that 
the two statements this.slope = slope; and this.intercept = intercept; 
are also in setSlope and setIntercept methods, respectively. Therefore, the 
original first setLine method can be rewritten as follows: 
 
// First setLine method, modified: 
public void setLine(double slope, double intercept) { 
   // using setSlope and setIntercept methods 
   setSlope(slope); 
   setIntercept(intercept); 
} 
 

In order to understand the nesting of method calls in overloaded constructors and 
methods, consider what would happen when a LineSI object is created using a default 
constructor in the main method. Calling the default constructor would result in the fourth 
constructor being invoked. The fourth constructor will call the first setLine method 
which calls the setSlope and setIntercept methods to set the values of slope and 
intercept. Although at first this might seem more complicated, the purpose is to 
eliminate duplicate code making the program easier to maintain. 

The last two methods are named compareLines and distance. The LineSI 
object, which calls the method compareLines, will be compared to the LineSI object 
passed to the method. It returns true when the two lines are the same and false when 
they are different. The LineSI object, which calls the method distance, calculates the 
distance from the object to the point passed as a parameter. 

All the pieces are put together in the following class: 

186 5  Objects: Revisited



 
 

 

5.6  Complete Programs: Implementing Objects 187



 
 

 

Notice that along with the two private instance variables, the private class constant, 
DEFAULT_VALUE, was defined. It was declared as a class data member so that any 
method defined in the class can use it as a constant because the value does not need to be 
changed during execution. By declaring it as a class constant, it will avoid allocating 
memory for the same constant twice when used in the first and second constructors. 

The Lines class in Fig. 5.15 will test the methods defined in LineSI. It will create 
two points and six lines using six different constructors. Then it will output the properties 
of the lines and the result from the compareLines and distance methods. 

188 5  Objects: Revisited



 
 

 
Fig. 5.15 A client program for LineSI and PointD classes 

5.6  Complete Programs: Implementing Objects 189



 
 

The output from the program in Fig. 5.15 is given below: 
 
line1: slope = 0.5, intercept = 3.5 
line2: slope = 0.5, intercept = 3.5 
line3: slope = -1.0, intercept = 3.0 
line4: slope = 0.5, intercept = 3.5 
line5: slope = 0.0, intercept = 0.0 
line6: slope = 2.0, intercept = 0.0 
line1 and line2 are the same. 
line4 and line5 are not the same. 
The distance between line3 and pt1 is 1.41. 
The distance between line6 and pt2 is 3.58. 

5.6.2 Program Focusing on Class Data Members and Class Methods 

In this section, the ChargeCard class defined in Sect. 5.5.3 will be modified. Assume 
that a cardholder travels to Europe and uses the card for shopping. The amount charged in 
Euros should be converted into US dollars and added to the balance of the card. Using the 
application, a user should be able to: 

 Open an account to receive a card 
 Make purchases in either US dollars or Euros 
 Print the current balance of the card 

The program should perform the conversion from Euros to US dollars. The calculation 
used in conversion is the same for any purchase made in Euros; therefore, all the Card 
objects can share the code for the conversion. For this reason, the 
convertEurosToDollars method will be declared as a class method. The program 
also keeps track of the conversion rate named rate in the program. Since rate is used 
in the class method and a class method does not have an access to an instance data member, 
rate should be declared as a class data member. Because the conversion rate changes 
frequently, it should be declared as a variable, not a constant. The mutator and accessor for 
rate will also be class methods since they deal with a class data member. The following 
code segment implements the class data member and class methods discussed so far: 

190 5  Objects: Revisited



 
 

 

So far there is no instance data member or instance method implemented in the Card 
class; therefore, all the methods can be used without creating an object. The following 
main method will set the rate and output its value and the result of the conversion of 
1.00 Euro to US dollars: 
 
public class Purchases { 
   public static void main(String[] args) { 
      // output the information for Euros conversion 
      Card.setRate(1.2128); 
      System.out.println("rate = " + Card.getRate()); 
      System.out.printf("1.00 euro is equal to %.2f dollars.", 
         Card.convertEurosToDollars(1.00)); 
      System.out.println(); 
   } 
} 
 

Notice that the three class methods are invoked using the class name Card in the dot 
notation. The following is the output from the above program: 
 
rate = 1.2128 
1.0 euro is equal to 1.21 dollars. 
 

Now the data members, constructors, and instance methods can be added to the Card 
class. The additional data members include two class constants, 
DEFAULT_ACCOUNT_NUMBER and DEFAULT_BALANCE, and two instance variables, 
accountNum and balance. There will be two constructors: one default constructor and 
another constructor that has two formal parameters to store values in the instance variables. 
The setAccountNum method is a mutator to set the value of the variable accountNum. 
Both the purchaseInDollars and purchaseInEuros methods receive a formal 
parameter and increment the balance by the amount in the parameter. In the 
purchaseInEuros method, the amount of Euros passed to the method is converted to 

5.6  Complete Programs: Implementing Objects 191



 
 

US dollars by calling the convertEurosToDollars method. There will also be two 
accessors, getAccountNum and getBalance, to get the values of the two instance 
variables. The following program defines the Card class: 

 

192 5  Objects: Revisited



 
 

 

The complete main method in Fig. 5.16 includes the creation of a Card object, two 
purchases, one each in US dollars and Euros, and the output of the balance after each 
purchase. 

 
Fig. 5.16 A client program for Card class 

The following is the output from the program in Fig. 5.16: 
 
rate = 1.2128 
1.00 euro is equal to 1.2128 dollars. 

5.6  Complete Programs: Implementing Objects 193



 
 

after spending 100.00 dollars 
card: Account Number = 12345, balance = 100.00 dollars 
after spending 100.00 euros 
card: Account Number = 12345, balance = 221.28 dollars 

5.7 Summary 

 In addition to primitive data types, objects can be sent to and returned from methods. 
 Constructors and methods can be overloaded by having the same name but must have 

a different number of parameters, different types of parameters, or parameters of 
different types in a different order. 

 The reserved word this is used to refer to instance variables when there are 
parameters of the same name and to constructors when one constructor is defined in 
terms of another. 

 If a constant or variable is declared within a constructor or method, it is known as a 
local constant or variable. 

 If a constant or variable is declared within an object, they are known as an instance 
constant or variable and can be accessed by any constructor or method within the 
object. 

 The reserved word static causes a constant, variable, or method to be a class 
constant, variable, or method that can be accessed by an instance of the class. 

 Take the time to determine where variables and methods should be declared to help 
balance readability, communication, debugging, maintainability, and memory 
allocation. 

194 5  Objects: Revisited



 

 

 

2. Identify the valid and invalid overloaded methods in the following code: 

 

5.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 195

5.8 Exercises (Items Marked with an * Have Solutions in Appendix  E ) 

1. Identify the valid and invalid overloaded constructors in the following code: 

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1


 
 

 

3. A hexahedron is a three-dimensional shape with six faces. In this problem, a class 
which represents a hexahedron with squares at the top and the bottom as shown 
below will be implemented. 

 

Assume that hexahedrons are made of different materials; therefore, the weight 
needs to be kept along with the side and the height in order to describe a particular 

196 5  Objects: Revisited



 
 

hexahedron. The following code implements data members and a portion of the 
constructors of Hexahedron class. Complete the first six constructors to call the last 
one by using the reserved word this. 

 

4. Draw contour diagrams to show the state of execution right after the execution of 
the statement line1 new LineSI(pt1, pt2); in Fig. 5.15 in Sect. 5.6.1. 

5. Draw contour diagrams to show the state of execution right after the execution of 
the statement card.purchaseInEuros(100.00); in Fig. 5.16 in Sect. 
5.6.2. 

5.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 197



 
 

          below: 

*A. The Rectangle class has one private class constant DEFAULT_VALUE that 
should be initialized to 0.0. 

*B. The Rectangle class has two private instance data members, sideX and 
sideY, of type double. 

*C. The first constructor is a default constructor and calls the third constructor 
(described below) using the reserved word this to set instance data members 
to the default value. 

  D. The second constructor calls the third constructor (described below) using the 
reserved word this. It retrieves a Rectangle object as a formal parameter 
and copies sideX and sideY of the object to the new object. 

  E. The third constructor calls the setSides method (described below). Two 
formal parameters are used as the parameters for the setSides method. 

*F. The mutator methods, setSideX and setSideY, each has one formal 
parameter and stores them in the instance data member. 

  G. Another mutator method, setSides, has two formal parameters and stores 
them in the instance data members by using the setSideX and setSideY 
methods (described above). 

  H. The accessor methods, getSideX and getSideY, return the value of the 
appropriate instance data member. 

  I. A method named calcArea computes the area of a rectangle and returns the 
computed area. 

Next, write a client program to test the Rectangle class defined above. This 
class should be named Rectangles and should contain the main method which 
performs the following tasks: 

a. Declare three Rectangle objects. 
b. Create three Rectangle objects using the three different constructors. 
c. Output the contents of sideX and sideY of the three objects. 
d. Output the area of the third rectangle. 

Here is some sample output: 
 
rectangle1: sideX = 0.0, sideY = 0.0 
rectangle2: sideX = 3.0, sideY = 4.0 
rectangle3: sideX = 3.0, sideY = 4.0 
rectangle3: area = 12.0 
 

       7.  Expand the PointD class discussed in this chapter to include the quadrant 
information of a point. The x-axis and y-axis divide the plane into four regions 
called quadrants. The quadrants are labeled starting at the positive x-axis and going 
around counterclockwise as shown below: 

198 5  Objects: Revisited

      6.  Implement a class Rectangle which represents a rectangle shape as described 



 
 

 

Write the new PointD class as described below. Points falling on the x-axis and 
y-axis are not considered to be in any quadrant, and therefore return the default value, 
0: 

A. The PointD class has two private class constants, DEFAULT_VALUE of 
type double and DEFAULT_QUADRANT of type int, that should be 
initialized to 0.0 and 0, respectively. 

B. The PointD class has two private instance data members, x and y, of type 
 double. 

C.  The PointD class has one private instance data member quadrant of 
type int. 

D. The first constructor is a default constructor and calls the third constructor 
      (described below), by using the reserved word this, to set the instance data  
      members to the default values. 
E. The second constructor receives a PointD object as a formal parameter and 

stores the x, y, and quadrant of the object as the values of the instance 
data members. 

F. Third constructor calls the setPoint method (described below). Its two 
formal parameters are used as the parameters for the setPoint method. 

G. The mutator methods, setX and setY, have one formal parameter and call 
the setPoint method (described below). The setX method changes the 
value of data member x to the value of the parameter. The setY method 
changes the value of data member y to the value of the parameter. 

H. Another mutator method, setPoint, has two formal parameters and stores 
these values in the instance data members, x and y. It also sets the correct 
value for the data member quadrant depending on the values of the two 
parameters. 

I. The accessor methods, getX, getY, and getQuadrant, return the value 
of the appropriate instance data member. 

Next, write a client program to test the PointD class defined above. Call this class 
Points. The main method should perform the following tasks: 

5.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 199



 
 

    K. Create five PointD objects using the three different constructors. The 
points should be in three different quadrants and also the origin. 

    L. Output the contents of x, y, and quadrant for the five objects. 

    M. Change the value of x or y for one of the points using a mutator so that the 
point will move to a different quadrant. 

Here is some sample output: 
 
point1: (0.0, 0.0) in quadrant 0 
point2: (2.0, -5.0) in quadrant 4 
point3: (2.0, -5.0) in quadrant 4 
point4: (2.0, 5.0) in quadrant 1 
point5: (-2.0, 5.0) in quadrant 2 
after calling set method 
point3: (-2.0, -5.0) in quadrant 3 
 
 

  8. Describe how to differentiate methods with the same name defined in the same class. 
 
  9. Describe the use of the keyword this. 
 
10. A part of the LineSI class from Section 5.6.1 is shown below.  Identify necessary 

and unnecessary use of the keyword this. 
 
public class LineSI { 
   // data members 
   private static final double DEFAULT_VALUE = 0.0; 
   private double slope; 
   private double intercept; 
 
   // methods 
   public void setSlope(double slope) { 
      this.slope = slope;     
   } 
     
   public void setIntercept(double intercept) { 
      this.intercept = intercept;     
   } 
     
   public void setLine(double slope, double intercept) { 
      // using setSlope and setIntercept methods 
      this.setSlope(this.slope); 
      this.setIntercept(this.intercept); 
   } 
 
   public void setLine(PointD pt1, PointD pt2) { 
      // using first setLine method 
      this.setLine((pt2.getY()-pt1.getY()) /  
              (pt2.getX()-pt1.getX()), 
              ((pt2.getX()*pt1.getY()) -  

200 5  Objects: Revisited

J. Declare five PointD objects. 

 

              (pt1.getX()*pt2.getY()))/(pt2.getX()-pt1.getX())); 
    } 
     
} 
 



 

 
11. Suppose the Vehicle class is defined to keep track of vehicles in a household. What 

kinds of instance data members, variables and constants, would be defined for such 
Vehicle objects? Do any useful class data members, variables and constants, for 
the Vehicle class? How about instance methods and class methods? 

 
12. Write a complete program for the user to play a number guessing game. The 

computer generates a random number from 1-10, and the user gets one chance to 
guess that number. Output a message whether the guessed number was correct. After 
each game the player will be asked to play another game. When the user decides to 
stop, the winning percent of games will be displayed. The statement that will generate 
a random number from 1 to 10 inclusive is: 

 
int computerNumber = (int) (Math.floor(Math.random() * 10) + 1); 

 
 First, define a class that represents one number guessing game which should include 

the play method that generates a random number, asks the user for input, checks if 
the user won, and displays the result. Make sure to keep track of the number of games 
played and the number of games the user won.   

 
 Next, implement a main program to play the number guessing game. Use a loop to 

play the game multiple times. At the conclusion display statistics of games. 
 

Use an option dialog box like the blow for the user input. Option dialog boxes are 
discussed in Appendix A.7. 

 

 
 
The user will be notified the result in the message dialog boxes that are similar to the 
ones shown below: 
  

  

5.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 201



 
 

 
After each game, use a confirmation dialog box discussed in Appendix A.6 for the 
user to click on yes or no.  
 

 
 
When the user clicks no, output the percent of winning games. Example is shown 
below: 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

202 5  Objects: Revisited



 

6 
Strings 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter discusses string variables and the String class. In addition to the concatenation of strings, 
various methods defined in the String class such as the length, indexOf, and substring methods 
are examined. The toString method which returns a string representation of the properties of an object is 
also shown along with a complete program implementing String objects. 

Keywords 

String Object; String Class; ToString Method; String Variables; Substring Method. 

6.1 Introduction 

Up till now, this text has focused on numerical values such as integers and real numbers. 
In this chapter the focus is text values. Characters are another fundamental type of data 
used on a computer, and a string in Java is a sequence of characters. Each programming 
language supports a particular character set which is a list of characters in a particular order. 
The ASCII (American Standard Code for Information Interchange) character set is the most 
common one. The basic ASCII set uses seven bits per character to support 128 different 
characters including letters, punctuation, digits, special symbols, and control characters. In 
order to support more characters and symbols from many different natural languages, Java 
uses the Unicode character set, which uses 16 bits per character, supporting 65,536 unique 
characters. ASCII is a subset of the Unicode character set. 

Strings are not represented as a primitive data type such as int, double, or char but 
as an object of the String class. Text values can also be passed as an argument to methods 
such as system.out.print as described in  Chap. 1 . Similar to numbers, strings can 
be assigned to variables and manipulated using operators and methods defined in the 
String class. 

6.2 String Class 

The String class is a standard class, like the Math or Scanner classes, defined in the 
java.lang package. The following illustrates how a String variable is declared and a 
String object is created: 
 
String fullName; 
fullName = new String("Maya Plisetskaya"); 
 

After the variable fullName is declared as type String, the second statement creates 
an object with a value "Maya Plisetskaya" and then a reference to the new object is 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_6

203

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_6&domain=pdf


 

placed in the variable, fullName. The contour diagram in Fig. 6.1 illustrates the state of 
execution after the above two statements. 

 
Fig. 6.1 An object of String class 

Because the String class is a predefined class, a variable name is not in the contour 
diagram of the String object. Although the String class is not a primitive data type, a 
String object can be created by assigning a string within double quotes to a String 
variable, for example, 
 
String fullName; 
fullName = "Maya Plisetskaya"; 
 

Even though it looks like the text value is directly assigned to the variable, the variable 
fullName does not contain an actual value, like with a primitive data type, but rather an 
address of the object. The contour diagram after the above two statements will be exactly 
the same as the one shown in Fig. 6.1. 

Further, notice that the following statements using the keyword new will assign a null 
value to the variable: 
 
String fullName; 
fullName = new String(); 
 

The same thing will also happen with a simple assignment statement: 
 
String fullName; 
fullName = null; 
 

The differences between creating String objects using new statements and 
assignment statements will become more apparent in Sect. 6.4. Except for on a few 
occasions, the new statement will be used to create a String object in order to reinforce 
the ideas of object creation. In either case, once a String object is created, the string 
value inside of the object cannot be modified, which means that any of the characters in 
the string cannot be changed, nor can the string be shortened or lengthened. This property 
is called being immutable. If a string needs to be modified, an object of type 
StringBuffer which is a mutable sequence of characters can be used, but this is beyond 
the scope of this text. 

6.3 String Concatenation 

Although strings cannot be modified, there are a number of operators that can be used with 
strings. A useful String operation is concatenation accomplished by the use of a plus 
symbol, +, which was introduced briefly in  Chap. 1  to support output. Two strings can be 

 fullName String 

String 

"Maya Plisetskaya" 

204 6  Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 

combined to create a new string. Consider the following example code segment: 
 
String firstName, lastName, fullName; 
firstName = new String("Maya"); 
lastName = new String("Plisetskaya"); 
fullName = firstName + " " + lastName; 
 

A first name and a last name are assigned to separate variables, firstName and 
lastName, respectively, and then combined together using a string concatenation 
operator. A contour diagram for fullName is again exactly the same as the one in Fig. 
6.1. Notice that a space is concatenated between firstName and lastName. Without 
it, fullName would have the first name and a last name combined together as in 
"MayaPlisetskaya". 

A plus symbol was introduced as an arithmetic addition and as a concatenation in the 
output statements in  Chap. 1 . When an operator represents more than one operation, it is 
called an overloaded operator. What happens if overloaded operators appear in the 

both the left and right operands are numbers, otherwise it will treat it as a string 
concatenation. For example, what would the output be for the following code segment? 
Remember that the plus symbol is evaluated from left to right and the result of an 
expression with mixed types is String type. 
 
int num1, num2; 
String str1, str2; 
num1 = 2; 
num2 = 3; 
str1 = new String("num1 + num2 = "); 
str2 = new String(" = num1 + num2"); 
System.out.println(str1 + num1 + num2); 
System.out.println(num1 + num2 + str2); 
System.out.println(str1 + (num1 + num2)); 
 

The first print statement results in 
num1 + num2 = 23 

Since the left operand of the first plus symbol is String and the right operand is int, 
it will treat the contents of num1 as String. Because the first plus sign was treated as 
concatenation, the left operand of the second plus sign is a String type. Further, the right 
operand of the second plus symbol is int; it will again treat the contents of num2 as a 
String. 

How about the second print statement? The first plus sign is treated as an arithmetic 
addition because the left and the right operands of the first plus sign are both int types. 
Then, the second plus symbol is treated as a string concatenation since the last operand is 
of type String and it is mixed-type operands. The output will be 
 
5 = num1 + num2 
 

6.3  String Concatenation 205

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 

In the third print statement, parentheses will force (num1 num2) to be evaluated 
 

num1 + num2 = 5 

Another operator that can be used on String objects is a shortcut operator, +=. It has 
the same effect as the shortcut of arithmetic addition discussed in  Chap. 1  and is left as 
an exercise at the end of the chapter. 

6.4 Methods in String Class 

There are over 50 methods defined in the String class that can be found in the Java API 
specification document on the Oracle website at 
   http://docs.oracle.com/javase/7/docs/api/java/lang/String.html  

In this section, six of the most commonly used ones will be discussed: length, 
indexOf, substring, equals, equalsIgnoreCase, and charAt. 

6.4.1 The length Method 

In order to find the number of characters in a String object, the length method is used. 
For example, if the variable fullName refers to the string "Maya Plisetskaya", 
then 
fullName.length() 

will return the value 16 because there are 16 characters in the string. Notice that a space 
between the first name and the last name is counted as a character. If the string is empty, 
applying the length method results in 0. 

6.4.2 The indexOf Method 

A character in a string can be referred to by its position, or in other words its index, in the 
string. The index of the first character is 0, the second character is 1, and so on as illustrated 
in Fig. 6.2. 

 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
M a y a  P l i s e t s K a y a 

Fig. 6.2 Index of characters in the string 

To find the position of a substring of a string, the indexOf method can be used. The 
method will return the position of the first character of the substring in the string. Here are 
some examples using fullName: 
 
Statement return value 
fullName.indexOf("Maya") 0 
fullName.indexOf("set") 8 
fullName.indexOf("Set") -1 
fullName.indexOf("ya") 2 
fullName.indexOf(" ") 4 

206 6  Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html


 

The first statement returns 0 because "Maya" occurs at the beginning of the string. The 
word "set" starts at the position 8 1 from the third statement indicates 
that the substring does not exist in the string. Since it performs a case-sensitive search, it 
did not find "Set" starting with an uppercase letter. There are two occurrences of "ya" 
at the position 2 and 14. Since if there is more than one occurrence of the substring in the 
string, the position of the first character of the first matching substring is returned, the 
fourth statement returns 2. As it was mentioned before, a space is considered to be a 
character; therefore, the last statement returns 4 which is the position of the space in the 
string. 

6.4.3 The substring Method 

space, and a first name. How can it be formatted if the full name is given in a first name, a 
space, and a last name? The answer is that the first name and the last name can be extracted 
from the full name and rearranged. In order to extract a substring from a string, a 
substring method can be used. A substring method takes two integers as 
arguments: the position of the first letter of the substring and the position of the last letter 

6.2, this means that the statement 
fullName.substring(8, 11); will return "set". Here are some more examples: 
 
statement return value 
fullName.substring(0, 4) Maya 
fullName.substring(2, 2) an empty string 
fullName.substring(10, 6) runtime error 
fullName.substring(18, 20) runtime error 

The second statement will create a String object with empty string. The third example 
gives a runtime error because the first argument should be the same as or smaller than the 
second. In the fourth example, the arguments should be in the range of 0 16, otherwise 
they are out of bounds and cause a runtime error. 

Obtaining a first name, "Maya" from fullName is not very difficult. A statement 
fullName.substring(0, 4) would work. However, consider when the fullName 
contains a different name, for example, "George Balanchine". 
fullName.substring(0, 4); would return Geor, which is not the first name. How 
can this be changed so that the statement will extract the first name from any full name? 
Notice that the first name and the last name are separated by a space. So, using a position 
of the space spacePos fullName.indexOf(" "), a first name can be easily 
extracted from any full name as in fullName.substring(0, spacePos). Once 
the first name is obtained, how can the last name be extracted? Remember the last name 
starts right after the space, so the position of the first letter of the last name is 
spacePos+1. When does it end? It ends at the end of the string. Since 
fullName.length() returns 16 for "Maya Plisetskaya", which is the position 

econd parameter of 
substring method for extracting a last name. All the pieces are put together in the 
following program: 

6.4  Methods in String Class 207



 

 

Alternatively, without declaring variables, spacePos and len, one could use return 
values from indexOf and length methods as arguments for the substring method. 
 
firstName = fullName.substring(0, fullName.indexOf(" ")); 
lastName = fullName.substring(fullName.indexOf(" ")+1, 
      fullName.length()); 
 

Which way is better? The first option allocates memory for two more variables, 
spacePos and len; however, it does not call indexOf method twice as in the second 
option. For a small example like this, it does not matter which option one uses. For large 
programs, try to remember not to waste too much memory by declaring unnecessary 
variables and also try not to invoke complex methods multiple times. One should always 
be aware of a trade-off between space and time, and create a very good balance between 
the two when developing a large application. 

An example of the input and output from the above program is shown below: 
 
Enter full name, first name followed by last name: Maya Plisetskaya 
Plisetskaya, Maya 

208 6  Strings



While a double equal sign, ==, was used to compare primitive data types, comparing two 
String objects takes extra care. Examine the following code segment: 
 
String str1, str2; 
str1 = new String("saddles"); 
str2 = new String("saddles"); 
System.out.println(str1 == str2); 
 

Is the output true or false? As a matter of fact, it prints false. Why does the 
comparison of str1 and str2 return false? Both String variables seem to contain 
the same value, "saddles", but remember that a String variable contains a reference 
to the String object, not the string itself. Since str1 and str2 are two completely 
different objects, two variables refer to different addresses shown below: 

 

The correct way to compare the contents of String object is to use a String method, 
equals. 
System.out.println(str1.equals(str2)); 

The above statement will output true since both str1 and str2 have the same value. 
The equals method does not compare the references, but rather the contents of the strings 
being referenced. What about when a String object is created by assigning a string 
literal? 
 
String str3, str4; 
str3 = "halters"; 
str4 = "halters"; 
System.out.println(str3 == str4); 
System.out.println(str3.equals(str4)); 
 

Interestingly, both print statements return true. This is because when the value is 
assigned to str4, the Java compiler will search the existing String objects for an exact 
match. If it finds one, which is the case here, a new String object is not created. Instead, 
the variable is assigned a reference to the existing String object show below: 

 

 str1 String 

String 

"saddles" 

  str2 String 

String 

 
"saddles" 

6.4  Methods in String Class 209

6.4.4 Comparison of Two String Objects 



 

 

Of course, if the contents of one String variable is copied to another String 
variable, both variables would point to the same object as shown below because what is 
copied is the address of the object: 
 
String str5, str6; 
str5 = new String("bridles"); 
str6 = str5; 
System.out.println(str5 == str6); 
System.out.println(str5.equals(str6)); 

 
As can be seen in the above contour diagram, both print statements return true. Recall 

that this is exactly the same situation discussed in  Sect. 2.9 , where variables of Number 
objects, num1 and num2, are referencing the same object containing the integer 5 after the 
assignment statement num1 num2 shown in  Fig. 2.24  repeated below: 
 

 

The contour diagram showed that the intended task of copying the integer 5 from num1 
to num2 was not accomplished. In general it is not a good idea to have two variables 
pointing to the same object, unless it is a String object. If the contents of the object num1 

 str3 String 

String 

"halters" 

  str4 String 

 str5 String 

String 

"bridles" 

  str6 String 

main 

num1  

 num2 

Number 

Number 

Number 

x int 5 

x int 0 

Number 

210 6  Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_2#Sec9
http://dx.doi.org/10.1007/978-1-4471-6317-6_2#Fig24


 

is referring to were modified by using a mutator method, the contents of the object num2 
is referring to would be automatically changed because they are pointing to the same object. 
Is it the same way with String objects? If one were to execute the following statement 
to modify the contents of str5, 
str5 = "reins"; 

the Java compiler would search the existing String objects for one containing "reins". 
So far, two objects with "saddles", one object with "halters", and one object with 
"bridles" have been created. Since it does not find an object with "reins", a new 
String object will be created. Therefore, str5 and str6 will be referencing different 
String objects as shown below: 

 

Now, the following statements will both return false: 
 
System.out.println(str5 == str6); 
System.out.println(str5.equals(str6)); 
 

Unlike with num1 and num2, because of the immutable characteristic of String type, 
there is no danger of modifying the content of one object when two String variables are 
referencing the same object. 

6.4.5 The equalsIgnoreCase Method 

Assume that a program to play a Tic Tac Toe game has been written. At the end of each 
game, a user will be asked if he or she would like to play another game. For example, 
consider the code segment in Fig. 6.3: 

 str5 String 

String 

"reins" 

  str6 String 

String 

 
"bridles" 

6.4  Methods in String Class 211



 

 
Fig. 6.3 Use of a method from String class to compare strings 

Because of the !, the condition of the if statement is true when a user does not enter 
yes. Then, the variable selection will be changed to false, and eventually the 
program stops. What happens if a user wanted to play another game and entered Yes 
instead of yes? Because the equals method checks for an exact match, the if condition 
again is true. In case the user types yes in different ways, the if condition can be 
modified to 
 
if(!(response.equals("yes") || response.equals("Yes") || 
response.equals("YES"))) 
   selection = false; 
 

Then, the user can enter "yes", "Yes", "YES" to continue. Actually, there is a way 
to include all the combinations of upper- 
"yEs", "yeS", and "yES". One can compare the content of String objects ignoring 
the case of characters in the string. An equalsIgnoreCase method compares the 
content of a String object to that of another String object ignoring case considerations. 
Two strings are considered to be equal if they are of the same length and corresponding 
characters in the two strings are equal ignoring the case of the characters. In other words, 
the search can be done in a case-insensitive way. One can rewrite the if condition as 
 
if(!response.equalsIgnoreCase("yes")) 
       selection = false; 
 

Given the equalsIgnoreCase method, the user can enter "yes", "Yes", "YES" 

continue. 

6.4.6 The charAt Method 

The charAt method returns the character stored at the specified position in the string. For 
example, if the variable fullName refers to the string "George Balanchine", then 
fullname.charAt(0) will return the value "G" because the character "G" is the first 
character. The statement fullname.charAt(2) will return the value "o" because the 

212 6  Strings



 

index of the character "o" is 2. Suppose one likes to know the number of occurrences of 
certain character in a string, for instance, the character "G" in fullname. Each character 
in the fullname can be checked using the charAt method inside the loop and a counter 
can be incremented. The following code segment counts the number of "G" characters in 
"George Balanchine": 

' 

An output from the above code segment would be 
The name George Balanchine contains 1 character 'G's. 

Notice that it only counts the capital letter "G" and ignores lowercase letter "g". If 
both uppercase and lowercase letters need to be counted, the if condition would look like 

if(letter == "G" || letter == "g") 

and the code will return 2 because one uppercase "G" and one lowercase "g" exist in 
"George Balanchine". A summary of some of the methods in the String class can 
be found in Table 6.1. 

Table 6.1 Various methods in the String class 
 

Method Function preformed Arguments Value returned 
charAt(pos) Returns character at given index int Char 
equals(str) Compares strings String Boolean 
equalsIgnoreCase(str) Compares strings ignoring case String Boolean 
indexOf(str) Returns index of first occurrence of substring String Int 
length() Returns length of string None Int 
substring(pos,pos) Returns substring of string int, int String 

6.5 The toString Method 

The overriding method, toString, receives no parameters and returns a String type. 
Although overriding methods will be discussed further in  Chap. 9 , it is introduced here 
because it is a useful method that helps output data stored in objects. Prior to demonstrating 
how toString works, the PointD class from  Fig. 5.4  in  Chap. 5  is relisted in Fig. 
6.4. 

6.4  Methods in String Class 213

http://dx.doi.org/10.1007/978-1-4471-6317-6_9
http://dx.doi.org/10.1007/978-1-4471-6317-6_5#Fig4
http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 

 
Fig. 6.4 A client program and PointD class 

The main method in Fig. 6.4 creates objects of the PointD class and finds the 
midpoint of the two points. After executing the program, the output is 

The mid-point between (4.0,4.0) and (8.0,7.0) is (6.0,5.5) 

What would happen if the last five print statements of the main method were replaced 
by the following statement? 

214 6  Strings



 

System.out.println(middle); 

This statement is trying to output middle which is a PointD object. Does it output 
the contents of x and y of middle? The answer is no. Instead, the output would look like 
the following: 
PointD@ae3364 

What is this? Is it garbage? The answer to the second question is no, it is not garbage. 
However, it is not very useful information at this level of programming. The 
System.out.println outputs the name of the class PointD, an @ symbol, and the 
memory address of the object in hexadecimal (base 16) representation. Since each time the 
program is run the object might be in a different location in memory, the output may be 
different every time the program is executed. In order to output the contents of x and y, 
one needs to use accessor methods, such as getX and getY as done in Fig. 6.4. However, 

contents of an object? A toString 
method could be written in the PointD class to return a string representation of the 
contents of the data members of an object. The method could return x and y as the location 
of a point in the format (x,y) and would be written as follows: 
 
public String toString() { 
   return "(" + x + "," + y + ")"; 
} 
 

Since the values in x and y are concatenated with strings, they are converted to type 
String and would be returned as a String. Then, in the following statement, the object 
middle can call the toString method 

System.out.println(middle.toString()); 

and the above statement will produce an output of 
 
(6.0,5.5) 
 

Now, if the last five print statements in the main method in Fig. 6.4 were replaced by 
the following code, 
 
System.out.println("The mid-point between " 
  + p1.toString() + " and " + p2.toString() + " is " 
  + middle.toString()); 
 

it would produce the same output as the original code as follows: 
The mid-point between (4.0,4.0) and (8.0,7.0) is (6.0,5.5) 

The usefulness of a toString method will be appreciated more when objects are 
discussed further in  Chap. 9 . 

6.6 Complete Program: Implementing String Objects 

In this section, an application which outputs course information will be developed. The 
program will: 

6.5  The toString Method 215

http://dx.doi.org/10.1007/978-1-4471-6317-6_9


 

 Ask the user for a name of a class. The input consists of a department code, a course 
number, and a course title, such as "CS 360 Theory of Computation". 

 Process the input. 
 Output the title of the class, level of the class, and the department that offers the class. 

An example of the input and output for the Theory of Computation course would be 
 
Enter the course: CS 360 Theory of Computation 
The class, "Theory of Computation", is a 
junior level class offered by the 
Computer Science department. 
 

and the input and output for a Calculus course could be 
 
Enter the course: MA 213 Calculus I 
The class, "Calculus I", is a 
sophomore level class offered by the 
Mathematics department. 
 

When the user provides input, the program will create an object and store pieces of 
information inside of the object. The name of the department will be determined by the 
department code which is the first piece of the input. The course number is the second piece 
of the input, and the course title is the rest of the input. The level of the course will be 
obtained by checking the course number. Figure 6.5 contains the code defining the class 
for a Course object. 

 
// definition of Course class 
class Course { 
   // data member 
   private String department; 
   private String number; 
   private String name; 
   private String level; 
     
   // constructor 
   public Course() {   
      this("", "", ""); 
   } 
 
   // constructor 
   public Course(String dept, String number, String name) {   
      setDepartment(dept); 
      setNumber(number); 
      setName(name); 
      setLevel(); 
   } 
 
   // mutator methods 
   public void setDepartment(String dept) { 
      if(dept.equals("CS")) 

216 6  Strings



 

         department = "Computer Science"; 
      else 
         if(dept.equals("MA")) 
            department = "Mathematics"; 
         else 
            department = "undetermined"; 
   } 
 
   public void setNumber(String number) { 
      this.number = number; 
   } 
 
   public void setName(String name) { 
      this.name = name; 
   } 
 
   public void setLevel() { 
      String str; 
      char num; 
      str = number.substring(0, 1); 
      num = str.charAt(0); 
      switch(num) { 
         case '1': level = "first-year"; 
                   break; 
         case '2': level = "sophomore"; 
                   break; 
         case '3': level = "junior"; 
                   break; 
         case '4': level = "senior"; 
                   break; 
         default:  level = "undetermined"; 
      } 
   } 
 
   // accessor methods 
   public String getDepartment() { 
      return department; 
   } 
     
   public String getNumber() { 
      return number; 
   } 
 
   public String getName() { 
      return name; 
   } 
     
   public String getLevel() { 
      return level; 
   } 
} 
Fig. 6.5 Course class 

6.6  Complete Program: Implementing String Objects 217



 

 

The Course class consists of four data members that are all instance variables, two 
constructors, and mutators and accessors for each data member. The setDepartment 
method accepts a department code as a parameter, then the if-then-else structure determines 
the department, and the value is assigned to the data member. The setLevel method uses 
the value of data member, number, to figure out the level of the class. In order to use a 
case structure, the first character of number is extracted as a String and converted to a 
character since only char, byte, short, or int types can be used in the case statement. 
The charAt method is used to convert a string to a character. It takes a position of a 
character in a string and returns a character. The main program which uses Course class 
is shown in Fig. 6.6. 

 
Fig. 6.6 A client program for Course class 

After the user enters an input, pieces of information are extracted and used to create a 
Course object. Notice that in order to include a double quote in a string literal, a backslash 
is used as in \", which was discussed in the output section of  Chap. 1 . This application 
can be extended to accommodate more departments and graduate level classes. Course 
objects can also be stored in an array for further manipulation which will be discussed in  
Chap. 7 . 

218 6  Strings

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 

6.7. Summary 

 A String object can be created by using new, = += operators. 
 String objects are immutable, which means their contents cannot be changed. 
 When a String object is created by assigning a string literal, the Java compiler will 

search the existing String objects for an exact match. If it finds one, the variable is 
assigned a reference to the existing String object. 

 When a String object is created using the keyword new, a new object will be 
created even if there already exists an object with the same string value. 

 Individual characters of a string are numbered starting from 0. 
 When an equals method is applied to String objects, it compares the contents of 

the objects being referenced. 
 To compare the contents of String objects, a == operator cannot be used since it 

compares the references to objects. 
 Some String methods include indexOf, length, substring, equals, 

equalsIgnoreCase, and charAt. 

6.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 
1. Identify the errors in the following code segments: 

  A.   String text1; 
 text1 new String(girth); 
 

*B.   String text2; 
 text2 new Text("shedding blade"); 
 

  C.   String text3; 
 text3 new Sting("grazing muzzle"); 
 text3.indexOf("muzz"); 

   text3.length(5); 
 

        D. String text4 = String("Feeders"); 
System.out.println(text4); 

 
E. String text5 = "Stall Fork"; 

String text6 = "Stall "; 
String test7 = text5 – text6; 
System.out.println(text7); 
         

F. String text8 = 'Hey Bags'; 
System.out.println("text8 is " + text8); 

 

6.7  Summary 219



 

  A. org.substring(5, 8) 
*B. org.length() 
  C. org.substring(9, 22) 
*D. org.substring(17, 19) + org.substring(20, 22) 
  E. org.substring(15, 16) + org.substring(18, 19) 
    + org.substring(13, 14) 
    + org.substring(org.length()–5, org.length()) 

  F. org += org 
 

3. Draw contour diagrams to show the state of execution after the execution of the 
following code segment: 

 
  String s1, s2, s3, s4; 
  s1 = new String("stirrup irons"); 
  s2 = "stirrup irons"; 
  s3 = new String("stirrup irons"); 
  s4 = s2; 
 

4. Determine the output from the following code segment: 
 
  String star; 
  star = "*"; 
  int i; 
  for (i=0; i<5; i++) { 
        System.out.println(star); 
       star += star; 
  } 
 

5. Write a program that asks the user for a positive integer, receives input as a 
String, and outputs a string with commas in the appropriate places. For example, 
if the input is 

  1000000 

then the output is 
  1,000,000 

 
6.  Repeat the previous exercise using dialog boxes for input and output. An input 

dialog box is used to input a positive integer. Then, a message dialog box displays 
a string with commas in the appropriated places. 

 
7.   Write a program for a given word and string that will 

a. Check if the word is in the string. 
b. Count all occurrences of the word in the string. 
c. Remove all occurrences of the word from the string. 

 

 

220 6  Strings

2. Determine the return value for each of these expressions, assuming the following 
declaration: 

 
  String org; 
  org = new String ("American Quarter Horse Association"); 
 



 

*8. With a given String object called org containing a value "American 
Quarter Horse Association", write a program to output an abbreviation 
of the string, AQHA. 

 
 9. Modify the previous program to ask a user for a name of his or her organization 

and print an abbreviation of the name. Realize that the name of the organization 
consists of any number of words. 

 
10. Repeat the previous exercise using dialog boxes for input and output. An input 

dialog box is used to input a name of the organization. Then, a message dialog 
box displays the abbreviation of the name. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 221



 

7 

Arrays 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

Arrays and array processing are illustrated in the chapter starting with declaration, access, input and output. 
In addition to simple processing, the passing of an array to and from a method is demonstrated. Other 
processing includes reversing, searching (sequential and binary), and sorting an array using the bubble sort. 
Also, two-dimensional arrays and arrays of objects are introduced, along with a complete program. 

Keywords 

One and Two dimensional Arrays; Sequential Search, Binary Search; Bubble Sort. 

7.1 Introduction 

Similar to a string which can store a group of characters, an array can be used to store 
numbers of type int or double. Not only can arrays store numbers, but they can also be 
used to store strings, objects, and even other arrays. Arrays are extremely useful to store 
data that needs to be processed more than once, such as data that needs to be searched or 
sorted. 

Related to an array are the predefined Array and Vector classes which are beyond 
the scope of this text, because before learning how to use these classes, it is good to 
understand how to input, process, and output data using arrays. This chapter will first 
introduce the reader to declaring an array, and as in the past the best way to learn is to get 
started with an example. 

