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Preface

This is a book about classical feedback control and, along the way, a review
of the foundational linear system theory that is at the core of the electrical
engineering discipline. But there are many, many books on these subjects.
What makes this book different?

The answer is that this book, in its structure, content, and style, targets four
very specific groups of people. In no particular order:

• The drowning undergraduate. In this, I take inspiration from Signals and
Systems Made Ridiculously Simple by Zoher Z. Karu (ZiZi Press, 1995).
While very different in style, his book was a godsend to us undergraduates
at MIT for its simple, short, clear explanations. More deeply, the book
unobtrusively guided students toward what is important and away from what
is not. With years to reflect, I look back on that unpretentious volume with
affection, gratitude, and respect.

• The superstar undergraduate. Perhaps you are absolutely crushing your
exams and reaping praise from your professors accordingly. This is a good
feeling, and sometimes a just reward for hard work. But a peculiarity of our
species can manifest quite strongly here: dominating exam performance is
some mix of (1) deep understanding of the material, on one hand, and (2) on
the other hand, a virtuosity in pure test taking that owes much to a kind of
supercharged social intelligence. What is really astonishing, especially in a
competitive, “elite” college environment, is just how far the latter can take
you with little development of the former. Given how we structure higher
education, an overreliance on (2) in some students is inevitable and natural
and to be neither condemned nor praised. But if you have taken up this
book, take the opportunity in reading it to do a little self-assessment and
reflection. It is the deep understanding of (1) that you need to build useful
and interesting machines.

xi
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• The graduate student preparing for their qualifying exams. Many doc-
toral programs kick things off in the first or second year with a weighty set of
exams designed to probe a candidate’s understanding of basic undergraduate
material. The weeks or months preparing for a doctoral exam can be
extremely rewarding: one discovers that the “basic” undergraduate material
is both broad and deep. Moreover, this is a time when many emerging
scholars and practitioners come into their own as true self-learners. When
I had the first discussions with Julie Lancashire at Cambridge University
Press about this book, my original inspiration was to write the book I wished
had existed when I was studying for my own qualifying exams. I have tried
to stay true to that spirit throughout.

• A subset of industry practitioners. Technology in mature and high-volume
industries doesn’t change very often. In cellular wireless networks, for exam-
ple, at the time of this writing, the dominant power amplifier architecture
continued to be the Doherty structure, invented at Bell Labs in 1936. It is
very possible to be a professional in mature fields and build a successful
career, while having only a loose grasp of the underlying physics. Trade-
offs in the performance space can be memorized (“You know, Bill, if you
make it faster, it’s definitely going to be less stable. There are always trade-
offs, my friend, always trade-offs”), and vocabulary can be used accurately
by people who have a superficial understanding of where it all comes from.
The danger here is that technological paradigm shifts do happen from time
to time. If you understand the foundations of your field, you will be able to
acquire a similar understanding of the new paradigm through diligent self-
study. If your understanding has always been superficial, however, you are
helpless and exposed in the face of major change. This can be quite scary.1

If you find yourself vulnerable to this type of situation, the goal of this book
is to be a friendly example of a new type of understanding. Relax and have
fun with the material, and allow yourself to follow your curiosity.

My hope for the reader is that you find this book as enjoyable and
informative to read as it was to write.

1
If you are very lucky, old enough, and happen to look the part, you might be able to pull a
convincing turn as a curmudgeon of the Old School who simply prefers things that have Stood
the Test of Time.
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1
Linear Systems: What You

Missed the First Time

For an engineer, math is a language of unusual expressive power and concision.
The first time that you studied differential equations, however, chances are high
that this escaped you. That is natural. The purpose of this chapter is to help you
to get in touch with the meaning behind the math of linear, time-invariant (LTI)
systems.

1.1 Differential Equations Are a Natural Way
to Express Time Evolution

Feedback systems are dynamic: ultimately, we are interested in the evolution
of their state over time. Frequency-domain tools like the Laplace transform are
wonderful aids for analysis, but before revisiting those let’s examine the basic
differential equation. We will see that despite appearances, it is quite a natural
way to describe the time evolution of a dynamic system.

1.1.1 A First-Order System

Consider the RC circuit shown in Figure 1.1. The situation is that the capacitor
has a charge Q0 while the switch is open. The switch is then closed, which
connects a resistor of value R across the terminals of the capacitor. To
determine what happens next, we have at least two approaches. First, we
can argue on physical grounds that eventually the capacitor must completely
discharge, leaving the zero voltage across the capacitor. A sophisticated
observer might even point out that the capacitor will never fully discharge,
or alternatively, that a complete discharge would take an infinite amount of
time. A second approach is to not bother at all with “intuitive” reasoning and

1
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Figure 1.1 Discharging a capacitor through a resistor. The capacitor has an initial
charge Q0 = CV0 and begins to discharge when the switch is closed.

physical insight. We just write down the differential equation governing the
system and derive an expression for Q(t) in exquisite detail.

The problem with the first approach alone is that it does not always yield
the level of detail that we might require. While we can say that it will take
longer to discharge if the resistor R is bigger, we are helpless to say exactly
how long it will take the capacitor to lose 90 percent of its charge, for
example. The problem with the second approach alone is that without physical
insight, the student can never progress beyond solving little, well-packaged
problems with neat answers. If the engineer is ever to unleash their creativity
to invent, design, build, and discover new things, they will be powerfully aided
by understanding the yin-and-yang interplay between physical insight and
mathematical analysis.

The simple discharging of a capacitor is a great way to start understanding
this balance. Starting with the initial conditions, we have an open switch and
a capacitor with charge Q0. The physical meaning of capacitance is it tells us
how much charge we must supply if we are to establish a potential difference
between two conductors. The greater the capacitance, the more charge we
must supply to establish a given potential difference. This is beautifully and
succinctly captured by the constitutive law for capacitors, Q = CV . We know
therefore that before we throw the switch, the voltage across the capacitor
terminals is V0 = Q0/C.

When we do throw the switch, we have a new constitutive relation to satisfy,
namely, Ohm’s law. In the first instant after the switch is closed, the charge
flows through the resistor at a rate of I = V0/R = Q0/RC Coulombs per
second. But as soon as the first tiny bit of charge is removed from the capacitor,
the voltage across the capacitor goes down, causing the current to decrease,
which nevertheless continues to remove charge from the capacitor, and so on
and so forth. At this point we have a good physical understanding of what
is happening. How can we ever find out exactly how the charge decays with
time? The approach is to express our physical insight mathematically. Almost
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immediately, though, we run head-first into the problem of how to deal with the
progression of time. Things would be easier if time moved forward in discrete
chunks. We cannot help, for example, talking about the current flow “in the
first instant” after the switch is closed. Unfortunately, we know (or, at least,
have no reason to doubt) that time moves forward in a continuous progression.
Before we’ve written our first equation, then, we have a seemingly good reason
to despair.

The key insight is to realize that for any “continuous” variable, there is
a level of granularity beyond which a discretized representation is, for all
practical purposes, indistinguishable from a continuous one. We know that
water, for example, is composed of discrete water molecules, yet to our unaided
senses the granularity is so fine as to be indistinguishable from a continuous
liquid. The time variable is no different. Suppose that nature actually moved
in steps of one femtosecond (10−15 seconds). Would we be any the wiser,
even if using the fastest oscilloscopes available at the time of this writing?1

There might be other ways of telling if nature is secretly discretizing time,
but to an engineer with an oscilloscope, there is no practical difference
between a universe that discretizes time in one-femtosecond chunks and one
that moves forward continuously in time. This critical realization helps us to
move forward, and ultimately leads us to the shorthand that we now know as
differential equations.

Returning to our problem, we might consider breaking time up into tiny
chunks of duration �t . If we know the charge on the capacitor at time t , we
ask “What is the charge at time t +�t?” If we know the answer to this question
in general, and we know the answer at time t = 0 (or some other initial time),
then we know the answer for all time. So we write

Qc(t + �t) = Qc(t) − I (t)�t . (1.1)

That is, the charge at the next instant is equal to the charge at the current instant,
minus the charge that was bled off in one interval of time due to the current
at time t . What is value of �t? At this point we don’t bother about it. We
keep firmly in our mind that it is small enough so as to be indistinguishable
from continuous time, and don’t go back and pick a value of �t until we need
numerical answers. And what about the fact that in the truly continuous system,
I does not stay constant over any interval of time? It is true that this will
introduce an error. What is important is that we can make this error arbitrarily
small by making �t as small as we like. Remember, the goal is not to come up

1
The Agilent DSO91304A Infiniium oscilloscope samples at a “pedestrian” 40 GSamples/
second, or once every 25,000 femtoseconds.
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with a model that is as accurate as nature is. That is impossible. We need only
be as accurate as we can conceivably measure.

Now, since voltage is what we actually measure, we recast Eq. 1.1 in terms
of the capacitor voltage

CVc(t + �t) = CVc(t) − I (t)�t . (1.2)

We seize on the fact that I (t) is linked to Vc through Ohm’s law: I (t) = Vc/R.
Substituting and gathering terms, we arrive at

Vc(t + �t) − Vc(t)

�t
+ 1

RC
Vc(t) = 0. (1.3)

And now we appear to be stuck. There is no way to derive an expression for
Vc(t) that satisfies this equation. The best we can do is guess at a solution,
plug it in, and check to see if it “works” by resulting in an equation that is
self-consistent. What is a good guess?

The good news is that we needn’t guess blindly. On physical grounds, we
expect Vc(t) to decay with time; we expect that the rate of decay will slow with
time; we expect it to asymptotically approach zero. An inspired guess, drawn
from an admittedly large number of possibilities, is Vc(t) = V0a

n·�t . In this
solution, n is an integer index that steps us forward in time, �t is our time
increment, and a is a key parameter. If |a�t | < 1, we satisfy all of the condi-
tions we set forth. If we have chosen correctly, the equation will determine the
value of a�t unambiguously. This in turn validates our initial guess.

Plugging into Eq. 1.3, we have

V0a
(n+1)·�t − V0a

n·�t

�t
+ 1

RC
V0a

n·�t = 0. (1.4)

A factor of V0a
n·�t appears in all terms. Dividing both sides of the equation

by V0a
n·�t and simplifying leads to

a�t = 1 − �t

RC
. (1.5)

This is a critical juncture in our development. In some ways, once we have a�t

we are done. Equation 1.4 is a first-order polynomial in a�t , and in Eq. 1.5
we have an equation that gives us the roots of that polynomial. We’ll see
polynomials like this again when we look at discrete-time systems starting
in Section 1.7. For now, the only reason we’re continuing from here is that
this is not a discrete-time system, and so we must examine the implications of
allowing �t to become arbitrarily small. Continuing, Eq. 1.5 allows us to write

ln a = 1

�t
ln

(
1 − �t

RC

)
. (1.6)
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Now, what do we mean when we insist that �t is small? It is actually
meaningless to insist that �t be “small” in an abstract sense. We must instead
specify its smallness in comparison to something. In this problem, suppose
that we say that �t is small compared to the quantity RC. Why does this make
sense? Rewriting Eq. 1.3 slightly, we have

Vc(t + �t) − Vc(t)

Vc(t)
= − �t

RC
. (1.7)

Put into words, Eq. 1.7 says that �t � RC is equivalent to saying that the
fractional change in Vc during any given time step is small. This is exactly
what we should hope for if we expect to better approximate a continuously
evolving system by shrinking the increment �t .

Now we employ a trick that is very common in all the disciplines of
engineering and science. On conditions such as �t � RC, it is natural to
substitute for f (x0 + �x) a polynomial expansion:

f (x0 + �x) ≈ a0 + a1 · (�x) + a2 · (�x)2 + a3 · (�x)3 + · · · (1.8)

We like polynomial expansions because they are easy to realize in computa-
tional hardware: if you can multiply and add, you can work with polynomials.
This is depressingly untrue of transcendental functions like the logarithms,
exponentials, and trigonometric functions that surface with such persistence in
the analysis of linear systems. When you throw in the condition that x0 � �x,
the good news just gets better in that you can get excellent numerical accuracy
despite truncating the polynomial expansion to a finite number of terms. In
fact, we often take x0 � �x to mean that the original function can be well
approximated with only two terms:

f (x0 + �x) ≈ a0 + a1 · (�x). (1.9)

This happy circumstance is extremely convenient for hand analysis. You may
remember this trick as “linearization.”

But let’s not jump ahead. Let’s conservatively “guess” that for our purposes
the logarithm can be adequately captured by a third-order polynomial expan-
sion. We’ll then check later to see if it introduces unacceptable numerical error.
There are many techniques for fitting polynomials. For the function ln(1+�x),
the author chose for data points �x ∈ [10−4,10−3.5,10−3,10−2.5,10−2],
which are all conspicuously small compared to 1. An elementary least-squares
fit2 results in the polynomial substitution for ln(1 + �x)

2
For the interested reader, an excellent treatment of least-squares fits can be found in Gilbert
Strang’s Introduction to Linear Algebra, 4th ed. (Wellesley, MA: Wellesley-Cambridge Press,
2009).
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≈ 1.2480 × 10−12 + 1.0000 · �x − 0.5000 · (�x)2 + 0.3298 · (�x)3

≈ 1.0000 · �x − 0.5000 · (�x)2 + 0.3298 · (�x)3, (1.10)

which we claim we can use with insignificant numerical error. It is instructive
to do a few calculations comparing a true evaluation of ln(1 + �x) with the
polynomial substitute and confirming for yourself the values of �x for which
this is really okay.

Armed with this new polynomial, we return to our original problem
(Eq. 1.6) and write

ln a = 1

�t

(
− �t

RC
− 0.5

(
�t

RC

)2

− 0.3298

(
�t

RC

)3
)

. (1.11)

Now the full implications of �t � RC can be made clear. Since �t � RC

is the same thing as saying �t/RC � 1, we see that the terms of �t/RC of
second order and higher in Eq. 1.11 diminish rapidly as we make �t smaller.
We can thus go even further in our approximation and neglect these terms,
keeping firmly in mind that if the error this introduces bothers us, we can
always make �t smaller and smaller until the error does not bother us. Then
we are left with

a = e−1/RC, (1.12)

which means, at long last, that the capacitor voltage evolves as

Vc(n · �t) = V0e
−n·�t/RC, (1.13)

and we can finally write

Vc(t) = V0e
−t/RC . (1.14)

This is the answer that we were expecting all along. What is important
is how we got here. Based on physical reasoning, we came up with a
discrete-time model for the system’s behavior, and showed that solutions to
the difference equations of this sort (see Eq. 1.4) have the form (a�t )n. We
then solved for a�t , and finally explored the consequences of allowing �t to
become arbitrarily small compared to RC.

Mathematicians have an expression for our last step. They might say we
“took the limit of Eq. 1.3 as �t goes to zero.” That is, we might have written
Eq. 1.3 as

lim
�t→0

(
Vc(t + �t) − Vc(t)

�t
+ 1

RC
Vc(t) = 0

)
. (1.15)
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Of course, we now can appreciate that �t does not go all the way to zero.
It just gets arbitrarily small, such that the discrete “chunking” of time is
indistinguishable from a continuous flow of time in whatever context is
appropriate. Well, it turns out that the limit

lim
�t→0

Vc(t + �t) − Vc(t)

�t
(1.16)

occurs so often in the mathematics of continuous variables that we give
ourselves an abbreviation, or a shorthand:

lim
�t→0

Vc(t + �t) − Vc(t)

�t
= dVc(t)

dt
. (1.17)

This shorthand is called the derivative, as in “the derivative of Vc with respect
to t .” You may or may not remember from when you first learned derivatives
that Eq. 1.16 was the formal definition given to you. We may therefore rewrite
Eq. 1.3 using the shorthand

dVc(t)

dt
+ 1

RC
Vc(t) = 0. (1.18)

This is just a standard, first-order differential equation. The standard procedure
here is to “guess” the solution Aest . Plugging this solution into Eq. 1.18 results
in s being determined as −1/RC, and then we choose A to be V0 in order to
satisfy the initial conditions. The point of all this is that Eq. 1.18 does not
spring out of a vacuum. Starting with Eq. 1.1, we took a very common-sense
approach to solving a dynamical problem whose physics we understood pretty
well. The approach represented by Eq. 1.18 takes for granted all of the insight
that we gained by plodding through our discrete-time development. This is
completely appropriate, as once the basics are understood it is important to
streamline our methods as practical matter.

On a final note, we may interpret Eq. 1.18 in another way that makes its
meaning jump off the page. We can write it as

dVc(t)

dt
= − 1

RC
Vc(t). (1.19)

Putting this equation into words, we might say “The rate of change of the
voltage across the capacitor is proportional to the voltage across it at any given
time, and inversely proportional to the value of the RC product. That rate of
change has the opposite sign of the voltage across the capacitor at a given
time, so the magnitude of the voltage is always decreasing. The system comes
to rest, which is to say, the rate of change of the capacitor voltage goes to
zero, only when the voltage across the capacitor itself is zero.” We see that this
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differential equation is indeed a very natural way to describe the time evolution
of an RC circuit.

1.1.2 Higher-Order Systems

It turns out that the discretized development of Section 1.1.1 is readily
extensible to higher-order systems. The first thing to do is to figure out the
equivalent of Eq. 1.17 for higher-order derivatives. It is helpful to introduce
additional notation; we often write the first derivative of a function f (t) with
respect to time as f ′(t). That is,

f ′(t) = lim
�t→0

f (t + �t) − f (t)

�t
= df (t)

dt
. (1.20)

Now we have a function f ′(t). We might ask, what is the time rate of change of
this new function? You may remember that the answer is the second derivative
of f with respect to t :

f ′′(t) = d

dt

df (t)

dt
= d2f

dt2
. (1.21)

To figure out the equivalent of Eq. 1.17, we simply find the derivative of f ′(t),

f ′′(t) = lim
�t→0

f ′(t + �t) − f ′(t)
�t

, (1.22)

and substitute the definition of f ′(t) from Eq. 1.20. Doing so yields

f ′′(t) = lim
�t→0

f (t + 2 · �t) − 2f (t + �t) + f (t)

(�t)2
. (1.23)

Repeating this procedure over and over again, we can get whatever order
derivative we wish.

Higher-order derivatives come up quickly as we go beyond the complexity
of the RC circuit in Figure 1.1. For example, consider the LC circuit in
Figure 1.2. Proceeding in the same spirit that led to Eq. 1.1, we can write

VcVc

ILIL

LL CC

++

−−

Figure 1.2 A simple LC circuit. The capacitor has an initial charge Q0 = CV0,
and current begins to flow when the switch is closed at time t = 0.
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CVc(t + �t) = CVc(t) − IL(t)�t (1.24)

IL(t + �t) = IL(t) + 1

L
Vc(t)�t .

One way to proceed from here is to solve the first equation for IL(t) in terms
of Vc(t) and Vc(t + �t) , and then substitute for IL(t) and IL(t + �t) in the
second equation. Doing so causes our second-order derivative to appear right
away:

Vc(t + 2 · �t) − 2Vc(t + �t) + Vc(t)

(�t)2
+ 1

LC
Vc(t) = 0. (1.25)

Now we proceed as before. We “guess” that Vc(t) has the form V0a
n·�t , and

are led to the quadratic characteristic equation in a�t :

(a�t )2 − 2(a�t ) + 1 + (�t)2

LC
= 0. (1.26)

The quadratic formula readily provides us with possible values of a�t :

a�t =
2 ±

√
4 − 4

(
1 + (�t)2

LC

)
2

= 1 ± j
�t√
LC

. (1.27)

As before, we take the log of both sides,

ln a = 1

�t
ln

(
1 ± j

�t√
LC

)
, (1.28)

only to encounter the log of a complex number. Dealing with this requires that
we dust off a few important facts about complex numbers. The first is Euler’s
relation, which is

ejθ = cos θ + j sin θ . (1.29)

The second fact is that any complex number c + jd can be written in the polar
form rejθ , where

r =
√

c2 + d2 (1.30)

and

θ = arctan

(
d

c

)
. (1.31)

The logarithm of this polar form is immediately apparent as

ln(rejθ ) = ln r + jθ . (1.32)
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Putting all of these facts together, we are free once again to pursue our original
aim, which was solving for a. The argument of the logarithm in Eq. 1.28
becomes rejθ , where

r =
(

1 + (�t)2

LC

)1/2

(1.33)

and

θ = arctan

(
�t√
LC

)
. (1.34)

So now Eq. 1.28 becomes

ln a = 1

2 · �t
ln

(
1 + (�t)2

LC

)
+ j

�t
arctan

(
�t√
LC

)
. (1.35)

We now once again take a look at the consequences of a small �t , this
time noting that its smallness compared to

√
LC is what counts. With the

logarithmic term on the right side of Eq. 1.35, we do the same approximation
that we did in Eq. 1.45. For the arctan term, we note that for x � 1, it can be
shown that arctan x ≈ x. These approximations reduce Eq. 1.35 to

ln a ≈ 1

2

�t

LC
+ j√

LC
. (1.36)

Here we notice one more thing: arbitrarily small �t compared to
√

LC makes
for one further simplification, which is that

ln a ≈ j√
LC

. (1.37)

At the end of it all, we find that a�t = e±j ·�t/
√

LC , and therefore we can write
the most general possible solution for Vc as

Vc(t) = Ae+j t/
√

LC + Be−j t/
√

LC . (1.38)

In actual applications, A and B are determined by the initial conditions for Vc

and IL. To see this, we can write the general solution for IL using Eq. 1.24.
Now that we are confident of its meaning, we freely employ the shorthand for
the derivative and rewrite Eq. 1.24 as

IL(t) = −C
dVc

dt
= − j√

LC
Ae+j t/

√
LC + j√

LC
Be−j t/

√
LC . (1.39)
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If we define the switch closing as t = 0, then the initial conditions dictate that

A + B = V0 (1.40)

− j√
LC

A + j√
LC

B = 0.

With the aid of Euler’s relation, it can be shown that capacitor voltage Vc and
the inductor current IL are given by

Vc = V0 cos(t/
√

LC) (1.41)

IL = (V0/
√

LC) sin(t/
√

LC)).

As we leave this second-order example, it is worth reflecting on three things.
First, the readers may feel some consternation over the use of complex
numbers to describe the purely real variables Vc and IL. It’s not that we chose
to use complex numbers; remember that they arose of algebraic necessity when
solving Eq. 1.26. We’ll have more to say about this in Section 1.2.3. Second,
the oscillatory nature of the capacitor voltage is something that we might have
guessed based purely on physical reasoning, before we did any math. For those
readers who are comfortable with inductors and capacitors, it is worth going
through the thought experiment at this point. Finally, notice that if we were not
committed to a discretized development, we would have taken the limit as �t

goes to zero of Eq. 1.25 and written

d2Vc(t)

dt2
+ 1

LC
Vc(t) = 0. (1.42)

The extension of these methods to higher-order systems proceeds in
a straightforward way. Analysis typically leads to a system of first-order
differential equations like Eqs. 1.19 and 1.24, which have the form3

dv1

dt
= a11v1 + · · · + a1nvn, (1.43)

dv2

dt
= a21v1 + · · · + a2nvn,

...

dvn

dt
= an1v1 + · · · + annvn.

Ultimately we can collapse this system of equations down to one N th-order
differential equation in one of the “state variables”4 vi . Many readers have

3
For much more on this, see the first chapter of William M. Siebert’s excellent book Circuits,
Signals, and Systems (Cambridge, MA: MIT Press, 1986).

4
In our examples, the state variables have been Vc and IL.
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seen such developments in their sophomore-level electrical engineering classes
on basic circuit analysis. What is hard to pick up the first time through this
material is just how much differential equations really are just a common-
sense, mathematical description of physical reality. The readers are encouraged
to find a path to understanding differential equations at this intuitive level. This
section, Section 1.1, is intended as a guide toward that end.

1.1.3 For Those of You Bothered by the Numerical
Fitting in Section 1.1.1

A subset of you will wonder why we bothered with numerical fitting and
didn’t just use a Taylor expansion in place of Eq. 1.10. The answer has to
do with the narrative: you can’t dramatically unveil the derivative at the end of
Section 1.1.1 if you’ve already employed it in a Taylor expansion.

But now we are past that. Recall that for a sufficiently well-behaved function
f (x), if we know its value at f (x0), we can write f (x0 + �x) as the Taylor
expansion:

f (x0 + �x) = f (x0) + f ′(x0)
�x

1!
+ f ′′(x0)

(�x)2

2!
+ f ′′′(x0)

(�x)3

3!
+ · · ·
(1.44)

In theory a Taylor approximation has an infinite number of terms. When it
comes to numerical computations, of course, we must truncate. The point is
that we could have used the Taylor expansion to our advantage in Eq. 1.6,
and avoided needing to go to a numerical aid like a computer. The natural log
would be our f , and x0 would be 1. Equation 1.6 would now become

ln a = 1

�t

(
ln(1) − �t

RC
− 1

2!

(
�t

RC

)2

− 2

3!

(
�t

RC

)3

+ · · ·
)

= 1

�t

(
− �t

RC
− 1

2

(
�t

RC

)2

− 2

3!

(
�t

RC

)3

+ · · ·
)

. (1.45)

Compare Eq. 1.45 to Eq. 1.11.

1.2 Convenient Properties of Linear Differential Equations

Much of classical control theory deals with linear differential equations
with constant coefficients, two examples of which we examined in detail in
Section 1.1. The general form for these equations is
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An

dny(t)

dtn
+ An−1

dn−1y(t)

dtn−1
+ · · · + A1

dy(t)

dt
+ A0y(t) (1.46)

= Bm

dmx(t)

dtm
+ Bm−1

dm−1x(t)

dtm−1
+ · · · + B1

dx(t)

dt
+ B0x(t),

which we sometimes write as(
n∑

i=0

Ai

di

dt i

)
y(t) =

(
m∑

k=0

Bk

dk

dtk

)
x(t). (1.47)

Here x(t) is understood to be an input or a drive, and y(t) is the resultant
output. It will be true of the systems that we are concerned with that m ≤ n.5

We concern ourselves with equations of this form because they are solvable,
because they have many nice mathematical properties, and because nature
allows us to model an astonishing range of systems with this simple form.

1.2.1 Superposition!

The principle of superposition, or linearity, is one of the things we love about
systems governed by linear differential equations with constant coefficients.
Linearity is an extraordinarily important concept to grasp. Thankfully, the
principle is easily and quickly stated. Suppose an operator A satisfies the
relations

A(x1(t)) = y1(t) (1.48)

A(x2(t)) = y2(t).

Now suppose we consider the superposition of our inputs, αx1(t) + βx2(t),
where α and β are constants. It follows that if A is a linear operator, that is, if
superposition holds, then it will be true that

A(αx1(t) + βx2(t)) = αy1(t) + βy2(t). (1.49)

Another way to appreciate this concept is by considering a nonlinear
system. We may take a squarer as an example, a system for which

A(x1(t)) = x1(t) · x1(t) (1.50)

A(x2(t)) = x2(t) · x2(t).

In this case the results of superposing our inputs according to αx1(t) + βx2(t)

would not be so easily separable:

5
You can actually argue that this must be so based on our discretized development of Section 1.1.
If m > n, the output at a particular time instant depends on the input at a future time instant.
This is called a noncausal system, which is not of interest in real-time control applications.
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Vc

L

C

R

Vs
+

+

− −

Figure 1.3 A series RLC network driven by a source Vs(t).

A(αx1(t) + βx2(t)) = α2[x1(t)]
2 + 2αβx1(t) · x2(t) + β2[x2(t)]

2. (1.51)

Two aspects of this result leap off the page. The first is that when we scaled
one of the inputs by α (or β), a portion of the output scaled as α2 (or β2).
This is a satisfyingly nonlinear result, given that we specified the system to
be a squarer. The second aspect, however, is the term in boldface, variously
called an “intermodulation term,” a “cross-modulation term,” or a “mixing
term.” Such terms are completely typical of nonlinear systems, so much so
that sometimes we explicitly exploit nonlinearity to build mixers and analog
multipliers. The important point is that in linear systems, these intermodulation
terms do not appear. We take full advantage of this fact when we introduce the
“beautiful strategy” of Section 1.3.

To see how the abstract concept of linearity applies to real systems, consider
the driven RLC circuit in Figure 1.3. A differential equation describing this
system is

d2Vc(t)

dt2
− R

L

dVc(t)

dt
− 1

LC
Vc(t) = − 1

LC
Vs(t). (1.52)

The first thing to notice is that all of the operations done on Vc(t) and Vs(t) are
linear operations. That is,

di

dt i
(αv1(t) + βv2(t)) = α

di

dt i
v1(t) + β

di

dt i
v2(t). (1.53)

We are therefore assured that the relationship between the drive voltage Vs(t)

and the capacitor voltage Vc(t) will be linear: if we double the amplitude of
a particular drive voltage, for example, the corresponding capacitor voltage
response will exactly double as well. Now suppose that we had tested the
circuit by driving it with a drive Vs1(t), and measured the capacitor voltage
to be Vc1(t). Suppose further that we follow that experiment with a second
drive Vs2(t), and the resultant capacitor voltage is Vc2(t). Finally, suppose
that we were curious what would happen if we drove the system with a
superposition of the original two inputs, αVs1(t) + βVs2(t). Because this is
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a linear system (and time-invariant, as it happens, since the coefficients are
constant), we would not need to do this third experiment. We would know
right away that the capacitor voltage is the corresponding superposition of the
solutions that we already determined by experiment, or αVc1(t)+βVc2(t). This
is so important, and so fundamental, that it is vital that the readers not take the
author’s word for it. Work directly with Eq. 1.52, and convince yourself that
the system described by this differential equation, or any differential equation
with constant coefficients, is linear in the sense that we have described. Do not
burden yourself with the need to provide a “proof” in the most formal sense,
although if you have that skill so much the better. What is more important
is that you get into the habit developing your own, satisfying explanations of
things if the book that you are reading fails to deliver.

Before leaving this section, it is worth also formalizing what we mean by
“time invariance.” Returning our attention to Figure 1.3, suppose that we had
driven the system with a specific input Vs(t) = V1(t), and determined that the
resultant voltage was Vc(t) = V2(t). Now we ask, suppose we drive the circuit
with the delayed input V1(t − t0)? There is a great temptation to overthink this.
In any other context, you would say immediately that the output is just the
same as it would have been before, only delayed by an amount t0. That is, the
capacitor voltage is just V2(t − t0). You would be right! You can obtain some
formal reassurance by solving Eq. 1.52 for the input est , and then solving it
again for the input es(t−t0). Your “guess” in the second case will be that Vc(t)

is Aes(t−t1), and you will see that no solution for A is possible unless t1 is equal
to t0. Since we will go on to argue that almost any input can be synthesized as a
sum of complex exponentials (see Section 1.3.1), this little exercise is actually
the start of a satisfyingly general demonstration.

The implications of linearity and time invariance for systems analysis are
vast. All of the “frequency domain methods” that you have seen before, the
usefulness of the Laplace, Fourier, and Z-transforms, the power of convolution
sums and integrals, impulse responses (Green’s functions in physics) – all
of these analytical tools, and so many more, fall apart if the principle of
superposition does not hold.

1.2.2 The Special Place of Exponentials

Each time we have jumped into the analysis of systems governed by linear
differential equations with constant coefficients, as in Sections 1.1.1 and 1.1.2,
complex exponentials have been waiting for us at the end. That is to say, in
the undriven case our state variables have evolved according to a sum of terms



16 1 Linear Systems: What You Missed the First Time

like Cie
st , where s = σ + jω, and where the Ci are determined by the initial

conditions. We can now take a broader view of the special place of exponentials
than simply that they pop up after a long and laborious process.