7.2 Array Declaration 

When declaring an array, the type of data that will be stored in the elements of the array 
must be specified. For example, to declare a memory location to store a reference to an 
array of type int called number, one would write the following: 
int number[]; 

Alternatively, and used more often, the above could be declared as 
int[] number; 

This reserves a memory location called number, the square brackets indicate that it 
will be an array, and the word int indicates that each element of the array can contain an 
integer. Initially, the memory location number will contain a null reference, which 
means it does not initially reference anything, as shown below. 

 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_7

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_7&domain=pdf


 
 

 
In order to create an array of three elements, the following instruction is needed: 

number = new int[3]; 

Although the word new has also been used to create a new object, here it is used to 
create a new array. The number in the square brackets indicates the length of the array, in 
this case three elements. In this example, the first element is number[0] and the last one 
is number[2]. As with simple variables, the contents of the array are initialized to 0, but 
as in  Chap. 1  this text will assume that the contents are indeterminate. Lastly, a reference 
to the array is placed into the memory location number via the assignment symbol and is 
represented as an arrow in the following diagram: 
 

 

Alternatively the previous two lines could be combined as follows: 
int[] number = new int[3]; 

Although this takes up less space, the other two statements will be used more frequently 
to reinforce the concepts of declaration and allocation. As another alternative, a constant 
can be declared and used in the new statement. The advantage to this technique is that 
when iterating in a loop to process or output an array, the same constant can be used both 
to declare the array and as the end value of a for loop as will be seen in the next section: 
 
final int ARRAYSIZE = 3; 
int[] number; 
number = new int[ARRAYSIZE]; 
 

As another alternative, an array can be declared and initialized using the following 
technique: 
int[] number = {0,0,0}; 

While this is somewhat useful for small arrays, it would be impractical to initialize 
hundreds of elements. Though often smaller arrays will be initialized this way in order to 
save space, an alternative is presented in the next section. 

7.3 Array Access 

Assuming that an array has been created at the beginning of the program using the 
statements in the preceding section, the array can now be accessed. In order to access an 
individual element of an array, the name of the array is followed by the index of the element 

number null 

number 
--- 

--- 

--- 

[0] 

[1] 

[2] 

224 7  Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

to be accessed. For example, 
number[0] = 5; 

indicates that the 0th element of the array, the first element, takes on the value of 5. This 
is illustrated in the following diagram: 

 

 

Be sure not to confuse the index, 0, with the contents of the array, 5. Notice that the 0th 
element of the array now contains the number 5. Should the contents of the first element 
need to be copied into the third element, it could be accomplished as follows: 
number[2] = number[0]; 

and would be represented as shown below: 
 

 

When accessing various elements of an array, be careful not to try to access or alter any 
elements outside the range of the array. In the example above, do not try to access 
number[ 1] or below, or try to access number[3] or above, because an execution 
error will occur. 

Although the accessing of individual elements can be useful in particular instances, it is 
often more practical to be able to access all of the array elements. As an example, what if 
the elements of the array need to be initialized to zero? If only three elements need to be 
initialized, the technique illustrated at the end of the previous section could be used, but 
what if instead of three elements, one hundred elements needed to be initialized? Clearly, 
listing out one hundred individual zeros would be impractical. Instead, as mentioned 
previously in  Chap. 4 , this can be accomplished by using an iteration structure. Though 
any of the loop structures can be used, under different circumstances some iteration 
structures are better choices than others. 

For example, if each element of the above array needs to be initialized to zero, which 
loop would be the best choice? Since there is a fixed number of elements to be initialized, 
then a fixed iteration loop structure could be used, specifically the for loop as shown 
below: 

number 
[0] 

[1] 

[2] 

5 

 --- 

 --- 

number 
[0] 

[1] 

[2] 

5 

 --- 

5 

7.3  Array Access 225

 

   number[i] = 0; 
 

 
for(int i=0; i<3; i++) 

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 

Notice that the loop control variable is of type int and iterates from 0 to 2 
corresponding to the three elements of the array. For each iteration of the loop, the number 
0 is placed into the ith element of the array. As when accessing individual elements of an 
array, be careful not to have the loop try to access elements that are outside the range of 
the array, such as number[ 1] or number[3] because again an execution error will 
occur. 

Assuming the declaration of the constant ARRAYSIZE in the previous section, the 
above code segment could be rewritten as follows: 
 
for(int i=0; i<ARRAYSIZE; i++) 
   number[i] = 0; 
 

Another alternative to the programmer-defined constant ARRAYSIZE is to use the 
public constant length associated with the array as shown in the following code segment: 
 
for(int i=0; i<number.length; i++) 
   number[i] = 0; 
 

Although this would not be helpful in creating the array, this is otherwise helpful 
because one would not have to remember the name of the programmer-defined constant. 
Also notice that a set of parentheses does not appear after the word length as it does with 
strings, as in .length() as discussed in  Chap. 6 . The reason is that .length() is a 
method with an empty argument list for use with strings, whereas .length is a public 
constant associated with an array. At first it can be a little hard to distinguish between the 
two, but with time and practice, it becomes easier to remember. 

In both cases, whether using either the programmer-defined constant or the public 
constant, they can be convenient when inputting, processing, or outputting the contents of 
an entire array. However, there are many times when an array is not entirely filled, so using 
either type of constant is not as useful as one might think as shown in the next section. 

7.4. Input, Output, Simple Processing, and Methods 

Although initializing an array is useful in some circumstances, more often data will need 
to be input by the user. The data input into the array is often processed and the array might 
subsequently be output. The first subsection examines the input, the second shows how to 
output an array, the third demonstrates some simple processing, and the fourth subsection 
illustrates passing an array to and from a method. 

7.4.1 Input 

As in the preceding section, assume that the following declarations are made at the 
beginning of the program and prior to the following input code segments: 
 
int[] number; 
number = new int[3]; 

226 7  Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_6


 

 

then the for loop is again the logical choice. As with input of data into simple variables, 
a prompt should be used: 
 
for(int i=0; i<3; i++) { 
   System.out.print("Enter integer number " + (i+1) + ": "); 
   number[i] = scanner.nextInt(); 
} 
 

Note that the loop control variable is part of the prompt to help the user know what 
number is being entered. Although the array elements are numbered 0 to 2, the i+1 in the 
prompt allows the user entering the data to think in the more familiar terms of 1 to 3. 
Further note that the i+1 is in parentheses so the plus sign will be treated as addition 
instead of concatenation. Lastly, since the value of i+1 in the prompt is not assigned back 
into i, the value of the loop control variable and the index for the array is not altered. The 
format of the prompts with sample input is as follows: 
 
Enter integer number 1: 5 
Enter integer number 2: 7 
Enter integer number 3: 10 
 

Of course as discussed in  Chap. 4  and assuming the declaration of the integer variable 
n, a user could be prompted for the number of integers to be entered as in the following: 
 
System.out.print("Enter the # of integers to be entered 1 - 3: "); 
n = scanner.nextInt(); 
for(i=0; i<n; i++) { 
   System.out.print("Enter integer number " + (i+1) + ": "); 
   number[i] = scanner.nextInt(); 
} 
 

However, what if the user needs to enter fewer items into the array than were initially 
allocated? In the above example, if the user only needs to enter two items, then only the 
last element would go unused. Further, what if an array were declared to hold 1,000 
elements, but the user only needed to enter 20 items? The result would be that there would 
be 980 empty elements in the array, which would be a waste of memory. More problematic 
is what if the user of the above code segment needed an array of size 100 rather than an 
array of size 3 elements? Although the program could be modified and recompiled, this is 
not a viable option for a user who does not know how to program. Fortunately, there is a 
solution to this problem. The following declaration of the variable to hold the reference to 
the array would still occur at the beginning of the program as follows: 
int[] number; 

Then, instead of having the allocation of memory using the new statement and a 
constant prior to the input code segment, it could appear after the prompt for the number 
of items to be entered into the array as follows: 
 
System.out.print("Enter the # of integers to be entered: "); 
n = scanner.nextInt(); 

7.4  Input, Output, Simple Processing, and Methods 227

 
If there are exactly three items that need to be input into the three element array above, 

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

number = new int[n]; 
for(i=0; i<n; i++) { 
   System.out.print("Enter integer number " + (i+1) + ": "); 
   number[i] = scanner.nextInt(); 
} 
 

Notice that the reference to the array is created after the prompt and input for the number 
of integers to be entered into the variable n. The advantage to this technique is that no 
wasted memory locations are declared. More importantly there are enough elements in the 
array for the user to enter the data and the user is not limited to a fixed number of data 
items. 

However, as discussed in  Chap. 4 , a problem with the above code is what if the user 
miscounts the number of data items to be entered and enters the wrong number of items to 
be input? Although the array will be declared to the size entered, the user might end up 
having more data to enter than was allowed for in the array or the user might have less data 
than expected and the for loop might iterate more times than needed. 

As before, a better solution might be to use a sentinel control loop. If one uses the code 
from  Chap. 4  and alters it to substitute an array element instead of a simple variable, one 
might write something similar to the following code segment. However, there is still a 
problem with this code segment: 
 
// *** Caution: Incorrectly implemented code *** 
i = 0; 
System.out.print("Enter a non-negative integer "); 
System.out.print("or a negative integer to stop: "); 
number[i] = scanner.nextInt(); 
while(number[i] >= 0) { 
   i++; 
   System.out.print("Enter a non-negative integer "); 
   System.out.print("or a negative integer to stop: "); 
   number[i] = scanner.nextInt(); 
} 
 

As indicated by the comment prior to the code, the above code segment is implemented 
incorrectly. Although it appears to input all the valid data into the array, what is the 
problem? The problem is that the sentinel value is also input into the array. While this is 
not a major issue, the array would have to be declared to be one element larger to 
accommodate the sentinel value. Further, one would need to write all subsequent code to 
not process or output the sentinel value, which could be a potential source of logic errors. 

The best solution is not to put the sentinel value in the array in the first place. How could 
this be done? The problem is that both input statements put the values directly into the 
array. As an alternative, the value could be input to a temporary variable and checked to 
see whether it is a sentinel value before putting it into the array. However, instead of adding 
a couple of extra if statements, note that the while loop already checks for the sentinel 
value. If the value in the temporary variable is not a sentinel value, the body of the loop is 
entered and the value in the temporary variable can be copied into the array. On the other 
hand, if the value in the temporary variable is a sentinel value, the loop is not executed and 
the sentinel value is not placed in the array. A good name for the temporary variable is 

228 7  Arrays

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

temp as in the following segment: 
 
i = 0; 
System.out.print("Enter a non-negative integer "); 
System.out.print("or a negative integer to stop: "); 
temp = scanner.nextInt(); 
while(temp >= 0) { 
   number[i] = temp; 
   i++; 
   System.out.print("Enter a non-negative integer "); 
   System.out.print("or a negative integer to stop: "); 
   temp = scanner.nextInt(); 
} 
 

However, what is preventing the user from entering more data than there is space for in 
the array? Assume that the array is fixed at a particular size as in the following declaration 
and allocation: 
 
final int ARRAYSIZE = 10; 
int[] number; 
number = new int[ARRAYSIZE]; 
 

Note that a constant is being used for the allocation of the array. The while statement 
in the above code segment can now be altered using the constant to ensure that the user 
does not enter more data than was allocated for the array as shown below: 
while(temp >= 0 && i < ARRAYSIZE) { 

or alternatively 
while(temp >= 0 && i < number.length) { 

Whereas the previous example using the for loop had the advantage that the array was 
the exact size the user wanted, the disadvantage was that the user might miscount the 
number of data items to be entered. However, the advantage of the sentinel controlled loop 
above is that it does the counting for the user, but the disadvantage is that it is still using a 
fixed-
then same problem could occur as before and the user might miscount the number of items 
to be input. Further, the code in the sentinel controlled loop is doing the counting of the 
number of items, and the array has to be declared before the data is input. 

In the field of computer science, there are always trade-offs, and it is up to the designers 
of the algorithms to determine the best possible solution to the problem at hand. As will be 
seen in subsequent courses in computer science, the concept of a linked list is helpful in 
solving the above problem, but it should be noted that that solution is not without its own 
set of limitations. Another possible solution to the current problem, when there are more 
data items to be entered into an array than has been allocated, is to have the program 
allocate an array of a larger size, say twice as large, then copy the contents of the old array 
into the new one and allow the user to continue to enter data into the new array. Although 
this solution might slow down the processing, it does avoid the consequences of an array 
that is not large enough and this is left as an exercise at the end of the chapter. However, 

7.4  Input, Output, Simple Processing, and Methods 229



 
 

in this text when using the sentinel controlled loop, the emphasis will be on selecting the 
right size array in the first place. 

7.4.2 Output 

The output of an array could be done as the data is input, but then the output would be 
intermixed with the input. A better solution is to output the contents of the array after all 
the data has been input. But how does one know how many data items have been input 
when using a sentinel controlled loop? The answer is with the variable i used in the 
previous code segment. Since a fixed number of values have been input, a for loop is the 
best choice for output. The for loop could be written to iterate i times, but since i is 
typically used as a loop control variable, it might be better to copy the value in i to another 
variable such as n and then have the for loop reuse the variable i as a loop control variable 
and iterate n times. It is also helpful to add a column heading prior to the output of the 
contents of the array as shown in the following code segment: 
 
n = i; 
System.out.println(); 
System.out.println("Integers"); 
System.out.println(); 
for(i=0; i<n; i++) 
   System.out.println("   " + number[i]); 
 

Note that a blank line is output both before and after the column heading, Integers. 
Assuming some values have already been input to the array, the output would look as 
shown below: 
 
Output 
 
Integers 
 
   5 
   7 
   9 
 

Also note that the underlined word Output is not part of the output from the code 
segment but rather helps one see where the output begins and the blank line both before 
and after the column heading. 

7.4.3 Simple Processing 

What if the data needs to be modified prior to output? As a simple example, what if the 
output was to be the original numbers doubled? There are two ways that this can be 
accomplished. The first is to just output the number doubled but not alter the contents of 
the array as follows: 
 
for(i=0; i<n; i++) 
   System.out.println(" " + (number[i] * 2) ); 
 

230 7  Arrays



 
 

However, what if the specifications actually indicate that the contents of the array should 
be altered and then output? This can be accomplished by the following code segment: 
 
for(i=0; i<n; i++) 
   number[i] = number[i] * 2; 
for(i=0; i<n; i++) 
   System.out.println(" " + number[i] ); 
 

Notice that in this instance the contents of the array are actually altered in the first loop 
and then output in the second loop. However, as an aside, can this be done in only one 
loop? The answer is yes as can be seen below: 
 
for(i=0; i<n; i++) { 
   number[i] = number[i] * 2; 
   System.out.println(" " + number[i]); 
} 
 

Clearly, the second solution is the better of the two. Although there will be times when 
there is no choice but to have a separate loop for processing the data in an array, as will be 
seen in the next section, it is usually better to combine the two tasks into one loop, if at all 
possible. 

Returning to the previous example of not altering the array and only modifying the 
output or writing code to actually alter the array prior to output, which one is the correct 
solution to the problem? It depends upon the specifications for the program and how the 
program might be modified in the future. If the specifications require only the output of the 
new numbers and the array needs to retain the original values for subsequent processing, 
then the first version is the preferred method. However, if the specifications indicate that 
the numbers are to be altered and subsequent processing depends upon the altered numbers, 
then the second way is better. If it is unclear, it is usually better to ask to determine which 
of the two is the best way to solve the problem, and in this text if it is not specified, it 
should be assumed that the contents of the array ought to be altered. 

7.4.4 Passing an Array to and from a Method 

An array can be passed to and from a method fairly easily. For simplicity, assume there is 
a 3-element array to be input and output. From the main program, one method could be 
called to input data into the array and another method to output the array as follows: 
 
int[] number; 
number = inputNumber(); 
outputNumber(number); 
 

The call to inputNumber will prompt for and input integers into a local 3-element 
array as shown below: 
 
public int[] inputNumber() { 
   int[] num = new int[3]; 
   for(int i=0; i<num.length; i++) { 
      System.out.print("Enter an integer: "); 

7.4  Input, Output, Simple Processing, and Methods 231

 

      num[i] = scanner.nextInt(); 
   } 
   return num; 
} 



 

 
Since the array is allocated locally, there is no reason to allocate an array in the main 

program. At the end of the method, a reference to the array is returned to the calling 
program. Note that a copy of the entire array is not returned, but only the reference. The 
variable num in the method points to the array, a copy of the reference is passed back to 
the main program, and the copy is assigned to the variable number as shown in the 
following diagram: 

 

 

Just as a reference to an array can be sent back from a method, it can be sent to a method 
too. Again, a copy of the entire array is not passed to the method outputNumber, but 
only the reference is sent to the method via a parameter: 
 
public void outputNumber(int[] num) { 
   for(int i=0; i<num.length; i++) 
      System.out.println(num[i]); 
} 
 

Since arrays can become quite large, sending and returning only the reference makes it 
very practical. 

7.5 Reversing an Array 

As an example of a type of processing that can be done with an array, what if one wanted 
to output the integers that were input in reverse order? Although one does not need to 
reverse the contents of an array very often, it does introduce a number of interesting ideas 
that pertain to processing data in an array and will help in subsequent sections. There are 
two ways that this reversing can be accomplished. The first is to input the values using a 
loop such as the sentinel controlled loop in the previous section and then output the contents 
of the array in reverse order. How can this be accomplished? Instead of starting at zero, the 
loop would need to start at the opposite end of the array. But where should this be? If the 
array is called number as in the last section and instead its length is 8, should it start at 
position 8, ARRAYSIZE, or number.length? No, because recall that an 8-element 
array would be numbered from 0 to 7, not 1 to 8. So should it start from position 7, 
ARRAYSIZE-1, or number.length-1? That depends on how many integers are in the 
array. If there are only six integers in the array, then it should not start from position 7, but 
rather from position 5. Why not 6? For the same reason just mentioned, if there are six 

num 
[0] 

[1] 

[2] 

number 

3 

  5 

7 

232 7  Arrays



 
 

integers in an array, they would typically occupy elements 0 to 5. So if there are n integers 
in an array, the output should start from position n-1 as shown in the following code 
segment: 
 
for(i=n-1; i>=0, i--) 
   System.out.println(number[i]); 
 

Notice that the loop control variable starts at n-1, the loop continues while i is greater 
than or equal to 0, and that i is decremented each time through the loop. Although this 
would output the array in reverse order to the user, have the values in the array changed? 
The answer is no. So what if instead of outputting the array in reverse order, one actually 
wanted to reverse the contents of the array? One way to accomplish this task is to declare 
another array and then copy the contents of the first array into the second array in reverse 
order. However, what is a possible drawback with this solution? The problem is that it takes 
two arrays or twice as much memory. In this example, it would require two 10-element 
arrays for a total of 20 elements. For a small array this is not much of a problem, but for a 
very large array, this would entail a substantial amount of memory. Instead, the solution is 
to reverse the array in place, thus using only one array. 

The algorithm takes the first data item and the last data item and swaps them. Then, the 
second data item and the second to the last data item are swapped, and so on as shown in 
Fig. 7.1. 
 

 
Fig. 7.1 Reversing an array 

Again, one needs to be careful not to swap elements that do not contain values. When n 
equals 6, element 0 is swapped with the n-1 element, then element 1 is swapped with the 
n-2 element, and so on. The loop control variable can be used for elements 0, 1, and 2, 
but how does one access elements n-1, n-2, and n-3? One solution is to use a second 
variable such as j so that when the loop control variable, say i, is incremented, the variable 
j is decremented. But are two variables really needed? If one thinks about it, one should 
be able to see a pattern in accessing both ends of the data. When i is zero, the contents of 
location 0 needs to be swapped with location n-1. Although a little difficult to see here, 
in the first instance i is equal to 0, so n-1 could be thought of as n-i-1. However, 
sometimes a pattern is difficult to see in the first instance, but can be seen a little better in 
subsequent instances. Consider the next case when i is 1, it needs to be swapped with n-

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

   2 
   3 
   5 
   6 
   7 
   8 
--- 
--- 

number 

7.5  Reversing an Array 233



 
 

2. Since i would be equal to 1, n-2 could again be thought of as n-i-1. So instead of 
using two indexes, only one index is needed, which is a little more elegant. 

Lastly, the matter of the swap needs to be considered. If the contents of two simple 
variables need to be swapped, how can this be accomplished? When the value of one 
variable is transferred to another variable, the previous contents of the variable being 
swapped into are destroyed, so the previous contents need to be stored in a temporary 
memory location, often called temp. First the contents of the variable x need to be put 
aside in the temporary memory location temp using a temp x; instruction. 

 

 

Once the contents of variable x have been moved into temp, the contents of variable y 
can be copied into the variable x using an x y; instruction. 

 

Now that the contents of y have been copied into x, the contents of temp can be copied 
into the variable y using a y temp; instruction. 

 

The whole sequence of instructions is as follows: 
 
temp = x; 
x = y; 
y = temp; 
 

So how can this be used with an array? Instead of using simple variables, the 
corresponding location of the array can be substituted using the variables i and n-i-1 as 
discussed above and shown below: 
 
temp = number[i]; 
number[i] = number[n-i-1]; 
number[n-i-1] = temp; 

x 

y 
temp 

      5 

      7 
      5 

x 

y 
temp 

      7 

      7 
      5 

x 

y 
temp 

      7 

      5 
      5 

234 7  Arrays



 

 

the execution of the three instructions is shown in the dashed boxes above each array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.2 Swapping items in an array 

 
Putting it all together with the loop results in the following code segment. However, one 
needs to be careful when writing the code to solve this problem. For example, can the 
error in the following code segment be spotted?  
 
  // *** Caution: Incorrectly implemented code *** 
   for(i=0; i<n; i++) { 
      temp = number[i];  
      number[i] = number[n-i-1]; 
      number[n-i-1] = temp; 
   } 
 

The swapping is okay, but what about the number of times the for loop iterates? At 
first one might think that the for loop is iterating one more or one less time than it should, 
but look at the code again. The problem is that after i gets halfway through the loop and 
has swapped the first half with the second half of the array, the loop continues and swaps 
the second half back with the first half of the array. This can be a tough problem for a 
beginning programmer to detect, because after supposedly reversing the array, and 
subsequently outputting the array, there appears to be no change in the order! Rather, the 
loop should only go halfway through the array and then stop. This makes sense when there 
is an even number of values in the array, but what if there is an odd number of items in the 
array as in Fig. 7.3? 

 
 

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

number 

temp 2 

     temp = number[i]; 

7 

3 

5 

6 

8 

---

2 

---

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

number 

temp 2 

 number[i]=number[n-i-1]; 

7 

3 

5 

6 

8 

    --- 

8

    --- 

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

number 

temp 2 

    number[n-i-1]=temp; 

7 

3 

5 

6 

     2 
    --- 

     8 

    --- 

7.5  Reversing an Array 235

 
Assuming i is equal to 0 and n is equal to 6, then going from left to right in Fig. 7.2 



 
 

 

 

 

 

 

 

 

 

 
Fig. 7.3 Reversing an odd number of items in an array 

Certainly, one does not need to swap the center item with itself. If there are 7 items in 
the array and n equals 7, then 7 divided by 2 is 3 3.5? No, recall that when an 
integer is divided by an integer, the answer is an integer. The result is that the loop will 
iterate 3 times and swap the first three data items with the last three in the array. The correct 
code can be found below: 
 
// *** Correctly implemented code *** 
for(i=0; i<n/2; i++) { 
   temp = number[i]; 
   number[i] = number[n-i-1]; 
   number[n-i-1] = temp; 
} 
 

After reversing the array, it can be output. Since the output looks the same as when just 
outputting the array in reverse order without actually reversing the contents of the array, 
the difference between the two ways of approaching the problem might seem subtle to a 
beginning programmer. However, that is exactly the point that is trying to be made in the 
previous section. Just because the output might look the same does not mean the code has 
been written correctly. It is important to understand the specifications before attempting to 
write a program. Does the user or instructor just expect a listing in reverse order, or is there 
a plan to have subsequent code process the data in reverse order? Of the two, the second 
example is probably the better choice because if any subsequent code expects the array to 
be modified, it is important to actually reverse the array. A code segment illustrating the 
input, reversing, and output is given in Fig. 7.4. 

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 

number 

7 

3 

5 

6 

    8 

    9 

2 

---

236 7  Arrays



 
 

 
Fig. 7.4 Code segment to input, reverse, and output 

As can be seen, the segment uses a sentinel controlled loop to count and input the 
integers into the array and then copies the number of integers into n. It then reverses the 
integers in the array and lastly outputs the contents of the array. 

7.6 Searching an Array 

One of the benefits of storing data on a computer is that it can easily be retrieved. For 
example, once data has been placed into an array, it can subsequently be searched to see if 
a particular item is in the array. There are two common ways to search for data in an array, 
the sequential search and binary search. 

7.6.1 Sequential Search 

A sequential search is just as it sounds; the data in the array is searched in sequence from 
the beginning of the array to the end. It is similar to an instructor hunting for a particular 
exam in a stack of random exams on a desk, where he or she would start at the top of the 
pile of exams and proceed to the end. If he or she were lucky, in the best-case scenario, it 
might be the first one on the pile of exams. In the worst-case scenario, it would be the last 
one in the pile of exams. If there are n exams in the stack, it could take 1 to n times of 
picking up and looking at the exam to determine whether it is the correct one. However, 
usually it will be somewhere in between the first and last exams, and one could say that on 
average it will take n/2 times to find the exam. Of course, once the exam is found, there 
is no need to continue looking through the pile of exams and the searching can stop. 

7.5  Reversing an Array 237



 
 

is not in the pile of exams, so in that case it is not found. 
This is essentially the algorithm that can be used when performing a sequential search 

on an array. Searching through the pile of exams is equivalent to searching through an array 
which can be accomplished using a loop. If the number of items in the array is known, such 
as n, a for loop could be used. Then, each element in the array can be compared to the 
item being searched. However, once it is found, there is no reason to continue searching 
through the array, so the loop should stop before reaching the end. Since there are two 
reasons why the loop might stop, the for loop might not be the best choice. Although a 
for loop could be used, the code for it is rather unstructured and the while loop is 
probably the better choice. Once the item being searched for is found, a boolean flag can 
be set and checked in the while loop to indicate that further iteration is no longer 
necessary. What if there are duplicates in the array? The iteration would need to continue 
and the possibility of searching for duplicates is left as an exercise at the end of the chapter. 

The name of the flag variable could be anything, but since it is indicating whether or 
not the item was found, the variable name found is a good one. Before entering the loop, 
the item has not been found, so the found flag can be initially set to false. The loop can 
then search until either the item is found or all the values in the array have been searched. 
Then, for each iteration of the loop, an if statement can compare whether the current item 
in the array is equal to the item being searched, and if so, the found flag is set to true. 
Otherwise, the found flag remains false. Assuming the array already contains various 
values, the code in Fig. 7.5 prompts for and inputs the value to be searched. 

 
Fig. 7.5 Sequential search 

When the execution of the code segment is complete, if item was found, then the 
found flag will be true and i will indicate the location it was found. If the item was not 
found in the array, the found flag will remain false. Note that an && is used in the 
while statement, because only while both i is less than n and found is false should 
the loop continue to iterate. Also notice that !found is used in the while loop instead of 
found ! true or found == false. Since the found flag is a boolean variable, 
it will contain either true or false, so it is not necessary to compare it to true or 
false. Likewise, in the if statement after the while loop found == true is not used 
because if the found flag is true, it is unnecessary to compare it to true. 

238 7  Arrays

then searching would continue until the end of the stack. Lastly, it is possible that the exam 



 

A sequential search is useful when items are in random order, but what if the data to be 
searched are not in random order? Returning to the pile of exams, what if they were in 

particular exam in question? 

last name began with the letter T, it would 
not make sense to start at the top and work their way down. Although unlikely, it is possible 
that the stack of exams contains only people whose last names begin with the letters S 
through Z, so starting at the other end might not be a good idea either. 

The safe route is to just split the stack of exams into two halves and determine whether 
the Ts are in the top half or the bottom half. In the case where the names on the exams 
begin with A through Z and in the middle is a name starting with the letter M, an exam 
with a name beginning with the letter T would be in the bottom half. In the case where the 
stack contains names that start with the letters S though Z, and if the name on the exam in 
the middle starts with the letter X, then the exam with the letter T would be in the top half. 
In either case, with just one comparison, the task of searching has been cut in half. 

The beauty of this technique is that after the stack of exams has been cut in two, the 
process can be repeated. Using the first example with the second half of exams from M 
through Z, it could then be cut in half again, where maybe the middle exam has a name that 
starts with the letter S and again the letter T would be in the second half. When the half 
with names starting with S through Z is cut in half again, and assuming the middle exam 
has a name that starts with the letter V, then the letter T would be in the first half. If at any 
time when the stack is cut in half and the exam being searched for happens to be in the 
middle, the processing would stop. This process would continue until there is only one 
exam left, and if it is not the exam being searched for, then the exam is not found. 
Consider the code segment in Fig. 7.6 which searches any array of integers. Notice that i 
is the lower index, j is the upper index, and mid is the middle position of the array to be 
searched. 
 
System.out.print("Enter the item to be searched for in the array: ");
item = scanner.nextInt(); 
i = 0; 
j = n - 1; 
mid = (i + j) / 2; 
while(i <= j && item != number[mid]) { 
   if(item < number[mid]) 
      j = mid - 1; 
   else 
      i = mid + 1; 
   mid = (i + j) / 2; 
} 
if(item == number[mid]) 
   System.out.println(item + " was found at location " + mid); 
else 
   System.out.println(item + " was not found"); 
 
Fig. 7.6 Binary search 

7.6  Searching an Array 239

7.6.2 Binary Search 



 
 

 

Should item be the middle integer, then it is found. Otherwise, depending on if the 
item is less than or greater than the middle integer, j or i takes on the value of mid - 
1 or mid 1, respectively. The search continues until item is found in the middle or i is 
greater than j indicating that item is not in the array. 

Note that whereas the sequential search can work with either unsorted or sorted data, 
the binary search can only work with sorted data. Further, if the data is unsorted, then only 
the sequential search can be used. 

7.6.3 Elementary Analysis 

Although at first the binary search might seem a little slow, it really is quite fast. For 
example, to make it simple, assume that there are 64 items (which is a power of 2) to be 
searched and the item is not in the list. When the array of 64 is cut in half, there would be 
32 items to be searched. When 32 is cut in half, there are 16 to be searched, and 16 cut in 
half is 8. Half of 8 is 4, half of 4 is 2, and half of 2 is 1. The original stack of 64 is cut in 
half 6 times. That means with just 6 comparisons, the item would be found or not found in 
the worst-case scenario. With a sequential search, the worst-case scenario would take 64 
times, where 6 is clearly better than 64. 

When one is first learning about logarithms, they are usually in base 10. Recall that 103 
is equal to 1,000 and log10
and if one thinks about it, 26 is equal to 64 and log2 64 equals 6. One will find in computer 
science that many algorithms will be binary in nature so when one sees a logarithm, it will 
usually be log2. Further, should the subscript be missing, then in the field of computer 
science, it can usually be assumed that the default is log2. 

Returning back to the binary search, it was seen that a group of 64 could be searched in 
6 comparisons. If 1,024 integers were in an array, it would take just 10 comparisons in the 
worst case to find the item being searched, since 210 equals 1,024 and log2 1,024 equals 10. 
This is much better than the sequential search which would take 1,024 comparisons to find 
an integer in an array in the worst case, and on average it would take 1,024/2 times which 
equals 512. What if the number of items being searched is not a power of two? For example, 
what if there were 1,000 items to be searched? The answer is that it would be no worse 
than the next highest power of two, which in this case would be 1,024. 

So far, only concrete numbers have been used, but can this idea be generalized to an 
unknown number of items in an array? Yes, assume that there are n items in an array. If a 
sequential search were used, then the average case would be n/2 and the worst case would 
be n, whereas with the binary search the worst case would be log2 n. This concept of 
comparing algorithms is a very important one in the field of computer science, where the 
relative speed of algorithms can be compared with each other. A common notation is to 
use the capital letter O to compare the relative order of magnitude of various algorithms, 
and the use of the capital letter O is called Big O notation (pronounced Big Oh). So in the 
worst case the sequential search is said to be of order n or O (n) and in the worst case the 
binary search is said to be of order log n, or O (log n). Although introduced here and used 
on occasion elsewhere in this text, this concept becomes much more frequent in subsequent 
courses such as a second course in computer science that examines data structures or a 
course on advanced data structures and/or algorithm analysis. 

240 7  Arrays



 
 

7.7 Sorting an Array 

As has been seen, the binary search is much faster than the sequential search. Its 
disadvantage is that the data must be in order. But how does the data get in the proper 
order? One way is to have the data entered in the proper order to begin with. However, that 
would requir
be more convenient to just enter the data in any order and let the power of the computer do 
the work of sorting the data? The answer is yes as will be seen shortly. 

There are many algorithms that have been developed to sort data. Some are sufficiently 
fast with small sets of data, but as the number of items to be sorted becomes larger, they 
are not very efficient. There are other algorithms that excel at large amounts of data but are 
not as efficient on smaller sets. There are still other algorithms that work well on data that 
has already been partially sorted, and others that are more efficient when the data is totally 
random. The more efficient an algorithm, the more complicated it is, and these are usually 
learned in subsequent computer science courses or texts. For now, this text will examine 
one of the simpler algorithms known as the bubble sort. As a way to help understand the 
bubble sort, this text breaks it into two separate sorting algorithms, where the basics are 
presented as the simplified bubble sort and then modified to help its efficiency, where the 
modified version is the true bubble sort. 

7.7.1 Simplified Bubble Sort 

Assuming one wants to sort data in ascending order (from the smallest to the largest), the 
bubble sort gets its name from the way the smaller values slowly move up toward the top 
of an array, as bubbles might slowly move up in a glass of soda. The bubble sort works by 
comparing pairs of adjacent integers and if the pair is out of order, swapping the two 
integers as shown in Fig. 7.7 which should be read from left to right, top to bottom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.7  Sorting an Array 241



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.7 First pass of the bubble sort 

As can be seen, the first and second integers are compared, and if they are in the correct 
order, they remain as they are, but if the integers are out of order, they are swapped. This 
process is repeated for each pair of adjacent integers. Given an array of 5 data items, four 
pairs of integers are compared. 

After the first pass through the array, note that the smallest integer has moved up one 
position. Also, note that the bottom integer in the array is now the largest one. After one 
pass, there is no need to subsequently compare the bottom integer. So when going through 
a second pass comparing the pairs of integers, the loop can iterate one less time. 

But how many of these passes need to be made? If the first time through there are four 
pairs of integers to be compared and the second time there is one less integer to be sorted, 
then the second time through there would be only three pairs of numbers to be compared. 
It would follow that the third time through there would be two pairs and the fourth time 

number 

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 

     Compare 

2 

9 

6 

5 

    --- 

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

     No Swap 

2 

9 

6 

5 

---

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

     Compare 

2 

9 

6 

5 

    --- 

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

       Swap 

2 

6 

9

5 

    --- 

3

[0] 
[1] 
[2] 
[3] 
[4] 
[5] 

     Compare 

2 

6 

9 

5 

    --- 

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

      Swap 

2 

6 

5 

9 

    --- 

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

     Compare 

2 

6 

5 

9 

    --- 

3 [0] 
[1] 
[2] 
[3] 
[4] 
[5] 

       Swap 

9 

6 

5

2 

    --- 

3 

242 7  Arrays



 
 

there would be only one pair of integers to be compared. The result is that for 5 integers, 
there would be four passes through the array, each comparing one less pair of integers. If 
there were n integers in an array, then it would follow that n-1 passes would need to occur. 
To make this happen in a program, it should be apparent that a loop is needed. Further, the 
loop would need to iterate n-1 times. Since it is a number based on n, then a for loop 
would be a good choice. 

If the number of passes needs a loop, it should seem clear that the comparison of the 
pairs of integers within each pass also needs a loop. However, the number of pairs of 
integers to be compared is different each time. How can this problem be resolved? Notice 
that the number of pairs of integers that need to be compared decreases by one each time. 
Is there a variable that could be used for this? If there are n-1 comparisons the first time, 
n-2 the second time, and so on, and further if the outer loop control variable, say i, is 
going from 0 to 3, then that variable could be used to determine the number of comparisons. 
So when i is 0 the first time, n-i-1 would be equal to 4; then when i is equal to 1 the 
second time, then n-i-1 would be equal to 3; and so on. The expression n-i-1 should 
look familiar from the code for reversing an array, and this expression comes in handy on 
many occasions. 

Lastly, which two elements would need to be compared each time? Since i is used for 
the outer loop, then j could be used for the inner loop. So for the first time through when 
j is equal to 0, the 0th and 1st elements would be compared, which would be the j and 
j+1 elements, and when j is equal to 1, it would compare the 1st and 2nd elements and 
so on. The swap would be similar to the one developed in the previous section, except it 
would be between the two compared elements, j and j+1, as shown in the following code 
segment: 
 
for(i=0; i<n-1; i++) 
   for(j=0; j<n-i-1; j++) 
      if(number[j]>number[j+1]) { 
         temp = number[j]; 
         number[j]= number[j+1]; 
         number[j+1] = temp; 
      } 
 

The reader is encouraged to walk through the code segment to see how the algorithm 
works. Again, notice how the smallest number slowly moves or bubbles its way to the top 
of the array during each pass, thus giving the name to the bubble sort. To analyze the speed 
of this algorithm, it should be noticed that the outer loop iterates n-1 times. However, 
when doing analysis like this, the one less time than n that it loops is not very significant 
for a very large number n, so it is said to be of order n. The inner loop iterates one less 
time on each pass going from n-1 to 1 times, where it could be said that it loops on average 
n/2 times. But again, for a very large n, the division by two would still be a large number, 
so it is also said to be of order n. Recall from  Chap. 4  that two nested loops each iterating 
n times the total number of iterations would be n*n, or n 2. Since in the current example, 
one loop is nested inside the other and also each loop is iterating approximately n times, 
this algorithm is of order n 2, or O(n 2). 

7.7  Sorting an Array 243

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

7.7.2 Modified Bubble Sort 

In the previous simplified sorting algorithm, does it make any difference whether the data 
in the array is in reverse order, random order, or already sorted? The answer is no, because 
the outer loop will still iterate n-1 times and the inner loop will still iterate n/2 times. 
Although this does not make a difference if the array is in reverse order, nor does it make 
a lot of difference if the array is totally random, what if the array is already sorted? Granted 
this might not happen very often, but if it was already sorted, it would still take O(n 2) to 
sort an already sorted array. Is there some way that this can be improved? During the first 
pass through the array, if there are no swaps between any of the pairs of elements, then it 
would be known that the array is already in order. Can the program be modified to take 
advantage of this scenario? Yes, a boolean flag can be used to indicate whether a swap 
has or has not occurred, and a good name for this flag is swap. 

The first for loop could be replaced with a while loop that not only checks to see 
how many passes have occurred but also checks to see if a swap has occurred. If a swap 
has not occurred, then another pass is not necessary. Initially the swap flag could be set to 
true prior to any code to indicate that a swap has occurred. This would force the execution 
of the first time through the outer loop. The first thing to be done inside to the loop is to 
reset the swap flag to false, so in case there are no swaps during the inner loop, then no 
subsequent passes through the outer loop need to occur. Lastly, should a swap occur in the 
if statement, the swap flag is sent to true, thus forcing another pass through the outer 
loop: 
 
swap = true; 
i = 0; 
while(i < n-1 && swap) { 
   swap = false; 
   for(j=0; j<n-i-1; j++) 
      if(number[j] > number[j+1]) { 
         swap = true; 
         temp = number[j]; 
         number[j] = number[j+1]; 
         number[j+1] = temp; 
      } 
   i++; 
} 
 

As before, notice that swap is used in the while loop instead of swap == true or 
swap != false. Also notice the addition of the extra set of braces for the while loop, 
because now syntactically there are three statements in the body of the loop: the setting of 
swap to false, the for statement, and the increment of i. Lastly, notice that if there is 
more than one swap in the inner for loop, the swap is set repetitively to true. Although 
this seems a little redundant, it is quicker and easier to just keep setting swap back to true 
than adding code to check to see if it is already set to true. 

The result is that if the data in the array is in reverse order, there is no increase in the 
speed of the algorithm. However, if the data is already in order, then there is only one pass 
through the outer loop, and the inner loop iterates n-1 times. So, this algorithm with data 

244 7  Arrays



 
 

already sorted is O(n), and the bubble sort is one of the fastest sorting algorithms for data 
that is already in order. Although this might seem a little confusing to use a sorting 
algorithm with data that is already sorted, the algorithm also works fairly well for data that 
is close to being in order. If only a few items need to be swapped, then the outer loop will 
only iterate a few times, until there is a pass without any swaps, in which case the outer 
loop stops iterating. So in cases where data is possibly in order, or close to being in order, 
the bubble is a very good sort. However, for large amounts of data that is in reverse order, 
close to being in reverse order, or totally random, the bubble sort is not the best choice. As 
will be seen in later courses, there are a number of other sorting algorithms that can handle 
these situations much faster. Nonetheless for this text, the bubble sort provides a good 
starting point for understanding how sorting algorithms work and can be used to sort small 
sets of data. 