Consider again the general form of the differential equation(
n∑

i=0

Ai

di

dt i

)
y(t) =

(
m∑

k=0

Bk

dk

dtk

)
x(t). (1.54)

We will look at this for two cases. In the first we will consider the“zero-input
response,” or ZIR, which is how the system evolves when the drive x(t) = 0.
Sections 1.1.1 and 1.1.2 were examples of ZIRs. The constants in ZIRs are
chosen to satisfy all initial conditions. In the second case, we will consider
the driven case assuming that all state variables have zero initial value, or the
“zero-state response” (ZSR). It is worth emphasizing that splitting the solution
into a ZIR and a ZSR is one of the many conveniences that linearity affords us.
If yZIR(t) is indeed a solution for the case of x(t) = 0, then it follows that(

n∑
i=0

Ai

di

dt i

)
yZIR(t) = 0. (1.55)

Suppose also that yZSR(t) satisfies(
n∑

i=0

Ai

di

dt i

)
yZSR(t) =

(
m∑

k=0

Bk

dk

dtk

)
x(t). (1.56)

It necessarily follows that the sum yZIR(t) + yZSR(t) also satisfies both
Eq. 1.54 and the initial conditions for the system:(

n∑
i=0

Ai

di

dt i

)
(yZIR(t) + yZSR(t)) = 0 +

(
m∑

k=0

Bk

dk

dtk

)
x(t)

=
(

m∑
k=0

Bk

dk

dtk

)
x(t). (1.57)

It turns out that complex exponentials provide us with an easy path for
determining both ZIRs and ZSRs.

The Zero-Input Response
As always with differential equations, we cannot claim to rigorously “solve”
them. We must be content with “guessing” their solutions, and validating
our guesses by demonstrating that the guessed solutions are, in fact, valid.
Thankfully, linear differential equations with constant coefficients have long
been sorted out: we know that the right guess in the undriven case (x(t) = 0)



1.2 Convenient Properties of Linear Differential Equations 17

is y(t) = Cest . The only question in this guess is what s and C are, exactly.
We plug in to find out that (

n∑
i=0

Ai

di

dt i

)
Cest = 0. (1.58)

Differentiating exponentials is easy, and after dividing both sides by Cest we’re
left with nth-order the polynomial in s:

Ans
n + An−1s

n−1 + · · · + A1s + A0 = 0. (1.59)

And just like that, the introduction of the complex exponential reduces the
unsolvable differential equation to a mere polynomial equation in the variable
s, whose solution is available to anyone with access to a numerical solver. This
is one reason why complex exponentials have a special place in linear system
theory. Equation 1.59 is called the characteristic equation of the system.
Solutions to the polynomial, or the roots of the characteristic equation, give
us all of the values of s for which est is in fact a solution to the differential
equation Eq. 1.58. And by linearity, if est is a solution then so is Cest . Linearity
actually allows us to go further. For n > 1 there will be more than one value of
s for which est is a solution to Eq. 1.58. In this case, the most general solution
that we can write for Eq. 1.58 looks like6

yZIR(t) = Cne
snt + Cn−1e

sn−1t + · · · + C1e
s1t . (1.60)

Notice that any choice for the Cis results in a yZIR(t) that satisfies Eq. 1.59.
However, the initial conditions of the state variables determine these coeffi-
cients uniquely.

Finally, it should be emphasized that the si , the roots of the characteristic
equation, are extremely special and particular to the system. If you “kick”
the system, or by some means impose a set of initial conditions on the state
variables, and then leave the system alone, all of the state variables will evolve
in time according to the sum of a discrete set of exponentials. The only
possibilities for the exponentials in this sum are those for which s satisfies the
characteristic equation. These particular roots will come up again and again
in our short review of linear systems in general and in our particular study of
feedback systems.

6
There are important departures when the characteristic equation does not have n distinct roots.
See any number of textbooks on linear system theory for a fuller discussion, as well as Francis
Hildebrand’s Advanced Calculus for Applications, 2nd ed. (Englewood Cliffs, NJ: Prentice
Hall, 1976).
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The Zero-State Response
The ZSR is a little bit tougher to handle in general, and we’ll postpone the
more general treatment for just few sections more until Section 1.3. For now,
however, the ZSR does give us yet another opportunity to extol the virtues of
complex exponentials in the theory of linear systems.

In particular, suppose that we drive the system of Eq. 1.54 with the input
x(t) = est , where as usual s = σ + jω. Continuing our highly successful
strategy of correctly guessing the solution, in this case we posit y(t) = Cest

and move swiftly to validate:(
n∑

i=0

Ai

di

dt i

)
Cest =

(
m∑

k=0

Bk

dk

dtk

)
est . (1.61)

Derivatives of exponentials are easy, of course. With the special case of an
exponential drive, the differential equation again collapses to polynomials in s:

(Ans
n + An−1s

n−1 + · · · + A0)Cest = (Bmsm + Bm−1s
m−1 + · · · + B0)e

st .
(1.62)

The est factor appears in every term, and can be divided out. We are left with
the condition on C that, when met, gives us the satisfaction of finding the true
ZSR. The complex coefficient C is given by

C = Bmsm + Bm−1s
m−1 + · · · + B0

Ansn + An−1sn−1 + · · · + A0
. (1.63)

In Eq. 1.63 lies the validation of our initial guess. It affirms Cest as a solution
by demonstrating that a C exists, and it determines C unambiguously as a
function of s. If we make the dependence on s explicit, we might write Eq.
1.63 slightly differently:

C(s) = Bmsm + Bm−1s
m−1 + · · · + B0

Ansn + An−1sn−1 + · · · + A0
. (1.64)

In the theory of linear, time-invariant (“LTI” for short) systems, we call C(s) a
transfer function. If you know the transfer function for such a system, then
you immediately know its response to the complex exponential es0t : it is
just C(s0)e

s0t . Because of linearity, you also know the response to Aes0t is
AC(s0)e

s0t , and the response to Aes0t + Bes1t is AC(s0)e
s0t + BC(s1)e

s1t .
Notice that we see none of the cross-modulation that we saw in nonlinear

systems (see Eq. 1.51). Evidently, the exponentials that you put in are the
exponentials that you get out, only scaled by complex constants. Complex
exponentials are sometimes called eigenfunctions of LTI systems for this
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reason,7 and it is for this property that they occupy such a special place in
LTI system theory.

At this point, you may suspect that there is more to this complex exponential
stuff than presented so far. After all, strictly speaking est is a time function that
exists for all time, and goes to infinity at either t = +∞ or t = −∞ if s has
a nonzero real part. Since no physical input (or output, for that matter) ever
goes to infinity, why is this eigenfunction business of any practical use? There
are many ways that we deal with this issue within the theory of LTI systems.8

However, what we will see shortly is that exponentials of the form ejωt are
tremendously versatile and useful, and at least they don’t blow up to infinity
over any part of their domain.

1.2.3 But . . . Why Complex Exponentials?

In brief: the reason we use complex exponentials is that they are convenient.
We saw in Section 1.2.2 that derivatives and exponentials were made for each
other. If we argue that differential equations are a natural way to express time
evolution, then complex exponentials are far and away the easiest signals to
work with when we are doing our math.

A concern that beginning engineering students have sometimes is that the
imaginary parts of these complex exponentials are going to cause a practical
problem. After all, in engineering one is using differential equations to model
the voltages and currents in a circuit, or the displacement of a mass on a spring,
or any other system in which the quantities are robustly and undeniably “real.”
It would not make sense in these contexts to do a calculation that insisted, say,
that the final voltage across a capacitor was “3j V.”

A closer look at couple of earlier results will help to bolster your faith in
the integrity of the LTI system theory machinery. First, look back at Section
1.1.2, where we had concluded that the most general solution for the capacitor
voltage Vc was

Vc(t) = Ae+j t/
√

LC + Be−j t/
√

LC, (1.65)

and the corresponding inductor current was

IL(t) = −C
dVc

dt
= − j√

LC
Ae+j t/

√
LC + j√

LC
Be−j t/

√
LC . (1.66)

7
In linear algebra, a matrix A will sometimes have certain special vectors 
xi for which
A · 
xi = ai 
xi , where a is a scalar. The matrix A does not alter the direction of special vectors 
xi
but only scales their lengths. The 
xi are said to be eigenvectors of A.

8
You may remember an insistence on using a one-sided Laplace transform, for example, or being
very careful about “regions of convergence” in connection with the bilateral Laplace transform.
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The coefficients A and B are determined by initial conditions Vc(0) = V0 and
IL(0) = I0, and for now let’s consider the more general case of a parallel LC
circuit for which the initial current needn’t be zero. If we solve for A and B in
terms of V0 and I0, we arrive at

A = 1

2
V0 + 1

2
j
√

LCI0 (1.67)

B = 1

2
V0 − 1

2
j
√

LCI0.

The key feature of this solution is that A and B are complex conjugates of each
other. The real part of A equals the real part of B, while the imaginary part
of A has the opposite sign of the imaginary part of B: A = B∗, or A∗ = B.
The fact that the initial conditions V0 and I0 are real guarantees this. If we now
look back at Eqs. 1.65 and 1.66,

Vc(t) = Ae+j t/
√

LC + A∗e−j t/
√

LC (1.68)

IL(t) = − j√
LC

Ae+j t/
√

LC + j√
LC

A∗e−j t/
√

LC,

and expand using Euler’s relation, what we will find is that A = B∗ means that
Vc(t) and IL(t) are purely real for all time!

It is beyond the scope of this book to provide a formal proof that this happy
result will always occur. Nevertheless, the readers are encouraged to notice and
appreciate the pattern. The values of s that satisfy our characteristic equations
will always occur as either purely real roots, or complex conjugate pairs. For
the ZIR, the coefficient of any e(σ+jω)t term will be the complex conjugate
of the coefficient of the (always) accompanying e(σ−jω)t term. Therefore, for
purely real initial conditions the ZIR will be real for all time.

The second reassuring result concerns the ZSR. Recall that if we excite an
LTI system with a complex exponential est , the output will be C(s)est with
C(s) given by Eq. 1.64:

C(s) = Bmsm + Bm−1s
m−1 + · · · + B0

Ansn + An−1sn−1 + · · · + A0
. (1.69)

If we excite the system with a sinusoid Vin = sin(ω0t + φ), as we often do
when testing electronic systems, we note that any purely real sinusoid can be
written in terms of complex exponentials

sin(ω0t + φ) = Dejω0t + D∗e−jω0t, (1.70)
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where, as it happens, D = (−j/2)ejφ . Exploiting linearity, we can immedi-
ately write down the response to this sinusoid using C(s):

Vout = C(jω0)Dejω0t + C(−jω0)D
∗e−jω0t . (1.71)

We make one more important observation about C(s): C(s∗) = C∗(s). In LTI
system theory, this is called being conjugate symmetric. Using this observation,
we can rewrite Eq. 1.71 as

Vout = C(jω0)Dejω0t + C∗(jω0)D
∗e−jω0t (1.72)

and note with satisfaction that once again, the output voltage is purely real for
all time. Apparently, if we input real sinusoids into LTI systems, we get real
sinusoids out.

In summary, we use complex exponentials because they are extraordinarily
convenient to work with. As long as the algebra is done correctly we needn’t
live in fear of a rogue imaginary part showing up and ruining the party.

Phasors Are a (Slightly) Different Trick
Use of phasors is another analytical technique that deserves mention in the
context of complex exponentials. This is less because they are commonly used
in feedback theory (they are not), and more because most engineering students
have been exposed to phasors in their circuit analysis classes, electrodynamics
classes, and in other instances. Confusion often results from not knowing when
we are using phasors and when we are not. The gist of the phasor technique
in circuit analysis is captured as follows: “Represent your sinusoidal drive
as a the real part of a complex exponential; churn that complex exponential
through whatever complex impedances you must; then drop the imaginary part
at the end.”

This is a different mode of operating than that represented in Eq. 1.70,
in which we we expressed our sinusoidal drive literally as the sum of two
complex sinusoids. By contrast, if we were using phasors we would have said
that the input Vin is the real part of the complex quantity −jejφejω0t , or
Re{−jejφejω0t }. The ZSR in response to this sinusoid still involves C(s), but
now our mathematical machinery does not automatically cancel the imaginary
part for us. We must do it explicitly, and we do so by writing the output voltage
is the real part of a complex expression:

Vout = Re{−jejφC(jω0)e
jω0t }. (1.73)

Fundamentally, the phasor method is based on what we know will ultimately
happen: we know that the imaginary part will fall away anyway, so why
not just drop it and save ourselves the fuss? It also brings clarity to realize
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that “dropping the imaginary” part can be easily mechanized. For a complex
quantity A, we can get the real part of A as follows:

Re{A} = (1/2)A + (1/2)A∗. (1.74)

If we apply this to Eq. 1.73, we get

Vout = (−j/2)ejφC(jω0)e
jω0t + (j/2)e−jφC(−jω0)e

−jω0t . (1.75)

We see that this is exactly the same as Eq. 1.72.
The point of this section is that the readers needn’t maintain a boundary

in their minds between phasors on one hand and the rest of linear system
theory on the other. The phasor method is a very clever exploitation of
the conjugate symmetry of expressions like C(s), which in turn inherit
their remarkable properties from the natural reasoning process that gives us
differential equations.

1.3 Frequency Domain Methods: A Beautiful Strategy

Now we get to arguably the most important section of this chapter. Frequency
domain methods and thinking permeate almost all of engineering and physics.
There is perhaps no more important concept to get a firm grounding in for a
student entering these fields.

For purposes of this book, this section answers a huge question that was
hinted at in Section 1.2.2. We saw that finding the zero-state response of a
system in response to a complex exponential is especially easy for systems that
are well described by linear differential equations with constant coefficients.
The great unanswered question: so what?! In the real world, one does not
encounter exponential drives that started at the beginning of time and have been
rising exponentially ever since! Nor does one encounter sinusoids that continue
for all time. What use is this great edifice of LTI systems and mathematical
tricks to an engineer if we cannot use them to gain insight into physical
systems?

The remarkable answer is that a broad class of signals of can be represented
as a weighted sum of complex exponentials. This is true even of signals of
finite duration. And remember that for the systems of interest to us, superpo-
sition holds (see Sec. 1.2.1). These two facts suggest the following beautiful
strategy for analyzing the response of LTI systems in response to arbitrary
inputs:
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1. Break the input up into a sum of complex exponentials.
2. Pass each of these exponentials individually through the LTI system. Each

exponential will result in a new exponential scaled in amplitude and phase
shifted according to an expression like C(s) in Eq. 1.63. These are the
output exponentials.

3. Sum up the output exponentials. This is now the output signal, and the
response to the input of step 1.

Many readers will not remember the strategy this way. Instead, what may
come to mind is a feverish rush through three different-looking steps:

1. Take the Fourier (or Laplace) transform of the input signal to get X(jω)!
2. Multiply X(jω) by the system transfer function H(jω)!
3. Look up the inverse transform of H(jω)X(jω) to get y(t)!

It turns out that the two lists of steps are the same. The purpose of the remaining
subsections of Section 1.3 are to illustrate how.

1.3.1 Fourier Series Representation of Periodic Signals

We will start with the first step, “Break the input up into a sum of complex
sinusoids.” This is the meaning and purpose of the Fourier transform, and a
good way to understand the Fourier transform is to first understand the Fourier
series representation of periodic signals.

It turns out that almost any periodic signal can be represented as a sum of
sinusoids. Suppose that the signal in question x(t) has period T . That is to say,
regardless of how funny a shape x(t) has, it is always true that x(t+T ) = x(t).
It is a remarkable fact that almost all such signals can be represented as a sum
of sinusoids like

x(t) = A0 + A1 cos(
2π

T
t + φ1) + A2 cos(2 · 2π

T
t + φ2) · · · , (1.76)

where the Ais and the φis are determined by the detailed shape of x(t). This is
a fact that is actually familiar from everyday experience. If you hear a specific
pitch played on a violin, a trumpet, and sung by a singer, it will be obvious that
all three musicians are producing the same “note.” That is, something internal
to each instrument is vibrating at the same number of repetitions per second. In
the language of engineering physics, we say that the signal produced by each
musician has the same fundamental period T . It will be equally obvious that
although the note is the same, there is a world of difference between a note
played on the violin versus played on a trumpet, and no one will confuse the
sound of a trumpet or a violin with that of the human voice. In music this is
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called a difference in timbre, and a musician may speak of the difference in
“overtones,” “harmonics,” or “partials”9 produced by the three musicians. If
we were to put a recording of these musicians through a spectrum analyzer,
what we would find is that the different timbres would manifest as different
ratios Ai/A1s and φis for i ≥ 2 for each instrument.

We can express x(t) more compactly as

x(t) =
∞∑

k=0

Ak cos(kω0t + φk), (1.77)

where ω0 = 2π/T . Our challenge is now to determine what the Ai actually
are, but before we do so it is useful to recast Eq. 1.76 in terms of complex
exponentials. Noting that

Ak cos(kω0 + φk) = 1

2
Ake

jφk ejkω0t + 1

2
Ake

−jφk e−jkω0t, (1.78)

we can let Ck be a complex constant defined as Ck = 1
2Ake

jφk , and also let
C−k = 1

2Ake
−jφk . Doing this allows us to rewrite Eq. 1.77 in terms of complex

exponentials:

x(t) = C0 + (C1e
jω0t + C−1e

−jω0t ) (1.79)

+ (C2e
j2ω0t + C−2e

−j2ω0t ) · · ·

=
∞∑

k=−∞
Cke

jkω0t .

Now, the interesting part: how to determine the Cks, the individual coeffi-
cients, if we know the shape of x(t)? Consider the following:∫ t0+T

t0

ejkω0t e−j lω0t dt =
∫ t0+T

t0

ej (k−l)ω0t dt (1.80)

=
{

1
j (k−l)ω0

[ej (k−l)ω0t ]t0+T
t0

k = l

T k = l

=
{

0 k = l

T k = l.

9
In music, a concert “A” has a fundamental frequency of 440 Hz, or a fundamental period T of
2.27 ms. An octave up is the second harmonic, which is also an “A” at 880 Hz and is
sometimes called the “second partial” or “first overtone.” At 1320 Hz is the third
harmonic/partial and second overtone, etc.
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If we accept that periodic signal x(t) can be represented as the Fourier series
in Eq. 1.79, we can use Eq. 1.80 to determine a formula for the Cks:∫ t0+T

t0

x(t)e−j lω0t dt =
∫ t0+T

t0

( ∞∑
n=−∞

Cke
jkω0t

)
e−j lω0t dt (1.81)

= T Cl .

From here, it follows that

Cl = 1

T

∫ t0+T

t0

x(t)e−j lω0t dt . (1.82)

This is a critical point in the development. We started with the proposition
that almost any periodic signal could be represented as a sum of complex
sinusoids, and came up with a recipe for determining exactly which sinusoids,
and how much of each sinusoid, belongs in the sum. This is important enough
that it is worth summarizing the two equations together. The first is the
“synthesis” equation, so called because it shows how the original function can
be synthesized by adding together its sinusoidal components. The second is
the “analysis” equation, which shows how the original signal can be analyzed
by breaking it into its constituent sinusoids:

Synthesis equation:

x(t) =
∞∑

k=−∞
Cke

jkω0t (1.83a)

Analysis equation:

Cl = 1

T

∫ t0+T

t0

x(t)e−j lω0t dt . (1.83b)

With the synthesis and analysis equations in hand, a powerful strategy for
dealing with arbitrary periodic input x(t) to LTI systems starts to emerge.
Using the analysis equation, we can break the x(t) up into a sum of complex
sinusoids x(t) = ∑∞

k=−∞ Cke
jkω0t .10 Then we can rely on superposition to

know that that the output y(t) will be a superposition of the exact same set of
sinuosids. That is, the output y(t) is given by y(t) = ∑∞

k=−∞ Dke
jkω0t . An

excellent use of Eq. 1.64 is to determine the Dk explicitly:

10
A concern arises: computationally, how would one deal with the fact that this is technically an
infinite sum? The answer is that we would approximate the input by limiting |k| ≤ K , where
K is chosen large enough to keep the error to an acceptable level.
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Dk = Ck

Bm · (jkω0)
m + Bm−1 · (jkω0)

m−1 + · · · + B0

An · (jkω0)n + An−1 · (jkω0)n−1 + · · · + A0
. (1.84)

The importance of Eq. 1.84 is that it is a first example of analyzing
system behavior in the frequency domain. In Eq. 1.84 we have made use of a
transfer function that we first encountered in Eq. 1.64. The transfer function
is a mapping of the frequency components of the input to the frequency
components of the output, and is given to us naturally by the differential
equation. By way of contrast, up until now we have considered the problem of
system analysis in terms of finding a time-domain description of the behavior
of the output. At least for periodic signals, we have discovered a very powerful
mode of analysis. For aperiodic signals, we need the Fourier transform.

1.3.2 The Fourier Transform and the Meaning of Integrals

We emerge from Section 1.3.1 with a powerful pair of relations for hopping
back and forth between the time and frequency domains, repeated here for
convenience:

x(t) =
∞∑

k=−∞
Cke

jkω0t (1.85)

Cl = 1

T

∫ t0+T

t0

x(t)e−j lω0t dt .

This is great for periodic waveforms, but what about aperiodic waveforms?
It turns out we can point our way to the answer if we consider a different
question: what would we do with a waveform that was periodic, but whose
fundamental period T is one million years? In terms of our lifetimes, or indeed
the lifetimes of any human civilization, there is no practical distinction between
a signal with a period of a million years or a truly aperiodic signal. So perhaps
it makes sense to think of aperiodic signals in terms of Eq. 1.85 in the limit as
T gets very large.

One thing that happens when T gets large is that the steps between
frequency components get very small. The size of the step is

�ω = ω0 = 2π

T
. (1.86)

A first step on the way to the Fourier transform can be to change the first of
our relationship pair to be in terms of �ω:

x(t) =
∞∑

k=−∞
Cke

j (k·�ω)t . (1.87)
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We will also make one more change, which is to redefine Cl according to

Cl =
∫ t0+T

t0

x(t)e−j lω0t dt, (1.88)

so that x(t) is now given by

x(t) = 1

T

∞∑
k=−∞

Cke
jk·�ωt . (1.89)

Noting that 1
T

= �ω
2π

, we arrive at the slightly different-looking pair:

x(t) = 1

2π

∞∑
k=−∞

Cke
j (k·�ω)t�ω (1.90)

Cl =
∫ T/2

−T/2
x(t)e−j (l·�ω)tdt .

Looking at x(t), we now consider what happens in the limit of T → ∞.
Formally this is written

x(t) = lim
T →∞

1

2π

∞∑
k=−∞

Cke
j (k·�ω)t�ω (1.91)

= lim
�ω→0

1

2π

∞∑
k=−∞

Cke
j (k·�ω)t�ω,

which looks an awful lot like the limit of a Riemann sum that we have come
to know as an integral. For suitably well-behaved x(t), this is exactly how we
can treat Eq. 1.91. The limit becomes

x(t) = 1

2π

∫ ∞

−∞
C(ω)ejωtdω. (1.92)

We speak of C(ω) as the Fourier transform of x(t), and the convention is to
express C as a function of jω and not merely ω, and to label it X instead of C.
Following this convention, the synthesis/analysis equation pair is now

x(t) = 1

2π

∫ ∞

−∞
X(jω)ejωtdω (1.93)

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt .

X(jω) is sometimes called a frequency domain description of the signal x(t).
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A major point here is that the integral, like the derivative, is nothing par-
ticularly fancy, despite the enduring impression drilled into most engineering
undergraduates. We just get tired of writing

lim
�x→0

all over the place and give ourselves a
∫

or a d
dt

as a shorthand. It is pretty
much that simple.

It is worth internalizing this understanding of the integral and the derivative.
It will help you to have a unified view of continuous-time and discrete-time
systems, and also help to understand how computers cope with “continuous”
variables.

1.3.3 The Strategy

Now it is appropriate to revisit the opening of Section 1.3. The goal is to figure
out how an LTI system responds to an arbitrary input. The first step is

Break the input up into a sum of complex exponentials.

By “break into a sum of exponentials,” we now know that we mean find
X(jk · �ω) for all k such that

x(t) = lim
�ω→0

1

2π

∞∑
k=−∞

X(jk · �ω)ej (k·�ω)t�ω

is an equality. The idea is that for each value of k, X(jk · �ω) tells us
how heavily to weight ej (k·�ω)t in the sum of exponentials. Moving to the
continuous limit, we write that

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt (1.94)

and congratulate ourselves for finishing the first step.
The next step is

Pass each of these exponentials individually through the LTI system.
Each exponential will result in a new exponential scaled in amplitude
and phase shifted according to an expression like C(s) in Eq. 1.63.

These are the output exponentials.

We know that complex exponentials are special to LTI systems: they pass
through peacefully, and have only their amplitude and phase modified. We can
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write a general relationship, then, between the sinusoids that compose x(t) and
the sinusoids that compose the output y(t). Relying on Eq. 1.64, we have

Y (jω) = X(jω)
Bm(jω)m + Bm−1(jω)m−1 + · · · + B0

An(jω)n + An−1(jω)n−1 + · · · + A0
.

We’ll do one more thing, which is give the transfer function its own symbol
H(jω), so that the frequency-domain representation of our output is now

Y (jω) = X(jω)H(jω).

The last step is as follows:

Sum up the output exponentials. This is now the output signal, and the
response to the input of step 1.

And now we see, at long last, the expression that you doubtless remember
from many, many problems as an undergraduate. Summing up the output
exponentials means

y(t) = 1

2π

∫ ∞

−∞
Y (jω)ejωtdω = 1

2π

∫ ∞

−∞
X(jω)H(jω)ejωtdω.

Note that you almost never actually did this integral. Instead, you learned
to recognize certain forms of X(jω)H(jω) and relied on a table of inverse
Fourier transforms to get your y(t)s. What you see now is the underlying logic
of the whole thing.

1.4 Impulses in Linear, Time-Invariant Systems

As neatly as the story falls together, any discussion of continuous functions
that are “broken up into their infinitely close constituent parts” is bound to
have some awkward moments. In this section we discuss the impulse function,
which helps us to get through these.

1.4.1 Why Impulses?

Our first awkward moment comes when we consider the Fourier transform of
x(t) = ejω0t , the vaunted complex exponential that nature so favors. Diving in,

X(jω) =
∫ ∞

−∞
ejω0t e−jωtdt, (1.95)
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we discover to our dismay that for ω = ω0, the integral is zero, while for ω = ω0

the integral blows up! What in the world just happened? Our “beautiful”
framework seems to have cost us the ability to represent a simple sinusoid!

Notice, though, that when we get back to our summation roots, there is no
problem. Recall that

x(t) = lim
�ω→0

1

2π

∞∑
k=−∞

X(jk · �ω)ej (k·�ω)t�ω. (1.96)

All is right if we specify X(·) according to

X(jk · �ω) =
{

j2π
�ω

k · �ω = ω0

0 k · �ω = ω0,
(1.97)

where the assumption is that �ω is chosen such that there is exactly one integer
k for which k · �ω = ω0.

Now as we go to the continuous limit of �ω → 0, we seem to making
extraordinary demands of the function X(jω). A frequency-domain represen-
tation of a sinusoid seems to involve a function that goes to infinity over an
infinitesimally small span, and then just vanishes everywhere else. It is enough
to drive our mathematician friends nuts.

We needn’t fret. It brings a fresh dose of perspective to recognize that even
for supposedly continuous distributions, there is a resolution limit beneath
which we are helpless to look. Consider, for example, the difference between
a sinusoid at 10 Hz and one at (10 + 10−12 Hz). If you beat these two
sinusoids against one another, you get a beat once every 30,000 years. It is
very difficult, as a practical matter, to tell these two sinusoids apart. And if
one argues that they have built a spectrum analyzier that does have this kind
of extraordinary resolution, we can repeat the example with a difference of
10−18 Hz, or however extreme we need to be to get the point across.

It remains that this line of discussion leaves the more analytical reader
cold. It is not a good feeling to have mathematical analysis tied somehow to
measurement limits. The short story of how this issue is resolved is that we give
ourselves a notational “out” called the impulse or δ function. We gaze upon it
with only the soft focus required to define its behavior under an integral:∫ ∞

−∞
δ(ω)dω = 1 (1.98)∫ ∞

−∞
δ(ω − ω0)X(jω)dω = X(jω0).

Resist the urge to define the impulse in any more detail than this. Ruminations
on the exact shape of the impulse functions are particularly unprofitable.
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It is enough that the impulse function rescues us from the awkwardness of
discussing infinite numbers of infinitesimally spaced entities.

1.4.2 The Fourier Transform and the Impulse Response

We saw in Section 1.4.1 that the impulse function comes in handy for
frequency-domain descriptions of signals. It turns out that time-domain
impulses, δ(t), are useful as well. Figure 1.4 shows three different voltage

ViViVi

ttt �t �t

Figure 1.4 For a sufficiently slow-responding system, these three inputs are
equivalent.

waveforms as the input to an unspecified system. The first input is a smoothly
varying voltage. The second approximates the first as series of rectangular
pulses. The third is also a series of rectangular pulses, but the pulses are twice
as tall and half as long as those in the second input so the area of the pulses is
the same. It turns out that if �t is sufficiently small compared to the response
time of the driven system, all three of these inputs will produce nearly identical
outputs. And if we do break the input up into pulses, for sufficiently small �t

the shape of the pulses is not critical. Only the area of the pulses matters; we
draw rectangular pulses here because rectangles are easy to draw.11

You can probably see where we are headed with this: only the area of the
pulses matter; the duration has to be extremely “short” relative to any physical
time scale; we must be talking about impulses. Indeed, having already seen
how we can break up a signal into a sum of sinusoids, we find that we can
also break up a signal in the time domain into a superposition of time-delayed
impulses. Such a superposition looks like this:

11
In his book Circuits, Signals, and Systems, William M. Siebert describes the “smoothing effect
of physical systems.” This smoothing effect may be worth exploring on your own. A series RC
circuit driven by a voltage source (as shown in Figure 1.5, for example), is a fine place to start
playing with pencil and paper. Use as a drive rectangular pulses of duration significantly
shorter (10x or more) than the time constant τ = RC. With some work, you will start to see
strong dependence on the area of the pulse, but a relative insensitivity to the details of a pulse’s
height and duration.
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x(t) ⇒
∑
n

x(n · �t)�t · δ(t − n · �t). (1.99)

It is worth reading Eq. 1.99 carefully. We are exploiting the “smoothing effect
of physical systems” to substitute for the true x(t) a series of time-delayed
impulses. Since we assign area of each impulse in our sum to be x(n · �t)�t ,
it is evident that we are thinking of the rectangular pulse representation in
Figure 1.4. We use the area of each rectangular pulse to scale an impulse,
whose area would otherwise be 1 (see Eq. 1.98). For purposes of analysis we
do not dwell on the exact value of �t , other than to assert that it is sufficiently
small relative to the response time of the system under discussion so as to
justify the substitution in Eq. 1.99.

Now we are in position to powerfully leverage the properties of linearity
and time invariance that we saw in Section 1.2.1. Suppose that we had
characterized the system in terms of its impulse response h(t). That is to say,
in response to a unit impulse δ(t), the output of the system is h(t). Linearity
and time invariance dictate that in response to a scaled and shifted impulse
Aδ(t − t0), the response of the system would be Ah(t − t0). Applying this
reasoning to the general input x(t) of Eq. 1.99, we can write the output y(t) of
an LTI system in terms of its impulse response as

y(t) =
∑
n

x(n · �t)�t · h(t − n · �t). (1.100)

This is called a convolution sum, and in the context of continuous-time systems
we are accustomed to taking the limit as �t goes to zero and writing the
convolution integral,

y(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ, (1.101)

which winds up being the same as

y(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ . (1.102)

We often skip the integral notation and write this as

y(t) = x(t) ∗ h(t) = h(t) ∗ x(t). (1.103)

The impulse response is useful as a way of characterizing the extent to
which a system is or is not “memoryless.” Suppose, for example, that we
have an extremely fast system for which the response to an impulse is just an
impulse, h(t) = δ(t). Remembering the defining properties of the impulse in
Eq. 1.98, the result of applying Eq. 1.101 is that y(t) = x(t). That is, the output
at any given instant depends only on the input at that same instant. That is said
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to be a “memoryless” system. Slower-responding systems, or systems that act
as low-pass filters, will tend to have impulse responses that are extended in
time instead of being highly localized, and their outputs at any given instant
will depend both on the current input and on the history of prior inputs.