7.8 Two-Dimensional Arrays 

The preceding sections introduced how to declare variables for one-dimensional arrays, 
how to create them, and how to access elements in them. One-dimensional arrays work 
well when dealing with a set of data such as a collection of grades for one student. 
However, what if there are multiple sets of data, such as grades for several students? Then, 
the data could be stored in a two-dimensional array, which are sometimes called a 2D array. 

7.8.1 Declaration, Creation, and Initialization 

Suppose that there are four students in a class and they each took three exams. Instead of 
creating four separate one-dimensional arrays in order to record the exam scores for each 
student, one two-dimensional array can be used to store all the scores. Three exam scores 
for each student are kept in a row; therefore, there will be four rows and three columns in 
the table. Assume that the scores are of type int and the name of the array is scores. 
To declare a two-dimensional array, two sets of brackets are required. The first one is for 
the rows and the second one is for the columns as shown below: 
int scores[][]; 

which is equivalent to 
int[][] scores; 

The two sets of brackets could be after or prior to the name of the array and the second 
example above is used more often. A diagram after the declaration is shown below: 

 

 

The following creates a two-dimensional array of four by three integer values: 
scores = new int[4][3]; 

The number 4 in the first set of brackets specifies the number of rows and the number 
3 in the second set of the brackets specifies the number of columns. The diagram in Fig. 
7.8 illustrates the array after its creation. Notice that a two-dimensional array is actually an 
array of one-dimensional arrays, meaning that it consists of an array in which each element 

scores null 

7.7  Sorting an Array 245

is a one-dimensional array. 



 
 

 

 
Fig. 7.8 After creation of 2D array 

An array can be declared and created at the same time using the following statement: 
int[][] scores = new int[4][3]; 

The diagram for the above statement is the same as that in Fig. 7.8. Again, in order to 
reinforce the concepts of declaration and allocation, two separate instructions are used in 
this text. 

To access the data in a two-dimensional array, two subscripts or indices are used, one 
for the row number and the other for the column number. As in a one-dimensional array, 
each index is of type int and starts from 0 in the array. The first exam score of the first 
student is stored in scores[0][0], the second exam score is stored in 
scores[0][1], and the third exam score is stored in scores[0][2]. The scores for 
the second student are kept in scores[1][0], scores[1][1], and 
scores[1][2]. The scores for the third and fourth students are stored in a similar 
fashion. Suppose that the first student made a 72 on the first exam, an 85 on the second 
exam, and a 91 on the third exam. Then, the following statements store the scores for the 
first student in the appropriate positions in the array: 
 
scores[0][0] = 72; 
scores[0][1] = 85; 
scores[0][2] = 91; 
 

If the second student made 95, 89, and 90 on the three exams, the statements below will 
initialize the scores for the second student: 
 
scores[1][0] = 95; 
scores[1][1] = 89; 
scores[1][2] = 90; 
 

Scores for the third and fourth students can be entered in a similar manner. The diagram 
in Fig. 7.9 shows the two-dimensional array after the initialization. 

 

scores 
[0] 

[1] 

[2] 

[3] 

---    ---    ---  

---    ---    --- 

---    ---    ---  

[0] [1] [2] 

---    ---    ---  

246 7  Arrays



 
 

 

 

 
Fig. 7.9 After initialization of 2D array 

Alternatively the following statement will declare, create, and initialize a two-
dimensional array: 
 
int[][] scores = {{72, 85, 91}, 
                  {95, 89, 90}, 
                  {77, 65, 73}, 
                  {97, 92, 93}}; 
 

The size of the array is determined by the number of values provided in the set of braces 
without explicitly specifying it inside the brackets. The diagram after the above statement 
is equivalent to the one in Fig. 7.9. 

7.8.2 Input and Output 

Although the techniques of assigning data used in the previous section are adequate for 
testing programs, how can the data be entered by the user? It is similar to a one-dimensional 
array, but instead of using a simple for loop, a nested for loop is used as shown below: 
 
int[][] scores; 
scores = new int[4][3]; 
for(int i=0; i<4; i++) { 
   for(int j=0; j<3; j++) { 
      System.out.print("Student " + (i+1) + ", exam " 
      + (j+1) + ": "); 
      scores[i][j] = scanner.nextInt(); 
   } 
   System.out.println(); 
} 
 

Notice that each position in the array can be accessed using two index variables, i and 
j, for the row number and the column number, respectively, inside the loop. A portion of 
the output with sample input is as follows: 
 

scores 
[0] 

[1] 

[2] 

[3] 

 72     85    91 

 95     89    90  

 77     65    73  

 97     92    93  

[0] [1] [2] 

7.8  Two-Dimensional Arrays 247



 
 

Student 1, exam 1: 72 
Student 1, exam 2: 85 
Student 1, exam 3: 91 

Student 2, exam 1: 95 
Student 2, exam 2: 89 
Student 2, exam 3: 90 

... 
 

Alternatively, the number of rows and columns could be entered by the user, and a two-
dimensional array could then be created dynamically as discussed in Sect. 7.4. Once scores 
are in the array, one can output them using a nested for loop. Suppose three exam scores 
for each student are to be output in a row. The code segment below outputs the column 
labels first followed by the row labels and scores: 
 
System.out.println("               exam 1 exam 2 exam 3"); 
for(int i=0; i<4; i++) { 
   System.out.print("Student " + (i+1)); 
   for(int j=0; j<3; j++) 
      System.out.print("     " + scores[i][j]); 
   System.out.println(); 
} 
 

Notice that the print statement for the column headings is outside the nested for loop, 
since they are only output once. The print statement for the row label is located prior to the 
inner for loop, which means it is output every time the control variable i of the outer for 
loop changes. Also notice that three scores for each student are output on the same line 
using the print in the inner for loop. The println after the inner for loop moves 
the cursor to the next line for the next student. The output from the above code segment is 
as follows: 
 
               exam 1 exam 2 exam 3 
Student   1     72     85     91 
Student   2     95     89     90 
Student   3     77     65     73 
Student   4     97     92     93 
 

What if all the scores of thee exams need to be output line by line as shown below? 
 
          Student 1  Student 2  Student 3  Student 4 
exam   1     72         95         77         97 
exam   2     85         89         65         92 
exam   3     91         90         73         93 
 

Again, a nested for loop can be used. In order to access all the scores in one column 
of the array before going to the next column, the column number has to remain the same 
in an outer for loop, while the row number is changing in the inner for loop. This is left 
as an exercise at the end of the chapter. 

248 7  Arrays



 

Using the array scores, how can the average of the three exam scores for the first student 
be calculated? All the scores for the first student are stored in the first row of the two-
dimensional array. In order to find the average, the values in the first row have to be added 
together and divided by the number of exams. The following formula will find the average 
for the first student: 
(scores[0][0] + scores[0][1] + scores[0][2])/3; 

The average exam scores of other students can be found in the similar way. However, 
if the instructor would like to find the averages for a large class, it would not be efficient 
to list the formula for each student. 

To process arrays, the length field is useful as discussed earlier in this chapter. When 
an array is created, a reference to the array is stored in the variable. At the same time, the 
length of the array is stored in an instance constant named length. For a one-dimensional 
array, the length holds the number of elements in the array. Since a two-dimensional 
array is an array of one-dimensional arrays, there are several length fields associated 
with it. They keep track of the number of rows and the number of columns for each row. 
With the array shown in Fig. 7.9, the length of the array scores can be obtained by 
scores.length which is the size of the one-dimensional array that the variable 
scores is referring to. In this case, the value would be 4 indicating the number of rows. 
As shown in Fig. 7.9, the elements of the array, scores[0], scores[1], scores[2], 
and scores[3], are references to one-dimensional arrays. Therefore, their length can be 
obtained by scores[0].length, scores[1].length, scores[2].length, 
and scores[3].length. Since it is a four by three array, all of them have a value of 3 
indicating that the number of columns of the array scores is 3. 

Returning back to finding the average of all the exam scores for the first student, a for 
loop can be used as shown below: 
 
double total, average; 
total = 0.0; 
for(int j=0; j<3; j++) 
   total = total + scores[0][j]; 
average = total/3; 
 

The variable total contains the total of the three exam scores and the variable 
average holds the average. The variable total is initialized to 0.0 at the beginning, 
and inside the for loop, the three test scores, scores[0][0], scores[0][1], and 
scores[0][2], are added together. The row number is fixed at 0 and the value of the 
index variable j changes from 0 to 2 accessing the scores of the first student. Since there 
are three exams, the total was divided by 3. Although the elements of the array scores 
are of type int, the value for average most likely requires more precision. Therefore, 
both the total and average were declared as type double in order to avoid integer 
division. Using the length field, the above code can be rewritten as 

7.8  Two-Dimensional Arrays 249

7.8.3 Processing Data 



 

 

   total = total + scores[0][j]; 
average = total/scores[0].length; 
 

Notice that scores[0].length gives the number of the columns of the two-
dimensional array, which is 3 in this example, indicating the number of exams. How can 
the above code be changed to find the average exam scores of all four students? Since the 
formula to find the average is the same for all the students, a outer for loop can be used 
as shown below: 
 
double total, average; 
for(int i=0; i<4; i++) { 
   total = 0.0; 
   for(int j=0; j<scores[i].length; j++) 
      total = total + scores[i][j]; 
   average = total/scores[i].length; 
   System.out.printf("average for student " + (i+1) + ": %5.2f", 
   average); 
   System.out.println(); 
} 
 

Notice that the outer for loop is used to specify the particular student. All the 0
the brackets in the previous code indicating the first student are replaced by the index 
variable i which changes from 0 to 3 for the 4 students in the class. Of course, the value 
4 can be replaced by the length field as shown below: 
 
double total, average; 
for(int i=0; i<scores.length; i++) { 
   total = 0.0; 
   for(int j=0; j<scores[i].length; j++) 
      total = total + scores[i][j]; 
   average = total/scores[i].length; 
   System.out.printf("average for student " + (i+1) + ": %5.2f", 
   average); 
   System.out.println(); 
} 
 

The scores.length gives the number of rows of the two-dimensional array. In this 
example it is 4, which is the number of students. Assuming that the size of the array is the 
same as the number of student and exams, the advantage of using the length field is that 
no matter how many students or exams, the same code can be used to find the average. 

The next question is can the average of the first, second, and third exams be found using 
a loop? The answer is yes. However, careful consideration should be taken concerning the 
order of the elements accessed in a two-dimensional array. In the previous example, the 
elements of the array were accessed in row-wise fashion. In order to find the average score 
for each exam, they have to be accessed in column-wise fashion. The key is the index 
variables i and j. In order to access all the data in one column, the column number has to 
remain the same while the row number is changing. The following code illustrates how the 
averages of the three exams are calculated: 

250 7  Arrays

 
double total, average; 
total = 0.0; 
for(int j=0; j<scores[0].length; j++) 



 
 

 
double total, average; 
for(int j=0; j<scores[0].length; j++) { 
   total = 0.0; 
   for(int i=0; i<scores.length; i++) 
      total = total + scores[i][j]; 
   average = total/scores.length; 
   System.out.printf("average for Exam " + (j+1) + ": %5.2f", 
   average); 
   System.out.println(); 
} 
 

In the above code, the outer and inner for loops are swapped from the previous code 
segment, so that while the value of j remains the same, the value of i changes inside the 
inner for loop. Notice that the value of j changed from 0 to 2 indicating there are three 
exams. Even though the scores[0].length is used in the condition of the outer for 
loop, any of the values from scores[1].length through scores[3].length 
could be used since they all have the same value for the number of columns. 

7.8.4 Passing a Two-Dimensional Array to and from a Method 

A two-dimensional array can be passed to a method just as a one-dimensional array can be 
passed to a method. The following program implements a method that calculates and 
outputs the average of the exam scores for each student in the class. The studentsAvg 
method is called from the main method: 

7.8  Two-Dimensional Arrays 251



 
 

 

The output from the above code is shown below: 
 
average for student 1: 82.67 
average for student 2: 91.33 
average for student 3: 71.67 
average for student 4: 94.00 
 

Alternatively, since a two-dimensional array is an array of one-dimensional arrays, each 
row can be passed to the method separately. The method studentAvg implemented 
below takes a one-dimensional array of exam scores for one student as a parameter, 
calculates the average, and returns it: 
 
public static double studentAvg(int[] inRow) { 
   double total, average; 
   total = 0.0; 
   for(int i=0; i<inRow.length; i++) 
      total = total + inRow[i]; 
   average = total/inRow.length; 
   return average; 
} 
 

How is the method above invoked? Since the method accepts an array of three scores 
for one student, as in studentAvg(scores[0]), it will return the average score for 

252 7  Arrays



 
 

the first student. The average score for each student can be found by calling the method 
inside the loop as shown below: 
 
double average; 
for(int i=0; i<scores.length; i++) { 
   average = studentAvg(scores[i]); 
   System.out.printf("average for student " + (i+1) + ": %5.2f", 
   average); 
   System.out.println(); 
} 
 

Notice that when the method studentAvg was called, score[i] was sent to the 
method as an argument. Further, it is an element of a one-dimensional array which has a 
reference to another one-dimensional array that has the scores for one student. 

Just like a two-dimensional array can be sent to a method, it can be returned from a 
method. The following example shows how a two-dimensional array is created inside the 
method getScores and returned to the main method. There is no need to create an array 
in the main method after the declaration because the reference to the newly created array 
in the method getScores will be assigned to the variable scores when the flow of 
control returns from the method: 

 

Notice that the return type of the method getScores is int[][], which means it 
will return the reference to a two-dimensional array of int type. 

7.8.5 Asymmetrical Two-Dimensional Arrays 

Suppose that nonstop flights from several cities need to be recorded. A two-dimensional 
array can be used to keep this information. Each row can contain the list of destinations 
from a particular city. For example, there may be direct flights to Chicago, St. Louis, and 
Dallas/Fort Worth from City1, while Dallas/Fort Worth may be only the city reached from 
City2, and so on. It is possible that each city has a different number of nonstop flights to 
the destinations, which means that each row could have a different number of columns. 
Can a two-dimensional array have rows of unequal lengths? The answer is yes, because a 

7.8  Two-Dimensional Arrays 253



 
 

two-dimensional array is an array of one-dimensional arrays and each one-dimensional 
array can be created separately using a different size. Before creating an asymmetrical two-
dimensional array, consider the example from the previous section. Instead of creating an 
array scores using the following statements, 
 
int[][] scores; 
scores = new int[4][3]; 
 
a one-dimensional array of size 4 can be created first and then for each row a one-
dimensional array of the size 3 can be created next as shown below: 
 
int[][] scores; 
scores = new int[4][]; 
scores[0] = new int[3]; 
scores[1] = new int[3]; 
scores[2] = new int[3]; 
scores[3] = new int[3]; 
 

The same thing can be accomplished using a loop. 
 
int[][] scores; 
scores = new int[4][]; 
for(int i=0; i<4; i++) 
   scores[i] = new int[3]; 
 

Returning back to the flights example, the second alternative above can be used to create 
a two-dimensional array with rows of unequal lengths. Suppose there are three cities and 
the first city has three nonstop flights, the second city has one, and the third city has two. 
The following will declare and create an array city: 
 
String[][] city; 
city = new String[3][]; 
city[0] = new String[3]; 
city[1] = new String[1]; 
city[2] = new String[2]; 
 

The code below will assign values (ORD for Chicago, STL for St. Louis, and DFW for 
Dallas/Fort Worth) in the one-dimensional array for the first city: 
 
city[0][0] = "ORD"; 
city[0][1] = "STL"; 
city[0][2] = "DFW"; 
 

Alternatively the following statement will accomplish declaration, creation, and 
initialization in one statement: 
 
String[][] city = {{"ORD", "STL", "DFW"}, 
                                              {"DFW"}, 
                                              {"ORD", "DFW"}}; 

254 7  Arrays



 
 

 
The following diagram shows the array city: 
 

 

Two-dimensional arrays are examples of multidimensional arrays. The same principle 
can be applied to n-dimensional arrays, where n can be any integer value. A three-
dimensional array is left as an exercise at the end of the chapter. 

7.9 Arrays of Objects 

Looking at the scores example from Sect. 7.8, the two-dimensional array scores keeps 

with their scores. So far arrays with only primitive data types, strings, and arrays have been 
discussed. As seen in the preceding sections, an array is a collection of data of the same 
type regardless of the number of dimensions. Therefore, the scores of type int and the 
student names of type String cannot be stored together in a simple array, because a two-
dimensional array whose columns contain values of different data types is not allowed. 

To get around this problem, a one-dimensional array of String type can be used for 
the name along with a two-dimensional array scores. The array could be declared as 
studentName which would be of size 4 containing the names of four students. The three 
scores in the one-dimensional array scores[0] would correspond to the student at 
studentName[0], the scores in scores[1] would be made by the student at 
studentName[1], and so on. This technique of using two separate arrays, called 
parallel arrays, is useful when a programming language does not support objects or other 
structures. 

In Java, instead of using parallel arrays, associated data can be encapsulated into an 
object, and a one-dimensional array of these objects can be created. Objects that represent 
the name of the student and the test scores can be described by the class Student. The 
name of the student and their test scores will be declared as instance variables, and a 
constructor and four accessors for each data member are defined in the class Student as 
shown below: 

city 
[0] 

[1] 

[2] 

"ORD"  "STL" "DFW"  

"DFW"  

"ORD"  "DFW"  

[0] [1] [2] 

7.8  Two-Dimensional Arrays 255



 
 

 

In the main method, a one-dimensional array of type Student is declared, and an 
array of size four is created using the following statements: 
 
Student[] scores; 
scores = new Student[4]; 
 

The execution of the above code will result in the diagram shown below: 
 

 

Notice that only the array is created and the elements of the array scores are initially 
null. Therefore, each individual object has to be created and the reference to it has to be 
placed in the array. Each object of type Student will contain the last name of the student 
and three test scores. The following statement will create an object and assign the reference 
to the object to the first position of the array, scores[0]: 

null 

null 

null 

null 

scores 
[0] 

[1] 

[2] 

[3] 

256 7  Arrays



 
 

scores[0] = new Student("Fonteyn", 72, 85, 91); 

Similar statements will be used to place the other students in the array. Figure 7.10 
illustrates the array of objects. 

 
Fig. 7.10 Array scores with four objects of the type Student 

The following program will output the contents of the array scores, using a loop and 
accessors: 

 

scores 
[0] 

[1] 

[2] 

Student 

Student 

etc. 

[3] 

name String Fonteyn

exam1 int 72 

exam2 int 91 

exam3 int 85 

exam1 int 95 

exam3 int 89 

name String Pavlova 

exam2 int 90 

7.9  Arrays of Objects 257



 
 

Notice that scores[i] refers to an object of type Student in the array scores. 
Here an indexed expression is used to refer to an object instead of a simple variable. 

scores[i].getName() . The output from the above code is shown below: 

 
        Name     Exam 1     Exam 2     Exam 3 
     Fonteyn         72         85         91 
     Pavlova         95         89         90 
 Baryshnikov         77         65         73 
     Nureyev         97         92         93 
 

The average test scores of each student or each exam can be calculated using the 
accessors defined in the class Student. 

7.10 Complete Program: Implementing an Array 

Using an array, a program which calculates the standard deviation of a set of data will be 
developed in this section. The program will: 

 Allow the user to enter the number of items and the actual data 
 Compute the standard deviation of the data 
 Display the standard deviation 

The standard deviation, represented by the symbol sigma, , is a measure of the spread 
of the data. If the distribution is roughly bell shaped and symmetric, then most of the data, 
approximately 68 %, lie within one standard deviation of the mean between (mean ) and 
( ), and almost all the data, approximately 95 %, lie within two standard deviations 
of the mean between (mean 2 ) and ( 2 ). The definition of the standard deviation 
is 

2

1

1 n

i
i

x x
n

 

First, the mean x  is determined, which is the sum of the data divided by the number of 
data values. Then, the mean is subtracted from every number ix x  to get the list of 

deviations. Next, the resulting deviations are squared giving 2
ix x . Then, the squares 

i=1 n 
2

ix x . The result is divided by the number of items in 
the list to get the variance. Lastly, to obtain the standard deviation, the square root of the 
variance is calculated. 

If only the mean of the numbers was to be calculated, there is no reason to store the data 
in an array. Inside a loop the numbers the user enters can be summed and then the average 
can be computed outside the loop. However, to find the standard deviation, the data must 
be stored in some way because the deviations need to be calculated by the formula ix x  
using the mean and the original data. 

Declaring variables to store all the numbers is one way, but using an array is a better 
solution when the size of the data is large. Assuming that the numbers are all stored in an 

258 7  Arrays



 
 

array named array, the following code will find the mean of the numbers in the array: 
 
total = 0; 
for(int i=0; i<array.length; i++) 
   total = total + array[i]; 
mean = total/array.length; 
 

The next step is to square each of the differences and add them together as shown below: 
 
total = 0; 
for(int i=0; i<array.length; i++) 
   total = total + Math.pow(array[i] - mean, 2); 
 

Note that the method pow from the Math class is useful here. The following code 
calculates the variance by dividing the total by the number of items in the array: 
variance = total/array.length; 

Finally, the standard deviation can be computed by taking the square root of the variance 
as illustrated below: 
sigma = Math.sqrt(variance); 

Notice another method sqrt in the Math class is used here. In the complete program, 
three methods are defined to get data from the user, calculate the standard deviation, and 
output the result. These three methods, getData, computeStdDev, and 
outputStdDev, will be called from the main method. The complete program is shown 
below: 

7.10  Complete Program: Implementing an Array 259



 
 

 

260 7  Arrays



 
 

 

When the above code is compiled and executed using the sample input of 39, 40, 38, 
96, 42, 47, 50, 44, 46, and 50, the output of the program looks like the following: 
 
Enter the number of data: 10 
Enter the data 1: 39 
Enter the data 2: 40 
Enter the data 3: 38 
Enter the data 4: 96 
Enter the data 5: 42 
Enter the data 6: 47 
Enter the data 7: 50 
Enter the data 8: 44 
Enter the data 9: 46 
Enter the data 10: 50 
Standard deviation: 17.00 

7.11 Summary 

 Do not confuse the index of an array element with the contents of an array element. 
 Be careful not to access elements outside the bounds of the array. 
 A sequential search works on data that is sorted or unsorted, whereas the binary search 

works only on data that is sorted. 

7.10  Complete Program: Implementing an Array 261



 
 

 On average or in the worst-case scenario, the sequential search is O(n), whereas the 
binary search is on average or in the worst-case scenario O(log n). 

 The simplified bubble sort is O(n2) on already sorted data, whereas the modified 
bubble sort is O(n) on sorted data. 

 On random data or data in reverse order, both the simplified and modified bubble sorts 
are O(n2). 

 A two-dimensional array is an array of one-dimensional arrays. 
 An array can have any number of dimensions, although most arrays are either one or 

two dimensional. 
 A two-dimensional array can have rows of unequal lengths. 
 Elements of an array can be either a primitive data type or an object. 

7.12 Exercises (Items Marked with an * Have Solutions in Appendix E) 
 1. Indicate whether the following statements are syntactically correct or incorrect. If 

incorrect, indicate what is wrong with the statement: 

  A. int[] array[]; 

*B. double data[] = new data[]; 

*C. int[] = [2, 4, 6]; 

  D. double[][] doubleArray[10]; 

*E.  Student[5] class; 

  F . Student[] student = new Student[26]; 

*2. Assume that a one-dimensional array named intArray of type int is declared, 
created, and initialized correctly. Write a code segment to compute the sum of all 
numbers stored in the even-numbered elements, i.e., intArray[0] and 
intArray[2]. 

 3. Using the array intArray described in the previous exercise, write a code 
segment to output all the even numbers in the array, regardless of their position in 
the array. 

 4. What is the output from the following code segment? 
 
double[][] grades; 
grades = new double[34][15]; 
System.out.println(grades[11].length); 
System.out.println(grades[34].length); 
System.out.println(grades.length); 
System.out.println(grades[7][5].length); 
 

*5. What is the output from the following code segment? 
 
int[][] intArray = {{2, 5, 4}, {6, 3}, {9, 7, 1, 5}}; 
System.out.println(intArray[0].length); 
System.out.println(intArray[2].length); 
System.out.println(intArray.length); 

262 7  Arrays



 
 

 
  6. Write the following code segments concerning a three-dimensional array. 

A. Write a statement to declare a 3 by 2 by 5 three-dimensional array of type 
int. 

B. Write a statement to create the array declared in the previous question. 
C. Using i, j, and k as index variables, write a code segment to store the value 

i*j*k in every position of the three-dimensional array created previously. 
 

      *7. Using the array scores discussed in Sect. 7.8.2, write a code segment to output 
            all the exam scores stored in the array. Each row should contain scores for all four 
            students as shown below: 
 
              Student 1  Student 2  Student 3  Student 4 
    exam 1         72         95         77         97 
    exam 2         85         89         65         92 
    exam 3         91         90         73         93 

  8. Using the array scores discussed in Sect. 7.8, write a method to find the average 
for a particular exam. The method should take a reference to a two-dimensional 
array and a column number as arguments. Then, implement a main method to find 
the average for each exam by calling a method inside a loop and output them. 

  9. Using the array scores discussed in Sect. 7.9, write a code segment to find the 
lowest score in the entire array and output it. 

10. Using the array scores discussed in Sect. 7.9, write a code segment to find the 
 

11. Write a code segment to perform a sequential search on a one-dimensional array. 
Assume that the set of data could contain duplicates. If the item being searched for 
is found in the array, record the number of the occurrences also. 

12. Develop a program to store names in a one-dimensional array. The program should 
initially create a one-dimensional array which holds ten String values. As the 
user enters names one by one, each name will be stored in the array. Whenever the 
array becomes full, create a new array that is twice the size of the previous array, 
copy the data over to the new array, and continue input. 

 
      13. Write a complete program to create an array of Card object discussed in Sect. 
            5.6.2. The program should ask a user for the number of cards and using a loop to 
            initialize each card. Perform a couple of transactions on each card and then output 
            the current balance of each card.  

 

 

 

 

7.11  Summary 263



 

 8 

Recursion 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter examines recursion using contour diagrams. The power function and Fibonacci numbers are 
used as examples. In addition to contour diagrams, stack frames and a tree of calls are shown as alternative 
ways of visualizing the recursive process. As with other chapters, a complete program is provided. 

Keywords 

Recursive Call; Power Function; Fibonacci Numbers; Stack Frames, Tree of Calls, Greatest Common 
Divisor. 

8.1 Introduction 

In  Chap. 4 , the topic of iteration was discussed as a way to solve various problems using 
loop structures. In this chapter, an alternative method to solve similar problems using 
recursion is presented. Whereas iteration tends to use less memory and is faster, recursion 
tends to use more memory and is slower. If recursion is not as efficient in terms of speed 
and memory, why would one want to use it? The reason is that some problems lend 
themselves better to a recursive solution than to an iterative solution. Many mathematical 
solutions are expressed more clearly using a recursive definition, and many data structures 
and algorithms can be written easier using recursion resulting in a less complicated 
program. 

Since many programmers learn iteration first, sometimes the subsequent change to 
recursion can be a little difficult, although the reverse can be true as well. However, by 
using simple examples and contours, this transition can be made easier. With time and 
practice, one learns that recursion is a powerful tool for solving complex problems. 

8.2 The Power Function 

Recall from  Sect. 4.4  the assumption that Java did not contain the pow method in the 
Math class, so a for loop was used to calculate the power function, x n .  As a brief review, 
the iterative solution to the problem began by initializing the variable answer to 1, used 
a for loop that iterated n times, and each time through the loop the variable answer was 
multiplied by x. 

Just as there was a pattern to finding an iterative solution, there is a pattern to solving a 
problem recursively. As with iteration, recursion also needs three parts: initialization, test, 
and change. However, instead of typically starting the first case with the number 1 and 
working forward as with iteration, in a sense recursion tends to look at the last case and  

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_8

265

http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://dx.doi.org/10.1007/978-1-4471-6317-6_4#Sec6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_8&domain=pdf


 
 

work backward. So instead of starting at 1, recursion starts with the largest number as its 
initialization. As with iteration, it helps first to see if a pattern can be found using specific 
values. For example, assume x is equal to 2 for the power function xn with the pattern 
presented in  Sect. 4.4  repeated below: 

  20 = 1 
  21 = 1 * 2 = 2 
  22 = 1 * 2 * 2 = 4 
  23 = 1 * 2 * 2 * 2 = 8 
  . 
  . 
  2 n n times) 

First, note that 23 is equal to 1*2*2*2 and that 22 is equal to 1*2*
the definition of 23 be thought of in terms of 22 *2*2*2 be 
defined as 22 *2? The answer is yes, where 22 can substitute for the 1*2*2 portion of 
1*2*2*2 and 23 can be defined recursively in terms of 22. This process can continue, where 
22 can be defined as 21 *2 and 21 can be defined as 20 *2. Just as something needs to change 
in the body of a loop, this is the change portion of recursion. 

However, instead of looping forever, the program would recurse trying to solve the power 
function in terms of 2 1, 2 2, and so on until there is no more memory. Just as there needs 
to be a test to ensure that iteration does not continue indefinitely, there needs to be a test 
so that recursion does not continue indefinitely. Since 20 equals 1, this is where recursion 
should stop and this is often known as the base case or terminal case. Rewriting part of the 
pattern from above, it would look as follows: 

  20 = 1 
  21 = 20 * 2 = 2 
  22 = 21 * 2 = 4 
  23 = 22 * 2 = 8 

This is good for 23, but what about 2n ? Looking at the above pattern, notice that each 
time the value for n is decreased by 1. Again, note that 23 = 22 *2, 22 = 21 *2, and so on. In 
terms of n, this can be rewritten as 2n = 2n 1 *2, so the last line of the original definition 
could be 

  2n = 2n 1 * 2 

Further, instead of using 2 for x, the entire definition could be rewritten in terms of x as 
follows: 

  x0 = 1 
  x1 = x0 * x 
  x2 = x1 * x 
  x3 = x2 * x 
  . 
  .
 
  xn = xn 1* x 
 

266 8  Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_4#Sec6


 
 

However, the above still looks like an iterative definition, and there is a much more 
concise way of writing a recursive definition. For the sake of convenience, it helps to 
assume that neither x nor n is negative and that x and n are not both 0, since 00 is undefined. 
Then for all cases where n is greater than 0, the last line could be used. In the case where 
n is 0, the first line could be used as the base or terminal case. The resulting recursive 
definition is as follows: 

  xn n xn 1 * x, otherwise 1} 

This forms the basis of the method which could be written as follows: 
 
public static int power(int x, int n) { 
   int answer; 
   if (n > 0) 
      answer = power(x,n-1)*x; 
   else 
      answer = 1; 
   return answer; 
} 
 

Notice the method is declared as static, so that a class does not need to be defined 
nor does an object need to be created as discussed in  Chap. 5 . Further, note that a local 
variable answer has been declared. As will be discussed later, this will waste memory in 
recursion, but for now using a memory location will be very helpful in tracing through the 
program using contour diagrams. After the code is understood using contours, the method 
can be rewritten to save memory as will be shown later. More importantly, notice that the 
power method is calling itself. Is that legal? Yes it is, but as discussed above, there needs 
to be a way to stop the recursion, and that is the purpose of the else section and the terminal 
case of answer=1. Of course a main program will need to be written to drive the method 
as shown in Fig. 8.1 with line numbers to help facilitate seeing the code execute via 
contours. 

8.2  The Power Function 267

http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 
 

 
Fig. 8.1 main program and power method 

Before calling the power method, notice that the main program checks whether x is 
greater than or equal to 0, that n is greater than or equal to 0, and that x and n are not both 
0. It is often best to first test the base case to ensure that it is working properly. So to start, 
assume that the user has entered a value of 2 for x and 0 for n. Since n is not greater than 
0, there should be no recursion, and answer is assigned a value of 1 which is returned to 
the main program and output. Because this is a simple instance, a contour will not be 
written for this case. 

However, what if x is equal to 3 and n is equal to 2? This is when things start to get 
interesting and contours are very helpful. Figure 8.2 shows the state of execution just prior 
to Line 22 in power. 

 
 
 
 
 
 

268 8  Recursion



 
 

 

Fig. 8.2 Contour prior to the execution of Line 22 in the first call to power 

As discussed in  Chap. 1 , although typically the contour for Ch8Sample1 would not 
be drawn, it is helpful to see it in this case. Since the power method is static, notice 
that an object is not created nor is there a reference to an object. Instead, the contour for 
power is drawn in the class Ch8Sample1, just as the main method which is also 
declared as static. As can be seen in the contour for power, there is a new cell called 
ret. This is not the value returned from a method, but rather indicates where the method 
will return upon completion. Whereas previously it was fairly clear where a method was 
returning, with recursion and its multiple calls, it might not be so obvious. The ret cell 
also has listed a type of addr which is an abbreviation for address. Although there is not 
a type associated with this cell as there is with other variables and parameters, the address 
is the place where the flow of control will be transferred when the method is finished. 
Lastly, note that the line number is abbreviated as L14 and the name of the method main 
is included in the cell. Although in this case it should be apparent that Line 14 is in main, 
indicating the name of the method will be important as will be seen shortly. 

Since n is greater than 0, once Line 23 has begun to execute, the first thing that needs 
to be done is recursively call the power function. Figure 8.3 shows the state of execution 
just prior to Line 22 in the second call to the power method. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ch8Sample1 

power 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

--- 

8.2  The Power Function 269

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 

 
Fig. 8.3 Contour prior to the execution of Line 22 in the second call to power 

As can be seen, there are now two contours depicting the power method. Similar to 
when there was more than one object of the same type in  Chap. 5 , notice that superscripts 
have again been employed to distinguish between the two contours. Also note that when 
calling power a second time, the value of n has been decremented by 1. Lastly, notice 
that the ret field points back to Line 23 in the first call to power. Of course, when Line 
22 in the second call to power is executed, n is still greater than 0, and there is another 
call to power as shown in Fig. 8.4 illustrating the state of execution prior to Line 22. 

 

 

 

 

 

 

 

 

Ch8Sample1 

power1 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

--- 

3 

1 

--- 

power2 

x 

n 

int 

int 

answer int 

ret addr L23 power1 

270 8  Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_5


 
 

 

Fig. 8.4 Contour prior to the execution of Line 22 in the third call to power 

The third contour has now been added, where the return is to Line 23 in the second call 
to power and n is equal to 0. This time when Line 22 is executed, n is no longer greater 
than 0, but rather equal to 0, so instead of making the recursive call in the then section of 
the if statement, the else section is executed. This is the terminal case and no more 
recursive calls will occur. Instead 1 is assigned to answer, and Fig. 8.5 shows the state 
of execution prior to Line 26 in the third call to power. 

 

 

 

 

 

 

 

 

 

Ch8Sample1 

power1 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

--- 

L23 power1 

3 

1 

--- 

power2 

x 

n 

int 

int 

answer int 

ret addr 

x 

n 

int 

int 

answer int 

ret addr L23 power2 

3 

0 

--- 

power3 

8.2  The Power Function 271



 
 

 

 

 

 

Fig. 8.5 Contour prior to the execution of Line 26 in the third call to power 

After the execution of Line 26, the value in answer is returned to Line 23 in the second 
call to power. Then the value 1 is multiplied by the value 3 in x. The result is then placed 
into the variable answer, and Fig. 8.6 shows the state of execution prior to Line 26 in the 
second call to power. 

 

 

 

 

 

 

 

Ch8Sample1 

power1 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

--- 

L23 power1 

3 

1 

--- 

power2 

x 

n 

int 

int 

answer int 

ret addr 

x 

n 

int 

int 

answer int 

ret addr L23 power2 

3 

0 

1 

power3 

272 8  Recursion



 
 

 

Fig. 8.6 Contour prior to the execution of Line 26 in the second call to power 

Of course, the first thing one notices is that the contour for the third call to power is 
now shaded light red to indicate that it is deallocated. Also, the value 3 is in answer ready 
to be returned to the first call to power. As before, contours can simply be erased as done 
in Fig. 8.7 which shows the state of execution prior to Line 26 in the first call to power. 

 
Fig. 8.7 Contour prior to the execution of Line 26 in the first call to power 

Notice that the value 3 returned from the second call to power has been multiplied by 
the value 3 in x and the result 9 is placed in answer. The flow of control continues to 
Line 26, and the value 9 is returned back to the calling program. The 9 is then placed into 

Ch8Sample1 

power1 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

--- 

L23 power1 

3 

1 

3 

power2 

x 

n 

int 

int 

answer int 

ret addr 

x 

n 

int 

int 

answer int 

ret addr L23 power2 

3 

0 

1 

power3 

Ch8Sample1 

power1 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L14 main 

3 

2 

9 

8.2  The Power Function 273



 
 

answer as illustrated in Fig. 8.8 which shows the state of execution just prior to Line 15 
in main. 

 
Fig. 8.8 Contour prior to the execution of Line 15 in the first call to main 

Looking back at the base case in Fig. 8.5, notice that there were a lot of memory 
locations used to find answer in Fig. 8.8. If recursion takes up so much memory, why use 
it? Again, some problems are more naturally expressed using recursion than iteration. 
Further, with memory being much less expensive than it was in the past, the use of 
recursion is much less costly. Still, some larger problems can use quite a bit of memory, 
and there are some techniques to cut down on its usage. For example, the previous method 
used a variable answer each time a contour was created. Instead of assigning the result 
of the calculation to a variable, it can simply be returned to the calling method as shown in 
the following segment: 
 
public static int power(int x, int n) { 
   if (n > 0) 
      return power(x,n-1)*x; 
   else 
      return 1; 
} 
 

Of course, the method uses two return statements, which is considered unstructured 
programming. Again, if memory is a concern, this might be a justifiable trade-off. It is 
often helpful to initially write an algorithm with some built-in inefficiencies to ensure that 
it is working properly and then optimize the code, rather than initially try to optimize the 
code and risk, creating a code that does not work correctly in the first place. 

8.3 Stack Frames 

Notice that each time a recursive call occurs, another contour is drawn, and each time a 
new contour is created, more memory is used. Contours are helpful in understanding of the 
process of recursion. But how is this actually accomplished in the computer? It is done 
using a stack. A stack is known as a LIFO structure, which stands for Last In First Out. 
That means that the last item put on the stack is the first one taken off the stack, not unlike 

Ch8Sample1 

x     3 

2 n 

int 

int 

int 9 answer 

main 

274 8  Recursion



a stack of papers on a desk. The process of putting an item on a stack is known as a push 
operation, and the task of removing an item is known as a pop operation. 

When a method is called the first time, the values are stored in the variables, like when 
the first contour is drawn. However, in the program there is only one set of variables. What 
would happen when there is a recursive call to a method? What happens to the values in 
the variables? Instead of drawing a new contour, the variables in the contour need to be 
reused. The result is that all the variables in the method, along with some other possible 
information associated with the method, form what is known as a stack frame and it is 
pushed onto the stack. Once the values from the variables are stored on the stack, new 
values can now be stored in the variables. Each time there is another recursive call, the 
process is repeated. When there is a terminal case, the process reverses itself. As a simple 
example, assume there is only one recursive call. The values are pushed onto the stack and 
the variables reused. Then after the terminal case, the values can be popped off the stack 
and be placed back into the variables, and the processing can complete. 

Using the same example from the previous section calculating 32 and using only a partial 
contour diagram, Fig. 8.9 is the state of execution just prior to Line 26 in the program in 
Fig. 8.1 in the third call to power. 

 
 
 
 
 
 
 
 
 
 
 
 

8.3  Stack Frames 275



 
 

 
 

Fig. 8.9 Contour and stack prior to the execution of Line 26 in the third call to power 

Figure 8.9 corresponds to Fig. 8.5 in Sect. 8.1. Note first that there is only one contour 
for power. Even though it represents power3 , it is just labeled power since the contour 
is used for all calls to power. As each call is made, the contents of the power contour are 
pushed onto the stack. When power1 called power2 , the variables in power1 were 
pushed onto the stack so that power2 could use the variables in the contour. Then when 
power3 was called, the contents for power2 were pushed onto the stack so that power3 

could use the contour. Once power3 is ready to return to power2 , the stack frame for 
power2 is popped off the stack and put back into the contour, and so on. Simply stated, 
each new contour created after the first one means another stack frame needs to be pushed 
onto the stack, and each time a contour is deallocated, that means that a stack frame is 
popped off the stack. 

Note that the names of the cells and their types are not pushed onto the stack, but only 
the contents are pushed onto the stack. However, also notice that the order in which they 
are pushed is the same as they occur in the contour so one can determine which cell is 
which. Although one could draw the stack with the other information, it gets a little 
cumbersome, and this is one of the reasons why contours are sometimes a little more 
convenient. 

onto the stack, more memory is used. If infinite recursion occurs, oftentimes a message 

Ch8Sample1 

power 

x     3 

2 n 

int 

int 

int --- answer 

main 

x 

n 

int 

int 

answer int 

ret addr L23 power2 

3 

0 

1 

L23 power1 

3 

1 

--- 

L14 main 

3 

2 

--- 

Top of stack 

push pop 

Stack frame 
for power2 

Stack frame 
for power1 

276 8  Recursion



 
 

will be output saying something to the effect that there is a stack overflow, meaning that 
the stack is full and no memory is available to push more items onto the stack. 

Notice that using contours and stack frames are just two ways of looking at the same 
process. Although the stack frame model is more accurate, it is a little more cumbersome 
to draw, whereas the contour model is easier to draw and makes it easier to keep track of 
previous values. The importance of keeping track of previous values will become even 
more apparent in the next section with a more involved use of recursion. 

8.4 Fibonacci Numbers 

Another example of the use of recursion is the calculation of Fibonacci numbers that one 
may have encountered in a mathematics course. The Fibonacci numbers can be defined as 
follows: 

  Fibonacci(0) = 0 
  Fibonacci(1) = 1 
  Fibonacci(2) = 0 + 1 = 1 
  Fibonacci(3) = 1 + 1 = 2 
  Fibonacci(4) = 1 + 2 = 3 
  Fibonacci(5) = 2 + 3 = 5 
  Fibonacci(6) = 3 + 5 = 8 

Although this is an iterative definition, it can help in the finding of a recursive definition. 
First, notice the base or terminal cases for 0 and 1. Then notice that any other given line is 
the addition of the two previous lines. For example, Fibonacci(6) is the sum of the numbers 
3 and 5, which are the answers for the fourth and fifth Fibonacci numbers. In other words, 

answer is yes, but what would the nth Fibonacci number look like? It would be as follows: 

  Fibonacci(n n n 2) 

Putting the base case and the nth case together, the definition of the Fibonacci numbers 
for nonnegative integers would be as follows: 

  Fibonacci(n n 0 or n n, 
                             otherwise Fibonacci(n n 2) } 

Given this definition, the code can then be written. As in the previous sections, it helps 
to use local variables to make the reading of contour diagrams easier. 
 
public static int fib(int n) { 
   int answer1,answer2,answer; 
   if (n > 1) { 
      answer1 = fib(n-1); 
      answer2 = fib(n-2); 
      answer = answer1 + answer2; 
   } 
   else 
      answer = n; 
   return answer; 
} 
 

8.3  Stack Frames 277



 
 

Again notice that the method is static and the name of the method is fib to save 
space in subsequent contour diagrams. Putting the above method together with a main 
program and adding Line numbers results in the program in Fig. 8.10. 

 
Fig. 8.10 Fibonacci program 

The main program checks for a negative number before calling the fib method. In the 
case where the input of n is either a 0 or 1, the result is just a simple call to the terminal 
case, and a corresponding value of 0 or 1 is returned to the main program and output. 
However, more interesting is a nonterminal case, such as when n is equal to 3. Figure 8.11 
shows the state of execution just prior to Line 21 in the first call to fib. 

 

 

278 8  Recursion



 
 

 
Fig. 8.11 Contour prior to the execution of Line 21 in the first call to fib 

As before, notice L12 main in the ret cell and the superscript for fib indicating the 
first call. Since 3 is greater than 1, the then portion of the if is taken. Then a recursive 
call is made as shown in Fig. 8.12 just prior to the execution of Line 21 in the second call 
to fib. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

8.4  Fibonacci Numbers 279



 
 

 
Fig. 8.12 Contour prior to the execution of Line 21 in the second call to fib 

In the second call to fib, the parameter n has been decremented by 1. Since 2 is greater 
than 1, another call is made, and Fig. 8.13 shows the state of execution prior to Line 21 in 
the third call to fib. 

 

 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

--- 

--- answer2 

int --- 

280 8  Recursion



 
 

 
Fig. 8.13 Contour prior to the execution of Line 21 in third call to fib 

At Line 21, since n is no longer greater than 1 and the condition for the if statement is 
false, the else portion is executed and answer is set to 1. This value is then returned to 
Line 22 in the second call to fib, and the value 1 is stored in the variable answer1 as 
shown in Fig. 8.14 just prior to the execution of Line 23. 

 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

--- 

--- answer2 

int --- 

fib3 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib2 

1 

--- 

--- answer2 

int --- 

8.4  Fibonacci Numbers 281



 
 

 

 
Fig. 8.14 Contour prior to the execution of Line 23 in the second call to fib 

Notice that the variable answer in the third call to fib is 1 and that the contour is 
shaded light red. Further, note that there are no values in answer1 and answer2 in the 
third call to fib, because it was a terminal case and no recursive calls were made. Again, 
notice the value 1 has been returned to the second call to fib and stored in answer1. 
However, instead of the flow of control returning back to the first call to fib as it did in 
the power example, there is another call to fib to calculate answer2. So Fig. 8.15 
shows the state of execution prior to Line 21 in the fourth call to fib. 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

1 

--- answer2 

int --- 

fib3 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib2 

1 

--- 

--- answer2 

int 1 

282 8  Recursion



 
 

 
Fig. 8.15 Contour prior to the execution of Line 21 in the fourth call to fib 

At first glance, it might appear that the contour for the third call to fib is no longer 
shaded gray. However, look carefully and notice that it is not the third call but rather it is 
labeled the fourth call to the method fib, the value for n is 0, and ret references Line 23 
in the second call to fib. This is the calculation for the second part of the second Fibonacci 
number. As before, n is not greater than 1, so the else section of the if statement is 
executed and answer is assigned a value of 0 that is returned to the second call. Figure 
8.16 illustrates the state of execution prior to Line 24 in the second call to fib. 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

1 

--- answer2 

int --- 

fib4 

n 

answer1 

int 

int 

answer 

int 

ret addr L23 fib2 

0 

--- 

--- answer2 

int --- 

8.4  Fibonacci Numbers 283



 
 

 
Fig. 8.16 Contour prior to the execution of Line 24 in the second call to fib 

As before, the contour for the fourth call to fib has been shaded light red to indicate 
deallocation, and the value 0 is returned to answer2 in the second call to fib. When 
Line 24 is executed, the values in answer1 and answer2 are added together and stored 
in answer. Then answer in the second call to fib is returned to answer1 in the first 
call to fib as shown in Fig. 8.17 illustrating the state of execution just prior to Line 23. 

 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

--- 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

1 

0 answer2 

int --- 

fib4 

n 

answer1 

int 

int 

answer 

int 

ret addr L23 fib2 

0 

--- 

--- answer2 

int 0 

284 8  Recursion



 
 

 
Fig. 8.17 Contour prior to the execution of Line 23 in the first call to fib 

Note now that the fourth call to fib has been erased so as not to cause confusion with 
the second call to fib which is now shaded light red to indicate it has been deallocated. 
Also, answer in the second call to fib now contains the sum of answer1 and 
answer2. Further, the value 1 in answer in the second call to fib has been returned to 
answer1 in the first call to fib. Even though there have been a number of calls, the 
second half of the calculation still needs to be determined. Figure 8.18 shows the state of 
execution prior to Line 21 in the fifth call to fib. 

 

 

 

 

 

 

Ch8Sample2 

 
fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

1 

--- answer2 

int --- 

fib2 

n 

answer1 

int 

int 

answer 

int 

ret addr L22 fib1 

2 

1 

0 answer2 

int 1 

8.4  Fibonacci Numbers 285



 
 

 
Fig. 8.18 Contour prior to the execution of Line 21 in the fifth call to fib 

As before, notice this is not the second call to fib, but rather it is the fifth call to fib 
to calculate answer2 in the first call to fib. Since n is not greater than 1, the else portion 
of the if statement in the fifth call to fib is executed, and a 1 is placed in answer and 
returned back to the first call to fib. Figure 8.19 shows the state of execution prior to Line 
24 in the first call to fib. 

 

 

 

 

 

 

 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

1 

--- answer2 

int --- 

fib5 

n 

answer1 

int 

int 

answer 

int 

ret addr L23 fib1 

1 

--- 

--- answer2 

int --- 

286 8  Recursion



 
 

 

Fig. 8.19 Contour prior to the execution of Line 24 in the first call to fib 

The fifth call to fib is now shaded light red indicating deallocation, and the value in 
answer is returned to answer2 in the first call to fib. The values in answer1 and 
answer2 in the first call to fib are then added together and stored in answer, which is 
returned and assigned to answer in main. Figure 8.20 shows the state of execution prior 
to answer being output in Line 13 in main. 

Ch8Sample2 

fib1 

3 n int 

int --- answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

1 

1 answer2 

int --- 

fib5 

n 

answer1 

int 

int 

answer 

int 

ret addr L23 fib1 

1 

--- 

--- answer2 

int 1 

8.4  Fibonacci Numbers 287



 
 

 
Fig. 8.20 Contour prior to the execution of Line 13 in main 

As can be seen, the first call to fib is shaded light red to indicate deallocation, and 
answer in main contains the value 2 that was returned. Granted, this seems like a lot of 
work to calculate a Fibonacci number, but it shows the amount of memory that would be 
involved. Although there were a total of five calls to fib, only three contours were 
activated at any given time. As with the power method previously, the number of memory 
cells can be decreased by eliminating the temporary variables answer1, answer2, and 
answer as shown in the following code segment: 
 
public static int fib(int n) { 
   if (n > 1) { 
      return fib(n-1) + fib(n-2); 
   else 
      return n; 
} 
 

As before, this introduces the unstructured practice of two return statements, but if 
memory is an issue, then this is a possible alternative. An even more efficient solution is 
to use iteration, which was an exercise in  Chap. 4 . 

As with the power function, a stack could also be used to represent recursion, but with 
more complex algorithms, it can be a little confusing. Yet another way to represent 
recursion is to use a tree of calls. The tree is drawn from the top down with the first call at 
the top which is called the root. Then each call after that represents a branch and terminal 
calls are referred to as leaves. The tree of calls for the Fibonacci number problem is shown 
in Fig. 8.21. 

 
 
 
 
 
 

Ch8Sample2 

fib1 

3 n int 

int 2 answer 

main 

n 

answer1 

int 

int 

answer 

int 

ret addr L12 main 

3 

1 

1 answer2 

int 2 

288 8  Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

 
 

Fig. 8.21 Tree of calls for fib(3) 

Notice that main makes a call to fib1 (3), which then calls fib2 (2), which then 
calls fib3 (1). Once it is calculated, fib 3 returns the value 1 back to fib2 , which calls 
fib4 to calculate fib(0). Then the sum of those two can be returned to fib1 which calls 
fib5 to calculate fib(1). When that is completed, a 1 is returned to fib1 , which then 
adds the two numbers and returns a 2 to main. 

Which is a better method to walk through recursion: stack frames, a tree of calls, or 
contours? It depends on the situation. As stated previously, stack frames are the most 
realistic but it is harder to use to keep track of each call. A tree of calls is short and 
convenient but lacks much of the detail. Given the drawbacks of these two extremes, this 
is why contours are used in this text. As one gets more proficient with recursion, one might 
gravitate to using a tree of calls for a simple problem, but still using contours when a 
problem gets more complicated or using stack frames when an accurate picture is needed. 

8.5 Complete Program: Implementing Recursion 

A program which computes the greatest common divisor of two integers using recursion 
will be developed in this section. The program will 

 Ask the user to enter two integers 
 Compute the greatest common divisor 
 Display the result 

Of all the integers that divide the two numbers given, the largest is known as the greatest 
common divisor. For example, the positive divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, and 
36, and the positive divisors of 8 are 1, 2, 4, and 8. Thus, the common divisors of 36 and 8 
are 1, 2, and 4. It follows that the greatest common divisor of 36 and 8 is 4. The Euclidean 
algorithm which computes the greatest common divisor of two integers starts with a pair 
of positive integers. It forms a new pair that consists of the smaller number of the two and 
the remainder which is obtained by dividing the larger number by the smaller number. This 
process repeats until one number is zero, and then the other number is the greatest common 
divisor of the original pair. The following illustrates how the greatest common divisor of 

1 

2 

0 

1 

1 

main 

fib1(3) 

fib2(2) 

fib3(1) fib4(0) 

fib5(1) 

8.4  Fibonacci Numbers 289



 
 

the algorithm ends with 4 as the greatest common divisor of 36 and 8. 
A recursive method to find the greatest common divisor of two positive integers can be 

defined by the following: 

gcd num1,num2 if num2 1, then gcd num2, mod num1, num2

otherwise,num1

{
}

 

Recall from  Sect. 1.7  that % is the mod operator and if num1 and num2 are integers, 
num1%num2 returns the remainder. For example, 36%8 is 4. The implementation of the 
method gcd is shown below: 
 
public static int gcd(int num1, int num2) { 
   if(num2 >= 1) 
      return gcd(num2, num1%num2); 
   else 
      return num1; 
} 
 

The above method can be invoked for the pair 36 and 8 by 
 
int result; 
result = gcd(36, 8); 
 

After the execution of the method, the variable result will contain 4. In order to 
compute the greatest common divisor of 36 and 8, how many method calls were made? 
The first method call was gcd(36, 8), the next call was gcd(8, 4), and then gcd(4, 
0) which was the last method call, resulting in a total of three method calls. The complete 
program with a main method is shown below: 

 
import java.util.*; 
 
class Gcd { 
   // method to compute greatest common divisor 
   private static int gcd(int num1, int num2) { 
      if(num2 >= 1) 
         return gcd(num2, num1%num2); 
      else 
         return num1; 
   } 
 
   public static void main(String[] args) { 
      // declaration and initialization of variables 
      int n, k, result; 
      Scanner scanner = new Scanner(System.in); 
       
      // input two integers 
      System.out.print("Enter first number: "); 
      n = scanner.nextInt(); 

290 8  Recursion

http://dx.doi.org/10.1007/978-1-4471-6317-6_1#Sec7


 
 

      System.out.print("Enter second number: "); 
      k = scanner.nextInt(); 
       
      // compute greatest common divisor 
      result = gcd(n, k); 
       
      // output greatest common divisor 
      System.out.println(); 
      System.out.println("The greatest common divisor of " + n  
                          + " and " + k + " is " + result + ".");  
   } 
} 
 

When the above code is compiled and executed using the sample input of 36 and 8, the 
output of the program is as follows: 
 
Enter first number: 36 
Enter second number: 8 
The greatest common divisor of 36 and 8 is 4. 

8.6 Summary 

 It helps to hunt for patterns when trying to create a recursive definition. 
 Be sure to identify the base or terminal case. 
  
 When using contours, it is helpful to use local variables to store information. 
 To optimize recursion, eliminate local variables. 
 Drawing a stack frame and creating a tree of calls are alternatives to contour diagrams. 

8.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 

  1. Draw series of contour diagrams to show the state of execution of the program in 
Fig. 8.1 for 2 and 3. 

  2. Draw series of contour diagrams to show the state of execution of the program in 
Fig. 8.10 for n  

  3. Given the complete program in Sect. 8.4, what would happen if the numbers 36 and 
8 were input in reverse order? How many contours for gcd would need to be 
drawn? 

  4. Consider the program in Fig. 8.10 where Lines 22 and 23 are swapped. Draw a 
series of contour diagrams to show the state of execution for 3. 

  5. Trace the program in Fig. 8.1 for x n
one in Fig. 8.21.  

  6. Trace the program in Fig. 8.10 for n
8.21. 

*7. Write a recursive method to reverse a given string. The method accepts a string as 
a parameter and returns the reverse of the string. For example, if the argument is 
Java, then the method returns avaJ. 

  8. Write a recursive method to multiply two positive integers using repeated addition. 
*9. Write a recursive method to compute the factorial of a nonnegative integer using 

8.5  Complete Program: Implementing Recursion 291



 
 

the definition shown below: 

factorial( ) if 1, then *factorial 1 ,otherwise,1{ }n n n n  

10. Write a recursive method to compute the binomial coefficient using the definition 
shown below: 

binomial , if 0 or , then1,

otherwise,binomial 1, 1 binomial 1,

{
}

n k k n k

n k n k
 

11. Find a reference on how to convert a decimal number to a binary number [10] and 
then write a recursive method to perform the conversion. 

 
   12.   Write a recursive method to output a string a certain number of times. A user will 
           input a string and how many time the string will be printed. An example output to 
            
 
     Enter a string: Book 
     Number of times to repeat: 5 
 
     Book #1 
     Book #2 
     Book #3 
     Book #4 
     Book #5 
 
   13.   Write a recursive method to take 5 numbers as inputs and outputs the maximum 
           number of these numbers.  
 

 

 

 

 

 

 

 

 

 

 

 

 

292 8  Recursion



 

 9 

Objects: Inheritance and Polymorphism 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter returns to objects and explores the concept of inheritance. Contours are used to explain how a 
subclass is extended and inherits data members and methods from a superclass. Further, protected variables 
and methods along with abstract classes are discussed. Another object-oriented programming concept, 
polymorphism, which is a useful tool for developing software, is introduced. A complete program 
implementing inheritance and polymorphism is included. 

Keywords 

Inheritance; Subclass; Superclass; Protected Variables; Abstract Classes; Polymorphism. 

Objects were introduced in  Chap. 2 , and topics such as passing objects, method 
overloading, and class methods were discussed in  Chap. 5 . In this chapter the concepts of 
inheritance, overriding methods, abstract classes, and polymorphism will be illustrated. At 
first these concepts might sound a little bit intimidating, but introducing them with simple 
programs and contour diagrams makes the concepts easier to understand. 

9.1 Inheritance 

An important concept in object-oriented programming is software reuse. Writing a program 
when the same code needs to be written and rewritten with minor variations can be time-
consuming and can also waste memory. Further, if the code has already been written for 
one situation, rewriting it not only wastes time and memory, but the chance of making a 
logic error in subsequent versions also increases. Instead, it makes sense to reuse software 
that has already been written and tested. A further advantage of software reuse is with the 
maintaining of code. When a segment needs to be changed, it only needs to be changed in 
one place, and again the chance of introducing logic errors decreases. An important way of 
maximizing software reuse is through inheritance. 

When a new class is created using inheritance, the new class can inherit data members 
and methods from an already existing class. The existing class is known the parent class 
and the new class is called the child class. Also, the parent class is sometimes called the 
base class and the child class is called the derived class. An even more common name for 
the base class is the superclass, and the derived class is then called the subclass. 

As an example, a regular polygon has equal length sides. Further, a three-sided regular 
polygon is an equilateral triangle, a four-sided regular polygon is a square, a six-sided 
regular polygon is a hexagon, and an eight-sided regular polygon is an octagon. Although 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_9

293

http://dx.doi.org/10.1007/978-1-4471-6317-6_2
http://dx.doi.org/10.1007/978-1-4471-6317-6_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_9&domain=pdf


 

there exists a generic formula for the area for an n-sided regular polygon, this text will use 
the specific algebraic formulas for each of the regular polygons to help illustrate the 
concepts of inheritance, overriding methods, abstract classes, and polymorphism. 

The specific equations for the area of each of these polygons share a common part: the 
length of one of its sides squared or s2. One might recognize this is also the equation for a 
square, and because a square is such a simple example, it is not included in subsequent 
examples. Since this equation is shared by all the other equations, it can be made local to 
the class for a regular polygon. As a result, a regular polygon can be thought of as the 
superclass, and the triangle, hexagon, and octagon can be thought of as subclasses. 

Using a simple example, consider the RegPoygon class as shown in Fig. 9.1. Given 
the previous chapters on classes, the RegPoygon class should look fairly familiar. Notice 
the local private variable lenSide which is for the length of a side. The constructor 
initializes the variable with the value sent via the parameter. Further, there is one method 
that squares the length of the side using the pow method from the Math class. Lastly, as 
before, there is a local variable in the method that helps when using contour diagrams, but 
if memory were an issue, it could be eliminated and the expression could be used in the 
return statement. 

 
Fig. 9.1 RegPolygon class 

A main program segment that tests this class is shown in Fig. 9.2. Again, the statements 
in this program should be fairly familiar. A value is input from the user and a new instance 
of the RegPolygon class is created using the value that was input. Then the method is 
invoked and the value returned is output. 

294 9  Objects: Inheritance and Polymorphism



 

 
Fig. 9.2 Main program segment using the RegPolygon class 

However, what if one wanted to write a new class for a triangle with a method to 
calculate the area of a triangle? One could just write the necessary expression and be done 
with it. 

 

However, as mentioned pr
the area of an equilateral triangle is 23 / 4s  which includes s2. If the RegPolygon class 

suspect is yes. The RegPolygon class would then be the superclass and the Triangle 
class would be a subclass, and the Triangle class could inherit methods from the 
RegPolygon class. Another way of saying this is that the Triangle class is an 
extension of the RegPolygon class. 

How is this accomplished in a program? The first line in the Triangle class would 
indicate that it extends the RegPolygon class as follows: 
class Triangle extends RegPolygon { 

By doing so, the Triangle class now has access to the data member, method, and 
constructor in the RegPolygon class. So instead of having to rewrite code segments, it 
can now reuse these code segments. How is this accomplished? 

First, it helps to look at the constructor for the Triangle class. Since the 
RegPolygon class already contains the variable lenSide and a Triangle is an 
extension of a RegPolygon, instead of declaring a local private variable, the variable in 
the RegPolygon class could be reused. And instead of initializing it in the Triangle 
class, the constructor in the RegPolygon class can also be reused. The constructor in the 
superclass RegPolygon is invoked by using super(lenSide) as shown in the 
following constructor: 

9.1  Inheritance 295



 

 
public Triangle(int lenSide) { 
   super(lenSide); 
} 
 

Note that in order to invoke the constructor of the superclass, super(lenSide) must 
be the first line in the constructor as shown above. To calculate the area of a triangle, one 
would need to multiply 3 / 4  by the results returned from the method 
calcRegPolyArea in the RegPolygon class as shown below: 
 
public double calcArea() { 
   double area; 
   area = Math.sqrt(3.0) / 4.0 * calcRegPolyArea(); 
   return area; 
} 
 

Unlike the constructor, the invoking of other methods can occur anywhere in a method. 
As before, there is a local variable area declared in the method which will help later when 
creating contour diagrams. Would the word super need to be used as it was in the 
constructor? The answer in this case is no, but it is optional as in 
super.calcRegPolyArea(). Are there cases where super is needed? Yes, it is 
required in the constructor and in some other special cases as will be shown shortly. 
However, as a general rule, if it is not needed, do not include it. Before proceeding, it is 
helpful to see the complete Triangle class as shown in Fig. 9.3. 

 
Fig. 9.3 Triangle class 

As always, it helps to see the main program segment that invokes the method in the 
Triangle class as shown in Fig. 9.4. The main program inputs lenSide for the triangle. 
It then creates a new instance of the Triangle class by invoking the constructor, which 
as seen in Fig. 9.3 invokes the constructor of the RegPolygon class. It then invokes the 
calcArea method of the Triangle class which subsequently invokes the 
calcRegPolyArea method of the RegPolygon class. Lastly, the area is output. But 
how does this look using contour diagrams? To do so requires putting Figs. 9.1, 9.3, and 
9.4 together in a complete program with line numbers as shown in Fig. 9.5. 

296 9  Objects: Inheritance and Polymorphism



 

 
Fig. 9.4 Main program segment using the Triangle class 

 

9.1  Inheritance 297



 

 
Fig. 9.5 Complete main program with the RegPolygon and Triangle classes 

As in previous chapters, not every step will be shown using contour diagrams, but steps 
will be shown only at critical points to illustrate how the code executes. Assuming that the 
user inputs 2 for the lenSide, a good first stopping point in the execution of the program 
is just prior to Line 20 (abbreviated L 20 in Fig. 9.5) in the Triangle class as shown in 
Fig. 9.6. 

298 9  Objects: Inheritance and Polymorphism



 

 

 

Fig. 9.6 Contour just prior to the execution of Line 20 

Although the contour for a constructor is often not shown, it is shown here to help with 
understanding the flow of control of the program. First note that the parameter lenSide 
contains the value 2 passed from the main program, but it has not yet been assigned to the 
variable lenSide in the RegPolygon object. Further notice that the contour for 
Triangle is nested inside the contour for the RegPolygon class. As might be 
suspected, the reason for this is because RegPolygon is the superclass and Triangle 
is the subclass. As in the past, since Triangle is nested inside RegPolygon, it now has 
access to the non-private variable in RegPolygon. In other words, it can inherit the non-
private variable in RegPolygon. As the execution of super(lenSide) occurs, the 
flow of control is transferred to the constructor in RegPolygon, and Fig. 9.7 shows the 
state of execution just prior to Line 32. 

 

main 

2 lenSide int 

RegPolygon 

lenSide --- 

Triangle triangle 

double --- area 

Triangle  

Constructor 

int 

lenSide int 2 

9.1  Inheritance 299



 

 

Fig. 9.7 Contour just prior to the execution of the end of the constructor at Line 32 

The value in the argument lenSide in the Triangle constructor is transferred to the 
parameter lenSide in the RegPolygon constructor, and from there it is assigned to the 
data member lenSide in RegPolygon. Notice in Fig. 9.7 that both the parameter 
lenSide in RegPolygon constructor and the variable lenSide in RegPolygon now 
contain the value 2 from lenSide in Triangle. After the constructor in RegPolygon 
is done, it returns to the constructor for Triangle and control is returned to the main 
program. Figure 9.8 shows the state of execution just prior to Line 12. 

 

Fig. 9.8 Contour just prior to the execution of Line 12 in main 

 

main 

2 lenSide int 

RegPolygon 

Triangle 

triangle 

double --- area 

Triangle  

Constructor 

Constructor 

lenSide int 2 

lenSide int 2 

lenSide int 2 

main 

2 lenSide int 

RegPolygon 

lenSide int 

Triangle triangle 

double --- area 

Triangle  

2 

300 9  Objects: Inheritance and Polymorphism



 

Notice that the two contours for the constructors are gone and again the variable 
lenSide in RegPolygon now contains a 2. The method calcArea is then invoked, 
and the state of execution just prior to Line 24 is shown in Fig. 9.9. 

 

Fig. 9.9 Contour prior to the execution of Line 24 in calcArea 

Since Triangle is a subclass of RegPolygon, the contour for the method 
calcArea is created in Triangle as the constructor was previously. Then as Line 24 
is executed, the method calcRegPolyArea is invoked, and the value for the variable a 
is calculated as shown just prior to Line 36 in Fig. 9.10. 

 

main 

2 lenSide int 

RegPolygon 

lenSide 2 

Triangle 
triangle 

double --- area 

Triangle  

calcArea 

area 

int 

double --- 

main 

2 lenSide int 

RegPolygon 

lenSide int 

Triangle 

triangle 

double --- area 

Triangle  

calcArea 

calcRegPolyArea 

area double 

2 

--- 

a double 4.0 

9.1  Inheritance 301

Fig. 9.10 Contour just prior to the execution of Line 36 in calcRegPolyArea 



Upon return from the method calcRegPolyArea, the state of execution just prior to 
Line 25 is shown in Fig. 9.11. Lastly, control is returned to the main program as shown just 
prior to output of the area on Line 14 in Fig. 9.12. 

 

Fig. 9.11 Contour prior to the execution of Line 25 in calcArea 

 

Fig. 9.12 Contour prior to the execution of Line 14 in the main program 

However, what if the name of the calcArea method in the Triangle class was 
changed to calcRegPolyArea? Would this cause a problem with the method 
calcRegPolyArea in the RegPolygon class? The answer is yes, because 
calcRegPolyArea in the Triangle class would have the same number and type of 
parameters as the calcRegPolyArea method in the RegPolygon class. A method in 
a subclass that has the same name, the same number of parameters, and the same type of 
parameters as another method in the superclass is known as an overriding method. Does 
this mean that there cannot be two methods of the same name, the same number of 

main 

2 lenSide int 

RegPolygon 

Triangle triangle 

double --- area 

Triangle  

calcArea 

area double 1.73 

lenSide int 2 

main 

2 lenSide int 

RegPolygon 

lenSide int 

Triangle 
triangle 

double 1.73 area 

Triangle  

2 

302 9  Objects: Inheritance and Polymorphism



 

parameters, and same type of parameters, one in the superclass and one in the subclass? 
The answer is no, but if there is an overriding method, how does one access the method in 
the superclass? If calcRegPolyArea is invoked in the subclass, the method in the 
subclass would be used, and in this case it would recursively call itself which is not what 
is intended. As mentioned earlier, there are instances where the word super must be used 
and this is one of those instances. So, should one want to access the calcRegPolyArea 
method in the superclass, then the word super is no longer optional and must be used as 
shown in the segment in Fig. 9.13. 

 
Fig. 9.13 Overriding the calcRegPolyArea() method 

First, note that the name of the method has been changed from calcArea to 
calcRegPolyArea. Further, by including the word super prior to the call to 
calcRegPolyArea, the method in the superclass RegPolygon is invoked instead of 
recursively calling the calcRegPolyArea method in the subclass. Again, in this case 
the word super is not optional. Using the word super only when it is needed helps alert 
other programmers reading the code that there are two methods of the same name. For now, 
instead of changing the method name to calcRegPolyArea, the program in Fig. 9.5 
will retain the method name calcArea. 

9.2 Protected Variables and Methods 

In the program in Fig. 9.5, what would happen if a method in the Triangle class tried to 
access the variable in the RegPolygon class? Specifically, what if the constructor in the 
Triangle class tried to access the variable lenSide in the RegPolygon class? The 
answer is the same as if trying to access the variable from the main program. If a variable 
is private, then it can only be accessed by methods in the RegPolygon class; thus the 
variable lenSide is initialized using the constructor. 

However, if a variable were made public, then the methods of the subclass could 
access it. Unfortunately, the variable would also be accessible from the main program as 
well. Is there a way that would allow only methods in the subclass to access a variable in 
the superclass, but still not allow the variable to be accessed from the main program? The 
answer is yes. Instead of private or public access, protected access can be used 
as shown in the following: 
protected int lenSide; 

Now instead of initializing the variables via the RegPolygon constructor, the 
variables can be accessed directly as in the following modified Triangle constructor: 
 
public Triangle(int lenSide) { 
   super.lenSide = lenSide; 
} 

9.1  Inheritance 303



 

 
To access the variable lenSide in the RegPolygon class, notice the use of the word 

super. Also note that this could have been used instead of super, but the use of the 
word super is preferred because it alerts programmers who might subsequently read the 
code that the variable is not located in the current class but rather in the superclass. 

Since the RegPolygon constructor would no longer be invoked, it could be deleted. 
However, if it was retained, but not invoked, a default constructor would need to be added 
to the RegPolygon class as follows: 
 
public RegPolygon() { 
} 
 

Although accessing a variable in this manner works and is better than declaring a 
variable as public, it can still suffer from some of the same problems as being declared 
public when there are a large number of subclasses. As a result, given a choice between 
accessing a protected variable or accessing a private variable via a method, this text 
will generally choose the latter as shown previously in Fig. 9.5. 

However, notice in Fig. 9.5 that although the variables in the RegPolygon class are 
private, the methods are public. While this is acceptable when access to the method 
is needed by both the main program and a subclass, what if access is only needed via the 
subclass and not from the main program? Is there a way that this can be accomplished? 
Again, as might be suspected, just as variables can be made accessible only by a subclass, 
this can also be true for methods. This is accomplished again using protected instead 
of public as shown in the following headings: 
 
protected RegPolygon(int lenSide) { 
 
protected double calcRegPolyArea() { 
 

This corresponds to the previous suggestion that variables should remain private and 
only accessed through methods. Further, these methods can only be accessed from other 
methods within the class or any subclasses, and not from the main program. 

9.3 Abstract Classes 

Given the program in Fig. 9.5, there is nothing preventing the main program from creating 
an instance of the RegPolygon class. Although not very useful, even if the variable 
lenSide is private and the methods are protected, an instance could be created. 
Is there a way to make it so that an instance of the class cannot be created? Yes, and it is 
known as an abstract class. The result is that subclasses can still be defined, yet an 
instance of the superclass cannot be created. The following first line of the RegPolygon 
class shows how this is accomplished: 
abstract class RegPolygon { 

If it is possible to create an abstract class, is it also possible to create an abstract method? 
The answer again is yes. When creating an abstract method, the heading is declared in the 
superclass, but the body of the method is not defined as in the following: 

304 9  Objects: Inheritance and Polymorphism



 

public abstract double calcArea(); 

Again, note that there is no body to the method and the first line of the method ends in 
a semicolon. If the heading is in the superclass and there is no body to the method, where 
is the body defined? The complete method is defined in the subclass as it was before and 
as shown below: 
 
public double calcArea() { 
   double area; 
   area = Math.sqrt(3.0) * calcRegPolyArea() / 4.0; 
   return area; 
} 
 

If the above method is the same as before, what is the advantage of doing this? The 
advantage is that it allows different subclasses to have different methods using the same 
heading to meet the needs of each subclass. For example, instead of a triangle, consider an 
octagon: 

 

The name for this new class could be Octagon. Further, since the equation for an 
octagon is 22 1 2 s , it could also be a subclass of the RegPolygon class. Since the 

formula s2 is the same, the calcRegPolyArea method of the RegPolygon class could 
be invoked, but unlike the calculation for the area of the triangle, it would not need to be 
multiplied by 3 / 4  but rather multiplied by 2 1 2 . There is no change to the 

Triangle class and the new Octogon class is as follows: 
 
class Octagon extends RegPolygon { 
   public Octagon(int lenSide) { 
      super(lenSide); 
   } 
   public double calcArea() 
      double area; 
      area = 2.0 * (1.0 + Math.sqrt(2.0)) * calcRegPolyArea(); 
      return area; 
   } 
} 
 

Note in the first line that the Octagon class extends the RegPolygon class. Next, 
notice in the calcArea method that calcRegPolyArea() is not multiplied by 3 / 4  
but rather by 2 1 2  as mentioned above. 

9.3  Abstract Classes 305



 

Note that an abstract class does not have to have any abstract methods, but if a class has 
abstract methods, the class needs to be declared as an abstract class. Using an abstract 
method in the superclass forces both subclasses to define different calcArea methods, 
and if the methods were not declared, a syntax error would occur. This is a handy feature 
to have when there are some differences in various subclasses, yet it is desired to retain 
some commonality among the subclasses. 

9.4 Polymorphism 

Another important feature of object-oriented programming is polymorphism, where the 
type of an object that is referenced by a superclass variable is determined at runtime instead 
of at compile time. This concept will be illustrated with the help of examples below. 

In Java, a variable of a superclass type can reference an object of any of its subclasses. 
In other words, both an object of the superclass and an object of a subclass can be 
referenced by a variable of the superclass type. Consider the definition of the class 
RegPolygon shown in Fig. 9.1 which is repeated below for convenience: 
 
class RegPolygon { 
   private int lenSide; 
   public RegPolygon(int lenSide) { 
      this.lenSide = lenSide; 
   } 
   public double calcRegPolyArea() { 
      double a; 
      a = Math.pow(lenSide, 2); 
      return a; 
   } 
} 
 

Further, the class Triangle from Fig. 9.3, with the modification described in Fig. 9.13 
with the method calcArea renamed to calcRegPolyArea, is shown below: 
 
class Triangle extends RegPolygon { 
   public Triangle(int lenSide) { 
      super(lenSide); 
   } 
   public double calcRegPolyArea() { 
      double area; 
      area = Math.sqrt(3.0) / 4.0 * super.calcRegPolyArea(); 
      return area; 
   } 
} 
 

The class Triangle is a subclass of the class RegPolygon, and the method 
calcRegPolyArea in the Triangle class is overriding the method 
calcRegPolyArea in the RegPolygon class. Suppose two variables of type 
RegPolygon are declared in the main method as follows: 
RegPolygon shape1, shape2; 

306 9  Objects: Inheritance and Polymorphism



 

Naturally, a reference to an object of the class RegPolygon can be assigned to these 
variables. For example, the following statement assigns an object of the RegPolygon 
class to the variable shape1. 
shape1 = new RegPolygon(5); 

In addition, a reference to an object of the class Triangle can also be assigned to 
these variables. The following statement assigns an object of the Triangle class to the 
variable shape2. 
shape2 = new Triangle(2); 

Next, using the method calcRegPolyArea defined in both the class RegPolygon 
and the class Triangle, the square of the side and the area of the triangle will be 
calculated. For the object shape1, the code segment can be found in Fig. 9.14. This code 
segment will output the area with a side of 5 as 
area of shape1: 25.00 
 

 
Fig. 9.14 Code segment finding the square of the side of shape1 

 

Now, what would happen when the code segment in Fig. 9.15 is executed for the object 
shape2? Recall that the variable shape2 is declared as of type RegPolygon, and a 
reference to the Triangle object is assigned to it. Will the method calcArea defined 
in the class RegPolygon be invoked and return 25.00? The answer is no. Instead it will 
output the following: 
 area of shape2: 1.73 

 
Fig. 9.15 Code segment finding the area of shape2 

 
This is the area of a triangle with a side of length 2. The reason is that the type of the 

object invoking the method calcRegPolyArea determines which 
calcRegPolyArea method is called, either the one in the class RegPolygon or the 
one in the class Triangle. Even though the variable shape2 is of type RegPolyton, 
it references a Triangle object because that is the type assigned to it during runtime by 
the shape2=new Triangle(2); statement. This means that the Triangle object is 
invoking the method calcRegPolyArea defined in the class Triangle when it is 
executed. 

9.4  Polymorphism 307



 

This is an example of polymorphism. Variables shape1 and shape2 could reference 
either a RegPolygon object or a Triangle object. At compile time, it cannot be 
determined what type of the object they will reference. However, at runtime when the 
object invokes the method calcRegPolyArea, the type of the object is determined and 
the appropriate calcRegPolyArea method is called. 

If a variable of a superclass type can reference an object of a subclass type, can a variable 
of a subclass type reference an object of a superclass type? The answer is no. Consider the 
following code segment: 
 
Triangle shape3; 
shape3 = new RegPolygon(6); 
 

The second statement causes a compile-time error, because a reference variable of a 
subclass type is not allowed to reference an object of its superclass. As one might suspect, 
the following statement is also incorrect, 
shape3 = shape1; 

because the variable shape1 is referencing an object of type RegPolygon. What 
about the following statement? 
shape3 = shape2; 

At first it looks okay since the variable shape3 is of type Triangle and the variable 
shape2 references an object of the Triangle class. But, the answer is again no. It 
causes a compile-time error because even though shape2 references a Triangle object, 
the variable shape2 is of type RegPolygon. However, the following statement is legal: 
shape3 = (Triangle) shape2; 

The above statement uses a typecast operator, discussed in  Chap. 1 , which allows 
shape3 of type Triangle to reference the Triangle object that shape2 of type 
RegPolygon references. 

Suppose another subclass of the class RegPolygon named Hexagon is defined. The 
equation for a hexagon is 23 3 / 2s  as shown below: 
 
class Hexagon extends RegPolygon { 
   public Hexagon(int lenSide) { 
      super(lenSide); 
   } 
   public double calcRegPolyArea() { 
      double area; 
      area = 3.0 * Math.sqrt(3.0) / 2.0 * super.calcRegPolyArea(); 
      return area; 
   } 
} 
 

As discussed above, a variable of the class RegPolygon can reference an object of the 
class Hexagon, but a variable of the Hexagon class cannot reference an object of the 
RegPolygon class. Also, a variable of the Hexagon class cannot reference an object of 

308 9  Objects: Inheritance and Polymorphism

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 

the Triangle class, and vice versa, since the Hexagon class and the Triangle classes 
are both subclasses of the RegPolygon class, also known as sibling classes. 

Returning to the output of the code segments in Figs. 9.14 and 9.15, instead of 
displaying the words "shape1" and "shape2" as shown below, would it be better if 
the type of the polygon is output? 
 
area of shape1: 25.00 
area of shape2: 1.73 
 

Is there a way to determine the type of an object during the runtime and output it? The 
answer is yes. To determine the type of an object, Java provides the operator 
instanceof. This operator is especially useful because the variable of a superclass can 
reference an object of either its own class or a subclass type. Consider the following 
expression: 
shape1 instanceof Triangle 

This expression evaluates to true if the variable shape1 refers to an object of the 
class Triangle; otherwise it evaluates to false. Using the operator instanceof, the 
printf statements in Figs. 9.14 and 9.15 can be rewritten as follows: 
 
if(shape1 instanceof Triangle) 
   System.out.printf("area of triangle: %.2f", area1); 
else 
   System.out.printf("square of side: %.2f", area1); 
System.out.println(); 
if(shape2 instanceof Triangle) 
   System.out.printf("area of triangle: %.2f", area2); 
else 
   System.out.printf("square of side: %.2f", area2); 
System.out.println(); 
 

The output of the above code segment is 
 
square of side: 25.00 
area of triangle: 1.73 
 

Since the variable shape1 references a RegPolygon object, the first if condition 
returns false. Therefore the printf statement in the else block was executed stating 
that the square of the side is calculated. For shape2, the then portion of the second if 
statement was executed. However, what would happen if there are a large number of shapes 
whose areas need to be calculated? Instead of having each object calling the 
calcRegPolyArea method separately and having if statements for the output, an array 
of objects can be used to simplify the program. 