Finally, we can tie our discussion of the impulse response to the discussion
of transfer functions that emerged in Section 1.3.3. Recalling that the first step
of the Strategy is to break the input up into a sum of complex exponentials, we
take the Fourier transform of our input, which is now x(t) = δ(t):

X(jω) =
∫ ∞

−∞
δ(t)e−jωtdt = 1. (1.104)

Apparently, this remarkable entity requires sinusoids of all frequencies to
synthesize it!

The next step is to pass all of these sinusoids through the system to see how
they are affected. We did this with the aid of the transfer function H(jω), and
write the Fourier transform of the output y(t) as

Y (jω) = X(jω)H(jω) = 1 · H(jω) = H(jω). (1.105)

This means that the transfer function H(jω) is nothing other than the Fourier
transform of the impulse response! This is a very important result and worth
internalizing. The impulse response h(t) is the time-domain characterization
of a system, H(jω) is a frequency-domain characterization (sometimes called
its “frequency response”), and h(t) and H(jω) form a Fourier transform pair.

1.4.3 The Fourier Transform of Differential Equations

The Fourier transform can be viewed as a tool for dealing with differential
equations. As we have seen time and again, one cannot simply derive the
solution to a differential equation. We must content ourselves with guessing
the proper form of the solution, and plugging in and verifying that it is in
fact valid. But with the Fourier transform in hand, we can turn a differential
equation into an algebraic equation. And those we can solve.

To see how this arises, consider the Fourier transform of the first-order
derivative of y(t): ∫ ∞

−∞
dy(t)

dt
e−jωtdt .

It is easiest to integrate by parts, after agreeing to a couple of convenient
preconditions. The first is that y(t) starts at time t = 0, and is zero for all
time before that. Certainly for the real-time control systems that concern this
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book, we can do this without loss of generality. The second precondition is
that y(t) is of finite extent, so that y(∞) = 0. Agreeing to these, we proceed
to integrate by parts:∫ ∞

−∞
dy(t)

dt
e−jωtdt =

∫ ∞

0

dy(t)

dt
e−jωtdt (1.106)

=
∫ ∞

0

d

dt

[
y(t)e−jωt

]
dt −

∫ ∞

0
y(t)

[
d

dt
e−jωt

]
dt

= −y(0) + jω

∫ ∞

0
y(t)e−jωtdt

= jω · Y (jω) − y(0).

We will normally be concerned with the ZSR, for which y(t) and all of its
derivatives are zero at t = 0. Equation 1.106 becomes∫ ∞

−∞
dy(t)

dt
e−jωtdt = jω · Y (jω). (1.107)

Moreover, if you investigate the Fourier transform of higher-order derivatives
of y(t), what you find is that∫ ∞

−∞
dny(t)

dtn
e−jωtdt = (jω)n · Y (jω). (1.108)

Now consider again a general form of a differential equation that describes a
dynamic system: (

n∑
i=0

Ai

di

dt i

)
y(t) =

(
m∑

k=0

Bk

dk

dtk

)
x(t). (1.109)

If there is equality between the left and right sides of this equation, it must be
true that the Fourier transform of the left side is equal to the Fourier transform
of the right. Utilizing Eq. 1.107, the differential equation Eq. 1.109 becomes
the algebraic equation(

n∑
i=0

Ai · (jω)i

)
Y (jω) =

(
m∑

k=0

Bk · (jω)k

)
X(jω). (1.110)

While we could not properly solve Eq. 1.109, Eq. 1.110 is easy. Y (jω) is given
simply by

Y (jω) =
∑m

k=0 Bk · (jω)k∑n
i=0 Ai · (jω)i

X(jω). (1.111)
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If Eq. 1.111 looks familiar, it is because we saw it before in Eq. 1.64. The
readers are encouraged to reconcile how exactly it is that we got to the same
place through two different-looking routes.

1.5 The Unilateral Laplace Transform

We are just about finished developing tools for LTI system analysis. We have
one more method to introduce, which is the unilateral Laplace transform. Even
though we have saved it for last here, it is the most widely used “transform
method” used in analyzing LTI systems. Whereas with the Fourier transform
we probed deeply into its conceptual meaning, the Laplace transform is best
seen as a rather impersonal “crank” to turn. It is simply a method to take
a differential equation and turn it into an algebraic equation. The unilateral
Laplace transform X(s) of a time-domain waveform x(t) is

X(s) =
∫ ∞

0−
x(t)e−st dt . (1.112)

We choose the lower limit as “0−” to avoid ambiguity when x(t) contains an
impulse at the origin. It is understood that the entire impulse is to be counted
under the integral.12 Also, note that for real-time control applications such as
we are concerned with in this book, choosing a lower limit of “0−” as opposed
to “−∞” is convenient, as it is equivalent to assuming that all of our signals
start no earlier than t = 0.

The inverse Laplace transform is slightly more complicated, involving a
complex contour integral. The proper definition is

x(t) = 1

2πj

∫ σ0+∞

σ0−j∞
X(s)est ds. (1.113)

One way to handle integrals of this form is to use the calculus of residues.13 In
practice, however, what we find is that the X(s)s for which we need to do this
integral come in relatively few distinct forms. It is usually more efficient to use
a table of inverse transforms, which is the reason you probably do not recall
ever using the calculus of residues. Tables of inverse Laplace transforms can
be found in any textbook on linear system theory, and a short one is provided
at the end of this chapter.

12
The issue of the proper lower limit for a unilateral Laplace transform gets an extensive
treatment in Thomas Kailath’s book Linear Systems (Harlow, UK: Prentice Hall, 1979).

13
A thorough discussion of this technique can be found in Hildebrand’s Advanced Calculus for
Applications, 2nd ed. (Englewood Cliffs, NJ: Prentice Hall, 1976).
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Once we have the definitions of the Laplace transform and its inverse, we
apply them to differential equations in the same way that we did in Section
1.4.3. Consider the now-familiar general form of a differential equation:(

n∑
i=0

Ai

di

dt i

)
y(t) =

(
m∑

k=0

Bk

dk

dtk

)
x(t). (1.114)

Taking the Laplace transform of both sides, we once again turn a differential
equation into an algebraic equation, this time in the variable s:(

n∑
i=0

Ai · si

)
Y (s) =

(
m∑

k=0

Bk · sk

)
X(s). (1.115)

Now the solution for Y (s) is simply

Y (s) =
∑m

k=0 Bks
k∑n

i=0 Aisi
X(s). (1.116)

One of the nice consequences of using the Laplace transform, as opposed to
the Fourier transform, is that the link to characteristic equation (like Eq. 1.59)
is made typographically explicit.

1.5.1 Dynamic Interpretation of Poles

The poles of a transfer function figure prominently in any discussion of an
LTI system. Before we get into a discussion of them, remember that what
drives us in analysis is, in fact, the need to boil incredibly complex systems
down to a bare minimum of information or characteristics. The “minimum”
is of course context dependent. Are we trying to make a design decision?
Are we curious about the time scale on which the system will respond? Or
are we instead concerned about the fate of every individual charge carrier in
the system? Assuming that we are not interested in that last (hopelessly low)
level of detail, it turns out that the pole locations contain some very important
information about the speed of response of a given system.

Take the circuit of Figure 1.5 as a simple but useful example upon which we
will wield our newfound tool, the unilateral Laplace transform. As is now our
custom, we can derive a differential equation that describes the time evolution
of, say, the voltage across the capacitor C. That equation is

RC
dVc(t)

dt
+ Vc(t) = V (t). (1.117)
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V (t)

R

C

+

−

Figure 1.5 A driven RC circuit.

Now, however, we take the Laplace transform of both sides. We then write the
relationship between Vc(s) and V (s) as the straightforward

Vc(s) = 1/RC

s + 1/RC
V (s). (1.118)

It is customary to define a transfer function H(s) connecting Vc(s) and V (s):

H(s) = 1/RC

s + 1/RC
. (1.119)

H(s) is a function of the complex variable s = σ + jω. This function has a
singularity at s = −1/RC. That is to say, as s approaches the special value
−1/RC, the magnitude of H(s) goes to infinity. In the theory of complex
variables, this kind of singularity is called a pole.

Putting that aside for the moment, we return to our characterization of the
system in Eq. 1.118 and ask, what is the output in response to an impulse?
Since the Laplace transform of an impulse is simply unity for all values of s,
the Laplace transform of the response is given by

Vc(s) = 1/RC

s + 1/RC
. (1.120)

Now we follow the script and perform the inverse transform,

V (t) = 1

2πj

∫ σ+∞

σ−j∞

(
1/RC

s + 1/RC

)
est ds, (1.121)

with, it goes without saying, the aid of a table of inverse Laplace transforms:

V (t) = 1

RC
e−t/RCu(t). (1.122)

We define u(t), the unit step function, according to

u(t) =
{

1 t ≥ 0
0 t < 0.

(1.123)
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V (t)

1/RC

t

1
RC

e−t/RCu(t)

Figure 1.6 The response of a series RC circuit to a voltage impulse.

Graphically, the impulse response is shown in Figure 1.6. In response to an
impulse, the voltage across the capacitor jumps up abruptly, and then decays
exponentially to zero. The time constant, or the amount of time that must pass
for the voltage across the capacitor to decay to 1/e times its initial value, is
given by the product RC. But RC is the reciprocal of the pole location of
the transfer function given in Eq. 1.120. And here is the key, the critical thing
about pole locations: the locations of the poles tell us how quickly the system
will settle to its final value after an excitation.

This is an important enough concept that it is worth dwelling upon briefly.
Suppose that instead of exciting the system with an impulse, we instead excite
the system with a step u(t). Taking the Laplace transform of the unit step,
which is 1/s, and multiplying by the transfer function gives us the Laplace
transform of the output

Vc(s) = 1/RC

s(s + 1/RC)
. (1.124)

To use the inverse transform tables easily, we first rewrite this as14

Vc(s) = 1

s
− 1

(s + 1/RC)
. (1.125)

The time-domain Vc(t) is given by

Vc(t) = (1 − e−t/RC)u(t). (1.126)

14
The tool that we use here is called a partial fraction expansion, and can be found in almost all
textbooks on linear system theory. A good, inexpensive one to own is Zoher Karu’s Signals
and Systems Made Ridiculously Simple (Cambridge, MA: ZiZi Press, 1995).
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This is the step response, and is shown in Figure 1.7. The final value of this
response is 1 V. In this case, notice that the difference between the final value
and the value of the transient at a given time fades as e−t/RC .

V (t)

1 V

t

(1 − e−t/RC)u(t)

Figure 1.7 The response of a series RC circuit to a unit voltage step. The voltage
across the capacitor asymptotically approaches 1 V.

As a final example to illustrate the importance of poles, consider the impulse
response of a transfer function that has multiple poles:

H(s) = K0(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
. (1.127)

In this example we make reference to the general transfer function of Eq. 1.116,
where the numerator may also be a polynomial in s whose roots are called the
zeros of the transfer function. Again utilizing a partial fraction expansion, and
recognizing that n ≥ m, what emerges is the impulse response h(t):15

h(t) = A1e
p1t + A2e

p2t + · · · + Ane
pnt . (1.128)

So in response to an impulse, each pole accounts for a portion of the settling
behavior in a very clear, transparent way. Poles with a real part greater
than zero will give to the impulse response a term that “blows up,” or rises
exponentially. We therefore consider systems with such “right-half-plane”
(RHP) poles to be unstable. For the fast poles, or poles for which Re{pi} < 0
and |Re{pi}| is large compared to that of the other poles, their contribution to
the response will fade to insignificance very quickly. Indeed, the slow poles,
or poles for which |Re{pi}| is small compared to the other poles, will tend

15
This form assumes no repeated roots in the numerator or denominator.
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to dominate the response. For this reason, we tend to call the slowest pole
in the system the “dominant” pole, as the time response tends to be well
approximated by a single-pole system whose single pole is the dominant pole
of the original system. It is worth taking the time to make sure that you really
see this.

It is also worth briefly circling back to the discussion of Figure 1.4. At
that point, there was a vague assertion that for a “sufficiently slow-responding
system,” we could replace our continuous driving signal with a series of short
pulses or impulses spaced �t apart in time. Once we know the poles of the
system, we can be more precise about the size of �t be relative to the time
constant of the dominant pole in the system. Figure 1.8 shows that when �t

is small compared to 1/|pdominant|, where pdominant is the dominant pole in
the system, we are working at a time scale for which we needn’t differentiate
between a continuous drive and a drive with scaled and shifted impulses.
This insight is particularly important in time-domain computer simulators for
dynamic systems, where discretization of the time variable is inescapable.
Designers of easy-to-use simulators devote substantial effort to automatic
determination of a time step that is small enough to ensure accuracy, while
not being so small that the computation becomes impractical.

Vout VoutVout

t tt �t �t�t

Figure 1.8 Response of a system to an impulse train when �t � τ , �t ≈ τ , and
�t � τ , where τ is the time constant of the dominant pole in the system.

1.5.2 The Geometric View of Poles and Zeros

An understanding of poles and zeros of transfer functions is foundational to a
study of feedback systems. The purpose of this section is to remind readers of
the geometric view of these singularities. If this topic is new to readers, it may
be helpful to first browse through the root locus discussion of Section 2.5. Root
locus techniques are a major application of the geometric picture of poles and
zeros for feedback systems. This section also provides important grounding for
the discussion in Chapter 3 of the Nyquist stability criterion.
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Consider again the generic transfer function,

H(s) = K0(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
, (1.129)

and focus on one term in the denominator:

(s − pn). (1.130)

In this term, s is a complex variable, and pn is a complex constant. For now
we will make their complex nature explicit by letting s = sr + jsi , and pn =
prn + pin and rewriting Eq. 1.130 as

(s − pn) = (sr − prn) + j (si − pin). (1.131)

So far, nothing remarkable has happened. We have just stated some obvious,
arithmetic facts, and rewritten our original statement in somewhat more detail.

v1y

v1x

−→v1

θ1

v2y

v2x

−→v2

θ2

x̂x̂

ŷŷ

Figure 1.9 Examples of vectors familiar from geometry.

This expanded form of s − pn, is familiar. Recall vectors from geometry:

−→v1 = v1x x̂ + v1y ŷ (1.132)
−→v2 = v2x x̂ + v2y ŷ.

We would always draw these vectors as shown in Figure 1.9. It turns out that
θ1 = arctan(v1y/v1x), θ2 = arctan(v2y/v2x). Now when we wanted to do the
vector subtraction −→v1 −−→v2 graphically, we started by rotating −→v2 by 180◦. We
then translated the rotated −→v2 such that its tail met the head of −→v1 . The result
of the vector subtraction is then given graphically by drawing an arrow from
the tail of −→v1 to the head of the inverted −→v2 . Pictures are obviously better than
words here; see Figure 1.10. Looking closely at this geometric procedure, what
we see is that it is the visualization of

−→v1 − −→v2 = (v1x − v2x)x̂ + (v1y − v2y)ŷ. (1.133)
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−→v1 − −→v2
θ1

θ2

x̂

ŷ

Figure 1.10 Graphical vector subtraction.

Now let’s look back at terms like (s − pn). There is a striking similarity
between the subtraction of complex numbers in Eq. 1.131 and the subtraction
of vectors shown in Eq. 1.133. That similarity is that the equations are the same
but for two simple substitutions, with 1 taking the role of x̂ and j taking the
role of ŷ. It will turn out to be incredibly useful to exploit this similarity by
viewing complex numbers as vectors in a “complex plane.” That is, a + jb

becomes as shown in Figure 1.11. The real axis takes the place of the x̂ axis,
and the imaginary axis takes the place of the ŷ axis. Notice that this simple
mapping of x̂ to 1 and ŷ to j is actually the second hint we’ve been given to
see complex numbers as vectors in the complex plane. The first was provided
by Euler’s relation, which we can use to write a complex number as

a + jb = a cos θ + j · a sin θ (1.134)

= rejθ .

Looking at Figure 1.11, it is obvious that r = √
a2 + b2 and θ = arctan(b/a).