Consider the creation of an array with different types of regular polygons. If the array 
is declared as a type RegPolygon, each element of the array could be an object of its 
subclasses. The following code segment declares and creates an array named shapes of 
type RegPolygon with five elements, which can be the Triangle class or the 

9.4  Polymorphism 309



 

Hexagon class: 
 
RegPolygon[] shapes; 
shapes = new RegPolygon[5]; 
 

The following statements create either a Triangle object or a Hexagon object and 
place them in the array: 
 
shapes[0] = new Hexagon(3); 
shapes[1] = new Triangle(2); 
shapes[2] = new Triangle(5); 
shapes[3] = new Hexagon(4); 
shapes[4] = new Triangle(4); 
 

Once all the objects are stored in the array, a for loop can be used to calculate the areas 
and output them along with the type of the shape. 
 
for(int i=0; i<shapes.length; i++) { 
   area = shapes[i].calcRegPolyArea(); 
   if(shapes[i] instanceof Triangle) 
      System.out.printf("area of triangle: %.2f", area); 
   else 
      System.out.printf("area of hexagon: %.2f", area); 
   System.out.println(); 
} 
 

The output of the above code segment is of the same form as before: 
 
area of hexagon: 23.38 
area of triangle: 1.73 
area of triangle: 10.83 
area of hexagon: 41.57 
area of triangle: 6.93 
 

Again, the advantage of using an array is that the program does not need to have a series 
of calculations for the area and if statements, but rather only one calculation and if 
statement placed inside a loop. 

9.5 Complete Program: Implementing Inheritance and Polymorphism 

Combining all the material from this chapter, one can now develop a program that 
illustrates the concepts of inheritance and polymorphism. In this section, a program which 

information for a company will be developed. The program 
will 

 Allow a user to enter the employee information 
 Compute the compensation for each employee 
 Display the results 

Suppose each employee has a unique ID number and is either a full-time or a part-time 
employee. Full-time employees are salaried and part-time employees are paid hourly. 

310 9  Objects: Inheritance and Polymorphism



 

Therefore, the company keeps track of the salary for each full-time employee and the 
hourly rate and the number of hours worked for each part-time employee. Since every 
employee has an ID number as a common field and other field(s) depending on the type of 
employment, the concept of inheritance can be used to organize the data. The Employee 
class could be the superclass and there could be two subclasses, a FullTime class and a 
PartTime class. The Employee class could have a data member named id of type 
integer and two methods, one constructor and a method toString, as discussed in  Sect. 
6.5 . The toString method returns a descriptive text and the contents of the variable id 
as a String type for the purpose of displaying information about the object. The 
definition of the Employee class is shown below: 
 
class Employee { 
   private int id; 
   public Employee(int id) { 
      this.id = id; 
   } 
   public String toString() { 
      return "An employee with ID " + id; 
   } 
} 
 

The FullTime class inherits the id field from the parent class Employee and has 
one additional data member of its own, salary of type double. The id is also inherited 
by the PartTime class. Two more data members, hourlyRate and hoursWorked of 
type double, are declared in the PartTime class to determine the compensation. Both 
subclasses have a method toString which is an overriding method of the one in the 
Employee class. They also have a method named compensation to calculate the pay 
for the particular month. Both the FullTime class and the PartTime class are shown 
below: 

9.5  Complete Program: Implementing Inheritance and Polymorphism 311

http://dx.doi.org/10.1007/978-1-4471-6317-6_6#Sec11
http://dx.doi.org/10.1007/978-1-4471-6317-6_6#Sec11


 

 

Notice that the method toString defined in the Employee class is invoked from the 
toString method of both subclasses using the method call super.toString(). The 
next two lines append the type of employment and the result from the compensation 
method as defined and calculated in its own class. The compensation method in the 
FullTime class simply returns the content of the variable salary, and the 
compensation method in the PartTime class calculates the wage multiplying the 
hourly rate by the number of hours the employee worked. The format method in the 
toString method, which is similar to printf, is a class method defined in the String 

312 9  Objects: Inheritance and Polymorphism



 

class and is used to format the double number. 
As discussed in  Sect. 2.10 , Unified Modeling Language (UML) diagrams help one to 

see the relationships among the various classes. Figure 9.16 shows how the Employee, 
FullTime, and PartTime classes can be displayed using UML class diagram notation. 
 
 

Employee 
id: int 
Employee(id: int) 
toString(): String 

 
 
 
 

FullTime 
salary: double 
FullTime(id: int,  
         salary: double) 
toString(): String 
compensation(): double 

 
Fig. 9.16 UML class diagram of the Employee, FullTime, and PartTime classes 

As can be seen, each box represents a particular class. The name of the class is in the 
top section of the box. A list of the data members is located in the middle section, and the 
list of the methods is in the bottom section. Two arrows show the relationship between the 
parent class and the two child classes. In the FullTime class, the middle section contains 
the data member salary and its type double following the colon. The list of methods 
includes the constructor FullTime along with the two methods, toString and 
compensation. The parameter list (id: int, salary: double) for the 
constructor indicates that id and salary are of type int and double, respectively, and 
are used to assign the values to the data members. By having an empty parameter list in the 
parentheses, both toString and compensation methods do not receive any 
information and return a value of type String and double, respectively. 

In the main method, an array of Employee type is created with the number of 
employees that the user inputs, and the information about each employee is collected from 
the user inside the for loop. After all the information is entered, the compensation for 
each employee is calculated and displayed using polymorphism. The complete main 
program is shown below: 

PartTime 
hourlyRate: double 
hoursWorked: double 
PartTime(id: int,  
         hourlyRate: double, 
         hoursWorked: double) 
toString(): String 
compensation(): double 

9.5  Complete Program: Implementing Inheritance and Polymorphism 313

http://dx.doi.org/10.1007/978-1-4471-6317-6_2#Sec10


 

 

In the first for loop, notice that after an ID number is entered, the program asks the 
user if the employee is full-time or part-time. Depending on the type of the employment, 
only the necessary information is prompted for in the then or else section of the if 
statement. A for loop is also used for output. Because of the use of polymorphism, the 
type of the object at a particular position in the array is determined dynamically and the 
appropriate toString method is executed. When the above program is compiled and 
executed using the sample input of three employees, the output appears as given below: 

314 9  Objects: Inheritance and Polymorphism



 

 

As can be seen from the above output, the user entered information for one full-time 
and two part-time employees. 

9.6 Summary 

 The word extends is used to create a subclass. 
 When accessing a constructor in a superclass, super must be used. It must also be 

the first line of the constructor of the subclass. 
 An overriding method is one in a subclass that has the same name, the same number 

of parameters, and the same type of parameters as the one in the superclass. 
 When there is not an overriding data member or method in a subclass, super is 

optional and generally not used. However, if there is an overriding data member or 
method in the subclass and the one in the superclass needs to be accessed, super is 
required. 

 Use protected when variables or methods in a superclass are to be accessed only 
in the superclass and its subclasses. 

 If the superclass is an abstract class, it can be extended by subclasses, but a new 
instance of the superclass cannot be created. 

 The heading of an abstract method is placed in the superclass followed by a semicolon, 
and in the subclasses, the method must eventually be implemented. 

 An abstract class does not need to include abstract methods, but if a class has abstract 
methods, the class must be declared as an abstract class. 

9.5  Complete Program: Implementing Inheritance and Polymorphism 315



 

 Polymorphism means the type of an object that is referenced by a superclass variable 
is determined at runtime. 

 A variable of a superclass type can reference an object of its subclass type. 
 A variable of a subclass type cannot reference an object of its superclass type. 
 A variable of a subclass type cannot reference an object of another subclass type that 

shares the same parent. The two subclasses are known as sibling classes. 
 The operator instanceof determines the type of an object. 

9.7 Exercises (Items Marked with an * Have Solutions in Appendix E) 

  1. Suppose that Staff, Faculty, and StudentWorker are the subclasses of the 
Employee class. Indicate whether the following statements are syntactically 
correct or incorrect. If incorrect, indicate what is wrong with the statement: 

  A. Employee employee = new Faculty(); 
*B. Staff staff = new Employee(); 
*C. StudentWorker student = new StudentWorker(); 
  D. Faculty faculty = new Staff(); 

  2. The Triangle class is derived from the RegPolygon class. Using the UML 
diagrams shown below, complete the following: 

 
 

 

 
 

 

 

 

 

 

 

 

 

316 9  Objects: Inheritance and Polymorphism



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  A. List any overloaded methods in the RegPolygon and Triangle classes. 
*B. List any overriding methods in the RegPolygon and Triangle classes. 
  C. If the variable lenSide is a private data member of the RegPolygon 

class, is lenSide accessible from the Triangle class? 
*D. If the variable lenSide is a protected data member of the 

RegPolygon class, is lenSide accessible from the Triangle class? 
  E. If the variable lenSide is a protected data member of the 

RegPolygon class, is lenSide accessible from the main method? 

*3. Implement a class Engineer which extends from the FullTime class discussed 
in Sect. 9.5. Include a data member which describes the type of engineering and a 
method toString. 

  4. Write a class Vehicle which keeps a vehicle identification number, license plate 
number, and a number of axles. Derive two classes from the Vehicle class named 
Car and Truck. Include a data member for the number of passengers in the Car 
class and a data member for the towing capacity for the Truck class. All three 
classes should have a toString method to be able to output information about a 

RegPolygon 
lenSide: int 
RegPolygon() 
RegPolygon(lenSide: int) 
setLenSide(lenSide: int) 
getLenSide(): int 
calcRegPolyArea(): double 
toString(): String 
equals(regPolygon: RegPolygon): boolean 
makeCopy(regPolygon: RegPolygon) 

Triangle 
Triangle() 
Triangle(lenSide: int) 
calcRegPolyArea(): double 
toString(): String 
equals(triangle: Triangle): boolean 
makeCopy(triangle: Triangle) 

9.7  Exercises (Items Marked with an * Have Solutions in Appendix E) 317

particular vehicle. 



  5. Suppose that two different types of sources are used in a term paper: books and 
journal articles. The following UML diagram illustrates how the sources are 
organized. 

 
Source 

author: String 
title: String 
year: int 
Circle(author: String, 
       title: String, 
       year: int) 
toString(): String 

 
 
 
 

Book 
publisher: String 
Book(author: String,  
     title: String,  
     year: int,  
     publisher: String) 
toString(): String 
equals(aBook: Book): 
Boolean 

 
 

 

 

First, implement the three classes, Source, Book, and Article, and then write 
a main method to use them. In the main method, ask the user to enter the number of 
references, create an array of type Source using the size the user entered, use a loop 
to ask the user to enter the information for each reference (book or journal article), 
and then output the contents of each object. 

 
6. In Problem 4, the Vehicle, Car, and Truck classes were implemented. Vehicles 
could include more such as motorcycles, buses, trains, ships, and airplanes. Using UML 
diagrams, organize these vehicles. Add appropriate data members and methods in the 
diagram for each type of vehicle. 
 
7. In this chapter, the Triangle and Octagon classes were extended from 
RegPolygon class. Define the Square class which is a subclass of the RegPolygon 

Article 
journalName: String 
pages: String 
volume: int 
issue: int 
Article(author: String,  
        title: String,  
        year: int,  
        journalName: String, 
        pages: String) 
toString(): String 
equals(aArticle: Article):  
                   Boolean 

318 9  Objects: Inheritance and Polymorphism



 

and have the calcArea method in the Square class call calcRegPolyArea 
method to calculate the are of square. 
 
8. Define the Heptagon class as a subclass of RegPolygon class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.7  Exercises (Items Marked with an * Have Solutions in Appendix E) 319



 

10 

Elementary File Input and Output 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter discusses elementary files, including how to obtain data from a file and how to save output to a 
file. It also discusses how the file location is specified. Two complete programs, one performing matrix 
multiplication using a data stored in a file, and another sorting string data from a file, are included. 

Keywords 

Text File; Input File; Output File; Token; File Object. 

10.1 Introduction 

Simple input using a standard input device such as a keyboard and simple output using a 
standard output device such as a monitor were introduced in  Chap. 1 . With a small amount 
of data, entering data using the keyboard works fine; however, with a large set of data, it 
can become troublesome. Recall the example discussed in  Chap. 4 , where the list of exam 
scores was entered from a keyboard and the average was calculated using a loop structure. 
Since the example used only three exam scores, it was not much trouble. However, if there 
were 100 or more students in the class and the exam scores are used several times for 
analysis, it would be inefficient to type scores at the keyboard each time the program is 
executed. In addition to the inconvenience of typing a large amount of data, typing can 
generate errors and cause erroneous results. Just like using a keyboard for input, sending 
output to the monitor also works well if the amount of information displayed is small; 
however, if a large number of statistics must be output or the results need to be distributed, 
the use of a monitor is not particularly a good option. 

What can be done about the limitations associated with getting input from the keyboard 
and sending output to the monitor? A solution is to use files, where they can be used to 
store all the input and output data. Another advantage of using files is that they can be 
created before running a program. Further, if the results are output to a file, a program does 
not have to be executed over and over to see the same result, and the file can be distributed 
easily. A file can be created for input to a program or the output examined using a utility 
program. This chapter will discuss how to obtain data from and save output to the file. 

10.2 File Input 
When the Scanner class was introduced in Java 5.0, also known as JavaTM 2 Platform 
Standard Edition 5.0 Development Kit (JDK 5.0), it significantly simplified the process of 
input both by reading data from the keyboard and a file. This is because the Scanner 
object processes a data line as a sequence of tokens. A token is an individual item that is a 
string of characters separated by delimiters. Any character can be designated as a delimiter, 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_10

321

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://dx.doi.org/10.1007/978-1-4471-6317-6_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_10&domain=pdf


 
 

but white space such as a blank, a tab, a newline, or a return is the most commonly used. 
For the file input, instead of associating an object of type Scanner to the standard input 
device, System.in, it is associated to an object of type File. The File class represents 
files and directory pathnames. Some of the purposes of this class are to create files and 
directories, and to search files. The following statement 
Scanner inFile = new Scanner(new File("grades1.txt")); 

will associate an object inFile of type Scanner to a data file grades1.txt. For 
now, assume that the file resides in the same directory as the Java program. The way to 
specify the input file in a different directory will be discussed in Sect. 10.5. The name of 
the file is grades1.txt, and it is passed as an argument to the constructor of the File 
class. Since the Scanner class is in the java.util package and the File class is in 
the java.io package, both packages have to be imported at the beginning of the program 
as shown below: 
 
import java.util.*; 
import java.io.*; 
 

Once import statements are included, the methods such as nextInt and next 
discussed in  Chap. 1  can be used to input data from the file, just the same way an object 
of the Scanner class has been used to input the data from the standard input device. 

The program in Fig. 10.1 will read numbers from the grades1.txt file and output 
the average. 

 
Fig. 10.1 A simple program that inputs data from a text file 

Notice that throws IOException is added in the main method header. An 
exception represents an error condition or an unexpected event that occurs during the 

322 10  Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

normal course of program execution. Since exceptions are discussed in Appendix B, this 
section briefly mentions just enough about them to enable the program to use file input and 
output. When the program performs file processing operations, there is a chance that a 
system error will occur. For example, the system may not be able to locate the file or an 
error could occur during a file read operation. For this reason, Java requires an application 
to deal with exceptions in some form. A simple solution is to add a throws clause in the 
method header, and then the system will handle the exception by simply halting execution. 
Finally, notice that the last statement in the program is inFile.close(); which closes 
the input file grades1.txt with which inFile was associated. 

Assuming the file grades1.txt contains the following three values as shown below, 
a for loop is used to read the scores. 
 
71 
60 
75 
 

The output from the code in Fig. 10.1 is 
 
score 1: 71 
score 2: 60 
score 3: 75 
average: 68.67 
 

Similar to the File class, an object of the FileReader class could be associated to 
the file and used to create an object of the Scanner class. The following three statements 
 
Scanner inFile 
   = new Scanner(new FileReader("grades1.txt")); 
 

and 
 
Scanner inFile 
   = new Scanner(new FileReader(new File("grades1.txt"))); 
 

along with the following discussed earlier 
Scanner inFile = new Scanner(new File("grades1.txt")); 

are all equivalent when creating a Scanner object for the purpose of the input. Besides 
using File and FileReader for file input, the File class is used to handle files in 
general, such as creation and deletion of files, and the FileReader class is used for 
reading character files. For more information, the definition of File and FileReader 
classes can be found in the Java API specification document on the Oracle website. 

Next, how can the code in Fig. 10.1 be modified if the number of scores in the input file 
is not known in advance? A sentinel value –1 could be added to an input file as shown 
below: 

 
 
 

10.2  File Input 323



 
 

71 
60 
75 
-1 
 

and the following code segment illustrates how a variation of the sentinel-controlled 
loop introduced in  Sect. 4.2  could be used. 
 
numStudents = 0; 
totalExam1 = 0; 
score = inFile.nextInt(); 
while(score >= 0) { 
   numStudents++; 
   System.out.println("score " + numStudents + ": " + score); 
   totalExam1 = totalExam1 + score; 
   score = inFile.nextInt(); 
} 
average1 = totalExam1/numStudents; 
System.out.println(); 
System.out.printf("average: %.2f", average1); 
 

The variable numStudents is used to store the number of scores and calculate the 
average after the loop. However, what if one did not want to include a sentinel value in the 
data file? It would seem that the program should be able to keep reading the integers using 
a loop until there are no more scores in the file. Fortunately, the hasNextInt method 
can be used to check if another integer value exists in the file. If it does not find an integer, 
the method returns false. Using a while loop, the execution could continue to the 
statement that follows the loop. The revised loop is shown below: 
 
numStudents = 0; 
totalExam1 = 0; 
while(inFile.hasNextInt()) { 
   score = inFile.nextInt(); 
   numStudents++; 
   System.out.println("score " + numStudents + ": " + score); 
   totalExam1 = totalExam1 + score; 
} 
average1 = totalExam1/numStudents; 
System.out.println(); 
System.out.printf("average: %.2f", average1); 
 

The advantage to this technique is that the file does not need to contain a sentinel value, 
nor does the loop need a priming read. In addition to the method hasNextInt, there are 
a number of similar methods in the Scanner class that can be used with different types 
of data as listed in Table 10.1. 

 

 

324 10  Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_4#Sec2


 
 

 

Table 10.1 Selected methods of the Scanner class 
 

Method Return Type Description 
hasNext() Boolean Returns true if there is another token available for input. 
hasNextDouble()  Boolean Returns true if the next token is a double value. 
hasNextInt() Boolean Returns true if the next token is an int value. 
hasNextLine() Boolean Returns true if there is another line available for input. 
next() String Return the next token. 
nextDouble() Double Return the next token as a double value. 
nextInt() Int Return the next token as an int value. 
nextLine() String Return the next line of input as a string. It may contain 

several tokens and spaces. The newline character \n could 
be there, but it is not included in the string.  

Next, consider the case where the input file grades2.txt contains two sets of exam 
scores per line and the column headings as shown below: 
 
Exam1 Exam2 
71    95 
60    80 
75    76 
 

The task is to find the average score of both sets of exam scores. Since the first two 
items in the file are not scores, they have to be extracted using the next method instead 
of the nextInt and assigned to the String variables to be output later. Notice in the 
following code that both sets of scores are read and added to the appropriate variables 
during each iteration of the while loop before moving on to the next line. Further, since 
the number of students is not known in advance, it is necessary for the program to count 
the number of input lines using the variable numStudents as shown in Fig. 10.2. 

10.2  File Input 325



 
 

 
Fig. 10.2 A program that inputs data from a text file 

The output from the program would look like the following: 
 
           Exam1 Exam2 
Student 1:  71    95 
Student 2:  60    80 
Student 3:  75    76 
Exam1 average: 68.67 
Exam2 average: 83.67 
 

Each individual score was output as they were read from the file inside the loop, and the 
last two lines were output after the calculation of the average outside the loop. 

10.3 File Output 

To send output to a file, the classes PrintWriter and FileWriter are used. The 
PrintWriter class prints formatted text using methods like print, println, and 
printf. The FileWriter class is a counterpart of FileReader class and is meant 
for writing streams of characters. As with the FileReader class, the PrintWriter 

326 10  Elementary File Input and Output



 
 

and FileWriter classes are contained in the package java.io which needs to be 
imported at the beginning of the program. For file output, a variable of type 
PrintWriter is declared and associated with the destination, the file where the output 
will be stored. Suppose the output is to be stored in the file outs.txt in the same 
directory as the source code. Again, the way to specify the output file in a different 
directory will be discussed in Sect. 10.5. Consider the following statement: 
 
PrintWriter outFile 
   = new PrintWriter(new FileWriter("outs.txt")); 
 

This statement creates an object of type PrintWriter named outFile and 
associates it with the file outs.txt. An output file does not have to exist before it is 
opened for output. If it does not exist, the system creates an empty file in the current 
directory. If the designated output file already exists, a new empty file with the same name 
will be created, replacing the previous file of the same name. Sometimes, however, there 
is a time when new data should be appended to the end of the data that already exists in the 
file. The FileWriter class has an overloaded constructor that takes two arguments as 
in 
 
PrintWriter outFile 
   = new PrintWriter(new FileWriter("outs.txt", true)); 
 

The first argument is a name of the file and the second argument is a Boolean value. If 
it is true and the file already exists, the contents of the file will not be erased and the new 
data will be appended to the end of the file. If the argument is false and the file already 
exists, it will be replaced by the new one. If the boolean value is not included in the 
argument list, the value false is assumed and an existing file will be replaced. Finally, 
in any case, if the file does not exist, a new file is created. 

Similar to the Scanner class, an object of the File class could be associated to the 
file. Using an overloaded constructor of the PrintWriter class and a File object as 
an argument to create a PrintWriter object is shown below: 
 
PrintWriter outFile 
   = new PrintWriter(new File("outs.txt")); 
 

Another overloaded constructor of the PrintWriter class simply takes a filename as 
an argument just like the Scanner class as shown below: 
PrintWriter outFile = new PrintWriter("outs.txt"); 

The advantage of using an object of the class FileWriter over the File class or a 
simple filename is the ability of appending text, if it is desired. 

Once the object of type PrintWriter is created, the methods such as print, 
println, and printf can be applied to the object outFile just the same way they 
have been used with the System.out. When the output is completed, the output file 
should be closed by using the method close shown in the following statement: 
outFile.close(); 

10.3  File Output 327



 
 

Data to be written to a file is stored in an output buffer in memory before it is written to 
the file. Closing a file ensures that any data remaining in the buffer will be emptied. If the 
file is not closed, it is not considered an error, but it could be possible that not all the 
information generated by the program will be sent to the output file. Therefore, it is good 
practice to always close the output file. The program in Fig. 10.2 is modified to output the 
result to the file outs.txt as shown in Fig. 10.3. 

 
Fig. 10.3 A program that outputs data to a text file 

The program in Fig. 10.3 will have the same output as the program in Fig. 10.2, but this 
time, it will be output to the file outs.txt. To see the output, simply open the file using 
a utility program and examine the results. 

328 10  Elementary File Input and Output



 
 

each file be processed using the same program? It would not be a good idea to have the 
input filename hardcoded into the program. Instead, the program should allow the user to 
enter the filename. Also, after the scores are processed, the results can also be stored in a 
user-specified file. If variables are used for the name of both input and output files, it is not 
necessary to change and to compile the code every time the program is executed for a 
different set of data. 

If every course has a different number of students, the number of scores in the input file 
is not known in advance. Suppose that an array of the same size as the number of scores 
were to be created, then the scores would need to be counted and the count stored in a 
variable would be used to allocate the array. In order to count scores, every score is read 
without being stored or used for calculations. The code segment in Fig. 10.4 will count 
scores in the file. 

 
Fig. 10.4 A code segment that counts the data in an input file 

Note that the user is prompted for and inputs the name of the file. Further, notice that 
inside the while loop, although the exam scores were read from the file using the 
statement inFile.nextInt(); because the return values were not used for any 
calculations at this point, they were not stored in memory. The instruction 
inFile.nextInt(); was simply used to count the number of exam scores. At the end 
of the while loop, the variable numStudents will have the number of scores in the file. 
The next step is to create an array of the size numStudents, read the scores from the file 
again, and this time store them in the array. Consider the following code segment that could 
be added to the code in Fig. 10.4 to do these tasks: 
 
// ** Caution – Possible incorrectly implemented code ** // 
// create array of size numStudents 
scores = new int[numStudents]; 
// read scores from input file and save them in array 
for(i=0; i<numStudents; i++) 
   scores[i] = inFile.nextInt(); 
 

The above code is syntactically correct. However, when it is executed, a runtime error 
will be encountered and the program will halt unexpectedly. What is wrong with it? The 
problem is that after all the scores are read once, the end of the data file is reached and 

10.4  File Input and Output Using an Array 329

10.4 File Input and Output Using an Array 

Assuming the scores from different exams are kept in separate files, how can the scores in 



 
 

there is nothing left to read. In order to start back at the beginning of the input file, a solution 
is to close and reopen the file. Once the numbers are stored in the array, the average of the 
scores will be found. If the ave
score in order to make the average equal to 70. The following is the entire program: 

330 10  Elementary File Input and Output



 
 

 

10.4  File Input and Output Using an Array 331



 
 

 

If the grades1.txt file shown below is used again as an input file, 
 
71 
60 
75 
 

and the user entered grades1adj.txt for the output file as shown below, 
 
Enter input filename: grades1.txt 
Enter output filename: grades1adj.txt 
 

after the execution, the grades1adj.txt file would contain the following: 
 
73 
62 
77 
 

which consists of the scores after being adjusted. 

10.5 Specifying the File Location 

Before reading the contents of the file or writing data to a file, a File object could be 
created and associated to the file. Consider a file structure in Windows® operating system 
as shown below: 

 

332 10  Elementary File Input and Output



 
 

 

Assuming the current directory is Exam and the program is in the 
GradesVersion3.java file, the following statement will create an object of type 
File named file by invoking a constructor: 
File file = new File("grades2.txt"); 

The argument to the constructor designates the name of the file to access. The system 
assumes the file is located in the current directory of the program. It is also possible to open 
a file that is stored in a different directory by providing an absolute pathname and a 
filename. An absolute pathname is the full pathname beginning with the disk drive name. 
Therefore, the absolute pathname for a file grades3.txt in the Homework directory 
in the Class1 directory is 

C:\Class1\Homework\grades3.txt 

A statement in GradesVersion3.java program that associates the input file 
grades3.txt to an object of type File would be 

File file = new File("C:\\Class1\\Homework\\grades3.txt"); 

Notice that there are two backslashes to separate directories, Class1 and Homework, 
and a directory and a file, Homework and grades3.txt. Recall from  Chap. 1  that in 
order to insert special characters such as a double quotation mark and backslash into a 
string, Java requires a \ in front of the character like \" and \\, respectively. 

Since other operating systems use a forward slash character / to separate directories and 
a file in the pathname, the forward slash is also allowed in a program run on the Windows® 
operating system to describe the pathname in order to maintain the consistency across the 
different computer platforms as  in 

C: 

Class1 

Exam 

GradesVersion1.java 

GradesVersion2.java 

GradesVersion3.java 

grades1.txt 

grades2.txt 

Homework 

grades3.txt 

grades4.txt 

10.5  Specifying the File Location 333

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

 

File file = new File("C:/Class1/Homework/grades3.txt"); 

An absolute pathname can also be used with constructors of the FileReader and 
FileWriter classes. A pathname a user enters through the keyboard can be stored in the 
variable of type String and used as a parameter, just like the simple filename discussed 
in the previous section. 

10.6 Complete Programs: Implementing File Input and Output 

Two complete programs will be discussed here. The first one deals with storing data into a 
two-dimensional array while reading the data from the file and appending the results into 
the existing file. The second program deals with strings. The list of strings will be read 
from the file and placed in the array. After they are sorted, the results will also be stored in 
the file. 

10.6.1 Matrix Multiplication 

This section designs a program that performs matrix multiplication. Given two matrices A 
and B, where both A and B contain 2 rows and 2 columns, the matrix product of A and B is 
matrix C that contains 2 rows and 2 columns. The entry in matrix C for row i column j, C 
i,j is the sum of the products of the elements for row i in matrix A and column j in matrix B. 
That is, 

00 01 00 01 00 00 01 10 00 01 01 11

10 11 10 11 10 00 11 10 10 01 11 11

a a b b a b a b a b a b
a a b b a b a b a b a b

 

The program asks a user to enter the name of the file which contains the matrices A and 
B. Consider the file matrix.txt which is used as an input file as shown below. 
 
1 2 
3 4 
5 6 
7 8 

In this example, the matrix A is 
1 2
3 4

 and the matrix B is 
5 6
7 8

, and the program 

will read these values and place them in the two-dimensional arrays named matrix1 and 
matrix2. The result of the matrix multiplication is saved in the two-dimensional array 
named matrix3 and will be appended to the input file matrix.txt. The entire program 
is show below: 

334 10  Elementary File Input and Output



 
 

 

10.6  Complete Programs: Implementing File Input and Output 335



 
 

Notice there are two nested for loops to obtain two matrices from the file and place 
them in the two-dimensional arrays. Since the same file is used for both input and output, 
the inFile is closed after the reading of the matrices. When the same file is opened for 
output, the second argument of the FileWriter constructor is set to be true for 
appending. After the output of a blank line, the result of the matrix multiplication 

19 22
43 50

 is added to the end of the file matrix.txt as shown below: 

 
1 2 
3 4 
5 6 
7 8 
19 22 
43 50 

10.6.2 Sorting Data in a File 

Another program that deals with file input and output is one that sorts string values stored 
in the file and outputs the results to another file. The input file terms.txt consists of 
one integer and a list of strings as shown below: 
 
15 
variables 
input 
output 
arithmetic 
class 
object 
contour 
selection 
iteration 
array 
recursion 
inheritance 
polymorphism 
exception 
file 
 

The number 15 indicates the number of words stored in the file. After this number is 
input, an array of 15 elements is created, and the strings are read and saved in the array. 
Then the words in the array are sorted using the sort method which is a class method of 
the Arrays class. This predefined sort method uses a merge sort that is usually 
discussed in subsequent courses and texts on data structures or algorithm analysis. Here, 
since the focus is file input and output, a preexisting method is used instead of writing a 
sort method, although the bubble sort discussed in  Chap. 7  could be used instead and is 
left as an exercise at the end of the chapter. Finally, the sorted list is output to the file 
sortedTerms.txt. The following is the entire program: 

336 10  Elementary File Input and Output

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

 

After the above code is executed, the output file sortedTerms.txt would contain 
a list of sorted words as shown below: 
 
arithmetic 
array 
class 
contour 
exception 
file 
inheritance 
input 

10.6  Complete Programs: Implementing File Input and Output 337



 
 

iteration 
object 
output 
polymorphism 
recursion 
selection 
variables 

10.7 Summary 

 The Scanner class is used to read a text file. 
 The File class and the FileReader class can be used to create an object of the 

Scanner class that opens a text file for input. 
 After creating an object of the Scanner class to access a text file as input, the 

methods such as nextInt and next from the Scanner class can be used to read 
the file. 

 The PrintWriter class is used for file output. 
 When the class PrintWriter is used to open a text file for output, a new file is 

created regardless of whether the file with the same name exists. 
 The File class or the FileWriter class can also be used to create an object of 

PrintWriter class that opens a text file for output. 
 In order to append data to the end of a text file, set the second argument of the 

constructor of the class FileWriter to true. If the second argument is not present, 
the value false is assumed and an existing file will be replaced. 

 After creating an object of the PrintWriter class for output, the methods such as 
print, println, and printf from the PrintWriter class can be used to write 
data to the text file. 

 Once all of the operations intended to carry out on a given file have been completed, 
both the input file and output file should be closed by using the method close. 

10.8 Exercises (Items Marked with an * Have Solutions in Appendix E) 

  
1. Indicate whether the following statements are syntactically correct or incorrect. If 

 incorrect, indicate what is wrong with the statement: 

  A. Scanner inputFile = new Scanner(new file(Sample.dat)); 
*B. File in = new File(new FileReader("in.txt")); 
  C. FileWriter out = new FileWriter(new 

PrintWriter("o.txt")); 
*D. PrintWriter out = new PrintWriter("out.txt"); 
  E. FileWriter out = new File(new FileWriter("result.out")); 

 

 
 

 

338 10  Elementary File Input and Output



 
 

  2. Consider a program that reads data from an input file named in.dat, performs 
calculations, and outputs the results to a file named result.out. 

A. What would happen if the file in.dat did not exist before the program is 
executed? 

B. What are the contents of the file in.dat after the execution of the program? 

C. What would happen if the file result.out did not exist before the program 
is executed? 

D. What could happen if the output file was not closed at the end of the 
execution? 

*3. Write a program that asks a user to enter a file name and three numbers, and then 
store the three numbers in the user-specified file. After the execution of the 
program, open the file with a utility program to make sure the three numbers are 
there. 

  4. Write a program that reads the three numbers from the file created in the previous 
exercise. After the data are read, display the smallest and the largest of the three 
numbers. 

  5. Write a program that asks a user to enter the name of a file, and count and display 
the number of words that appear in the user-specified file. Use a utility program to 
create a simple text file that can be used to test the program. 

  6. Write a program that prompts a user to enter the name of a file and a word. The 
program should then count all occurrences of the word in the file and display the 
number of occurrences. Use a utility program to create a simple text file that has 
many words in it and that can be used to test the program. 

  7. Rewrite the program that sorts string values stored in the file described in Sect. 
10.6.2 so that it uses the bubble sort discussed in  Sect. 7.7.2 . 

  8. Write a program that prompts a user to enter the name of a file and a word. The 
input file should be a simple text file that contains a list of words. Use a binary 
search to look for he word the user entered and display if the word was found in 
the list or not. 

  9. Perform matrix multiplications discussed in Sect. 10.6.1 using non-square 
matrices. 

 
 

 

 

 

 

 

 

10.8  Exercises (Items Marked with an * Have Solutions in Appendix E) 339

http://dx.doi.org/10.1007/978-1-4471-6317-6_7#Sec16


 

11 

Bit Manipulation 

James T. Streiba* and Takako Somaa 
a Computer Science Program, Illinois College, Jacksonville, IL, USA 

Abstract 

This chapter explores bit manipulation including bit-wise logic, shifting, and rotation. 

Keywords 

Bit-wise Logic, Shifting, Rotation. 

11.1 Introduction  

Although assembly languages are exceptionally adept for manipulating bits (binary digits), 
the language C and the subsequent C-based languages such as C++ and Java also have bit 
manipulation capabilities as well. Instead of having to learn the assembly language of a 
particular processor, one can just use a C-like language without having to learn a new 
assembly language, provided there is a translator available for that processor. 

 
So why would one want to manipulate bits in a programming language? The reason is 
that when interfacing with various devices at a lower-level, various bits within a word of 
memory might need to be checked and altered in order to communicate with a particular 
device. This could be especially true for those who are in the engineering disciplines. 
This chapter can also serve as a precursor to a course on computer organization and 
assembly language. Although the actual manipulation of a device is beyond the scope of 
this text, the prerequisite fundamentals of bit manipulation are presented here. It is highly 
recommended that one has read Section 3.5 of this text prior to reading this chapter and 
for more information beyond the scope of this chapter, see a text such as Guide to 
Assembly Language: A Concise Introduction [10].   

11.2 Simple Conversions 

When manipulating bits, binary or base-2 is used instead of decimal or base-10. However, 
on occasion it is helpful to be able to convert between these two numbering systems. Since 
this chapter will not be performing any arithmetic, only a cursory overview of the binary 
or base-2 numbering system will be presented here. 
As is already known, the base-10 or decimal numbering system contains ten digits, 0 
through 9; however, the base-2 numbering consists of only two digits, 0 and 1. Whereas 
each position in base-10 is arithmetic a power of 10, each position in binary is a power of 
2. For example, the number 124 in base 10 is as follows: 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_11

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_11&domain=pdf


 
 

1 * 102 + 2 * 101 + 4 * 100 

Then converting the powers of ten and since 100 equals 1, the equivalent is 

1 * 100 + 2 * 10 + 4 * 1 

which equals 124. Although this seems rather redundant, it forms the basis for all other 
numbering systems. So, for example, the number 1101 in base-2 is represented as follows: 

1 * 23 + 1 * 22 + 0 * 21 + 1 * 20 

Again converting the powers of 2 and since 20 is 1, the equivalent would be 

1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 

which equals 13 in base-10. In fact, this is an easy way to convert base-2 numbers to base 
10. Another example is what would 11010 be in base 10? Since the digits are only 1 or 0, 
only the converted powers of 2 that are preceded by 1 need to listed as follows: 

16 + 8 + 2 

which equals 26 in base-10. The reverse of converting base-10 to base-2 is just a little more 
complicated, but for small numbers the subtraction method works well. One just needs to 
identify the largest power of 2 that might fit into the base-10 number and then put that 
number into the corresponding position of the powers of two for a base-2 number. Since 
really large numbers can be difficult to work with, these examples will be limited to 8-bit 
numbers where typically 8 bits make up a byte. The following place holders show the 
powers of two for each bit position in a byte: 

 

|___|___|___|___|___|___|___|___| 

128  64   32   16    8     4     2     1 

 

For example, using the number 108, 128 cannot be subtracted from 108 (without having a 
negative number), so a 0 is put into the 128 position. A 64 could be subtracted from 108, 
so a 1 is put into the 64 position and subtracting 64 from 108 leaves 44. Then the largest 
power of 2 that can be subtracted from 44 is 32, so a 1 is put into that position and 32 is 
subtracted from 44 leaving 12. Since 16 cannot be subtracted from 12, a 0 is placed into 
the 16 position. So far, the number looks as follows: 

 

|_0_|_1_|_1_|_0_|___|___|___|___| 

128  64   32   16    8     4     2     1 

 

Continuing, an 8 can be subtracted, so a 1 is put into that position, and the 8 is subtracted 
from 12 leaving 4. Lastly, 4 can be subtracted from 4, so a 1 is put into that position. Since 
4 subtracted from 4 leaves 0, the remaining positions are filled with zeros and the process 
is complete.  

 

342 11  Bit Manipulation



 
 

|_0_|_1_|_1_|_0_|_1_|_1_|_0_|_0_| 

128  64   32   16    8     4     2     1 

In another example, what would the number 68 be in base 2? Since a 64 can be subtracted 
from 68, a 1 is placed in the 64 position and a 4 is leftover. Of course, all that is left to do 
is put a 1 in the 4 position and the rest of the positions are filled with zeros.  

 

|_0_|_1_|_0_|_0_|_0_|_1_|_0_|_0_| 

128  64   32   16    8     4     2     1 
 

In converting in either direction, the other method converting back can be used to check 
 work. Although this does not guarantee that the answer is correct (since one might 

have made a mistake in both directions), it does help to catch a number of errors. 

 

11.3 Declarations and Assignments 

Although entire 64-bit words of memory can be manipulated in Java, it can get rather 
cumbersome trying to illustrate their operations. Again, only 8-bits will be used. Further, 
since the memory locations will often not be used in arithmetic operations, only unsigned 
binary numbers will be considered.  

Looking back at Table 1.1, notice that the type byte might fulfill these two qualifications. 
Unfortunately, the string methods needed to display binary numbers cause bytes to be 
converted to integers prior to converting them to strings. As a result, and as will be seen in 
the complete program in Section 11.7, it is easier to just use integers and display only the 
lower eight bits of the integer. The result is that to declare a variable the following can be 
used: 
int num; 

To initialize the memory location to 0, either it can be done in the declaration statement 
above or by the assignment statement below: 

num = 0; 

So far, this hardly looks any different than using decimal declaration and assignment 
statements. This is due in part to the fact the first two numbers, 0 and 1, in both the base-2 
and base-10 numbering systems are the same. 

But since this chapter is dealing with only 0s and 1s and only 8-bits, it is helpful to other 
readers of the code to both show all eight bits and indicate that the number is indeed a 
binary number as follows: 

num = 0b00000000; 

11.2  Simple Conversions 343



 
 

that 8 bits are being used. Although not necessary in the example above, the use of the 0b 
in the following example is very necessary: 

num = 0b00000100; 

If the 0b was left off the example above, the number would be interpreted as 100 in base 
10 instead of the number 4 in base-
harm in leaving off the leading zeros, it does help reinforce to others that 8 bits are being 
used. 

11.4 Bit-wise Logic Operations 

As should be recalled from Section 3.5, the logic operators and, or, and not ( &&, ||, and 
! ), are extremely useful in creating more complex conditional statements in if, case, 
and while statements. However, as cautioned in Section 3.5 leaving off the second & or 
| can cause potential serious errors. By leaving off the second symbol, one has created 
what is known as bit-wise logic symbols. Instead of dealing with the truth or falsity of an 
expression, one is testing the individual bits within a memory location which is the subject 
of this section. 