Where are we going with this? Once we accept the geometrical picture of
complex numbers, it turns out that there is a graphical way to represent how a
complex sinusoid will be affected by passing through a transfer function with
a given set of poles and zeros. Consider the individual terms from Eq. 1.129,
with those in the numerator described by rzie

jθzi = (s − zi) and those in the
denominator described by rpie

θpi = (s − pi). If we pass a complex sinusoid
est = eσ t ejωt through a system described by the transfer function in Eq. 1.129,
we substitute s = σ + jω and we find that this sinusoid will be scaled and
phase shifted. The new amplitude of the sinusoid will be
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a

b
a + jb

θ

Re{·}

Im{·}

Figure 1.11 A complex number as a vector.

ro = rz1rz2 · · · rzm
rp1rp2 · · · rpn

, (1.135)

and it will be phase shifted according to

θo = θz1 + θz2 + · · · + θzm − θp1 + θp2 + · · · + θpn, (1.136)

so that what emerges from the system is the scaled and shifted sinusoid

y(t) = roe
σ t ej (ωt+θo). (1.137)

Now for the graphical way of seeing how sinusoids are affected by poles
and zeros. Consider the individual denominator term (s − pi), and the input
sinusoid ejω0t . For this input, s = jω0. Vectors illustrating the pole pi and the
input sinusoid are shown in Figures 1.12 and 1.13.

To get some practice with the graphical method, it is extremely helpful to
sketch out simple cases for which you already know what to expect from prior
experience with Bode plots. For example, a pole at the origin will give a phase
shift of −90◦ for all nondecaying sinusoids ejωt . A real pole in the left-half
plane will give a negligible phase shift for sinusoids near DC; when |p| =
|ω|, the phase shift imparted will be −45◦ and the sinusoid will be scaled by
1/

√
2 (or, famously, -3dB!); and when |p| � |ω|, the sinusoid becomes almost

completely attenuated and the phase shift goes asymptotically to −90◦. Verify
these statements using the graphical method, and then try making up a few
cases of your own. How does a lightly damped pole pair affect ejωt for various
values of ω?
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jω0jω0

pipi

θpi θpi

jω0 − pi

Re{·}Re{·}

Im{·}Im{·}

Figure 1.12 Graphical evaluation of how sinusoid ejω0t is affected by a pole. The
length of jω0 −pi indicates how the sinusoid is scaled, and the angle θpi indicates
how it is phase shifted.

jω0

pi

θpi

jω0 − pn

Re{·}

Im{·}

Figure 1.13 A redrawing of Figure 1.12, skipping intermediate steps. To see
graphically how pole pi affects sinusoid ejω0t , the pole and the complex frequency
s of the sinusoid are each placed in the complex plane. A vector is then drawn from
the pole to s. The sinusoid is scaled by the reciprocal of the length of the vector,
and the phase shift is minus θpi .

The insight that can be gleaned from this graphical representation of poles
and zeros will be leaned on quite heavily when we turn our attention to root
locus and Nyquist plots. Give this section careful consideration now, and if it
is new to you, come back to it as you work through Chapters 2 and 3.

1.5.3 Initial and Final Value Theorems

The initial value theorem and the final value theorem should be in your linear
system theory bag of tricks. We use the final value theorem in particular for
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feedback systems to answer the question: “What is the steady-state error of my
controller in response to a step input?”16

The final value theorem concerns the relationship between the final value of
a time domain signal x(t) and its Laplace transform X(s). In the language of
mathematics, we render the final value of x(t) as

lim
t→∞ x(t). (1.138)

The final value theorem gives us the equivalence

lim
t→∞ x(t) = lim

s→0
sX(s). (1.139)

To show that this is true, a good place to start is by writing out sX(s) in terms
of x(t):

lim
s→0

sX(s) = lim
s→0

s

∫ ∞

0−
x(t)e−st dt (1.140)

= lim
s→0

∫ ∞

0−
x(t)

[
se−st

]
dt

= lim
s→0

∫ ∞

0−
x(t)

d

dt

[−e−st
]
dt .

To integrate by parts, recognize that

x(t)
d

dt

[
e−st

]
dt = d

dt

[
x(t)e−st

]− dx(t)

dt
e−st . (1.141)

We continue from Eq. 1.140 according to

= lim
s→0

[
−
∫ ∞

0−

d

dt

[
x(t)e−st

]
dt +

∫ ∞

0−

dx(t)

dt
e−st dt

]
(1.142)

= lim
s→0

[
− [x(t)e−st

]∞
0− +

∫ ∞

0−

dx(t)

dt
e−st dt

]
.

From here, we must be explicit about how we take the limit on s. For the
one-sided signals for which the unilateral Laplace transform makes sense, the
Laplace transform integral itself safely converges if Re{s} > 0. Therefore, we
take the limit s → 0 with s approaching zero from the right half of the complex
plane. Under these circumstances, the proper evaluation of the limit in s is

16
The step input is important because it represents commanding the system to go to and hold a
specific value. For an example, in the cruise control of a car a step input would be commanding
the car to go to 55 mph and stay at that speed. The steady-state error is the difference between
55 mph and the speed the car ultimately settles to. The ideal is for the steady-state error to be
zero.
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= − [0 − x(0−)
]+ [x(t)]∞0− (1.143)

= lim
t→∞ x(t).

The initial value theorem has a satisfyingly similar form:

lim
t→0

x(t) = lim
s→∞ sX(s). (1.144)

This relationship can be shown using steps very similar to those used to
establish the final value theorem.

1.5.4 Inverting the Laplace Transform

Interestingly, inversion of the Laplace and Fourier transforms is typically the
one skill that a desperately time-constrained, scrambling, first-time student of
linear systems is able to acquire. For a chapter that concerns what the reader
“may have missed the first time through,” it is therefore fitting to only include
a table of common transforms. For a review of and practice with inverting
common Laplace transforms, as well as more comprehensive tables, see books
by Siebert and by Karu, cited in full in Chapter 6. Meantime, a short table of
Laplace transforms is given in Table 1.1.

Table 1.1 A short table of Laplace transform pairs

x(t) X(s)

δ(t) ⇐⇒ 1
⇐⇒

δ(t − T ) ⇐⇒ e−sT

⇐⇒
u(t) ⇐⇒ 1

s⇐⇒
e−αt ⇐⇒ 1

s+α⇐⇒
tn ⇐⇒ n!

sn+1

⇐⇒
sin ω0t ⇐⇒ ω0

s2+ω2
0⇐⇒

cos ω0t ⇐⇒ s

s2+ω2
0
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1.6 Convolution and the Special Place of Exponentials

Back in Section 1.4.2, we “discovered” the convolution integral while explor-
ing the impulse function. For a linear, time-invariant system driven character-
ized by impulse response h(t), the response y(t) to input x(t) is given by

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ)h(t − τ)dτ =

∫ ∞

−∞
h(τ)x(t − τ)dτ .

(1.145)

Notice what happens now if choose for the input the complex exponential
x(t) = es0t :

y(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (1.146)

=
∫ ∞

−∞
h(τ)es0(t−τ)dτ

= es0t

∫ ∞

−∞
h(τ)e−s0τ dτ

= H(s0)e
s0t .

Through examination of the convolution integral in this way, it becomes
evident that the eigenfunction nature of complex exponentials is a direct
consequence of linearity and time invariance.

1.7 Discrete-Time Formalism: Same Ideas,
Different Notation

The mathematics for discrete-time and continuous-time systems are typically
taught as separate but related topics in undergraduate linear systems courses.
The connection between the two modes of thought is usually left implicit.
Students are aware, for example, that their intuitive understanding transfers
easily between the two types of systems even if the notation seems wildly
different. Once students have thoroughly digested both discrete-time and
continuous-time analysis, it is a good time for them to explore the relationship
between the two explicitly.

1.7.1 Difference Equations Are a Really Natural
Expression of Time Evolution

This book starts by asserting that differential equations are a natural way to
express time evolution. The reason that discussion ultimately got complicated
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is that the time step, �t , must approach the limit of zero if we are to
truly represent continuous time. This inconvenient fact spawned a derivative-
and integral-heavy notation that can obscure the common sense of what is
happening.

We are spared such acrobatics when we turn our attention to discrete-time
systems. Our attention is on an output y[n], and we simply desire to know
what happens next. That is, what is y[n + 1]? To be as general as we can, we
must assume that y[n+ 1] is influenced by present and past values of the input
x[n]. And if we allow for the possibility of feedback, then there ought to be a
dependence on present and past values of y[n] as well. It bears emphasizing
that “time” in discrete-time systems is divorced from the everyday concept of
time. We would use the same notation whether the system was stepping in
increments of years or in nanoseconds. Think about and internalize that.

Mathematically, we want to capture the dependency of y[n + 1], what
happens next, on present and past inputs and outputs. The most general way to
do this is by writing

y[n + 1] =
∞∑

k=0

akx[n − k] +
∞∑

j=0

bjy[n − j ]. (1.147)

If the notation seems obscure after all of the integrals we have been writing, go
back to the very first example considered in this book. The first equation that
we wrote, Eq. 1.1, was

Qc(t + �t) = Qc(t) − I (t)�t . (1.148)

We made a guess to the solution of this equation involving an·�t , and plugged it
into Eq. 1.4. Ultimately, we explored the implications of �t being very small in
order to arrive at a continuous-time solution. It was the pursuit of that limit that
led to the introduction of the derivative, as well as the ubiquitous appearance
of est in our solutions. In the mathematics of discrete time, there is no �t to
take to a limit. We simply write

Qc[n + 1] = Qc[n] − I [n] (1.149)

and pursue a development that closely parallels that of Section 1.1. By
doing this development yourself, you can clarify in your mind the underlying
similarity between continuous-time and discrete-time methods.
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1.7.2 The Fourier Transform in Discrete Time

It is not difficult to see that difference equations, like their differential equation
cousins, have a soft spot in their hearts for complex exponentials. Suppose that
the input to a system described by Eq. 1.147 is given by x[n] = zn

0, where
z0 = rej�. As with differential equations, we posit a guess for y[n] and see if
it is consistent with the governing equation. Taking a cue from the differential
equation development, we might suppose that the output is none other than the
input scaled by a complex constant, or y[n] = Azn

0. So much for the guess;
now we plug into Eq. 1.147 and follow our nose:

y[n + 1] =
∞∑

k=0

akx[n − k] +
∞∑

j=0

bjy[n − j ], (1.150)

Azn+1
0 =

∞∑
k=0

akz
n−k
0 + A

∞∑
j=0

bj z
n−j

0 ,

A =
∑∞

k=0 akz
n−k
0

zn+1
0 −∑∞

j=0 bj z
n−j

0

.

Equation 1.150 is the discrete-time cousin of the continuous-time transfer
function Eq. 1.64.

The Fourier transform for discrete-time analysis is developed in a method
very similar to that of the continuous-time case. The readers are encouraged to
pursue this development independently, either by reading in the references or
deriving it themselves. The result will be the synthesis and analysis equivalents
of the continuous-time relations (Eq. 1.93):

x[n] = 1

2π

∫ π

−π

X(ej�)ej�nd� (1.151)

X(ej�) =
∞∑

n=−∞
x[n]e−j�n.

Notice that there are some important differences, however. First, for
the synthesis formula we do not integrate over an infinite domain. Instead,
the limits of integration are from −π to π . Fundamentally, this arises from the
fact that the time index is restricted to integers: we find that for all integers
k, e(�+2πk)n is indistinguishable from e�n. This will become clearer when we
talk about aliasing in Section 4.3.1.

More confusing sometimes is the form of the complex exponentials that
we deal with in discrete vs. continuous time. In continuous time we talked of
complex exponentials est , where s is the complex frequency σ +jω. However,
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in discrete time our exponentials are zn, where z itself is the complex number
that we concern ourselves with. The difference is superficial, as can be seen
by recognizing that the complex number z can always be written rej�. But
if it is superficial, why bother? We bother because the representations est and
zn reflect what is easy to work with in differential equations and difference
equations, respectively. Sometimes, yes, it comes down to that.

1.7.3 The Z-Transform, the Impulse Response, and
Convolution in Discrete Time

The parallels to continuous-time analysis will keep coming. In place of the
unilateral Laplace transform, we have the unilateral Z-transform:

X(z) =
∞∑
∞

x[n]z−n. (1.152)

The inverse Z-transform, with all of the usual caveats about how it is rarely
used, involves the contour integral

x[n] = 1

2πj

∮
C

X(z)zn−1dz. (1.153)

Impulses in discrete time come with none of the baggage that weighs down
impulses in continuous time. A discrete-time impulse is given simply by

δ[n] =
{

1 n = 0
0 n = 0.

(1.154)

Finally, looking back it can be seen that the argument leading to convolution
in Section 1.4.2 is much easier to make in discrete time. For a discrete-time
system characterized by impulse response h[n], the response to arbitrary input
x[n] is given by

y[n] =
∑
m

x[m]h[n − m]. (1.155)

It is also true that the Z-transform of the impulse response in discrete time is
equal to the transfer function. For tables of common Z-transform pairs, see
Siebert’s excellent book on signals and systems, cited in full in Chapter 6.

1.8 Chapter Summary

If there is one underlying theme in this chapter, it is that linear system theory
makes sense. At the end of the day, it is nothing more than common sense
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written in the language of mathematics. Do not be fooled by fancy differential
equations, integrals, summations, and transforms. They are a shorthand that,
once you achieve fluency, you too will find convenient.

One other point bears emphasis as we bring this chapter to a close. Part of
the reason that we love linear system theory is that its equations can usually
be solved. Even better, the solutions to those equations yield insight that is
powerful for design. These aspects of linear system theory perhaps cannot be
properly appreciated without studying the theory of nonlinear systems, which
are often far more complicated and the analysis of which often yields far
less insight. In fact, a common strategy for analyzing nonlinear systems is to
approximate them as linear systems and apply the methods we have described
here. It turns out that a good understanding of linear systems will give readers a
solid basis for understanding many types of physical systems in the real world.



2
The Basics of Feedback

Feedback is more than just something that we use every day. For us, it is a
mode of being. It is worth taking a look at examples of feedback in everyday
life to clarify what we mean by a “closed-loop” (feedback) versus a “open-
loop” (nonfeedback) system. This exercise can greatly sharpen one’s grasp of
the conceptual framework of feedback systems. Bear in mind, however, that
the actual processes utilized by a human being are far, far more sophisticated
than the feedback systems that can be covered by the theory presented in this
book. The fundamental difference between a “feedback” process undertaken
by a human being and one undertaken by a dumb servo loop is that humans
(and animals) use past experience to optimize the performance of a task. By
contrast, an analog feedback loop can be hit by a unit step a million times in
a row, and a million times in a row it will overshoot by the same amount, ring
the same amount, and always take the same amount of time to settle to its final
value. So while the following discussion gets across the spirit of feedback,
readers should understand that an op-amp or a servo controller is a is a mere
toy compared to what we in the animal kingdom regularly deploy.

2.1 Filling a Glass with Water

The first challenge we consider is filling a glass of water. In this scenario, the
“command” is that we fill the glass up until it is “full,” but not so close to the
top that it is awkward to handle. Since we are getting exact, we might specify
that our definition of “full” is that the glass is filled until the water level is
exactly 0.5 inches from the top of the glass, as shown in Figure 2.1.

Now we all know how we, personally, would go about filling the glass.
This was a major challenge for us as toddlers, but as adults it has long since

52
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Fill to here

Figure 2.1 Filling a water glass.

moved past the point of being a skill that we need to think about. But what
if we decided as a challenge to fill the glass using a completely “open-loop”
process? What would that look like?

A start might be to complete a detailed modeling effort, in which we nail
down the instantaneous water flow rate of water out of the pitcher, perhaps as
a function of the tilt angle. We would then need to know the detailed geometry
of of the glass. That is, for water flowing in a specified number of liters per
second the rate of rise of the level of water will depend strongly on the cross-
sectional area of the glass at the instantaneous water level. With all of this work
having been done very carefully, a true open-loop operation would mean that
we close our eyes, tilt the pitcher at the predetermined sequence of angles,
with precise timings, and then stop. If we have done our calculations correctly
and accounted for all possible effects (e.g., water lost to splashing if we are
particularly aggressive, minor variations in the proper gravitational constant
for our exact location on the earth), the end result will be a glass full according
to our agreed upon definition. Exactly.