To avoid confusion when talking about bit positions, typically the right-most bit is  position 
0 and the left-most bit is the nth-1 bit position. If an 8-bit memory location is being used, n 
would be equal to 8, so the left-most position would be the 7th position. 
 

|___|___|___|___|___|___|___|___| 

   7    6    5     4    3     2    1     0 

There are four bit-wise logic operations that can be used in Java, and, or, xor, and not 
represented by &, |, ^, and ~, respectively. The and and or instructions work similarly to 
the previous logic instructions, except instead of dealing with true and false, these new 

true and 0 is the 
equivalent to false. The result is 1 & 1 is 1 and all other combinations are 0. With the | 
inclusive-or instruction, if one or the other bit position, or both are  1, the result is 1, 
otherwise the result is 0. With the ^ exclusive-or, if one or the other position is 1, the result 
is 1. However, if both positions are 1 or both 0, the result is 0. An easy way to remember 
the distinction between these two instructions is recall that | includes the case where both 
operands are 1, whereas the ^ excludes this case and the result is 0. Of course, the not 
operation ~ changes 1 to 0 and vice versa. All of the above are represented in table 11.1. 

 

344 11  Bit Manipulation

The 0b indicates that the number is a binary number and the eight zeros further illustrates 



 
 

 
Table 11.1 Bit-wise logical operators 

 
For example, assuming that num1 = 0b11001100 and num2 = 0b11110000, what 
would be the result of 
ans = num1 & num2; 

To help determine the result, the following can be helpful where the only positions that 
contain two ones in the same bit position are the first two on the left so that the result in 
ans is shown below: 
 
num1 = 11001100 
num2 = 11110000 
     &  
 ans = 11000000 
 

Given the same two values in num1 and num2, what would be the result of the | inclusive-
or operation? If either of the bit positions contains a 1 or both are 1 the result is a 1, so that  
ans is as follows: 

 
num1 = 11001100 
num2 = 11110000 
     |  
 ans = 11111100 

 
Continuing, given the same initial values, what would be the result of the ^ exclusive-or 
operation? Only when there is a 1 in a bit-position and the other is a 0 is the result 1, 
otherwise the result is 0 as shown below: 

 
num1 = 11001100 
num2 = 11110000 
     ^  
 ans = 00111100 

Bit-wise Operation   Java Symbol 
       and                          & 
 inclusive – or                     | 
 exclusive - or                      ̂
       not                                !    

11.4  Bit-wise Logic Operations 345



 
 

ans = ~ num1; 

would result in: 

 
num1 = 11001100 
     ~  
 ans = 00110011 
 
 

11.5 Testing, Clearing, Setting, and Toggling 

Given the above, what are some possible uses for these bit operations? They can be used 
for testing, clearing, setting, and toggling various bit positions. For example, assume that 
num contains the following bit pattern: 

int num = 0b00100110; 

and that the 2nd bit position (3rd from the right) needs to be checked to see if it is set to 1. 
How could this be accomplished? What needs to be done is to mask out all the other bit 
positions to 0 and not alter bit position 2. Which operation could be used for clearing out 
all of the other bits? Recall that when using an & 
still be 1 so that 0 & 1, 1 & 0, or 0 & 0 would be 0. The result is that a mask of 0b00000100 
could be used. If bit position 2 is a 1 it will remain a 1 and if it is a 0 it will remain a 0 as 
shown for both cases below:  

 
 num = 00100110    num = 00100010  
mask = 00000100   mask = 00000100 
     &             &  
 ans = 00000100    ans = 00000000 

The result in ans could be used in a subsequent if statement to output a message or the 
expression itself could be used in an if statement, both as shown below. If the expression 
only needs to be checked once, then the one on the right could be used or if the expression 
might be needed to be checked again later in the program, the one on the left is preferred 
to avoid the possibility of subsequent keying errors. 
 
ans = num & mask; 
if(ans == 0b00000100)                if(num & mask == 0b00000100) 
  System.out.println("Bit 2 set");    System.out.println("Bit 2 set"); 
 

Alternatively, after the operation with the mask one could check to see whether the result 
is not equal to 0, since only bit 2 could be set and otherwise the result would be all zeros. 
In another example, what if bit position 2 in num needed to be cleared to 0 without altering 
the other bit positions? The operation above should give a clue, where the & operation can 
be used to clear some bit positions and not alter others. Instead of a mask with a 1 in bit-

346 11  Bit Manipulation

Of course, the ~ not operations just reverse the bits so that  

position 2, there would be a 0 in bit-position 2 with all other positions being a 1 as follows: 



 

 
 num = 00100110    num = 00100010  
mask = 11111011   mask = 11111011 
     &           &  
 num = 00100010    num = 00100010 

If bit position 2 contained a 1, it now contains a 0 and if the position contained a 0 it remains 
a 0. Note that all the other bit positions remain unchanged using the above mask in the 
following instruction: 
 
num = num & mask; 

Instead of clearing out bit position 2 in num, what if it needed to be set to 1 without altering 
any of the other bit positions? In this case the | operation would work best where bit-2 in 
the mask would be set to 1 since 1 | 0 is 1 and  1 | 1 is also 1. All the other bits would be 
set to 0 so that the rest of the bits would remain unchanged as shown below: 

 
 num = 00100110    num = 00100010  
mask = 00000100   mask = 00000100 
     |           |  
 num = 00100110    num = 00100110 

Note that when bit position 2 is already a 1 it remains a 1 but when the position is a 0 it is 
set to a 1 while all the other positions remain the same using the mask above and the 
following instruction: 

num = num | mask; 

Lastly, what if bit position 2 needed to be toggled from a 1 to 0 or from a 0 to a 1. At first 
it might seem that the ~ operation might be the best choice, but it would toggle all the bits 
which in this case is not what is intended. Instead, the ^ exclusive-or would work and bit-
2 in the mask would be set to a 1, where 1 ^ 1 is 0 and 0 ^ 1 is 1. All the other bits would 
be set to 0 so that the rest of the bits would remain unaltered. 

 
 num = 00100110    num = 00100010  
mask = 00000100   mask = 00000100 
     ^           ^  
 ans = 00100010    ans = 00100110 

In both cases above, bit-2 is toggled and the rest of the bits remain unchanged using the 
following code.  

num = num ^ mask; 

11.5  Testing, Clearing, Setting, and Toggling 347



 
 

If more than one bit needed to be toggled such as both bits 2 and 3 above, all that needs to 
be done is change the mask to 0b00001100. The same is true for all of the other examples 
where different masks can be used to manipulate various bits and these are left as exercises.  

Since the above operations are extremely useful in modifying individual bits or groups of 
individual bits and have been summarized in Table 11.2. 

 
 
 
 
 
 

Table 11.2 Set, test, clear, and toggle  

11.6 Shifting 

In addition to manipulating individual bits or groups of bits all at once, sometimes it is 
necessary to manipulate individual bits one at a time. Instead of having to have eight groups 
of instructions to check eight bits one at a time, the individual bits could be manipulated 
one at a time in a loop. In order to check the individual bits, the left-shift << and right-shift 
>>> instructions can be used. Assume that num is declared as follows: 

int num = 0b11000111; 

Again, technically an int variable is 32-bits long and would look as follows: 

00000000000000000000000011000111 

As before, this would be cumbersome to deal with each time. So, for convenience only 8 
bits will be shown to illustrate many of the concepts. The result is that this text will pretend 
that a word of memory is only 8-bits long and the above will only be displayed as the 
following: 

11000111 

To illustrate how the left-shift works, assume the following instruction: 

num = num << 1; 

The above would cause each bit to be shifted to the left one bit and the right-most bit would 
then contain a 0. Further, the left-most bit would fall off the left and the results would be 
as follows: 

10001110 

Starting again with the original declaration for num, 

Operation Logic 
 

Set Or 
Test And 
Clear And 
Toggle Xor 

348 11  Bit Manipulation

 

int num = 0b11000111; 



 
 

the contents for num could be shifted to the right. However, in Java there are two different 
shifts to the right: the arithmetic right-shift >> and the logical right-shift >>>. When 
dealing with signed numbers, the left-most bit is considered to be the sign-bit. Briefly, 
when dealing with an arithmetic right-shift instead of zero filling in on the left, the sign-bit 
is copied in order to maintain the proper sign of the number. However, since the discussion 
of how signed numbers are stored in memory is beyond the scope of this text and as 
mentioned at the beginning of this chapter, a computer organization text or an assembly 
language text should be consulted for further information [10]. Would there be a distinction 
between an arithmetic left-shift and a logical left-shift? The answer is no, thus the need for 
only one symbol, <<. 

Since the process of performing logical bit manipulation is usually performed only on 
unsigned numbers, the logical right-shift >>> can be used. So given the following 
instruction: 

num = num >>> 1; 

the result is as follows: 

01100011 

Note that the 1 in the right-most position has moved off the right end and a 0 has moved in 
on the left-end. Although a number other than 1 can be used to indicate the number of 
positions to move, each bit cannot be tested. However, this deficiency can be rectified by 
using a loop as shown below. 

For example, what if the number of bits that are set to 1 in bit positions 0 through 3 need 
to be counted? Since only 4 bits are to be checked, a for loop would be a good choice. 
Further, the count of the number of 1s should be initialized to 0. Also, instead of being 
input (which will be discussed in the next section), assume num is declared as given below. 
Note that the contents of num will be destroyed by the process of shifting so it is  advisable 
to save the contents in a variable such as saveNum prior to the manipulation and restore 
num afterwords. Given all of the above, the following initial code segment is provided: 
 
int num = 0b00001101, mask = 0b00000001; 
int saveNum, count; 
saveNum = num; 
count = 0; 
for (i=1; i<=4; i++) { 
 
} 
num = saveNum  

Recalling the bit manipulation techniques in the previous section and using Table 11.2, the 
& operation is the best choice. Then the right-most bit of num can be tested to see if it is 
equal to 1 as shown below: 

11.6  Shifting 349



 
 

 
if (num & mask == 0b00000001) 
   count ++; 

Then the contents of num could be shifted to the right for subsequent counting as follows: 

num = num >>> 1; 

Putting it all together and outputting count, the segment would look as follows: 
 
int num = 0b00001101, mask = 0b00000001; 
int saveNum, count; 
saveNum = num; 
count = 0; 
for (int i=1; i<=4; i++) { 
   if (num & mask == 0b00000001) 
      count ++; 
   num = num >>> 1; 
} 
num = saveNum 
System.out.println("The count is: " + count); 

11.7 Precedence 

Just as there is a precedence for arithimetic operators as discussed in Section 1.8 and a 
precedence for logical operators as discussed in Section 3.5, there is a precedence for bit-
wise operators as well as shown in Table 11.3. 

 

Table 11.3 Bit-wise precedence 

Notice that the shift operators are all at the same level of precedence and hold a place lower 
than parentheses and the not operator, yet above the and, exclusive-or and inclusive-or. 
Note that due to the possibility of logic errors and to help others understand the logic, it is 
typically not recommended to include the shift operators in the same expression as the 
other bit-wise opeators. 

Looking only at the bit-wise logic operators, they have a similar precedence to the logical 
operators of Section 3.5. For example, looking only at the bit-wise operators what would 

         Operator                  Precedence 
 innermost nested ( )      Highest 
                 ~ 
            << , >>> 
                & 
      ^ 
                | 
    Tie - left to right      Lowest 

350 11  Bit Manipulation



 
 

be the result of the following: 
 
w = 0b10110111; 
x = 0b11011110; 
 
z = ~w | x; 

The highest prioity would be the ~ operator so ~0b10110111 would be 0b01001000 
and then performing the or operation with ~w would be as shown below: 
  
  ~w = 01001000 
   x = 11011110 
     |  
   z = 11011110 

Assuming the existence of another variable y as given below, what would the result of the 
following be? 

y = 0b00111011; 

z = w | x & y; 

Recalling that & has a higher precedence than |, the following would be the intermediate 
result represented by i: 

 
   x = 11011110 
   y = 00111011 
     &  
   i = 00011010 
 
Then the | can be performed as follows: 
 
       w = 10110111 
       i = 00011010 
     |  
   z = 10111111 

Given the sometimes complicated nature of bit-wise logic it is helpful to perform 
calculations by hand before coding them in a program to avoid time consuming debugging 

resented in Section 3.5 also apply to bit-wise 
operations and this is left as an exercise in Section 11.10. 

11.8 Complete Program: Implementing Bit-wise Operators 

To test all of the logic and shift instructions it is helpful to have a program to see how they 
work. Although some calculators have bit manipulation functions it is further helpful to 
have a program to also see how the code is implemented. 

11.7  Precedence 351



 
 

The program in Fig. 11.1 uses three methods to help clean up the main method. The first 
method called is input8 which inputs a manipulation binary number consisting of only 
1s and 0s. This is accomplished by using: 

bNum = scanner.nextInt(2);  

The number 2 above indicates that base-2 will be used for input. Further, so that only the 
lower eight binary digits will be used, recall that the & operation is useful for this task as 
follows: 

bNum = bNum & 0b11111111; 

Even though the upper 0s in the mask are not shown, all the bits to the left of bit 7 will be 
cleared to zeros and the lower 8 bits will remain intact. 

Note that here and elsewhere in the program, whenever a binary number is entered, it is 
echoed using the method output8. Although this can be removed, it is helpful to confirm 
what one has entered. Speaking of the output method output8, it uses the 
toBinaryString method to convert the number in bNum to a string as shown below: 

bString = Integer.toBinaryString(bNum); 

If one has wondered why the variables used in this program are not declared as a byte 
instead of an integer, the problem is with the toBinaryString. As mentioned 
previously, in the conversion from a number to a string, it does not matter if bNum is 
declared as byte, it will convert the number to an integer before converting it to a string. 
Thus, instead of fighting this process, it is simply easier to declare the variables as an 
integer initially. Continuing, once converted to a string the code below will output the right-
most 8 bits. 

zString = String.format("%8s", bString).replace(' ','0'); 

The result is that even when trying to format the string as %8s in the String.format 
method, all the leading 0s in the string will unfortunately be output which can be 
distracting. So using the replace method, all the leading 0s will be replaced with spaces 
and they will not be output with the %8s in the format method which makes for much 
nicer looking output. Although all of this might be a little confusing, this code can be used 
in subsequent programs and thus the reason for supplying it in this section as a complete 
program. 

Returning back to the main program, to make the input easier, only a single character is 
used to represent the various operations to performed, where L and R are used to represent 
the operations << and >>>, respectively. Further, the use of single characters is helpful in 
the subsequent switch statement as will be discussed shortly. Of course, this can be 
improved upon and is left as an exercise. 

352 11  Bit Manipulation



 

 

operand. However, others such as & require two, so an if statement is used to input the 
second operand as needed. 

The switch statement is convenient for performing the various operations based on the 
character entered previously. Again, the results of some of these operations can move bits 
into the upper bit positions of an int variable, such as the left-shift operator, so they should 
be cleared out. Likewise, the ~ not operator can change the 0s in the upper bits to 1s and 
they would need to be cleared also, thus the reason for the following statement after the 
switch statement: 

answer = answer & 0b11111111; 

Again, the purpose of this complete program is not only to illustrate the results of various 
operations, but also to help one implement some of the pesky details needed to input, 
output, and use only the lower 8 bits of a 32-bit integer. Further, it can serve as an example 
for other programs and as a source of modifications, all as suggested in the exercises. 
import java.util.*; 
 
class Bitp1 { 
   static Scanner scanner; 
   public static void main (String [] args){ 
       
      int x,y=0,answer=0; 
      char op; 
       
      // input binary x 
      x =  input8(); 
      // output to verify input   
      output8(x);      
       
      // input operation code 
      scanner = new Scanner(System.in); 
      System.out.println(); 
      System.out.print("Enter an operation ( |, ^ , & , ~ ," 
      + " L , R ): "); 
      op = scanner.next().charAt(0); 
       
      // check binary operators 
      if (op=='|' || op == '^' || op == '&') { 
         // input binary y 
         y = input8();          
         //ouptut to verify input 
         output8(y); 
      } 
             
      // check and perform operation 
      switch (op) { 
          case '|': answer = x | y; 
                    break; 
          case '^': answer = x ^ y; 

11.8  Complete Program: Implementing Bit-wise Operators 353

Next, since some of the operators are unary operators such as ~, they only require one 

break; 



  

          case '&': answer = x & y; 
                    break; 
          case 'L': 
          case 'l': answer = x << 1; 
                    break; 
          case 'R': 
          case 'r': answer = x >>> 1;  
                    break; 
          case '~': answer = ~x; 
                    break; 
          default: 
             System.out.println("Invalid entry"); 
        }  
      // Clear upper bits 
      answer = answer & 0b11111111; 
      // ouput results   
      System.out.println(); 
      output8(answer);    
      System.out.println(); 
   }  
  
   // input 8 binary bits 
   public static int input8 () { 
      int bNum; 
      scanner = new Scanner(System.in); 
      System.out.println(); 
      System.out.print("Enter a binary number: "); 
      // input base 2 
      bNum = scanner.nextInt(2); 
      // clear upper bits 
      bNum = bNum & 0b11111111; 
      return bNum; 
    }  
     
   // output 8 binary characters 
   public static void output8 (int bNum) { 
      String bString,zString; 
      // convert to string 
      bString = Integer.toBinaryString(bNum); 
      // insert leading zeros and output 
      zString = String.format("%8s", bString).replace(' ','0'); 
      System.out.println(" The binary number is: " + zString); 
    } 
} 
 
Fig. 11.1 Complete program for testing bit-wise operators 
 
As a sample of the input and output of the program in Fig. 11.1, consider the following two 
examples. Of course the reader is encouraged to try other data and operations and possibly 
make some chan  

354 11  Bit Manipulation



 
 

 
 
Enter a binary number: 11001100 
 The binary number is: 11001100 
 
Enter an operation ( |, ^ , & , ~ , L , R ): & 
 
Enter a binary number: 11110000 
 The binary number is: 11110000 
 
 The binary number is: 11000000 
 
 
Enter a binary number: 11000111 
 The binary number is: 11000111 
 
Enter an operation ( |, ^ , & , ~ , L , R ): R 
 
 The binary number is: 0110001 
 

11.9 Summary 
 

 The inclusive-or includes the case when both operands are 1s and the result is 1, 
    whereas the the exclusive-or excludes this case. 
 To set, toggle, clear, and test bits, use the |, ^, and in the last two cases & 

instructions, respectively. 
 If data is needed later, be sure to save it when using any of the bit-wise logic 

instructions or the << and >>> instructions. 
 The precedence rules for bit-wise operators are similar to the ones for logical 

operators in Section 3.5 and are summarized in Table 11.3. 
  
11.10 Exercises (Items Marked with an * Have Solutions in Appendix  E ) 
 
Some of these problems can be solved using a calculator or the complete program in 
Section 11.8 but it is advisable not to use them in order to gain practice and further 
because these tools might not be available during a quiz or exam. 

1. Convert the following binary numbers to their decimal equivalent: 

∗A.  00101111 
 B. 01010010 
*C.   01110110 
  D. 00111001 

11.8  Complete Program: Implementing Bit-wise Operators 355

http://dx.doi.org/10.1007/978-1-4471-6317-6_BM1


 

 

A.  33 
 B.  72 
C.  120 
 D.  145 

 

3. Given the following variables, give the result of each of the following operations 
    (show all 8 bits): 
 
   int num1 = 0b00110101, num2 = 0b11001010, ans; 
 

A.  ans = num1 & num2; 
  B.  ans = num1 | num2; 

C.  ans = ~num2; 
D.  ans = num1 ^ num2; 

 

4. In addition to the variables in problem 3 above, assume the existence of the following 
    variable and answer the following questions: 
 
  int num3 = 0b10101100; 

A.  ans = -num1 & (num2 | num3); 
  B.  ans = num1 | num2 ^ num3; 

C.  ans = ~(num1 | num3); 
  D.  ans = num1 ^ num2 & num3; 

5. Converrt  

  A. z = ~x | ~y; 
  B. z = ~(x | y); 
 

6. Given a variable num1, perform each of the following operations. Show all 8 bits 
    positions in the masks. 
 
    A. Clear bits 5 and 6. 
    B. Set bits 0 and 1. 
    C. Toggle bits 2, 5, and 7. 
    D. Shift to the left 2 bits 
    E. Shift logically to the right 3 bits. 
 
 
7. What would happen to an 8-bit word if it was shifted 8 bits to the left? What would 
    happen if shifted logically 8 bits to the right? 
 
 

356 11  Bit Manipulation

 
  2. Convert the following decimal numbers to their binary equivalent: 

 



 
 

8. Modify the complete program in Section 11.8 to input << instead of L and >>> instead 
    of R. Further, modify to program to allow the user to enter the number of bits to shift to 
    the left or right. 
 
9. Read another source on arithmetic right shifts such as Guide to Assembly 
    Language [10] and then modify the complete program in Section 11.8 to include 
    the arithmetic right shift >>. 
  
10. Assume that an int variable status indicates the current state of an automobile 
      according to the following table. Write a complete program to input the 8-bits 
     of status and for each bit, output the appropriate message starting with bit 0. 
      Note that a loop does not need to be used. 

 
Bit Message 

0 Low oil pressure 
1   Low fuel 
2   Low tire pressure 
3   Low battery voltage 
4   Low washer fluid 
5   Dirty air filter 

    6    Dirty cabin filter 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.10  Exercises (Items Marked with an * Have Solutions in Appendix E) 357



 

Abstract 
This chapter discuses parallel processing and parallel programming. After the brief 
introduction of common microprocessor systems, programming in multi-core shared 
memory multiprocessor systems is introduced using Pyjama. A parallel program and a 
serial program are compared by taking the running time of both program executions. 
 
Keywords 
Parallel program, Shared memory multiprocessor, Pyjama 
 
Suppose a group of building blocks are counted by color before creating a miniature city. 
If there are about 1000 blocks and 4 different colors: red, blue, yellow, and orange; how 
long does it take to count them by color? Unsurprisingly, it could take a long 40 minutes. 
If someone could help, would it take less time? Of course. How long would it be? At half 
the time, 20 minutes. What if two more people, total of 4 people, count the 1000 blocks 
by color? Would it take 10 minutes? If several people perform the task simultaneously, it 
will take less time to complete it. 
 
This idea can be applied when running computer programs. Instead of using one 
processor, a task can be divided into several processors and each processor performs a 
part of the task at the same time in parallel. In this chapter a concept of parallel 
computation and parallel programming will be introduced.  
 
12.1 Multiprocessor Systems 
 
Most modern micro computers have multi-core processors that consist of a number of 
independent processing units called physical cores or cores. A core is a well-partitioned 
piece that is capable of independently performing all functions of a processor. It is the 
same as the Central Processing Unit (CPU) in a general-purpose microprocessor.  
 

A shared memory multiprocessor is a computer system in which two or more processors 
share a common main memory. Each processor can directly access any data location in 
the main memory and at any time a different processor can execute different instructions 
on different data. 
 
A single physical CPU core with hyperthreading capability appears as two logical CPUs, 
also called logical cores or logical processors, to an operating system. Although the 
operating system sees two processors, the actual CPU hardware has only a single set of 
execution resources for two logical cores. The CPU pretends it has more physical cores 
than it does, and it uses its own logic to speed up program execution. When 
subcomponents of the core are not being used for certain types of instructions, another 
instruction can be executed, so the core could work on 2 things concurrently.  
 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1_12

359

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-22842-1_12&domain=pdf


 
 

A dual-core processor with hyper-threading consists of 2 physical cores and appears as 4 
cores (logical cores) to the operating system. If a system has four dual-core processors 
with hyper-threading, the operating systems sees 16 logical cores. Similarly, a quad-core 
processor with hyper-threading provides 8 logical cores as shown in Fig. 12.1. The LC in 
the figure stands for a logical core. Hyperthreading can help speed up the system, 
however logical cores are not true CPUs as the physical cores are and parallelism in its 
real sense is not attainable on a single-core processor. 

 
 
 
 
 
 
  
 
 
 
 

 
Fig. 12.1 A quad-core processors with hyper-threading shared-memory multiprocessor 
system 
 
 
12.2 Programming Multi-core and Shared Memory Multiprocessor Using Pyjama 
 
Among many different parallel and distributed systems, multi-core and shared memory 
multiprocessors are commonly used. In this section, programming such systems is 
introduced using Pyjama [11]. Pyjama is a Java version of OpenMP [6] which is a widely 
used application programming interface that is suited for the implementation of 
multithreaded programs.  
 
12.2.1 Using Pyjama to Write Multithreaded Programs 
 
A parallel program running on a shared memory multiprocessor usually consists of 
multiple threads. A thread of execution is the smallest sequence of programmed 
instructions that can be managed independently by an scheduler. The 
implementation of threads and processes differs from one operating system to another, 
but in most cases a thread is contained inside a process. The multiple threads in a given 
process run in a shared memory space, whereas processes do not share resources. 
Therefore, threads in different process do not share resources. The number of threads 
may vary during program execution but at any time each thread is being executed on one 
logical core. If there are less threads than logical cores, some logical cores are kept idle. 
If there are more threads than logical cores, the operating system applies 
multiprogramming among threads running on the same logical cores. Multiprogramming 
is where multiple application programs reside in the main memory on a processor system 
and the operating system executes part of one application program in a thread, then part 

Shared Memory 

LC0 LC1 LC2 LC3 LC4 LC5 LC6 LC7 

Core 0 Core 1 Core 2 Core 3 

Processor 

360 12  Introduction to Parallel Processing Programming



 
 

of another application program in a thread, and so on. To the user, it appears that all 
programs are executing at the same time. However, since there is only one processor, 
there is no true simultaneous execution of different programs. 
 
A multithreaded program can be written in different programming languages using many 
different libraries and frameworks. Using the programming language Java, the 
Runnable class can be used. Another approach is to use Pyjama which is a parallel 
programming environment best suited for writing parallel programs that are to be run on 
shared memory systems. The combination of compiler directives and library functions 
can provide a programming environment where the programmer can focus mostly on the 
program and algorithms, and less on the details of the underlining computer system. 
 
12.2.2 Hello World  
 

monitor. In order to run the program using the command prompt instead of using an IDE; 
first go to the folder where the program resides and then use javac
compile the program as shown below:  
 
>javac Output.java 
 
If the javac command was not recognized, search for the javac executable file in the 
system and set a path. For example, if the file is located in the C:\Program 
Files\Java\jdk-16.0.1\bin directory, the following command can be used in 
order to set the PATH environment variable. 
 
>set path=C:\Program Files\Java\jdk-16.0.1\bin 
 
The executable file javac can be referred to once the path is set. Then the next 
command tells the Java compiler and interpreter where to find the source files. The 
period indicates the current directory. 
 
>set classpath=. 
 

java  
 
>java Output 
 
In the Command Prompt window, the following output will be seen: 
 
Hello World 
 
Next, assuming the system has 4 processors, the program can be modified to run using 4 

Hello World
run the same code independently and simultaneously. To illustrate Pyjama API elements, 
the program in Fig. 1.8 is used and modified as shown in Fig. 12.2. Pyjama provides 
directives that tell the compiler about the parallelism in the source code and creates 

12.2  Programming Multi-core and Shared Memory Multiprocessor Using Pyjama 361



 
 

instructions for generating the parallel code which is the multithreaded translation of the 
source code. A line beginning with //#omp is treated as a compiler directive by the 
Pyjama compiler but ignored as comments by the other compilers. 
 
public class OutputParallel { 
   public static void main(String[] args) { 
      int numThreads; 
      numThreads = 4;  
      System.out.println("Hello World Program"); 
      //#omp parallel num_threads(numThreads)  
      { 
         int myID; 
         myID = Pyjama.omp_get_thread_num(); 
         System.out.println("Hello World from thread " + myID); 
      } 
      System.out.println("End"); 
   } 
} 
 
Fig. 12.2 Hello World! using 4 processors 
 

Hello 
World Program parallel directive, 3 
additional threads are created. Clauses can be used along with directives to further 
specify the behavior. The num_threads clause tells how many threads are used in the 
parallel section. All 4 threads, the initial thread and newly created threads, execute the 
statement immediately following the directive: in this example each thread prints out 
Hello World from thread 

the method, omp_get_thread_num. When all threads finish printing, 3 threads 
created by the parallel directive are terminated, the program continues as a single 

End  
 
After downloading Pyjama [2], to compile the program shown in Fig. 12.2 use the 
command as follows: 
 
>java -jar Pyjama-3.1.0.jar OutputParallel.java 
 
A jar file is a collection of class files that are compiled java programs. The -jar option 
is used to specify the jar file to run the main program contained in the jar file in order to 
compile the OutputParallel program. To run it, use the command: 
 
>java -cp Pyjama-3.1.0.jar;. OutputParallel 
 
Notice that to run the outputParallel program, the -CP option is used to specify 
the jar file that contains the necessary class files. The jar file along with the main 
program in this case outputParallel are executed together. Since the number of 
threads is specified to 4, the program might print out a line from the 4 threads in the 
following order: 

362 12  Introduction to Parallel Processing Programming



 
 

 
Hello World Program 
Hello World from thread 3 
Hello World from thread 1 
Hello World from thread 2 
Hello World from thread 0 
End 
 
If the program is run again, it may print: 
 
Hello World Program 
Hello World from thread 1 
Hello World from thread 0 
Hello World from thread 2 
Hello World from thread 3 
End 
 
Notice that during the first run, th Hello World
threads 1, 2, and 0. The second time, the thread 1 printed first, then the threads 0, 2, and 3 
followed. 
 
Once the threads are started, it is up to the underlying operating system to carry out 
scheduling and to resolve competition for the single standard output. Therefore, if the 

Hello World
processors in a different order each time.  
 
12.2.3 Sorting Building Blocks 
 
Returning back to the idea of building block pieces, counting blocks is faster if several 
people work together. This will be demonstrated by writing both serial code and parallel 
code where Fig. 12.3 contains the serial code. There are 1000 blocks stored in a one-
dimensional array, called blocks. By calling the getBlocks method one of the 4 
colors; red, blue, yellow, and orange will be assigned in each element of the array. The 
color is randomly chosen. Then, the program will check each element in the array and if 
the conten Red numRed will be incremented 
by one. If it i Blue numBlue variable is incremented, and so on. After that, 
the number of blocks will be printed by color. 
 
public class CountBlocksSerial { 
   public static void main(String[] args) { 
       int numRed, numBlue, numYellow, numOrange; 
       String[] blocks; 
       blocks = new String[1000]; 
       numRed = numBlue = numYellow = numOrange = 0; 
       getBlocks(blocks); 

12.2  Programming Multi-core and Shared Memory Multiprocessor Using Pyjama 363



 

 

             numRed++; 
          if(blocks[i].equals("Blue")) 
             numBlue++; 
          if(blocks[i].equals("Yellow")) 
             numYellow++; 
          if(blocks[i].equals("Orange")) 
             numOrange++; 
       } 
         
       System.out.println("Number of red blocks is " + numRed); 
       System.out.println("Number of blue blocks is "  
                          + numBlue); 
       System.out.println("Number of yellow blocks is "  
                          + numYellow); 
       System.out.println("Number of orange blocks is "  
                          + numOrange); 
   } 
     
   public static void getBlocks(String[] blocks) { 
      int color; 
      for(int i=0; i<blocks.length; i++) { 
         color = (int) (Math.floor(Math.random() * 4)); 
         switch(color) { 
            case 0: blocks[i] = new String("Red"); 
                    break; 
            case 1: blocks[i] = new String("Blue"); 
                    break; 
            case 2: blocks[i] = new String("Yellow"); 
                    break; 
            case 3: blocks[i] = new String("Orange"); 
                    break; 
         } 
      } 
   } 
} 
 
Fig. 12.3 Serial building blocks counting program 
 
The sample output is shown below: 
 
Number of red blocks is 232 
Number of blue blocks is 247 
Number of yellow blocks is 251 
Number of orange blocks is 270 
 
As can be seen, since the color of the building blocks was chosen randomly, each color 
has about the same number of blocks. The serial code imitates one person counting 
blocks. Now to simulate the counting of building blocks by several people, the task of 
counting blocks is distributed among several processors to run in parallel.  
 

364 12  Introduction to Parallel Processing Programming

 
       for(int i=0; i<blocks.length; i++) { 
          if(blocks[i].equals("Red")) 



 
 

The parallel program shown in Fig. 12.4 starts as a single thread. Once the flow of 
control reaches the parallel directive, several additional threads are created. There are 
two clauses for the parallel directive, the num_threads and the shared in order 
to specify the further behavior. The number of threads that perform the parallel section is 
determined by the num_threads clause. In Pyjama, variables declared before a parallel 
block can be accessed by all the threads by listing in the shared clause. They include 
blocks, numThreads, numBlocks, numRed, numBlue, numYellow, and 
numOrange. Variables declared in the parallel block such as myPart, myID, 
myFirstPos, myLastPos, myNumRed, myNumBlue, myNumYellow, and 
myNumOrange can only be accessed by a single thread. All threads including the initial 
thread and the newly created threads execute statements immediately following the 
parallel directive. When all threads finish the parallel section, threads created by the 
parallel directive are terminated and the program continues as a single thread that 
outputs the results and terminates the program. 
 
The number of processors and the number of building blocks to run the program will be 
specified by the user during the command line execution. Any information typed after the 
main class name on the command line when invoking the interpreter using the java 
command is called a command-line argument and can be referenced in the program. The 
arguments are always treated as a list of strings and in this program the array that stores 
command-line arguments is called args. The program uses two command-line 
arguments. The number of threads read from the command line is stored as the first 
argument in args[0] and the number of blocks is the second argument stored in 
args[1]. Then the following two assignment statements assign the number of 
processors in the numThreads variable and the number of blocks in numBlocks after 
converting String values to int using the parseIntg method defined in the 
Integer class. 
  
        numThreads = Integer.parseInt(args[0]); 
        numBlocks = Integer.parseInt(args[1]); 
 
Note that without recompiling the program, it can be executed again, giving it different 
command-line arguments, and producing different results. 
 
If there are 1000 building blocks and 4 helpers, each will count 250 blocks by color. How 
can the blocks stored in a one-dimensional array be divided among 4 processors in the 
program? The first processor will have blocks located position from 0 to 249 in the array, 
the second processor from 250 to 499, the third processor from 500 to 749, and the fourth 
processor from 750-999. The number of blocks that each processor deals with can be 
found by total number of blocks divided by the number of processors. In this example 
250 (= 1000 / 4) is stored in the myPart variable. The position of the first block 
each processor handles can be found using a formula, myPart * myID. The myID 
variable contains the ID number of processor that is found by calling the method 
Pyjama.omp_get_thread_num(). If 4 processors are used, each processor would 
have ID number 0, 1, 2, or 3. Therefore, the processor 0 will check the element staring 

12.2  Programming Multi-core and Shared Memory Multiprocessor Using Pyjama 365



 
 

from 0 (= myPart * myID = 250 * 0) and the last position plus one which will be 
used in the for loop is 250 (= myFirstPos + myPart = 0 + 250). For the 
second processor, myFirstPos is 250 (= myPart * myID = 250 * 1) and 
myLastPos has 500 (= myFirstPos + myPart = 250 + 250), and so on. The 
if(myID == numThread-1) statement takes care when the numBlocks does not 
divide exactly by numThreads.  
 
After all processors finish counting the number of blocks in 4 different colors and storing 
the value in local variables such as myNumRed that is only visible by an individual 
processor, values would be summed up and placed into the global variables such as 
numRed that are accessible by all the processors. As individual processors can access 
any memory location in the main memory and execute instructions independently, it may 
result in a race condition which is a situation where the result depends on a random 
precise timing of read/load and write/store accesses to the same location in the main 
memory. Using 4 processors, P0, P1, P2, and P3, suppose P0 counted 42 red blocks and 
stored 42 in its own myNumRed, P1 had 62 and stored 62 in its own myNumRed, P2 had 
50, and P3 had 76. The total is 230 and numRed should be 230 at the end.  
The numRed is initially 0 and suppose P1 reads the content of numRed as 0, adds 62 to 
0, and stores 62 in numRed. Next, P3 read the value 62 in numRed, adds 76 to 62, and 
updates numRed to 138. If P0 does the same followed by P2, there will be no problem. 
The numRed would have the value 230 in conclusion. However, since each processor 
could access memory anytime in any order, if P3 reads the value of numRed after P1 
reads the value 0 but before performing addition and updating the variable, P3 would 
read 0 in the numRed. While P1 adds 62 to 0 and updates the variable numRed to 62, P3 
adds 76 to 0 and updates numRed 
puts in earlier, which means 62 was not included in the total number of red blocks after 
all. 
 
To avoid race conditions described above, the assignment to update variables numRed, 
numBlue, numYellow, and numOrange can be put inside a critical section  a part of 
a program that is performed by at most one thread at a time. This is achieved by the 
critical directive which is applied to the statement or a block immediately flowing it 
shown in Fig 12.4. The program works correctly because the critical directive 
performs locking around the code it contains, i.e., the code that access variables numRed, 
numBlue, numYellow, and numOrange and thus prevents race conditions. 
 
public class CountBlocksParallel { 
   public static void main(String[] args) { 
      int numThreads; 
      int numBlocks; 
      int numRed, numBlue, numYellow, numOrange; 
      String[] blocks; 
      numRed = numBlue = numYellow = numOrange = 0; 
      numThreads = Integer.parseInt(args[0]); 
      numBlocks = Integer.parseInt(args[1]); 
      blocks = new String[numBlocks]; 

366 12  Introduction to Parallel Processing Programming



 
 

      getBlocks(blocks); 
        
      //#omp parallel num_threads(numThreads) shared(blocks, 
             numThreads,numBlocks,numRed,numBlue, 
             numYellow,numOrange) 
      { 
         int myPart, myID, myFirstPos, myLastPos; 
         int myNumRed, myNumBlue, myNumYellow, myNumOrange; 
         myNumRed = myNumBlue = myNumYellow = myNumOrange = 0; 
         myPart = numBlocks / numThreads; 
         myID = Pyjama.omp_get_thread_num(); 
         myFirstPos = myPart * myID; 
         if(myID == numThreads-1) 
            myLastPos = numBlocks; 
         else 
            myLastPos = myFirstPos + myPart; 
 
         for(int i=myFirstPos; i<myLastPos; i++) { 
            if(blocks[i].equals("Red")) 
               myNumRed++; 
            if(blocks[i].equals("Blue")) 
               myNumBlue++; 
            if(blocks[i].equals("Yellow")) 
               myNumYellow++; 
            if(blocks[i].equals("Orange")) 
               myNumOrange++; 
         } 
         //#omp critical  
         { 
            numRed += myNumRed; 
            numBlue += myNumBlue; 
            numYellow += myNumYellow; 
            numOrange += myNumOrange; 
         } // end of critical section 
      } // end of parallel section 
     
      System.out.println("Number of red blocks is " + numRed); 
      System.out.println("Number of blue blocks is "  
                         + numBlue); 
      System.out.println("Number of yellow blocks is "  
                         + numYellow); 
      System.out.println("Number of orange blocks is "  
                         + numOrange); 
   } 
     
   public static void getBlocks(String[] blocks) { 
      int color; 
      for(int i=0; i<blocks.length; i++) { 
         color = (int) (Math.floor(Math.random() * 4)); 
         switch(color) { 
            case 0: blocks[i] = new String("Red"); 
                    break; 

12.2  Programming Multi-core and Shared Memory Multiprocessor Using Pyjama 367



 
 

            case 1: blocks[i] = new String("Blue"); 
                    break; 
            case 2: blocks[i] = new String("Yellow"); 
                    break; 
            case 3: blocks[i] = new String("Orange"); 
                    break; 
         } 
      } 
   } 
} 
 
Fig. 12.4 Parallel building blocks counting program 
 
To compile and run the program shown in Fig. 12.4 use the following commands. Note 
that it will use 4 threads to count 1000 building block by colors. 
 
>java -jar Pyjama-3.1.0.jar CountBlocksParallel.java 
>java -cp Pyjama-3.1.0.jar;. CountBlocksParallel 4 1000 
 
The sample output is shown below: 
 
Number of red blocks is 251 
Number of blue blocks is 249 
Number of yellow blocks is 254 
Number of orange blocks is 246 
 
12.3 Analysis 
 
How can one compare a parallel program and a serial program? The running time or 
execution time of both program executions could be measured and compared. Also, the 
program in Fig. 12.4 can be executed using a different number of threads.  
 
The execution time is measured using the Date class in the java.util package. A 
Date object can call the getTime method of the Date class to record the start time. 
After the section that is being measured is completed, the end time is recorded. By 
subtracting the start time from the end time, the elapsed time in milliseconds can be 
obtained. In order to use the Date class, the following import statement that was 
introduced in Sect. 1.2.2 needs to be added to the program: 
 
import java.util.*; 
 
Then, the two lines shown below are included in the declaration section at the beginning 
of the program. 
 
    Date startTime, endTime; 
    Double elapsedTimeInSec; 
 

368 12  Introduction to Parallel Processing Programming



 
 

Further, the following statements should be added before and after the parallel section in 
Fig. 12.4 which includes the critical sections since the critical section is performed by an 
individual processor.  
 
    startTime = new Date();  // current time at start 
    // parallel section 
 ... 
    // end of parallel section 
    endTime = new Date();  // current time at end 
    elapsedTimeInSec = (endTime.getTime() - startTime.getTime()) 
                       / 1000.0; 
    System.out.println(numBlocks + " blocks are counted by "  
                       + numThreads + " processors and took "  
                       + elapsedTimeInSec + " secs.");   
 
The running times of the program with 1, 2, 3, 4, 5, 6, 7 and 8 threads using 1,000,000 
blocks are shown in the Fig. 12.5. The timing was taken 10 times for each case and the 
average was used to plot the results. The x-axis is the number of threads and y-axis is the 
timing in seconds. As can be seen and as expected, the timing decreases as the number of 
threads increases. Then, why does the graph become flat for using more than 4 threads? 
This is because the program was run using the computer that has a dual-core processor 
with hyper-threading which consists of 2 physical cores and appears as 4 logical cores to 
the operating system. When the tasks are divided into more than 4 parts, the operating 
system scheduled them among 4 logical cores. Also notice that the huge drops in 
execution times from number of threads from 1 to 2. This is because tasks are performed 
truly in parallel using 2 physical cores in the system.  
 

 
 
Fig. 12.5 Running times of the program in Fig. 12.4 
 
It is also good to know how many times the parallel execution is faster than the sequential 
exertion. Speedup is measured in the time it took to complete in sequential code divided 

12.3  Analysis 369



 
 

by the time it took to complete in parallel code. It is a measure that demonstrates the 
relative benefit of solving a problem in parallel. Speedup can be defined as follows: 
 

 

 
When the program in Fig. 12.4 was executed using 1 thread it took 0.0667 seconds on 
average and took 0.0361 seconds on average with 2 threads running on two cores. 
Therefore, the speedup is 1.848 (= 0.0667 / 0.0361). Using 3 threads, the speedup was 
2.111 (= 0.0667 / 0.0316) and using 4 threads 2.269 (= 0.0667 / 0.0294). Assuming the 
system has 4 physical processors, theoretically the speedup using 2 processors would be 
2, 3 with 3 processors, and 4 with 4 processors, and it can never exceed the number of 
processors. Notice that the best speedup was achieved when using 2 threads due to the 
simultaneous execution on 2 physical cores. Although the speedup was observed in 
general in this example, it was not optimal. This may be because there are only two 
physical cores even though the operating system sees 4 logical cores. Also, it may be due 
to how the parallel program was implemented using critical section. The use of critical 
sections slows down the program because at any moment at most one thread can perform 
the addition and assignment while all other threads are kept waiting.   
 
12.4 Complete Program: Implementing Parallel Inner Product 
 
Combining all the material from this chapter, one can now write a simple parallel 
program. In this section, a program to compute an inner product of two vectors will be 
developed. An inner product is used in geometry and physics and defined for a vector a = 
[a0, a1, a2] and a vector b = [b0, b1, b2] as: 
 

a b = a0× b0 + a1×b1 + a2×b2 
 
The number of processors and the size of vectors will be specified by the user during the 
command line execution. The number of processors the user selected is stored in the 
numThreads variable and the size of vectors stored in vecSize. The two vectors are 
initialized to random numbers. Each processor will determine the part of vectors that it is 
responsible for calculating before performing the computation. Since updating 
innerProduct by all processors may cause race conditions, it is placed inside the 
critical section. The complete program is given in Fig. 12.6. 
 
public class InnerProductParallel { 
   public static void main(String[] args) { 
      int numThreads, vecSize; 
      int innerProduct; 
      innerProduct = 0; 
      numThreads = Integer.parseInt(args[0]); 
      vecSize = Integer.parseInt(args[1]); 
      int[] a, b; 
      a = new int[vecSize]; 
      b = new int[vecSize]; 

370 12  Introduction to Parallel Processing Programming



 
 

      getVec(a); 
      getVec(b);  
         
      // parallel section 
      //#omp parallel num_threads(numThreads)  
             shared(numThreads, innerProduct, vecSize, a, b) 
      { 
         int myPart, myID, myFirstPos, myLastPos; 
         int myInnerProduct; 
         myInnerProduct = 0; 
         myPart = vecSize / numThreads; 
         myID = Pyjama.omp_get_thread_num(); 
         myFirstPos = myPart * myID; 
         if(myID == numThreads-1) 
            myLastPos = vecSize; 
         else 
            myLastPos = myFirstPos + myPart; 
                
         // multiplication and addition  
         for(int i=myFirstPos; i<myLastPos; i++) 
             myInnerProduct = myInnerProduct + (a[i] * b[i]); 
         
         // critical section: update innerProduct 
         //#omp critical  
         { 
            innerProduct += myInnerProduct;  
         } // end of critical section 
      } // end of parallel section 
         
      // print the contents of vectors if the size is small 
      if(vecSize <= 10) { 
         System.out.print("a = ["); 
         for(int i=0; i<vecSize; i++)  
            System.out.print(a[i] + " "); 
         System.out.println("]"); 
         System.out.print("b = ["); 
         for(int i=0; i<vecSize; i++)  
            System.out.print(b[i] + " "); 
         System.out.println("]"); 
      } 
      System.out.println("Inner Product is " + innerProduct); 
   } 
     
   public static void getVec(int[] array) { 
      for(int i=0; i<array.length; i++) 
         array[i] = (int)(Math.floor(Math.random() * 1000)); 
   } 
} 
 
Fig. 12.6 Parallel inner product program 
 

12.4  Complete Program: Implementing Parallel Inner Product 371



 
 

The sample output using arrays of size 5 running on one processor is found below to 
show the correctness of the program. Note that in order to see the benefit of running the 
program in parallel, the size of the data has to be large. 
 
a = [305 652 524 445 503 ] 
b = [270 129 796 227 903 ] 
Inner Product is 1138786. 
 
12.5 Summary 
 
 A parallel program divides a task and executes each task at the same time using 

multiple processors. 
 A thread is a sequence of programmed instructions that can be managed 

independently by an scheduler. 
 A shared memory multiprocessor is a computer system in which two or more 

processors share a common main memory. 
 A race condition is a situation where the result depends on random precise timing of 

read/load and write/store accesses to the same location in the main memory. 
 A critical section is a part of a program that is performed by at most one thread at a 

time to avoid a race condition. 
 A speedup is measured in the time it took to complete a sequential code divided by 

the time it took to complete a parallel code. 
 Better speedup can be observed using number of physical cores compared to using 

logical cores since logical cores are not true CPUs and parallelism in its real sense is not 
attainable. 

 
12.6 Exercises (Items Marked with an * Have Solutions in Appendix E) 
 
1. Review the Section 12.2.3 and find the myFirstPos and myLastPos for each 

processor for the following the cases. 
 

*A.  when numThreads = 4 and numBlocks = 1500 
  B.  when numThreads = 6 and numBlocks = 1500 
  C.  when numThreads = 6 and numBlocks = 1500 

 
2. 

12.2 in the critical section? If so why and if not, why not? 
 

3. Plot execution times of several runs of the complete program shown in Fig. 12.6 with 
a different number of threads and see the speed up. 

 
4. Write both serial code and parallel code to find a maximum number stored in 2-

dimensional array. Plot execution times of several runs with a different number of 
threads and to see the speed up. 

 

372 12  Introduction to Parallel Processing Programming



 
 

*5. Write both serial code and parallel code to perform vector addition. Plot execution 
times of several runs with a different number of threads and to see the speed up. 
(Note: only the answer to the serial and parallel programs will be given in the 
Appendix E) 
 

6. Write both serial code and parallel code to perform matrix-matrix multiplication. Plot 
execution times of several runs with a different number of threads and to see the 
speed up. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12.6  Exercises (Items Marked with an * Have Solutions in Appendix E) 373



 
 

 

 

 

Appendix A: Explanation and Elaboration of 
Concepts in Chapter 1 

This appendix includes a detailed explanation and an elaboration of the code used in 
Chapter 1. Note that in addition to the new material, some of the items from Chapter 1 
might be explained once more for the sake of continuity. For experienced programmers 
with knowledge of OOP in another language, the various sections can be read as needed. 
However, for a reader that is new to OOP, it is advisable that Chapters 2 and 5 be read 
prior to Section A.1 and Chapter 9 prior to Section A.4. 
 

 

As introduced in Section 1.1 and 

Figure 1.2 is shown again here in Figure A.1. 

 
Fig. A.1 Hello World program revisisted 

The first line in the program begins with the reserved word class. A class is a 
definition of a group of objects that includes data members (places to store data) and 
methods (places to put the program logic). The word Output is an identifier and the class 
name usually beginning with a capital letter is provided by the programmer. The definition 
of the class consisting of the data and methods is placed between the first opening brace 
and the last closing brace, { }. 

This class has one method definition starting on the second line. The first three words 
in the second line are reserved words. The word public is the access or visibility modifier 
and the main method is always defined using public visibility, so that the program can 
be executed by the interpreter. The word static means this is a class method, and the 
main method is always declared static so that it can be executed without creating an 
instance of the class. The word void means that main is a non-value-returning method. 
Next, main is the name of the method and the instructions in the main method will be 
executed first. Inside of the parentheses after the name of the method, parameters are listed 
along with their types to allow the method to receive values. The parameter called args 
is of type String and the square brackets, [], indicate args is an array, where strings 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

375



 
 

and arrays were discussed in  Chaps. 6  and  7 , respectively. The definition of the main 
method also starts with an opening brace and ends with a closing brace. 

 Inside the braces, a sequence of instructions would be placed. For now, it contains a  
System.out.println("Hello World!"); statement as discussed in Chapter 1 
and elaborated on in the next section. Note that GUI-Based output is discussed in Section 
A.4. 
 
A.2 Text-based Output: print and println 

 
Recall the following statement from the previ

and moves the cursor to the next line: 
 
System.out.println("Hello World!"); 

However, what would happen should one leave off the ln portion of the println, as 
shown below? 

  System.out.print("Hello World!"); 

Given the previous description concerning the println, the output would be as 
follows: 
Hello World!_ 

At first glance, this does not appear to be much different than the original sample output. 
However, if one looks carefully, note the location of the cursor. It is not on the second line 
but rather at the end of the string. The statement outputs the string to the screen, but with 
the absence of the ln, the cursor does not move down to the next line. In fact, if the cursor 
does not show up on the screen, one would not notice the difference. Even though it might 
not be detected on the screen, it is important to know where the cursor is located, so that 
subsequent input and output is correct.  

 
Again recall the following statements from Section 1.3 which outputs the words 

"Hello" and "World!" on two separate lines with the cursor on the third line. 
 
System.out.println("Hello"); 
System.out.println("World!"); 

However, what if one accidently used two separate System.out.print statements 
instead? 
 
System.out.print("Hello"); 
System.out.print("World!"); 

The output would appear as given below: 
HelloWorld!_ 

Note that this output appears similar to using a single System.out.print statement 
as shown previously. Why are they similar? After the first System.out.print output 
the word Hello, the cursor stayed on the same line and did not move to the second line. 
So, when the second System.out.print was executed, the word World! was output 

376 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1

http://dx.doi.org/10.1007/978-1-4471-6317-6_6
http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

on the same line, and since there was no ln in the second statement, the cursor stayed on 
the same line. One might also notice there is no space between the two words. Why did 
this happen? Since there is no space at the end of the first string within the double quotes, 
nor a space at the beginning of the second string, a space did not appear in the output. 

Although this is similar to the example using the System.out.print, could it be 
changed to mimic the first example in this section? The answer is yes, as in the following 
example: 
System.out.print("Hello "); 
System.out.print("World!"); 
System.out.println(); 

In this case, the word Hello followed by a space would be output, and then the word 
World! would be output. The last line would output nothing, because there is no string in 
the parentheses, but the ln would cause the cursor to move down to the next line as shown 
below: 
 
Hello World! 
_ 

Although the above three-line code segment produces the same output as the original 
single-line statement, why would one want to use this latter example? Usually, one would 
not and a single statement is usually preferable to using multiple statements.  

 
 As a last example of formatting output, recall the following code segment from Section 

following on the fourth line? 
 
System.out.println("Hello"); 
System.out.println(); 
System.out.println("World!"); 

However, what if one wanted to output two blank lines, would the following code 
segment work? 
 
System.out.print("Hello"); 
System.out.println(); 
System.out.println(); 
System.out.println("World!"); 

At first glance, it might appear to work, but look carefully. Notice that the first statement 
does not contain a println but rather only a print. The result would be exactly the 
same as the previous code segment since the first statement outputs the word Hello, but 
does not move the cursor down to the next line on the screen. The second statement is a 
System.out.println, and it moves the cursor down from the first line to the second 
line of output. The second System.out.println creates a single blank line. 

Unfortunately, this is a mistake that is sometimes made by beginning Java programmers, 
where they assume that anytime there is a System.out.println(); a blank line is 
produced. The only time a blank line is produced is when there is not a preceding 
System.out.print statement. 

Appendix A:  Explanation and Elaboration of Concepts in Chapter 1 377



 
 

 The correct code segment to produce two blank lines is given below. Note that the first 
statement is a System.out.println. 
 
System.out.println("Hello"); 
System.out.println(); 
System.out.println(); 
System.out.println("World!"); 

 
This is yet another reason why one should tend to avoid using the System.out.print 
statement unless under special circumstances such as with prompts for input as discussed 
in Section 1.7.1. and when one needs to break up an output line using multiple statements 
as dicussed in  Chap. 3  on selection statements. 

A.3 Text-based Input 

Figure A.2 is the program from Figure 1.11. The import statement on the first line 
allows the use of the predefined Scanner method for input. All the predefined classes 
and methods in the Java API are organized into packages where a package is like a folder 
in which classes can be stored. The import statement identifies those packages that will 
be used in a program. For example, the following statement imports the Scanner class of 
the java.util package: 
import java.util.Scanner; 

A second option uses an asterisk to indicate that any class inside the package might be 
used in the program. Thus, the statement 
import java.util.*; 

allows any of the classes in the java.util package to be referenced. The second option 
is used in the program shown in Fig. A.2. 

 
Fig. A.2 Program to input an integer revisisted 
 
Note that the System.out.println, System.out.print, and 

System.out.printf statements were used in Chapter 1 for output and the 
java.lang package which includes the System class was not imported at the beginning 

378 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1

http://dx.doi.org/10.1007/978-1-4471-6317-6_3


 
 

of the program. This is because the java.lang package, which includes the System 
and Math classes, is used extensively, and it is automatically imported into all Java 
programs. 

Returning back to Fig. A.2, in order for input to work properly, one needs a place to 
store the data entered. As should be known, the first statement in the body of the main 
method declares the variable num as type int. The next statement is the declaration of the 
variable scanner of type Scanner as shown below: 
Scanner scanner; 

Scanner is not a primitive data type like int or double, but rather a class. Then the 
following statement, 
scanner = new Scanner(System.in); 

creates a new instance of the Scanner class, or in other words a Scanner object. 
Unlike output, input is not directly supported in Java; however, the Scanner class can be 
used to create an object to get input from the keyboard. Java uses System.in to refer to 
the standard input device, which is the keyboard. The above statement then assigns a 
reference to the new object to the variable scanner. 

The next statement below shows how the Scanner object is used to scan the input for 
the next integer. The method nextInt will make the system wait until an integer is 
entered from the keyboard, and then the integer input is assigned to the variable num: 
num = scanner.nextInt(); 

The value in num can then be output as done in Figure A.2. Of course, it is usually best to 
provide a prompt to let the user know what should be input as originally shown in  Fig 
1.12. 

 
A.4 Overview of Java Packages 
 
In Chap. 9, the concept of inheritance was introduced. Using inheritance, a more 
specified class called a subclass can be defined from an existing class called a superclass 
and the subclass inherits, or extends, the superclass. Most of the standard classes are 
subclasses of other standard classes, which are themselves subclasses of other classes, 
forming an inheritance hierarchy. The inheritance hierarchy of standard classes can be 
found in the Oracle Java API documentation at 
http://docs.oracle.com/javase/7/docs/api/index.html.  
 
The class Object is the root of the class hierarchy in Java, meaning the Object class 
is directly or indirectly a superclass of all the predefined and user-defined classes. The 
commonly used classes such as Math.String and System are subclasses of the 
Object class. The list below shows the inheritance hierarchy of some classes and where 
they are discussed in the text: 
 

Appendix A:  Explanation and Elaboration of Concepts in Chapter 1 379



 
 

- java.awt.Component (Appendix A, Section A.5) 
- java.lang.Math (Chap. 1) 
- java.lang.Number (Chap. 1) 
- java.lang.String (Chap. 6) 
- java.lang.System (Chap. 1) 
- java.lang.Throwable (Appx. B) 
- java.util.Scanner (Chap. 1) 
- javax.swing.ImageIcon (Appendix A, Section A.5) 

For example, the Number class is a subclass of the Object class and subclasses of the 
Number class includes Byte, Double, Float, Integer, Long, and Short classes 
that are also introduced in Chap. 1. 
 
In Java, classes are grouped into packages according to functionality. Many of the 
commonly used classes reside in the java.lang package and any class in the package 
is automatically available to all Java programs. To use a class that is not in the 
java.lang package, the compiler needs to know where to find the class. To do this, an 
import statement is inserted at the top of the program before the class statement that 
begins the program as described in Chapter 1. 
 
As mentioned in Chap. 2, one of the advantages of an object-oriented programming 
language like Java is that a well-written class can be reused. Java provides thousands of 
predefined classes that can be used to add functionality to programs. Collections of 
related classes are organized in a package and can be imported into programs.  
 
A.5 More on GUI-based Output and Input 
 
Output and input using message dialog boxes and input dialog boxes were introduced in 
Chap. 1. In this section packages, where the GUI classes are contained, are discussed in 
addition to the overloaded methods of showMessageDialog and 
showInputDialog. The inheritance hierarchy of the JOptionPane class is shown 
below:  
 

- java.lang.Object 
- java.awt.Component 

- java.awt.Container 
- javax.swing.JComponent 

- javax.swing.JOptionPane 
 
Each successive subclass inherits everything from its superclass and either adds new 
features or replaces the inherited ones. The javax.swing.JOptionPane is a 
subclass of java.swing.JComponent class, which is a subclass of 
java.awt.Container, class and so forth. As discussed in Chap.1 a dialog box 
created using the statement JOptionPane.showMessageDialog(null, 
"Hello, World!"); will display in the center of the screen. If the dialog box is to 

380 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1

- java.lang.Object 
- java.io.File (Chap. 10) 

https://docs.oracle.com/javase/7/docs/api/java/awt/Component.html
https://docs.oracle.com/javase/8/docs/api/java/util/Scanner.html
https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Component.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Container.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/JComponent.html


 
 

appear in the specific location on the screen, a JFrame object can be passed to the 
showMessageDialog method. As can been seen in the class hierarchy of the Frame 
class below and the JOptionPane classes above, they share the same grandparent, 
java.awt.Container. 
 

- java.lang.Object 
- java.awt.Component 

- java.awt.Container 
- java.awt.Window 

- java.awt.Frame 
 
As shown below, after creating an instance of the JFrame class, calling the 
setVisible method with true makes the frame visible on the screen. The 
setLocation(100, 100) makes the frame appear 100 pixels down and 100 pixels 
to the right from the top-left corner of the screen. The message dialog box will appear on 
the top of the frame. 
 
JFrame frame = new JFrame();   
frame.setVisible(true);  
frame.setLocation(100, 100); 
JOptionPane.showMessageDialog(frame, "Hello World!"); 
 
There are two overloaded showMessageDialog methods. Using them, there is an 
option of selecting an icon to be displayed in the message box: an error message icon, an 
information message icon, a warning message icon, a question message icon, or no icon. 
A customized icon can also be placed in the dialog box. An icon helps the user identify 
the kind of message that is being displayed. The following example outputs a text 
Cinders and ashes! Warning

warning message icon is also displayed by sending an argument, 
JOptionPane.WARNING_MESSAGE, to the showMessageDialog method.  
 
JOptionPane.showMessageDialog(null,  
                              " Cinders and ashes!",  
                              "Warning",   
                              JOptionPane.WARNING_MESSAGE); 
 
The dialog box looks like the following when the statement above is executed. 
 

  

Appendix A:  Explanation and Elaboration of Concepts in Chapter 1 381

https://docs.oracle.com/javase/7/docs/api/java/awt/Component.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Container.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Window.html


 

 

INFORMATION_MESSAGE for an information message icon, WARNING_MESSAGE for 
a warning message icon, QUESTION_MESSAGE for a question message icon, and 
PLAIN_MESSAGE for no icon. The INFORMATION_MESSAGE is the default value if 
the type of the message was not specified.  
 
To display a customized icon, suppose a picture of the sun is created using drawing 
software and saved as sun.jpg. The image file should be placed in the directory where 
the Java main program resides. In the program an ImageIcon object is created and 
associated with the sun.jpg image as shown below. The 
JOptionPane.PLAIN_MESSAGE is sent to the showMessageDialog method as 
the third argument, so that no predefined icon will be displayed. Instead, the picture of 
the sun will appear sending the sunIcon object to the method. 
 
ImageIcon sunIcon = new ImageIcon("sun.jpg"); 
JOptionPane.showMessageDialog(null,  
                              "It is a sunny day!",  
                              "Today",  
                              JOptionPane.PLAIN_MESSAGE,  
                              sunIcon); 
 
The above statements display the following message dialog box with a smiley sun 
drawing. 
 

 
 
There are 4 overloaded showInputDialog methods besides the one mentioned in 
Chap. 1. As with message dialog boxes, an icon showing the type of the message and a 
customized icon can be passed to the methods. The showInputDialog methods also 
accepts initial (default) values placed in the input field. A dropdown menu can also be 
added to the text box.  
 
An example using the showInputDialog method with 7 arguments is shown below. 
The first argument, null, displays the dialog box in the center of the screen. The second 
argument is a string to display in the dialog box. The third argument is a string to display 
in the title bar. The fourth argument displays a question mark icon in the dialog box. The 
fifth argument is null since no customized icon is used. The sixth argument is an array 
containing the possible selections: First-year, Sophomore, Junior, or Senior. 
The seventh argument is the value used to initialize the input field, which in this case is 
the first string First-year in the possibleValues array. The 

382 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1

 
The argument ERROR_MESSAGE can be used to display an error message icon including 



 
 

showInputDialog method returns the value the user selected which is a reference to 
the object of type Object meaning an object of any type. The object is typecast into the 
String type so that the value of type String can be stored in selectedValue.  
 
String[] possibleValues = {"First-year", "Sophomore",  
                           "Junior", "Senior"}; 
String selectedValue = 
                (String)JOptionPane.showInputDialog(null,  
                "What is your classification?", 
                "Input", 
                JOptionPane.QUESTION_MESSAGE, null,   
                possibleValues, possibleValues[0]); 
 
When the statement above is executed, the dialog box shown below appears on the screen 

-  
 

 
 

-down menu as shown below and 
click OK button. 
 

 
 

A.6 Confirmation Dialog Boxes 

In addition to the message dialog boxes and input dialog boxes introduced previously, 
two additional dialog boxes are discussed in this section and the next section: 
confirmation dialog boxes and option dialog boxes.  

    A confirmation dialog box gives buttons to select, and when a user clicks one of the 
buttons, it returns an integer value. Recall the code segment from Fig. 6.3 in  Chap. 6  that 
checks the string value the user enters after playing one Tic Tac Toe game to determine if 
the user wants to play another game. Again, assuming the program to play a Tic Tac Toe 

Appendix A:  Explanation and Elaboration of Concepts in Chapter 1 383

http://dx.doi.org/10.1007/978-1-4471-6317-6_6


 
 

game has been written, the code segment in Fig. 6.3 can be rewritten using a confirmation 
dialog box as shown below instead of having the user enter "yes" or "no" : 
 
int selection; 
do { 
   // play one Tic Tac Toe game 
   selection = JOptionPane.showConfirmDialog(null,     //#1 
   "Would you like to play another Tic Tac Toe game?", //#2 
   "Confirmation",                                     //#3 
   JOptionPane.YES_NO_OPTION);                         //#4 
} while(selection == JOptionPane.YES_OPTION); 

The showConfirmDialog method passes four arguments labeled in the comment to 
the right as #1 through #4 . The first argument, null , places the dialog box in the center 
of the screen. The second argument is a descriptive message to be output above the buttons 
in the dialog box to inform the user what should be done. The third argument is the title of 

of option buttons that appear at the bottom of the dialog box. The 
JOptionPane.YES_NO_OPTION option displays a Yes button and a No button. The 
integer returned from the method indicates which option was selected by the user. When 
the user clicks the Yes button in the dialog box shown below, an integer value 0, which is 
the value of the constant JOptionPane.YES_OPTION, is returned. When the user 
clicks the No button, an integer value 1, which is the value of the constant 
JOptionPane.NO_OPTION, is returned. Therefore, the return value from the 
confirmation dialog box could be 0 or 1, and the programmer does not have to remember 
the actual value returned for the specific case. Whatever the value is, if the user clicks the 
Yes button, the return value should match with the value of the constant 
JOptionPane.YES_OPTION . Thus, all the programmer has to write is selection 
== JOptionPane.YES_OPTION instead of comparing the return value with the actual 
integer. 

  
 

 

 

 

 

With the above code, if the user clicks the Yes button after playing one Tic Tac Toe 
game, a new game will start. The user keeps playing as long as the Yes button is selected. 
When the code segment above is actually executed, since it does not contain the code which 
implements the Tic Tac Toe game, it simply keeps showing the confirmation dialog box 
inside the loop until the user clicks the No button. 

384 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1



 

In addition to the JOptionPane.YES_NO_OPTION option that was discussed in the 
previous section, the JOptionPane class defines another set of option buttons that 
appear in the dialog box including JOptionPane.YES_NO_CANCEL_OPTION  which 
displays Yes, No, and Cancel buttons and JOptionPane.OK_CANCEL_OPTION 
which displays OK and Cancel buttons. Is there any way the buttons other than Yes , No 
, Cancel , or OK could be displayed in the dialog box? The answer is yes. An option dialog 
box allows a programmer to create custom buttons using an array structure introduced in  
Chap. 7  . 

As an example, assume that every conference attendee will fill out a survey at the 
conclusion of the conference. Each question will appear in the dialog box and an attendee 
will select one of the buttons. An example question is shown below: 

 

 
 

As can be seen, there are six option buttons with custom labels and a conference attendee 
can click any of them. Besides displaying a question and buttons, the program needs to 
know which button the user pressed and stores the information. The code to display the 
above dialog box is shown below: 

 

As before, the first argument of the showOptionDialog method indicates the 
placement of the dialog box. The null value centers the dialog box on the screen. The 

Appendix A:  Explanation and Elaboration of Concepts in Chapter 1 385

A.7 Option Dialog Boxes 

http://dx.doi.org/10.1007/978-1-4471-6317-6_7


 
 

second argument is the question displayed above the option buttons. The third argument is 
title bar. The fourth argument 

indicates the set of option buttons. The DEFAULT_OPTION is used since the programmer 
will define buttons in the seventh argument. If the predefined option such as 
JOptionPane.YES_NO_OPTION is used, then the seventh argument would be set to 
null . The fifth argument defines the style of the message. Here one of the default icons, 
QUESTION_MESSAGE , is used to display a question mark. The sixth argument can place 
additional icons in the dialog box. In this example, since the question mark icon is already 
added by the previous parameter, the null value is used to not display any more icons. 
The seventh argument specifies the buttons. The labels of the buttons are stored in the 
String array named options . The last argument allows a programmer to specify an 
initial choice. Since the argument is "average" , the average button is outlined, and if 
the user simply presses the enter key without choosing any of the buttons, the average 
button will be selected as a default. The showOptionDialog method returns an int 
value indicating the button that was activated. It basically returns the index value of the 
array options . For example, when the N/A button is selected, it returns the value 0 
because the String value "N/A" is stored in the first location of the array, and when the 
awful button is clicked, the value 1 is returned. The integer value from each question can 
be used to create the result of the survey. 

For more information about dialog boxes, please refer to the Java API specification 
document at the Oracle website at  http://docs.oracle.com/javase/7/docs/api/index.html  . 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

386 Appendix A:  Explanation and Elaboration of Concepts in Chapter 1

http://docs.oracle.com/javase/7/docs/api/index.html


 
 

 Appendix B: Exceptions 

Building robust programs is essential to the practice of programming. Robust programs are 
able to handle error conditions gracefully. If a program crashes when an invalid input is 
entered, the program is not very robust. This appendix describes a process called exception 
handling which can be used to improve the robustness of the program to prevent it from 
crashing and allow it to terminate in a controlled manner. 

B.1 Exception Class and Error Class 

An exception represents an execution error, an error condition, or an unexpected event that 
occurs during the normal course of program execution. It is an instance of a class in the 
Java Application Programming Interface (API) which is a predefined set of classes that can 
be used in any Java program. The Java API contains an extensive hierarchy of exception 
classes. A portion of the hierarchy is shown in Fig. B.1. 

 

Fig. B.1 Hierarchy of exception classes 

As one can see, all of the classes in the hierarchy are subclasses of the Throwable 
class. Just below the Throwable class are the classes Error and Exception. 
Subclasses of the Error class are for exceptions when a critical error occurs, such as an 
internal error in the Java interpreter which indicates it has run out of resources and cannot 
continue operating. Subclasses of the Exception class include IOException and 
RuntimeException which also serve as superclasses to other classes. IOException 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

387



 
 

is the superclass for exceptions related to input and output operations. 
RuntimeException serves as the superclass for exceptions that result from 
programming errors, such as an out of bounds array index. 

When an exception occurs, it is said to have been thrown. Unless an exception is 
detected by the program and dealt with, it causes the program to halt. To detect whether an 
exception has been thrown and prevent it from halting the program, Java allows 
programmers to create an exception handler which is a section of code that is executed 
when an exception is thrown. Exception handling is the process of catching an exception 
and then handling it. If the program does not provide an exception handler, the system uses 
the default exception handler, which outputs an error message and stops the program. The 
next section will show how exceptions can be caught and processed. 

B.2 Handling an Exception 
Consider the following program which asks a user for a test score and then outputs it. When 
the program in Fig. B.2 is executed using a sample input of 80, the output is as follows: 
 
Enter the score: 80 
Your score is 80. 

 

Fig. B.2 A program without exception handling 

 
When a valid input is entered, the program terminates successfully. What happens if the 

real number 80.0 is entered instead of an integer? The program will halt in the middle of 
the execution and gives the error message shown below: 
 
Enter the score: 80.0 
java.util.InputMismatchException 
     at java.util.Scanner.throwFor(Scanner.java:840) 
     at java.util.Scanner.next(Scanner.java:1461) 
     at java.util.Scanner.nextInt(Scanner.java:2091) 
     at java.util.Scanner.nextInt(Scanner.java:2050) 
     at ScoreVersion1.main(ScoreVersion1.java:9) 
 

This error message indicates the system has caught an exception called the 
InputMismatchException, because the value entered was of type double which 
cannot be read using the nextInt method. If the input was 8o, the digit 8 and a lower-
case letter o, the system will catch the same exception because the combination of a number 

388 Appendix B:  Exceptions



 
 

8 and a lower case letter o is not an integer. In the absence of an exception handler by a 
programmer, a single thrown exception will most likely result in program termination. 
Instead of depending on the system for exception handling, one can write code that catches 

 
To handle an exception, a try-catch control statement is coded. In order to catch an 

InputMismatchException exception, the following code can be used: 
 
try { 
   // try block 
} 
catch(InputMismatchException exception) { 
   // catch block 
}  
 

After the keyword try, a block of code follows inside braces. This block of code is 
known as a try block. A try block has one or more statements that can potentially throw 
an exception, such as input statements. After the try clause comes a catch clause. A 
catch clause begins with the keyword catch, followed by a parameter declaration which 
includes the name of an exception class and a parameter. If the code in the try block 
throws an exception of the InputMismatchException class, an object of the 
InputMismatchException class is created. It will be caught by the catch clause 
and referenced by the variable exception. Then, the code in the catch block is 
executed. Note that both the try block and the catch block require braces. 

From the code shown in Fig. B.2 , the statement score = scanner.nextInt(); 
should be placed inside the try block because it can potentially throw an exception when 
a user enters a non-integer value. The statements that are executed in response to the thrown 
exception are placed in the matching catch block. To simply display an error message 
and continue when the exception is thrown, a try-catch statement can be added to the 
code in Fig. B.2 as shown below: 

 

Appendix B:  Exceptions 389



 
 

If there are several statements in the try block, they are executed in sequence. When 
one of the statements throws an exception, control is passed to the matching catch block 
and the statements inside the catch block are executed. The execution then continues to 
the statement that follows the try-catch statement, ignoring any remaining statements 
in the try block. For example, if the user enters 8o, a number 8 and a lower case letter o 
, an exception is thrown, the program will skip the second statement, 
System.out.println("Your score is " + score + "."); in the try 
block, and the error message in the catch block will be output. Since there are no more 
statements in the program, it will terminate. The output would then look like the following: 
 
Enter the score: 8o 
Error: Score must be integer. 
 

If no statements in the try block throw an exception, then the catch block is ignored 
and execution continues with the statement following the try-catch statement. For 
example, the input 80 will result in the following: 
 
Enter the score: 80 
Your score is 80. 
 

By adding the try-catch statement, the program will not crash when a non-integer 
value is entered. However, it would be nice if the user is asked to re-enter the input in order 
to continue. To accomplish this, the entire try-catch statement can be placed inside a 
loop as shown in Fig. B.3 . 

 

Fig. B.3 Program with exception handling 

390 Appendix B:  Exceptions



 
 

will ask the user to enter the score at least once inside the while loop. In order to break 
out of the while loop, the contents of flag must be changed to false. The use of the 
boolean variable flag was discussed in Chaps.  3  and  4  , where it was used with 
selection and iteration structures, respectively. In this example, the only time that control 
should break out of the while loop is when the user enters an integer value. Therefore, 
the value of the flag is changed right after the nextInt method. If an integer is entered, 
the execution continues to the statement that follows the while loop, instead of jumping 
to the catch clause. Also, notice the first statement scanner.next(); inside the 
catch block. This removes the non-integer input value that caused an exception from the 
input buffer. Otherwise, the nextInt method processes the same invalid input from the 
first attempt over and over resulting in an infinite loop because the value would never be 
removed from the buffer and be assigned to the variable. The following output shows that 
the program will keep asking the user for input until valid value is entered: 
 
Enter the score: 80.0 
Error: Score must be integer. 
Enter the score: 8o 
Error: Score must be integer. 
Enter the score: eighty 
Error: Score must be integer. 
Enter the score: 80 
Your score is 80. 
 

As can been seen in the fourth attempt, the user finally entered an integer value which 
caused the program to break out of the while loop and output the score. 

B.3 Throwing Exceptions and Multiple catch Blocks 

Compared to the original code in Fig. B.2 , the code with a try-catch statement in Fig. 
B.3 is more robust because the program does not crash when a non-integer value is entered. 
However, what happens if a negative integer is entered? Because a negative integer is still 
an integer, the program proceeds producing an erroneous result and does not throw an 
exception. Since the score should not be a negative number or greater than 100, the program 
should only accept a value in the range of 0 and 100. Before writing the program using the 
exception handling feature, one without try-catch blocks will be first developed to 
show the difference between the two techniques. 

Because the user could enter non-integer values, it is not wise to use the nextInt 
method to read the input because it may cause abnormal termination when the input cannot 
be read as integer. Therefore, the input will be read as a String and checked to ensure 
that it consists of only digits. If it contains characters and decimal points, it cannot be an 
integer. If it is actually a number without a decimal point, it will be converted to the int 
type. Then, if it is between 0 and 100, the input is valid. The program below does these 
tasks: 

Appendix B:  Exceptions 391

Notice that the variable flag is initialized to true at the beginning so the program 

http://dx.doi.org/10.1007/978-1-4471-6317-6_3
http://dx.doi.org/10.1007/978-1-4471-6317-6_4


 
 

 

As before, the while loop will repeat until the user enters an integer value between 0 
and 100 inclusive. Notice that the input is read using the method next instead of 
nextInt . This will allow both digits and characters to be read as String. After 
checking for a leading minus sign, the inner loop goes through each character in the input 
string to see if it lies between "0" and "9" in the Unicode character set. The if statement 
following checks the boolean variable isInt , and if the input consists only of digits 
and an optional minus sign, it will contain the value true . If this is the case, then the 
input is converted into an integer using the parseInt method defined in Integer class, 
which takes a String and returns a value of int type. If the number is in the correct 
range, another boolean variable flag is set to false to break out of the while loop. 

The following output shows that the program recovers not only from non-integer input 
but also an out of range integer value: 

392 Appendix B:  Exceptions



 
 

 
Enter the score: 8o 
Error: Score must be integer. 
Enter the score: 180 
Error: Score must be in 0–100. 
Enter the score: 80 
Your score is 80. 
 

A program which does the same task as above can be written using a try-catch block as 
shown in Fig. B.4 . In this program, notice that the input is checked in the try block to 
see if it is in the correct range. If it is not, an exception is thrown by using the throw new 
RuntimeException(); statement. It creates an object of the RuntimeException 
class using a new statement. In the corresponding catch block, the thrown exception is 
caught, the reference to the object is assigned to the parameter exception, and the error 
message is displayed. Theoretically in the throw statement, any instance of the 
Throwable class or its subclasses including the Error class can be created. However, 
programs should not try to handle objects of the Error class or its subclasses. In general, 
only an instance of Exception class or its subclasses should be handled by programs, 
and this is why an object of the RuntimeException class that is a subclass of the 
Exception class was thrown in Fig. B.4 . 

 

Fig. B.4 A program with multiple catch blocks 

Also notice that there are multiple catch blocks in the code shown in Fig. B.4 . When 
there are multiple catch blocks in a try-catch statement, they are checked in the order 
they are listed. Once a matching catch block is found, none of the subsequent ones are 

Appendix B:  Exceptions 393



 
 

checked. Using the same input as before, when the input 8o is entered during the first 
iteration of the while loop, an InputMismatchException will be thrown and 
control looks for a matching catch block. In this case, the first catch block is executed, 
and then control will go back to the beginning of the while loop ignoring the second 
catch block. When the input 180 is entered, which is a valid integer value, the if 
condition is checked. Because the condition is false , a RuntimeException is 
thrown and control searches a matching catch block. Since this exception is not an object 
of the InputMismatchException class, the first catch block is skipped and the 
second catch block is executed. If the exception is thrown and there is not a matching 
catch block, then the system will handle the thrown exception by halting execution. 

Because the execution classes form an inheritance hierarchy, it is important to place the 
catch block for specialized exception classes before those for the more general exception 
classes. For example, consider the reversed order of the catch blocks from Fig. B.4 as 
shown below: 
 
 
// ** Caution – Incorrectly implemented code ** // 
try { 
   score = scanner.nextInt(); 
   if(score < 0 || score > 100) 
      throw new RuntimeException(); 
   flag = false; 
} 
catch(RuntimeException exception) { 
   System.out.println("Error: Score must be in 0-100."); 
} 
catch(InputMismatchException exception) { 
   scanner.next(); 
   System.out.println("Error: Score must be an integer."); 
} 
 

This results in a compiler error with the message: 
exception java.util.InputMismatchException has already been caught 

Why? Recall that the InputMismatchException class is a subclass of the 
RuntimeException class as shown in Fig. B.1 and partially repeated below: 

 
- Exception 

- IOException 
-  

- RuntimeException 
-  
- NoSuchElementException 

- InputMismatchException 

 

When the object of the InputMismatchException class is thrown, the first 
catch block is executed and all other catch blocks are ignored. This means that the 

394 Appendix B:  Exceptions



 
 

second catch block will never be executed because any exception object that is an 
instance of the RuntimeException class or its subclasses will match the first catch 
block. 

When there are multiple catch blocks, each catch clause has to correspond to a 
specific type of exception. With the example above, since the 
InputMismatchException class is a subclass of the RuntimeException class, 
both exceptions could be caught by the catch clause with RuntimeExeption. Further, 
having two catch clauses for the same type of exception in the try-catch statement, 
as shown below, will cause the compiler to issue an error message "exception 
java.lang.RuntimeException has already been caught" in the second 
catch clause. 
 
try { 
   score = scanner.nextInt(); 
   if(score < 0 || score > 100) 
      throw new RuntimeException(); 
   flag = false; 
} 
catch(RuntimeException exception) { 
   scanner.next(); 
   System.out.println("Error: Score must be an integer."); 
} 
catch(RuntimeException exception) { 
   System.out.println("Error: Score must be in 0-100."); 
} 
 

If there is a block of code that needs to be executed regardless of whether an exception 
is thrown, then the try-catch statement can include a finally block which must 
appear after all of the catch blocks. Consider the following while loop modified from 
Fig. B.4 with a finally block added at the end of the try-catch statement: 

Appendix B:  Exceptions 395



 
 

 

The output using the same input values, 8o, 180, and 80, is shown below: 
 
Enter the score: 8o 
Error: Score must be integer. 
End of try-catch statement. 
Enter the score: 180 
Error: Score must be in 0-100. 
End of try-catch statement. 
Enter the score: 80 
End of try-catch statement. 
Your score is 80. 
 