One could imagine a conversation between a bemused nonengineer and the
triumphant engineer who oversaw solving this whole problem:
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Spectator: What if someone gives you a different glass?
Engineer: No one is going to give us a different glass. The dimensions of

this glass are compliant with an industry-wide standard for 500 mL glasses. To
within a part per million, we’re good. There’s been talk of a “next-generation”
600 mL glass, but the last such upgrade took two years longer to roll out than
everyone said. When it happens, we’ll just spend a week or two redoing the
model.

Spectator: Was it tough to automate the pouring process so that it was the
same every time?

Engineer: After three months of practice, our original Pouring Lead still
couldn’t get his precision down to better than 5 percent error, and between that
and the carpal tunnel syndrome we decided an industrial robot was the way
to go. As a bonus, with its high-precision, high-speed pump we’re no longer
limited by gravity in terms of pour speed. This bad boy almost blew our budget,
but it was worth it. As you are about to see.

Spectator: How fast can you fill the glass?
Engineer: 10.9 microseconds. That is the fastest fill time for a 500 mL glass

ever reported in the literature and an industry first. A microsecond is what you
get when you divide a second up into a million little pieces.

Spectator: But doesn’t the water splash all over the place at that kind of
pouring speed? In fact, doesn’t the glass explode?

Engineer: Technically, yes. The impact of the water and the sonic boom
that accompanies the pour are not kind to the glass. But if you integrate all of
the water that lands within a 100 m blast radius of the pour site, we can show
that we would have filled the the glass to within an error of only 1 percent.
This is another industry record.

This example does illustrate one genuine advantage of open-loop systems
over closed-loop systems: speed. For all of the over-the-top effort described
in this short dialogue, it is true that when you fill a glass using your normal
method of watching with your eyes until the glass is full, you are limited
in your speed by your ability to react to what your eyes are telling you. So
with closed-loop filling you can reliably fill any kind of glass with any kind of
pitcher, here or on the moon, and with no modeling effort, but you have given
up speed. This concept carries over to the feedback systems that are the subject
of this book.

There are other concepts of closed-loop behavior that we can appreciate
from looking at ordinary glass filling. At the start you pour quickly, for
example, and then slow down as the water level gets closer to the final value
(imagine the step response of a typical feedback system). Also the more
accurate you want to be, the longer it will take you to complete the pour. (Note
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that settling time for feedback system gets longer as the settling tolerance
gets more demanding.) Look for this behavior in closed-loop systems as the
development continues.

2.2 Open- versus Closed-Loop Control in Block Diagrams

Jumping back to the language of linear systems, block diagrams for a
closed- and open-loop system are shown in Figure 2.2. There will be a

-

C(s)

c(t)

X(s)

X(s)

x(t)

x(t)

H(s)

H(s)

Y (s)

Y (s)

y(t)

y(t)

(a)

(b)



Figure 2.2 (a) Open-loop and (b) closed-loop systems.

lot of mathematics around these block diagrams, but a first, conceptual,
and absolutely critical understanding can be gained right away. The central
problem in control, remember, is how to craft the input of a system in order to
get a desired output. That is, we may want our car to move at a certain speed,
and H(s) could be the transfer function between the force that our foot exerts
on the accelerator and the speed of the car. Figure 2.2(a) shows the open-loop
option. In order to get the desired output, we would begin by doing a thorough
characterization of H(s). Armed with this foreknowledge, we would create
an x(t) such that, when processed by H(s), would result in the exact output
that we want at exactly the time that we want it. Once we have determined the
proper x(t), the idea is that we shut our eyes and pass that x(t) into the input of
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our system, trusting completely that we will get the desired output y(t) based
on our careful precharacterization of the system.

The feedback approach, illustrated in Figure 2.2(b), is very different. Con-
sider the output of the summing junction, x(t). It is an extremely interesting
and valuable signal, because at any given time it is the difference between
the the command, c(t), and the desired output y(t). Think about this: at every
moment we know whether or not we have the desired output, and if not, how
big our error is! If this is a cruise control in your car, for example, c(t) might
be the “command” of “go to 60 mph and stay there.” If, when this command
is issued, the actual speed of the car is 40 mph, then the signal x(t0) at that
particular time is the (signed quantity) +20 mph, so the system “knows” that
it is 20 mph too slow.

So we have the error at any given time. What do we do with it? Well, if
your speed sensor was telling you that you were going 59 mph and you wanted
to be going 60 mph, as a driver you would give the accelerator an extremely
gentle nudge to move your speed up. On the other hand, if your speed sensor
is telling you that your speed is 10 mph, you probably would not be so gentle.
You would give a much more coarse, forceful push, and worry about honing
your pressure on the accelerator more carefully when you were closer to your
desired speed.

Very interesting: in this feedback type of approach, the response of you
the driver varies in proportion to the size of the error. A crude model for this
behavior is to follow the summing junction in Figure 2.2(b) with an amplifier
whose output is exactly proportional to the error, as shown in Figure 2.3. Now
suppose we know two things: 1) the system with our amplifier now in it is
absolutely stable; 2) the DC gain of that amplifier is extremely high. What can
we conclude? Consider a “DC” case, in which our car has been rolling at one
speed for a long time and so we can use H(0) in our analysis. If the final speed
is y0, we know that the final error e0 is

e0 = y0

H(0) · A
. (2.1)

That is to say, the larger our gain A, or the more “forcefully” we react to errors,
the smaller our error will be.

An even more intriguing insight is that the larger our gain A, the closer
x(t) is to being exactly the right input to H(s) in order to get the correct
output! And we got this nearly perfect input not by doing a detailed model and
relying on our ability to perfectly craft an input. We simply set up the system
to automatically act to squash errors, and sat back and enjoyed the show.
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-

Desired speed Error


Actuator gain

A H(s)
X(s)

x(t)

Y (s)

y(t)d(t) e(t)

Transfer function from
actuator to car speed

Figure 2.3 Simplified cruise control system for a car.

This, friends, is the power of feedback. And we’re not done. There is more
to appreciate if we look at a numerical example. Suppose that e0 and y0 are in
miles per hour, and that H(0) · A is a dimensionless gain. Table 2.1 illustrates
a miracle: where, with d0 for the desired speed, we have used the algebraic
result that

y0 = H(0)A

1 + H(0)A
d0. (2.2)

Table 2.1 Ranges of k and resulting stability determination

d0 |H(0) · A| e0 y0

55 mph 106 0.000055 54.999945
55 mph 105 0.00055 54.999450
55 mph 104 0.0055 54.894500
55 mph 103 0.055 54.945000
55 mph 102 0.54 54.460000
55 mph 101 5.0 50.000000

This is astounding. We vary H(0) by four orders of magnitude between 106

and 102, and our final speed varies only slightly, between 54.999945 mph and
54.46. And this is the true magic of feedback: the fundamental advantage of
feedback is that it gives you extraordinary immunity to changes in the forward
path. In the same way, using a form of feedback to pour water into a glass frees
us from worrying ahead of time about the details of the glass.

Miracle? Yes. But is there a catch? Yes: we must take care of stability. We
will spend much of the rest of the text developing this topic.
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2.3 Anatomy of a Feedback Loop

In this section, we establish the conventions for talking about systems that we
will use for the rest of the book.

2.3.1 Block Diagrams

The block diagram is an extremely useful pictorial representation of linear
systems in general and feedback systems in particular. The rules governing a
particular block, depicted in Figure 2.4, are actually quite simple:

H(s)
X(s)

x(t)

Y (s) = H(s)X(s)

y(t) = x(t) ∗ h(t)

Figure 2.4 A basic block.

1. X(s) is the input to the block. The block does not affect this input in any
way. That is to say, X(s) could be the input to one block or a million
blocks at once; in the universe of block diagrams, it makes no difference.
In the language of analog circuits, we would say that the block X(s) has
infinite input impedance. In the more general language of systems, we
would say that there are no loading effects.

2. Y (s) is the output of the block, as emphasized by the direction of the
arrows in Figure 2.4. The output Y (s) is X(s)H(s). It bears emphasizing
that Y (s) could be fed to a million different blocks as their input, and yet
according to the ground rules of block diagrams we need not account for
this “load.” In the language of analog circuits where voltages are the
quantities of interest, we might say that the block H(s) functions as an
ideal voltage source with an output impedance of zero.

That’s it, those are the rules. What is important to remember is just how
strong a simplification this abstraction represents. In reality, the boundaries
between parts or “blocks” of a system are never this neat and clean. It is
almost never true, for example, that you can take the output of one element
and drive the input of even one other block without altering the performance
of the driving block. The point is that with intentional design, this can be made
true to a good approximation. And so a block diagram remains a very useful
way to break a complicated system down into easily understood constituent
components.
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There are a few elements that one encounters in block diagrams quite often
and are worth taking special notice of. The first is a gain block, shown in
Figure 2.5. A gain block is a special case of the H(s) system block where

A
X(s)

x(t)

Y (s) = A · X(s)

y(t) = A · x(t)

Figure 2.5 Simple gain block.

the system function is simply the gain A for all frequencies. That means that
in the frequency domain its response is absolutely flat in amplitude and phase
“from DC to daylight,” and in the time domain its impulse response is a scaled
impulse. Its step response is an ideal step with an infinitely sharp rise time.

Another useful special case is the summing junction, shown in Figure 2.6.
A summing junction does exactly what it sounds like, which is to produce at

+

X1(s)

x1(t)

X2(s)
x2(t)


Y(s) = X1(s) + X2(s)

y(t) = x1(t) + x2(t)

Figure 2.6 A two-input summing junction.

its output the sum of its two or more inputs. The inputs and outputs have the
same magical impedance properties that other, normal system blocks have. If
one of the inputs is labeled with a minus sign, then that input is subtracted at
the output instead of added. Note also that the frequency domain relation

Y (s) = X1(s) + X2(s) (2.3)

implies that in the time domain y(t) is the instant-by-instant sum of x1(t) and
x2(t). That is,

y(t) = x1(t) + x2(t). (2.4)
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X1(s)

x1(t)

X2(s)
x2(t)

Y (s) = X1(s) ∗ X2(s)

y(t) = x1(t) · x2(t)

Figure 2.7 Multiplier block.

Finally, we have the multiplier, shown in Figure 2.7. This block is less
common in systems, but you should expect to encounter it from time to time.
When we invoke the multiplier in a system, what we mean is a block whose
output at any instant in time is proportional to the arithmetic product of its two
inputs at that same instant. Note that in the frequency domain the spectrum of
the output is not the arithmetic, point-by-point product of the two input spectra.
Rather, the output spectrum is the convolution X1(s) ∗ X2(s).

In an undergraduate course on feedback or linear system theory at this point,
it would be typical to assign a lot of problems on block diagram manipulation.
It’s not a bad idea to work a few examples, and even one goes a long way. For
example, study the block diagram in Figure 2.8.

A1

A2

1
τs+1

τs
τs+1


Y(s)X(s)

Figure 2.8 Example block diagram.

1. Write an expression for Y (s) in terms of the input X(s).
2. Approximate the transfer function Y (s)/X(s) for |s| � 1/τ . Repeat for

|s| � 1/τ .
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3. Suppose that this block diagram represented an audio playback system,
and that A1 and A2 were gain values set by the listener. We might call A1 a
“bass boost” and A2 a “treble boost.” Explain.

The readers are encouraged to work out this example, and find a few other
examples to study from the recommended texts in the back of this book.
But don’t go overboard for now. You will get as fluent in block diagram
manipulation as your chosen application demands.

2.3.2 Sensors and Actuators

It is easy in the study of feedback systems to get lost in the weeds of block
diagrams and Laplace transforms, forgetting that these are representations of
actual physical systems that we want to behave well. A brief look at sensors
and actuators helps brings a healthy perspective.

One again, a car provides a useful example through its cruise control
system. Let’s look back at Figure 2.3 and get more into the details of the
blocks. Figure 2.9 relabels the blocks to more clearly tie them to the cruise
control function. Starting with the very left of the diagram, the “user input,”

-

User input e(t)
 Accelerator

Car response
to accelerator

Car speed

Speedometer

Figure 2.9 A cruise control block diagram, with slightly more detail.

we encounter the first significant issue in reducing these kinds of system ideas
to practice. When switching on the cruise control, drivers have an idea in their
head about how fast they want to go. At the time of this writing, the maximum
allowable speed on US highways is 65 mph, so let us suppose that that is the
desired speed. The first task of cruise control engineer is to give drivers a way
of translating from the desired speed in their heads to a representation that
is meaningful to an electromechanical system. One way to do this is to give
drivers a means of representing the desired speed as a voltage. This might be
done through a system of buttons on the driver’s control panel, whose inputs to
a microprocessor ultimate result in a voltage applied to the input of the speed
control loop.
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And what range of voltage might this input occupy? As we appear to have
a lot of latitude in this choice, we can settle for now on a range between
0 V and 12 V, and modify that later if practical difficulties arise. Let us further
imagine that federal safety regulations forbid the designers of cars of making
cruise controls that permit speeds higher than 80 mph, and that it likewise
does not make sense to have cruise control on for very low speeds, say, lower
than 30 mph. Making these choices means that 0 V corresponds naturally to
30 mph, and 12 V corresponds to 80 mph. This means that the transfer function
connecting the desired speed to the input voltage to the control loop is given as
follows:

Vcmd = (SD − 30)
12 V

50 mph
. (2.5)

So input to our system diagram can be rendered in greater detail as Figure 2.10

-

Vcmd
SD

(SD−30)·12 V
50 mph

vE(t)

Figure 2.10 Translating desired speed to a control voltage.

It is worth pondering this extremely practical design step. Do not obsess
over the implementation of the (SD − 30)12 V/50 mph. Suffice it to say that is
straightforward to set up an interface in which the user inputs a clear command
in natural units, and internal digital-to-analog converter is deployed to generate
the necessary voltage. The voltage summer is likewise straightforward.

It is after the summer where things get interesting, where we must work
to translate physical reality to the sanitized world of block diagrams. This
is a critical step, because we must capture the dynamics properly if we are
to successfully assess the stability of the system that we design. The first
step in the process is to properly model the kinematics of the car, which are
determined by Newton’s law F = Ma, or more expanded,

acar = 1

M

∑
n

F . (2.6)

That is, the acceleration of the car is equal to the sum of forces exerted on
the car divided by M , the car’s mass. And what forces are involved? The most
obvious force involved is that provided by the motor by turning the wheels
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which, because of friction, result in a forward push on the car. We will call
this Fm. We will suppose that this force is proportional to the degree to which
we press the accelerator pedal,1 and that in our automated control system we
make this force proportional in turn to an internal voltage vE. So the force that
the motor ultimately exerts on the car, Fm, is for us

Fm = k · vE. (2.7)

There are many other forces exerted on the car, such as friction in the internal
moving parts and any slope (up or down) that the car happens to be on. To keep
things simple, let’s focus on one such force, wind resistance, and that we are
moving slowly enough to experience viscous resistance:2

Fw = −μScar. (2.8)

The kinematic equation governing the speed of the car is thus given by

Macar = k · vE − μScar. (2.9)

Now overall we are interested in the dynamics of a cruise control system,
which governs the velocity of the car, not the acceleration. So it turns out to be
helpful to cast relevant equations in terms of Scar instead of acar. We can do so
by remembering that

acar = d

dt
Scar. (2.10)

The kinematic expression governing the speed of the car now becomes

M
d

dt
Scar = k · vE − μScar, (2.11)

and an important milestone in our development is complete. We have a
differential equation that describes the important dynamics of the system, and
we are now most of the way to a block diagram representation. The next step
is to take the Laplace transform of both sides of Eq. 2.11, because the form of
the resulting equation leads easily to a block diagram. We now have

MsScar(s) = k · VE(s) − μScar(s). (2.12)

1
Readers will note that we are doing an awful lot of “supposing,” making educated guesses
about how the system works. These guesses and assumptions should be checked, of course. But
it is an immensely clarifying exercise to go first through this “rough draft” of the design to get
one’s mind around the critical, fundamental issues.