Since the first two inputs were invalid, both an error message from the catch block 
and a message from the finally block were output. The last input did not throw an 
exception, so all the catch blocks were skipped, but the message from the finally 
block was still displayed. 

B.4 Checked and Unchecked Exceptions 

Among the exceptions, including the ones listed in Fig. B.1 , there are two categories: 
checked and unchecked. Unchecked exceptions are those that inherit from the Error class 
or the RuntimeException class. They are also called runtime exceptions because they 
are detected during runtime. As mentioned before, the exceptions that inherit from the 
Error class are thrown when a critical error occurs, and therefore they should not be 
handled by the program. Exceptions that were handled in the previous sections are all 
instances of the RuntimeException class or its subclasses. However, in general not all 
the possible exceptions from the RuntimeException class are handled in the program 
because handling each one of them in the program is not practical. As a result, exception 
handling should only be used when the problem can be corrected, and simply catching and 

396 Appendix B:  Exceptions

ignoring any exception is a bad practice.



 
 

 
A RuntimeException indicates programming errors, so it could possibly be 

avoided altogether by writing better code. However, large applications might never be 
entirely bug-free, and exception handling can be used to display an appropriate message 
instead of surprising the user by an abnormal termination of the program. If the application 
is running critical tasks and must not crash, exception handling can be used to log the 
problem and the execution can continue. 

All exceptions that are not inherited from the Error class or the 
RuntimeException class are called checked exceptions because they are checked 
during compile time. Consider a program which opens a file, reads numbers from the file, 
and outputs the total. Suppose the scores.txt file contains the following data and exists 
in the same directory as the .java file: 
 
70 
80 
90 
 

The code in Fig. B.5 opens the scores.txt file, reads three numbers from the file, 
and outputs the total. What happens during the compilation of the program? The compiler 
will issue an error message "Unreported exception 
java.io.FileNotFoundException; must be caught or declared to 
be thrown" for the line inFile = new Scanner(new 
File("scores.txt")); because this statement can potentially throw a checked 
exception. If the file scores.txt does not exist as discussed in  Chap. 10  , the checked 
exception of a FileNotFoundException has to be thrown. A simple solution to 
eliminate this error is to add a throws clause, throws IOException , in the method 
header. The throws clause informs the compiler of the exceptions that could be thrown 
from a program. If the exception actually occurs during runtime, because the system could 
not find the file scores.txt , the system will deal with the exception by halting 
execution. Consider the following modified version of the code from Fig. B.5 : 

 

Appendix B:  Exceptions 397

http://dx.doi.org/10.1007/978-1-4471-6317-6_10


 
 

 

Fig. B.5 A program with a checked exception 

Notice that throws IOException is added in the main method header. The 
FileNotFoundException could be used in the header instead of IOException 
since it is the class that the exception object is actually created from. However, because the 
IOException class is a superclass of the FileNotFoundException class as shown 
below from Fig. B.1 , the throws clause with IOException can catch the instance of 
the FileNotFoundException class. Including the more general exception class in the 
header is useful since it can catch exceptions of all the subclasses. 

 
 

 Exception 
- IOException 

- CharConversionException 
- EOFException 
- FileNotFoundException 

- RuntimeException 
-  

The other way to handle a checked exception is to include the try-catch statement 
in the body of the program. Because the statement inFile = new Scanner(new 
File("scores.txt")); could possibly throw a checked exception, it should be 
included inside the try block. The statements that should be executed in response to the 
thrown exception are placed in the matching catch block. To simply display an error 
message and continue when the exception is thrown, a try-catch statement is added to 
the code in Fig. B.5 as shown below: 

398 Appendix B:  Exceptions



 
 

 

If the designated file does not exist in the system, the program will stop whether a try-
catch block exists or not. However, without a try-catch block, the execution stops 
abnormally, and with a try-catch block, the program terminates normally. If it was a 
part of a larger application program, it would be convenient if the program did not crash 
just because it did not find one file, but continued the execution of the next part of the 
program. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B:  Exceptions 399



 
 

 Appendix C: Javadoc Comments 

In  Chap. 1  , different ways of documenting a Java program were discussed. As was 
mentioned, comments are intended for programmers and are ignored during execution. 
However, documentation is an important aspect of developing applications. In the real 
world, once an application is released, programming bugs that were not detected during 
development need to be fixed and new features may be added. Often those who modify a 
program are not the ones who developed it. The documentation then becomes very helpful 

explains more about specialized comments called Javadoc . 

C.1 Javadoc 

Java provides a standard form for writing comments and documenting classes. Javadoc 
comments in a program interact with the documentation tool also named Javadoc, which 
comes with the Java Development Kit (JDK). The Javadoc tool reads the Javadoc 
comments from the source file and produces a collection of HyperText Markup Language 
( HTML ) pages, which can be read and displayed by web browsers. These pages look just 
like the Java API specification document at the Oracle website at  
http://docs.oracle.com/javase/7/docs/api/index.html  . The HTML pages created by the 
Javadoc tool contain only documentation and no actual Java code. The documentation 
allows programmers to understand and use the classes someone else has written without 
seeing how they are actually implemented. 

Javadoc comments begin with a slash followed by two asterisks /** and end with an 
asterisk followed by a slash */ . Many programmers also place a single asterisk * at the 
start of each line in the comment as shown in the program in Fig. C.1 . Although they have 
no significance and the Javadoc tool ignores them, they make it easy to see the entire extent 
of the comments in the program. 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

401

http://dx.doi.org/10.1007/978-1-4471-6317-6_1
http://docs.oracle.com/javase/7/docs/api/index.html


 
 

 

Fig. C.1 A program with Javadoc comments 

The Javadoc comments for the class are placed between the import statements and 
the class header. After the description of the class, the rest of the comment consists of a 
series of Javadoc tags, which are special markers that begin with the @ symbol. Each tag 
tells the Javadoc tool certain information. The documentation for a class will usually 
contain an author tag. The Javadoc tag @author indicates the name of the programmer(s) 
who created the class. The Javadoc comments for the description of a method are placed 
above the method header. As an example, two Javadoc comments are added to the QuadEq 
class discussed in  Chap. 1  and shown in Fig. C.1 . 

The use of Javadoc comments does not preclude the use of other types of comments in 
the program. In addition to the Javadoc comments in Fig. C.1 , the regular comments with 
two slashes // are used to describe the sections of the code. Since Javadoc comments 
included in the HTML page are the only ones describing the class, its data members, and 
its methods, the comments describing the sections will not appear in the HTML page even 

402 Appendix C:  Javadoc Comments

http://dx.doi.org/10.1007/978-1-4471-6317-6_1


 
 

if they are written as Javadoc comments. However, the comments in the middle of the code 
are still important when a programmer is reading to understand the code. Therefore, 
Javadoc comments are useful for a programmer who simply uses the classes without 
looking at the implementation, and other comments in the code are helpful for a 
programmer who is actually modifying the code. 

Once all the Javadoc comments are added to the class, the next step is to generate the 
corresponding HTML documentation file. Many Java editors and Integrated Development 
Environments (IDEs) include a menu option that can be used to generate a Javadoc 
documentation file quickly and easily. Part of the resulting HTML page for the QuadEq 
class is shown below: 
 

 

 
 

In the nicely formatted HTML page, the description of the class which has been added 
to the program as a Javadoc comment is shown. The author tag appears in boldface and the 
names of the authors are shown as well. Since there is no constructor defined in the class, 
a system-generated default constructor is listed in the Constructor Summary section. The 

Appendix C:  Javadoc Comments 403



 
 

Method Summary section contains only the main method along with the Javadoc 
comments added in the program because only one method exists in the class. 

C.2 More Javadoc Tags 

The format of the Javadoc comments for a method is similar to the one for a class. In 
addition to a general description, a number of Javadoc tags can be included. The main 
purpose of the comments for a method is to record its purpose, a list of any parameters 
passed to the method, and any value returned from the method. If the method receives a 
parameter, the @param tag is used, and if the method returns a value, the @return tag is 
added. The Javadoc comments for the method convertEurosToDollars as defined 
in the Card class from Sect. 5.6.2 are shown below: 
 
/** 
 * Convert the passed value to Dollars. 
 * 
 * @param euros the amount in Euros 
 * @return the amount in Dollars 
 */ 
public static double convertEurosToDollars(double euros) { 
   return euros*rate; 
} 
 

Notice that the Javadoc comments for the method need to be placed just above the 
method header. Each parameter of the method is documented by using a tag @param , 
followed by the name and the description of the parameter. A description of a return value 
is listed after the Javadoc tag @return . Notice the effect of the @param and @return 
tags in the following HTML document for the above method: 

 
 

 
 

The Javadoc comments for a constructor can be defined in a manner similar to the one 
for a method, except it does not have a @return tag. In addition to the above tags, if the 
method could throw exceptions, they can be listed using the @throws tag, just like the 
@param and the @return tags in the Javadoc comments. The topic of exceptions is 

404 Appendix C:  Javadoc Comments

discussed in Appendix B. 



 
 

More complex methods may need complete precondition and postcondition lists. Also 
an example of how the method is used may be useful information for other programmers. 
The tags such as @precondition , @postcondition , and @example that are not 
predefined in the Javadoc tool can be created by programmers. Since the 
convertEurosToDollars is a simple method, only the @example tag will be added 
to the Javadoc comments as shown below: 
 
/** 
 * Convert the passed value to Dollars. 
 * 
 * @param euros the amount in Euros 
 * @return the amount in Dollars 
 * @example conversion of 1.00 Euros to US dollars - 
 * Card.convertEurosToDollars(1.00); 
 */ 
public static double convertEurosToDollars(double euros) { 
   return euros*rate; 
} 
 

Note that in order to include the user-defined tags in the documentation, the HTML page 
may need to be generated from a command line if the Java editor does not have a capability 
of including the options, as will be discussed in the next section. The HTML document for 
the above method also appears in the next section. 

Similar to the standard classes, programmer-defined classes and HTML documentation 
can be shared with other programmers. First, .java files are written in the usual way but 
include the Javadoc comments described in this appendix. After they are compiled, the 
.class files can be moved to a location where other programmers can have access to 
them. Then the Javadoc tool can be run on each .java file to create an HTML page, and 
all Javadoc HTML files can be moved to a public place where a web browser could be used 
to read them. This way, by importing the classes at the beginning of the Java program, the 
programmer-defined classes are available to other programmers without compiling them 
just like the standard classes. 

C.3 Generating Javadoc Documentation from a Command Line 

An HTML page can also be generated from a command line. In the command prompt 
window, the commands javac and java are used to compile and run Java programs, 
respectively. Similarly, the javadoc command is used for generating Javadoc 
documentation files. For example, to generate a Javadoc documentation file for the 
QuadEq class, the following command is used: 
javadoc QuadEq.java 

After the command is executed, a collection of HTML files will be created. The 
documentation can be viewed by opening the file index.html and clicking the QuadEq 
link. 

When a programmer-defined tag such as @example is included in the source code, 
options need to be included in the command line to generate the HTML. The following 

Appendix C:  Javadoc Comments 405



 
 

command can be used to create Javadoc documentation for the Card class which 
implements the method. 
 
convertEurosToDollars : 
javadoc –private –author –tag param -tag return 
-tag example:a:"Example:" Card.java 
 

The –private option generates the documentation for the class, variables, and 
methods including the public , protected , and private members of the class. The 
–author 
documentation. The other options starting with –tag indicate the order in which the tags 
appear in the HTML file: the parameter(s) first, then the return specification, and finally 
the example. Two of these options, param and return , are predefined in the Javadoc 
system, so only –tag param and –tag return are listed. However, because an 
example tag is not predefined in Javadoc, the extra information at the end such as 
:a:"Example:" is needed and indicates how the tag is to appear in the documentation. 
The a: means that all occurrences of the @example tag should be put in the 
documentation along with a heading, which in this case is Example: as it appears in the 
quotation marks. Headings will always appear in boldface in the documentation created by 
the javadoc command. The following is the HTML document for the method 
convertEurosToDollars that is generated after the @example tag is added to the 
source code. 

 

 
 

For more information about Javadoc, refer to the Java API specification document at 
the Oracle website at  
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html  . 
 

 

 

406 Appendix C:  Javadoc Comments

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html


 
 

Appendix D: Glossary 

Many of the terms in italics in the text can be found in the index, and some of these terms 
(including abbreviations) can be found here in the glossary. The descriptions of terms in 
this glossary should not be used in lieu of the complete descriptions in the text, but rather 
they serve as a quick review. Should a more complete description be needed, the index can 
guide the reader to the appropriate pages where the terms are discussed in more detail. 

Algorithm A step-by-step sequence of instructions, but not necessarily a program for 
a computer. 

 
API Application Programming Interface. 

 
Array A collection of contiguous memory locations that have the same name 

and are distinguished from one another by an index. 
 

Assembly 
language 
 
Bit-wise 

A low-level language that uses mnemonics and is converted to machine 
language by an assembler. 
 
Logical operations performed on the individual bits within a memory 
location 
 

Bytecode An intermediate language between Java and machine language. 
 

Class A definition or blueprint of a set of objects. 
 

Compiler 
 
 
Computational 
thinking 
 
Computer 
ethics 

A translator that converts a high-level language program to a low-level 
language for subsequent execution. 

 
Using concepts from computer science to solve problems. 

 
 

Ethical issues related to the use and programming of computers such as 
respondsibility, privacy, and property. 

 
Contour 
diagram 

A visual representation of the state of execution of a program. 
 
 

CPU Central Processing Unit. 
 

Data members The variables and constants that are part of an object. 
 

EOD End of Data. 
 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

407



 
 

Exception An execution error, an error condition, or an unexpected event during 
execution of a program. 
 

GUI Graphical User Interface. 
 

High-level 
language 
 

A more English-like and math-like programming language, such as Java. 
 

HTML HyperText Markup Language. 
 

IDE Integrated Development Environment. 
 

Inheritance The ability of a subclass to reuse methods and data members of a 
superclass. 

 
Interpreter A translator that converts and executes a high-level language program one 

instruction at a time. 
 

IPO Input Process Output. 
 

Iteration 
structures 
 

Allows a program to repeat a section of code, often called a loop. 

Javadoc Specialized comments for documenting classes and methods. 
 

LCV Loop Control Variable. 
 

LIFO Last In First Out as with a stack. 
 

Low-level 
language 

A language closer to a particular CPU, such as assembly language and 
machine language. 

 
Machine 
language 
 

The native language of the processor coded on ones and zeros. 

Method A series of instructions that can be invoked to access and manipulate the 
data members of an object. 

 
Object An instance of a class. 

 
OOP Object-Oriented Programming. 

 
Overloading A method in the same class that has the same name but a different number 

of parameters, different types of parameters, or parameters of different 
types in a different order. 

 
Overriding A method in a subclass that has the same name and also the same number 

408 Appendix D:  Glossary

and type of parameters as the one in the superclass. 



 
 
 
Parallel 
Program 
 

A program written to execute taks at the same time using multiple 
processors. 

 
Polymorphism The type of an object referenced by a superclass variable determined at 

runtime. 
 

Pseudocode A design tool consisting of a combination of English and a programming 
language that helps one concentrate on logic instead of syntax when 
developing a program. 

 
RAM Random Access Memory. 

 
Recursion A definition that is defined in terms of itself and includes a base or 

terminal case. 
 

Selection 
structures 

Allows a program to follow one of more paths, sometimes called decision 
structures. 

 
Semantics 
 
Shared 
memory 
multiprocessor 

The meaning of what each instruction does in a programming language. 
 
A system thathas two or more processors that share common memory. 

 
Syntax 

 
The grammar of a programming language. 

 
UML Unified Modeling Language. 

 
Variables Named memory locations used to store data in a program. 

 
  

Appendix D:  Glossary 409



 
 

Appendix E: Answers to Selected Exercises 

Chapter 1 

1.B. Correct. 
1.D. Incorrect, a double number cannot be assigned to a variable of integer type. 
2.A. 0 
3.B. 5.34 
4.B. final double EULER_NUMBER = 2.7182 ; 
6. System.out.println("** **"); 

System.out.println("** **"); 

System.out.println(" ****"); 

System.out.println(" ****"); 

System.out.println(" ****"); 

System.out.println(" ****"); 

System.out.println("** **"); 

System.out.println("** **"); 

7. After execution, value1 is 9 , value2 is 4 , and value3 is 9 . 
8.B. s = r * Math.PI * Math.sqrt(Math.pow(r,2) + 

Math.pow(h,2)); 

Chapter 2 

1.A. Incorrect, it should be Circle circle = new Circle(); 
1.C. Correct. 
4.A. Circle innerCircle; 

innerCircle = new Circle(); 

4.C. System.out.println("The value of radius is " 
+ innerCircle.getRadius()); 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

411



 

 

 

Chapter 3 

1.A. 40 
2.B. 50 
3.C. 3 
5.A. true || false → true 
5.C. true || flag1 && flag2 → true || false → true 
5.E. (true || false) && false → true && false → false 

8.  

  

 

 

 

 

 

412 Appendix E:  Answers to Selected Exercises

6. Answers to A. and D. of the Cone class 



 
 

9.  

 

 

Chapter 4 

2. the , in the for statement 
3. sum = 1 

count = 2 

sum = 3 

count = 3 

sum = 6 

count = 4 

sum = 10 

count = 5 

sum = 10 

count = 5 

6.     ** 
   **** 
  ****** 
 ******** 
********** 

 

Appendix E:  Answers to Selected Exercises 413



 
 

count = 1; 
do { 
    total += count; 
    count += 3; 
} while (count <= 40); 
 

8.A.  int total, count, n; 

total = 0; 

n = 5; 

for(count = 0; count < n; count++) { 

    total += count; 
} 

Chapter 5 

1.  constructor 1 : valid 

   constructor 3 : invalid 

2.  method 2 : invalid 

   method 6: valid 

   method 10 : valid 

6.    answers to A., B., C., and F. of the Cone class 

 

414 Appendix E:  Answers to Selected Exercises

7.B. int total, count 

total = 0; 



 

 

1.B. The second line should be text2 = new String("Shedding blade"); 
2.B. 34 
2.D. Hose_ 

7.  

 

Chapter 7 

1.B. Incorrect, the size has to be specified. 
1.C. Incorrect, the braces have to be used instead of the square brackets. 
1.E. Incorrect, the size should not be specified. 
2. int total = 0; 
   for(int i=0; i<intArray.length; i++) 

   if(i%2 == 0) 
       total = total + intArray[i]; 

5. 3 
4 
3 

 

 

 

 
 
 

 

Appendix E:  Answers to Selected Exercises 415

Chapter 6
 



 
 

7.  

 

Chapter 8 

7. public static String reverseStr(String str) { 
    if(str.length() <= 1) 
        return str; 
    return reverseStr(str.substring(1)) + str.charAt(0); 
} 
 

9. public static int factorial(int n) { 
   if(n == 0) 
      return 1; 
    else 
      return n * factorial(n-1); 
} 

Chapter 9 

1.B. Incorrect, a variable of a subclass type cannot reference an object of a superclass type. 
1.C. Correct. 
2.B. calcRegPolyArea and toString . 
2.D. Yes. 

 

416 Appendix E:  Answers to Selected Exercises



 
 

3.  

 

Chapter 10 

1.B. Incorrect, there is no constructor in the File Class which takes the FileReader 
object as a parameter. 

1.D. Correct. 

3.  

 

 

Appendix E:  Answers to Selected Exercises 417



 
 

 

Chapter 11 

1.A. 47 
1.C. 118 
2.A. 00100001 
2.C. 01111000 
3.A. 00000000 
3.C. 00110101 
4.A. 11001010 
4.C. 01000010 
 

Chapter 12 

 
1.A. Process 0:  myFirstPos = 0 and myLastPos = 375. 
        Process 1:  myFirstPos = 375 and myLastPos = 750. 
        Process 2:  myFirstPos = 750 and myLastPos = 1125. 
        Process 3:  myFirstPos = 1125 and myLastPos = 1500. 
 
5. 
 
Serial Program: 
 
public class VectorAdditionSerial { 
   public static void main(String[] args) { 
      int numThreads, vecSize; 
      numThreads = Integer.parseInt(args[0]); 
      vecSize = Integer.parseInt(args[1]); 
      int[] a, b, c; 
      a = new int[vecSize]; 
      b = new int[vecSize]; 
      c = new int[vecSize]; 
      getVec(a); 
      getVec(b); 
         
      // addition 
      for(int i=0; i<a.length; i++) 
         c[i] = a[i] + b[i]; 
   } 

    
   public static void getVec(int[] array) { 
      for(int i=0; i<array.length; i++)  

    array[i] = (int)(Math.floor(Math.random() * 1000));     
   } 
} 

418 Appendix E:  Answers to Selected Exercises



 
 

 
Parallel program: 
 
public class VectorAdditionParallel { 
   public static void main(String[] args) { 
      int numThreads, vecSize; 
      numThreads = Integer.parseInt(args[0]); 
      vecSize = Integer.parseInt(args[1]); 
      int[] a, b, c; 
      a = new int[vecSize]; 
      b = new int[vecSize]; 
      c = new int[vecSize]; 
      getVec(a); 
      getVec(b);  
         
      // parallel section 
      //#omp parallel num_threads(numThreads)   
      shared(numThreads, vecSize, a, b, c) 
      { 
         int myPart, myID, myFirstPos, myLastPos; 
         myPart = vecSize / numThreads; 
         myID = Pyjama.omp_get_thread_num(); 
         myFirstPos = myPart * myID; 
         if(myID == numThreads-1) 
            myLastPos = vecSize; 
         else 
            myLastPos = myFirstPos + myPart; 
                 
         // addition 
         for(int i=myFirstPos; i<myLastPos; i++)  
            c[i] = a[i] + b[i]; 
      } // end of parallel section 
   } 
     
   public static void getVec(int[] array) { 
      for(int i=0; i<array.length; i++)  
         array[i] = (int)(Math.floor(Math.random() * 1000)); 
   } 
} 
 
 
 
 
 

 

 

 

Appendix E:  Answers to Selected Exercises 419



 
 

 

References and Useful Websites 

References 
 
1. ACM (2018) ACM Code of Ethics and professional conduct, 
    https://www.acm.org/code-of-ethics. 

 
2. Ghafoor S and Rogers M, Integrating Parallel and Distributed Computing in 
    Introductory Programming Classes, https://www.csc.tntech.edu/pdcincs/ 
 
3. IEEE Computer Society/ACM (1999) IEEE-CS/ACM Joint task force on software 
    engineering ethics and professional practices, 
    https://www.computer.org/education/code-of-ethics. 
 
4. Johnson JB (1971) The contour model of block structured processes. SIGPLAN 
    Notices Vol. 6, Issue 2, pp 55 72. 
 
5. Kizza JM (2016) Ethics in computing: a concise module, Springer Nature, Switzerland. 
 
6. OpenMP, https://www.openmp.org/ 
 
7. Organick EI, Forsythe AI, Plummer RP (1978) Programming language structures. 
    Academic Press, New York. 
 
8. Streib JT, Soma T (2010) Using contour diagrams and JIVE to illustrate object-oriented 
    st 
    ACM technical symposium on computer science education, pp 510 514. 
 
9. Streib JT (2015) Critical thinking and debugging software, Journal of Computing   
    Sciences in Colleges, Vol. 31, Issue 1. 

 
10. Streib JT (2020) Guide to assembly language: a concise introduction. 2nd edition, 
      Springer Nature, Switzerland. 
 
11. Vikas, Giacaman N, and Sinnen O (2013) Pyjama: OpenMP-like Implementation for 
      Java, with GUI Extensions. In PMAM. ACM, New York, NY, USA. 
 
12. Wing J (2006) Computational thinking, Communication of the ACM, Vol. 49, 
      Issue 3. 
 

 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

421

https://www.acm.org/code-of-ethics
https://www.csc.tntech.edu/pdcincs/
https://www.computer.org/education/code-of-ethics
https://www.openmp.org/


 

Useful Websites 

File class discussed in Chapter 10:  
http://docs.oracle.com/javase/7/docs/api/java/io/File.html  

 
FileReader class discussed in Chapter 10:  

http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html  
 

 
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html  

 
String class discussed in Chapter 6:  

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html  
 

 
in Appendix C:  
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html  

 
 

the Javadoc discussed in Appendix C:  
http://docs.oracle.com/javase/7/docs/api/index.html  

 
 

Java 7:  http://docs.oracle.com/javase/7/docs/api/index.html  
 

 

 

 

 

 

 

 

 

 

 

422 References and Useful Websites

http://docs.oracle.com/javase/7/docs/api/java/io/File.html
http://docs.oracle.com/javase/7/docs/api/java/io/File.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/java/io/FileReader.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/JOptionPane.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html


 
 

 

Index 

A 
Abstration, 6 
Accessors, 53 
Actual parameters, 54 
Algorithm, 6 

analysis, 240 
API (Application Programing Interface),14 
Arguments, 54 
Arithmetic statements, 37-44 

 -43 
Functions, 43-44 
Precedence, 37-40 

Arrays 223-258 
files, 328-330  
of objects 255-258 
one-dimensional 223-245 

access 224-226 
declaration 223-224 
input 226-230 
output 230 
passing to/from a method 231-232 
processing 230-231 
reversing 232-237 
searching 237-240 
sorting 241-245 

two-dimensional 245-255 
asymmetrical 253-255 
declaration 245-247 
input 247 
output 247-248 
passing to/from method 251-253 
processing 248-251 

Assembler, 1-2 
Assembly language, 1-2 
Assignment statements (=), 24-27 

B 

Binary search 238-240 
Bit 22 
Bit manuplaiton, 341-351 
 assignments, 343-344 

J. T. Streib and T. Soma, Guide to Java, Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-031-22842-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license

to Springer Nature Switzerland AG 2023

423



 
 

 bit-wise logic, 344-345 
 conversion, 341-343 
 decleation, 343-344 
 precedence, 350-352 
 shifting, 348-350 
 test, clear, set, toggle 346-347 
 (&, |, ^, !), 344-345   
boolean, 101  
break, 108-109 
Bubble sort 241-245  
byte, 22 
Bytecode, 5 

C 

case, 108 
Case structure, 106-107
catch, 389-396 
char, 22, 24 
Classes, 51-53 

abstract, 304-306 
multiple, 70-74 
sibling, 309 

class, 18, 52-53 
Comments, 18, 44-45 

javadoc, See Javadoc 
Compiler, 3-5 
Compound statements, 89 
Cpmputational thinking, 5-7 
Constants, 24, 170-177 

class, 174-177 
instance, 172-174 
local, 170-172 

Constructors, 63-67 
Default, 164-165 
overloading, 162-164 

Contour diagrams, 57-63 
deallocation, 61, 268-274, 278-288, 297-302, 203-204, 209-211 
inheritance, 297-302   
recursion, 268-274, 278-288 
strings, 203-204, 209-211 

Count controlled indefinite iteration structures, 123-129 
CPU (Central Processing Unit), 1-2 

D 

Dangling else problem, 97-100 
Data encapsulation, 53 

424 Index



 
 

Data member, 53 
Data types, 22 
Debugging, 11-12 
default, 108-109 
Decomposition, 5  
Definite iteration loop structure, 138-141 

 
Dialog boxes, 380-386 

confirmation, 383-384  
input, 382-383 
message, 380-382  
option, 384-386 

do while, 134-138 
double, 22-23 

E 

else, 89-92  
EOD (End of Data), 130 
Ethics, 12-13 
Exceptions, 387-399 

checked, 396-399 
handling, 388-391 
hierarchy, 387  
runtime, 387-388 
throwing, 388 
thrown, 387-388 
try-catch block, 389-390 
unchecked, 396-399 

Execution errors, 8 
extends, 295  

F 

Fibonacci numbers 277-289 
Files, 321-334 

arrays, 328-332 
input, 322-326 
location, 332-334 
output, 326-328 

final, 24 
finally, 395-396 
Fixed iteration loop structure, 138 
Flag, 103-102 
float, 22 
Flowchart, 84 
for, 138-141 
Formal parameters, 54 

Index 425



 
 

G 
Greatest common divisor, 289-291 
GUI (Graphical User Interface), 20 

H 

Hardware, 1-2 
-20, 20-21, 375-378 

High-level language, 3  
HTML (HyperText Markup Language), 401 

I 

IDE (Integrated Development Environment), 12 
if, 83-89 
If-then structures, 83-89 
If-then-else structures, 89-92 
Immutable, 204 
import, 20 
Infinite loop, 143 
Inheritance, 

See Objects 
Input, 32-37, 32-37, 378-379, 382-386 
 text-based, 32-35, 32-35, 378-379 
 GUI-based, 35-37, 35-37, 382-386 
Instance, 52 
instanceof, 309-310  
int, 22 
Interpreter, 3-5 
IPO (Input Process Output), 2 
Iteration structures, 121-143 

J 

Java program skeleton, 17-18 
Javadoc, 401-406 

comments (/**, */), 401 
generating documentation, 405-406 
tags, 402-404, 404-405 

L 

LCV (Loop Control Variable), 123  
LIFO structure, 274 
Logic errors, 8 
Logical operators (!, &&, ||), 100-106 

precedence, 104 
Logical thinking, 6 
long, 22 
Low-level language, 2 

426 Index



 
 

M 

Machine language, 2-3 
main, 18  
Math class, 27-28 
Memory, 1 
Methods, 53-54, 56-57, 67-70, 179 

class 179-181 
invoking, 56-57 
overloading, 165-166 
overriding, 213, 302-303 
value-returning, 53-54 
void, 54 

Mnemonics, 2 
Mutators, 53 

N 

Nested if structures, 92-100 
if-the-else-if structures, 92-94 
if-then-if structures, 95-97 

Nested iteration structures, 141-142 
new, 33, 55-56, 59 

O 

Objects, 52, 293-310 
arrays of, 255-258 
creating, 57 
inheritance, 52, 293-303 
multiple, 67-70  
overriding methods, 
polymorphism, 306-310 
returning an object, 159-162 
sending objects, 155-159 
subclasses, 293-303 
superclasses, 293-303 

One-dimensional arrays, 
see Arrays 

OOP (Object-Oriented Programming), 3, 11-12 
Output, 18-21, 28-32, 375-378, 380-382 
 text-based, 19-20, 28-31, 375-378 
 GUI-based, 20-21, 31-32, 380-382 
Overloading, 162-166 

constructors, 162-164 
methods, 165-166 
operator (+), 205-206 

Overriding methods, 213, 302-303 

Index 427



 

Packages, 379-380 
Parameters, 54 
Parallel Processing, 359-370 
 analysis, 368-370  
 cores (physical, logical), 359-360 
 -363 
 hyperthreading, 359-360 
 multiprocessor, 359-361 
 Pyjama, 360-361 
 shared memory, 360-361 
Pattern recognition, 5 
Polymorphism, 

See Objects 
Post-test indefinite loop structure, 134-138 
Pre-test indefinite loop structures, 122-134 
Priming read, 130 
private, 53 
Private data member, 53 
Program design, 9 
Prompts, 34 
protected, 303-304 
Pseudocode, 10 
public, 53 
Public data member, 53 

R 

RAM, 1-2 
Recursion, 265-289 

base or terminal case, 266 
Fibonacci numbers, 277-289 
greatest common divisor, 289-291 
infinite, 266 
power function, 265-274 
stack frames, 274-277 
tree of calls, 288-289 

Relational operators, 85-86   
Reserved word, 18  
return, 54  
Run-time errors, 8 

S 

Scanner, 33-34 
Scope, 57, 61 
Selection structures, 83-112 
Semantics, 8 
Sentinel controlled loop, 129-134 

428 Index

P 



 
 

Sequential search 237-238 
Short circuit, 106 
short, 27 
Software, 2 
Software design, 7-12 
sort, 336 
Sorting, See Arrays 
Stack, 274-277 
static, 179-180, 267, 269, 375    
Storage, 1-2 
String, 22, 24, 203 
Strings 203-215 

comparison 209 
concatenation 204-206  
methods 206 

super, 295-296, 303-304 
switch, 107-109 
Symbolic addressing, 21 
Syntax, 8 
Syntax errors, 8 
System.out.print, 34, 376-378  
System.out.printf, 30-31 
System.out.println, 18-20, 28-30 

T 

this, 166-170 
token, 321-322 
Tower of Hanoi, 6-7 
Truth tables, 102-103 
try, 389-390 
Two-dimensional arrays, 

See Arrays 
Typecast operator, 27 

U 

UML (Unified Modeling Language), 11, 74-76 
User-friendly, 20, 34  

V 

Value parameters, 54-55, 60 
Variables, 21-24, 55, 177-179 

class, 177-179 
global, 55 
instance, 177 
local, 177 

void, 54, 375 

Index 429



 
 

W 

while, 124  
While loops, 122-134 

 

 

 

430 Index


	Preface
	Contents
	0 Introduction to Computing Concepts
	0.1 Introduction
	0.2 Overview of Hardware and Software
	0.2.1 Hardware
	0.2.2 Software
	0.2.3 History and Java
	0.2.4 High-level Translation

	0.3 Introduction to Computational Thinking
	0.4 Essentials of Software Design
	0.4.1 Syntax, Semantics, and Errors
	0.4.2 Design Methodology
	0.4.3 Tools and Techniques

	0.5 A Brief Look at Computer Ethics
	0.6 Summary
	0.7 Exercises (Items Marked with an * Have Solutions in Appendix E)

	1 Input/Output, Variables, and Arithmetic
	1.1 Introduction
	1.2 Java Skeleton
	1.3 “Hello World!”
	1.3.1 Text-based Output
	1.3.2 GUI-based Output

	1.4 Variables and Constants
	1.5 Assignment Statements
	1.6 Output
	1.6.1 Text-based
	1.6.2 GUI-Based

	1.7 Input
	1.7.1 Text-based
	1.7.2 GUI-based

	1.8 Arithmetic Statements
	1.8.1 Binary Operators
	1.8.2 Precedence
	1.8.3 Unary Operators
	1.8.4 Incrementing
	1.8.5 Summing
	1.8.6 Arithmetic Functions

	1.9 Comments
	1.10 Complete Program: Implementing a Simple Program
	1.11 Summary
	1.12 Exercises (Items Marked with an * Have Solutions in Appendix E)

	2 Objects: An Introduction
	2.1 Introduction
	2.2 Classes and Objects
	2.3 Public and Private Data Members
	2.4 Value-Returning Methods
	2.5 void Methods and Parameters
	2.6 Creating Objects and Invoking Methods
	2.7 Contour Diagrams
	2.8 Constructors
	2.9 Multiple Objects and Classes
	2.10 Unified Modeling Language (UML) Class Diagrams
	2.11 Complete Program: Implementing a Simple Class and Client Program
	2.12 Summary
	2.13 Exercises (Items Marked with an * Have Solutions in Appendix E)

	3 Selection Structures
	3.1 Introduction
	3.2 If-Then Structure
	3.3 If-Then-Else Structure
	3.4 Nested If Structures
	3.4.1 If-Then-Else-If Structure
	3.4.2 If-Then-If Structure
	3.4.3 Dangling Else Problem

	3.5 Logical Operators
	3.6 Case Structure
	3.7 Complete Programs: Implementing Selection Structures
	3.7.1 Simple Program
	3.7.2 Program with Objects

	3.8 Summary
	3.9 Exercises (Items Marked with an * Have Solutions in Appendix E)

	4 Iteration Structures
	4.1 Introduction
	4.2 Pretest Indefinite Loop Structure
	4.2.1 Count-Controlled Indefinite Iteration Structure
	4.2.2 Sentinel Controlled Loop

	4.3 Posttest Indefinite Loop Structure
	4.4 Definite Iteration Loop Structure
	4.5 Nested Iteration Structures
	4.6 Potential Problems
	4.7 Complete Programs: Implementing Iteration Structures
	4.7.1 Simple Program
	4.7.2 Program with Objects

	4.8 Summary
	4.9 Exercises (Items Marked with an * Have Solutions in Appendix E)

	5 Objects: Revisited
	5.1 Sending an Object to a Method
	5.2 Returning an Object from a Method
	5.3 Overloaded Constructors and Methods
	5.3.1 Overloaded Constructors
	5.3.2 Default Constructors
	5.3.3 Overloaded Methods

	5.4 Use of the Reserved Word this
	5.5 Class Constants, Variables, and Methods
	5.5.1 Local, Instance, and Class Constants
	5.5.2 Local, Instance, and Class Variables
	5.5.3 Class Methods

	5.6 Complete Programs: Implementing Objects
	5.6.1 Program Focusing on Overloaded Methods
	5.6.2 Program Focusing on Class Data Members and Class Methods

	5.7 Summary
	5.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	6 Strings
	6.1 Introduction
	6.2 String Class
	6.3 String Concatenation
	6.4 Methods in String Class
	6.4.1 The length Method
	6.4.2 The indexOf Method
	6.4.3 The substring Method
	6.4.4 Comparison of Two String Objects
	6.4.5 The equalsIgnoreCase Method
	6.4.6 The charAt Method

	6.5 The toString Method
	6.6 Complete Program: Implementing String Objects
	6.7 Summary
	6.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	7 Arrays
	7.1 Introduction
	7.2 Array Declaration
	7.3 Array Access
	7.4 Input, Output, Simple Processing, and Methods
	7.4.1 Input
	7.4.2 Output
	7.4.3 Simple Processing
	7.4.4 Passing an Array to and from a Method

	7.5 Reversing an Array
	7.6 Searching an Array
	7.6.1 Sequential Search
	7.6.2 Binary Search
	7.6.3 Elementary Analysis

	7.7 Sorting an Array
	7.7.1 Simplified Bubble Sort
	7.7.2 Modified Bubble Sort

	7.8 Two-Dimensional Arrays
	7.8.1 Declaration, Creation, and Initialization
	7.8.2 Input and Output
	7.8.3 Processing Data
	7.8.4 Passing a Two-Dimensional Array to and from a Method
	7.8.5 Asymmetrical Two-Dimensional Arrays

	7.9 Arrays of Objects
	7.10 Complete Program: Implementing an Array
	7.11 Summary
	7.12 Exercises (Items Marked with an * Have Solutions in Appendix E)

	8 Recursion
	8.1 Introduction
	8.2 The Power Function
	8.3 Stack Frames
	8.4 Fibonacci Numbers
	8.5 Complete Program: Implementing Recursion
	8.6 Summary
	8.7 Exercises (Items Marked with an * Have Solutions in Appendix E)

	9 Objects: Inheritance and Polymorphism
	9.1 Inheritance
	9.2 Protected Variables and Methods
	9.3 Abstract Classes
	9.4 Polymorphism
	9.5 Complete Program: Implementing Inheritance and Polymorphism
	9.6 Summary
	9.7 Exercises (Items Marked with an * Have Solutions in Appendix E)

	10 Elementary File Input and Output
	10.1 Introduction
	10.2 File Input
	10.3 File Output
	10.4 File Input and Output Using an Array
	10.5 Specifying the File Location
	10.6 Complete Programs: Implementing File Input and Output
	10.6.1 Matrix Multiplication
	10.6.2 Sorting Data in a File

	10.7 Summary
	10.8 Exercises (Items Marked with an * Have Solutions in Appendix E)

	11 Bit Manipulation
	11.1 Introduction
	11.2 Simple Conversions
	11.3 Declarations and Assignments
	11.4 Bit-wise Logic Operations
	11.5 Testing, Clearing, Setting, and Toggling
	11.6 Shifting
	11.7 Precedence
	11.8 Complete Program: Implementing Bit-wise Operators
	11.9 Summary
	11.10 Exercises (Items Marked with an * Have Solutions in Appendix E)

	12 Introduction to Parallel Processing Programming
	12.1 Multiprocessor Systems
	12.2 Programming Multi-core and Shared Memory Multiprocessor Using Pyjama
	12.2.1 Using Pyjama to Write Multithreaded Programs
	12.2.2 “Hello World”
	12.2.3 Sorting Building Blocks

	12.3 Analysis
	12.4 Complete Program: Implementing Parallel Inner Product
	12.5 Summary
	12.6 Exercises (Items Marked with an * Have Solutions in Appendix E)

	Appendix A: Explanation and Elaboration of Concepts in Chapter 1
	A.1 Skeleton Program and “Hello World”
	A.2 Text-based Output: print and println
	A.3 Text-based Input
	A.4 Overview of Java Packages
	A.5 More on GUI-based Output and Input
	A.6 Confirmation Dialog Boxes
	A.7 Option Dialog Boxes

	Appendix B: Exceptions
	B.1 Exception Class and Error Class
	B.2 Handling an Exception
	B.3 Throwing Exceptions and Multiple catch Blocks
	B.4 Checked and Unchecked Exceptions

	Appendix C: Javadoc Comments
	C.1 Javadoc
	C.2 More Javadoc Tags
	C.3 Generating Javadoc Documentation from a Command Line

	Appendix D: Glossary
	Appendix E: Answers to Selected Exercises
	References and Useful Websites
	Index