2
Viscous resistance occurs when an object is moving slowly enough through a fluid (air in this
case) to experience a retarding force proportional to the velocity. We don’t have to go too fast
before drag gets much worse, and goes as the square of the velocity.
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We can solve for Scar(s) to obtain

Scar(s) = k · VE(s)

M(s + μ)
. (2.13)

We can at last write down the first part of our block diagram, the forward
path, as shown in Figure 2.11. For now, the forward path contains the transfer
function connecting the actuator input to the output variable that we care about.
In this instance the actuator is the amalgamation of electromechanical parts
that give rise to a torque exerted on the wheels by the engine, and the input
is the voltage vE. Note that we’ve done a little bit of looking ahead, in that

-

Vcmd
SD

(SD−30)·12 V
50 mph

vE(t)
k/M

1
s+μ

Scar

Figure 2.11 The forward path of our cruise control loop.

at this stage the summing block is not strictly necessary. But we know that
we are going to be building a feedback system, and most feedback systems the
actuator is driven with a signal that is linearly related to the instantaneous error
(hence the “E” in vE). We’ll get that to now.

What is missing from this feedback loop is some kind of sensor, with which
we will “close the loop.” That is, we have our desired speed represented as
command voltage vcmd, and we now need some measurement of the actual
speed we have achieved so that we can “know” if we have achieved our goal.
Part of designing this sensor is making a decision about how it will represent
its measurement internally to the system. Since we have been representing
all variables as voltages so far, it is natural to imagine a speed sensor that
represents speed in terms of voltage. Say that we buy this sensor, and that it is
perfectly linear, and that it represents 0 mph as 0 V. Moreover, let’s say that this
sensor is capable of measuring speeds up to 120 mph, and that is represents
this top speed with an output voltage of 12 V. The relationship between the
measured speed and the output voltage is now

Vmeas = 12 V

120 mph
· Scar (2.14)

= 0.1 V/mph · Scar.

Notice that right away, we have an issue with how we have set up our system.
The problem is that we do not have agreement between our feedback and our
command paths in terms of equivalence between speed in mph and voltage.
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For example, in the command path 0 V corresponds to 30 mph, whereas in
the feedback path 0 V corresponds to 0 mph. Also note that an increment of
1 mph in the command speed corresponds to a change of 0.1 mph · 12 V

50 MPH =
24 mV, whereas in the feedback path a 1 mph change corresponds to a
voltage increment of 100 mV. Pause to understand this as fundamentally a user
interface problem: the feedback loop will always act to drive the error signal
vE to zero, and this lack of agreement means that our speed commands will be
misinterpreted.

A reasonable first step is to adjust the command path to have the same
incremental gain as the feedback path. Things like enforcing the limit that
the command should never fall below 30 mph can be handled by a devoted,
probably software-driven user interface. The new diagram is now shown in
Figure 2.12.

-

Vcmd vE(t)


1 V
10 mph

1 V
10 mph

k/M 1
s+μ

Scar
SD

Figure 2.12 Next iteration of the cruise control block diagram.

After all of that, we finally have a block diagram that we can go back to our
desks with and analyze. We are interested in the “dynamics” of the system: Is it
stable? How fast does it take to settle to the commanded speed? Is its stability
easily compromised by things like component tolerances? How accurate is it?
The overall point of this exercise is to give the readers a start on being able to
model sensors and actuators for the purpose of designing a feedback system.
For this example the actuator was the electromechanical chain that reacts to
an input voltage by exerting torque on the car’s wheels, causing the car to
accurate. The sensor takes a measurement of the car’s speed, and represents
that speed as a voltage. We note in passing that a phenomenal number of
physical quantities can be probed by transducers whose response is detectable
electronically. This is one reason that so many modern control systems are
implemented electronically, as opposed to by mechanical engines.

We close this section by noting that it is extremely common, even normal, to
get through a whole course on feedback and/or linear system theory and have
not a clue about how to apply it to a real-world project. Don’t be dismayed if
this describes you. Studying this cruise control example is a good start.



66 2 The Basics of Feedback

2.3.3 Loop Transmission, Negative Feedback,
and Stable Equilibria

We will find that something called the “loop transmission” is of absolutely
central importance in the study of feedback systems. For now, consider what
will become our generic feedback loop in Figure 2.13.

-

X(s) E(s)

 G(s)
Y (s)

H(s)

Figure 2.13 Our generic feedback loop block diagram.

The loop transmission is a transfer function that can be found by breaking
the loop, injecting an input in on one side of the break, and determining
the transfer function between that injected signal and the signal that comes
back on the other side of the break. A picture helps here; see Figure 2.14.
The loop transmission for this system is Ytest/Xtest, which works out to be

-

 G(s)

Ytest(s) Xtest(s)

H(s)

Figure 2.14 Breaking the loop and determining the loop transmission.

G(s)H(s). Technically, of course, we have dropped a minus sign associated
with the summing junction and the true loop transmission according to the
given definition would be −G(s)H(s). But dealing with such “negative
feedback” systems is so common as to be the almost universal norm, and so
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the convention is to just identify G(s)H(s) as the loop transmission without
the minus sign.

The “negative feedback” nomenclature deserves some explanation. For sim-
plicity, consider the case for which H(s) = 1 (e.g., unity for all frequencies),
and a moment for which x(t) > y(t). In the logic of our feedback control
system, what we want is to drive our forward path in such a way as to increase
y. With the minus sign where it is, the instantaneous error

e(t) = x(t) − y(t) (2.15)

is greater than zero. So our actuator, represented by G(s), will be driven by a
positive signal. Moreover, the magnitude of that positive signal will be large
for large errors, and small for small errors. If we assume that our actuator does
not, roughly speaking, “have an inversion,” then this positive error signal will
drive the actuator in such a way as to increase y(t).3

We thus arrive at the essence of “negative feedback.” When perturbed from
equilibrium, which is defined as the error being zero, a properly behaving
negative feedback system responds in such way as to restore itself to this
equilibrium, zero-error state. A good picture to keep in your mind is that of
a ball at the bottom of a bowl, as shown in Figure 2.15.

By way of contrast, the essence of positive feedback is shown in Figure 2.16
and Figure 2.17. Figure 2.16 shows a feedback system where we have put in
an integrator in the forward path. Notice that an equilibrium still exists. In the
zero-error state, the integrator’s output is still and therefore the system output
does not change. However, in any number of scenarios x(t) and/or y(t) could
change. In that instant e(t) becomes nonzero, and the presence of the integrator
combined with the lack of inversion at the summing junction ensures that the
output y(t) will go racing off to as close to infinity as the particular system will
allow. Figure 2.17 illustrates this concept of an unstable equilibrium by way of
a mechanical example.

So that minus sign, that inversion, is critically important. And its importance
points the way to understanding the importance of the loop transmission. We
spoke earlier in this section of the importance of an actuator doing nothing to

3
This example is somewhat unfortunate, in that the longer you ponder it, the more nonsensical
and problematic it gets. If your head starts to hurt from thinking about “signals running around
the loop” instantaneously, and you feel that there must be a problem with this kind of analysis,
then congratulate yourself on a deep level of insight. This is exactly the logical quandary that
necessitates the entire formalism of feedback stability analysis. Rest assured, we are getting to
that. In the meantime, mentally replace G(s) with an integrator k

s as a reasonable proxy for
more general loop dynamics. With patience and continued careful thought, your headache will
fade.
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e(t) = 0e(t) = 0e(t) = 0

Figure 2.15 Illustration of a stable equilibrium. The bowl and gravity provide a
natural restoring force that pushes the marble back to the equilibrium point.

+


∫

dt
y(t)x(t)

Figure 2.16 A system with positive feedback.

upset the inversion “roughly speaking.” Well, what do we make of an actuator
with the transfer function of Eq. 2.16?

G(s) = k

(τ1s + 1)(τ2s + 1)(τ3s + 1)
. (2.16)

If we look at very low frequencies, this actuator imparts almost no phase shift
to an incident sinusoid. At one particular frequency, however, the actuator
imparts a phase shift of exactly −180◦ – which is an inversion! And for
sinusoids at frequencies above that, the imparted phase shift is beyond −180◦.
What does that mean? What can we say about whether or not it is possible to
close a stable feedback loop around this G(s)?
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e(t) = 0e(t) = 0e(t) = 0

Figure 2.17 Illustration of an unstable equilibrium. Once perturbed, there is no
restoring force to return the marble to the equilibrium point.

This is the key question. For now, the point to understand is that because of
the importance of the inversion in the feedback loop, and because of the fact
that dynamics in the loop can cause inversions to appear and disappear on a
frequency-dependent basis, of course a detailed, frequency-domain character-
ization of the loop transmission is central to stability analysis. Pay attention
to this fact as we examine, in the coming sections, root locus techniques, the
Nyquist criterion, and derivatives of these techniques.

2.3.4 Black’s Formula

Black’s formula is an algebraic result that you will use so often that you should
commit it to memory. For the feedback system depicted in Figure 2.18, we have

E(s) = X(s) − H(s)Y (s) (2.17)

and

Y (s) = E(s) − G(s). (2.18)

Substituting for E(s) in the second equation, we derive the transfer function
from the input X(s) to the output Y (s) as

Y (s)

X(s)
= G(s)

1 + G(s)H(s)
. (2.19)
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-

X(s) E(s)

 G(s)
Y (s)

H(s)

Figure 2.18 Illustration for deriving Black’s formula.

This is the closed-loop transfer function of the system. Notice that the loop
transmission G(s)H(s) figures prominently in this expression, and we can
rewrite the closed-loop transfer function as

Y (s)

X(s)
= G(s)

1 + L(s)
. (2.20)

Here is another opportunity to appreciate the centrality of the loop transmission
in the study of feedback systems. We notice that the poles of the closed-loop
system are those values of s for which 1 + L(s) = 0, and are therefore
determined entirely by the loop transmission. A stable feedback system will
have the roots of 1+L(s) entirely in the left-half plane. An ideal oscillator will
have roots of 1 + L(s) resting perfectly on the jω axis. An unstable feedback
system will have one or more roots of 1 + L(s) in the right-half plane. We will
have more to say about right-half-plane poles in Section 2.4.3.

2.4 Delay Complicates Everything

We are slowly but surely working our way up to rigorous stability analysis
techniques. The best way to appreciate these techniques is to first make some
conceptual observations about what must matter for the stability of a feedback
system. We started this process in Section 2.3.3, appealing to and strengthening
your already sophisticated intuition about how a stable system should behave.
We’ll take the next step here by conceptually exploring delay in the loop
transmission.

To imagine why delay must be important in feedback systems, consider a
feedback process from your everyday experience: setting the water temperature
in a shower. Imagine that you are in a hotel room, or at a relative’s house, and
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are therefore unfamiliar with how long it takes for the water to warm up. You
might guess a mixture of cold and hot water, put your hand under the tap,
and feel that the water is very cold. What follows next for many people is
that they crank up the hot water to the maximum, trying to get the water to
heat up faster. After a delay of several seconds, the effect of the “hot water
now!” command is fully and suddenly realized, and your hand shoots back
protectively to avoid the overheated water. Fortunately by this point, there is
no longer an appreciable delay between a faucet adjustment and a change in
temperature of the water. Absent this delay, you quickly and easily converge to
a comfortable water temperature without any “overshoot.”

But now suppose instead that the delay never went away, and that there was
always a 30-second delay between a faucet adjustment and the consequent
water temperature change. What would your strategy be then? How would you
deal with the delay in this feedback loop?

The answer is that you would converge to the final temperature very, very
slowly. You would make very small adjustments, and you would wait for
the full 30 seconds until you were sure that you knew the outcome of the
adjustment before taking another step.4

Slowing down as a means of coping with delay is fundamental to feedback
systems. As your understanding matures, make it a point to come back to
things like the shower example and reconcile it with your growing analytical
abilities. Have fun with them. How different would various competitions
be if the average human reaction time was two seconds instead of 200
milliseconds?5

2.4.1 Phase Response as a Frequency-Dependent Delay

So we expect now that delay complicates feedback control. How does this
show up mathematically? To start, if x(t) is a time-domain signal, then x(t−T )

is that same signal delayed by T . To convince yourself of this, consider that
the part of x that originally corresponded to t = 0 now appears at t = T . In
general, the part that used to correspond at t = t0 now corresponds to t =
t0 + T . Figure 2.19 Illustrates the concept.

4
Actually, that’s not quite true. Once you understood what was happening, you would lose
patience and stop using feedback. You would get the water to the temperature that you liked
once, and then mark the settings somehow so you could always return quickly to them.
Open-loop control, as usual, is a much faster approach. Note that this strategy depends on the
“DC gain” of the system being the the same every time. If you stuck with feedback, you would
have some immunity to this variation in the gain of the forward path.

5
Competitive chess aside.
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x(t) x(t − T)

T

tt

Figure 2.19 What a pure delay looks like for x(t).

Next, we need the Laplace transform of x(t − T). Start with∫ ∞

0−
x(t − T)e−st dt, (2.21)

and do the change of variables to t ′ = t − T. This same integral can now be
written ∫ ∞−T

0−−T
x(t ′)e−s(t ′+T)dt ′. (2.22)

The limits of integration are at first inconvenient. But in real time control
applications, it is often true (or it can often be made true for purposes of
analysis) that x(t ′) = 0 for all t ′ < 0−. Note also that ∞ − T is, well, ∞.
Rewriting now as

e−sT
∫ ∞

0−
x(t ′)e−st ′dt ′, (2.23)

we have our big result, which is that the Laplace transform of x(t − T) is very
simply related to the Laplace transform of x(t):∫ ∞

0−
x(t − T)e−st dt = X(s)e−sT. (2.24)

Similarly, for the Fourier transform we get X(jω)e−jωT.
So a delay leaves the Fourier transform magnitude unchanged. However,

it does impart a phase to X(jω) that linearly increases with frequency. The
slope of that linear increase is the size of the delay, as seen in Figure 2.20.
If you have ever studied feedback before, you know to get nervous when you
see negative phase being piled on to the loop transmission. That said, with a
singularity (a pole or a zero) you can’t get this much negative phase! A pole in
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0 ω

slope = −T

 e−jωT

Figure 2.20 Phase as a function of frequency for a pure delay element.

the loop transmission can add at most 90◦, whereas you can see here that delay
adds an unbounded amount of negative phase as the frequency gets higher.

This linear phase aspect of true delays make them a special case when it
comes to phase responses. For a more general loop transmission transfer func-
tion L(jω), we can express the result of passing sinusoid ejω0t through it as

|L(jω0)|ejω0t e−jφL(ω0), (2.25)

where the phase shift φL(ω0) is equal to  L(jω0). Rearranging the terms of
Eq. 2.25 gives a highly suggestive new form:

|L(jω0)|ejω0t e−jφL(ω0) = |L(jω0)|ejω0

(
t− φL(ω0)

ω0

)
. (2.26)

When we compare this form to that of a general delay x(t − T ), we are
reminded that the phase response of a transfer function is really a frequency-
dependent delay. That is, the transfer function treats each sinusoid at its input
as an individual, delaying each one according to its phase response.

Why bother to see phase response as a frequency-dependent delay? Well,
if you are convinced by Section 2.4 that delay complicates everything, then
you are well positioned to appreciate the phase response as a complete
characterization of the delay through a transfer function. This is why the phase
response figures so prominently in the root locus and Nyquist developments
to come.



74 2 The Basics of Feedback

2.4.2 The Fundamental Oscillation Condition

An oscillator is a system that has poles exactly on the jω axis. Such a system
will have a ZIR of the form

yZIR(t) = C1e
jω1t + C∗

1e−jω1t + C2e
jω2t + C∗

2e−jω2t + · · · (2.27)

For almost any set of initial conditions, the time evolution of such a system
consists entirely of a superposition of nondecaying, nongrowing sinusoids.
Usually when we think of oscillators we do so with systems that oscillate at
a single frequency in mind, in which case we may say only C1 (and C∗

1 ) in
Eq. 2.27 are nonzero.

It is very common for feedback systems that are not properly designed to
oscillate instead of carry out their intended control function. The fundamental
oscillation condition is a condition on the loop transmission that, when
satisfied, results in the closed-loop system exhibiting oscillations. Which is
to say, when the fundamental oscillation condition is satisfied, the closed-loop
system has poles on the jω axis.

We refer once more to a generic closed-loop feedback system, now shown
in Figure 2.21. The closed-loop transfer function is

-

X(s)

 L(s)

Y (s)

Figure 2.21 An even more generic feedback block diagram. Note that this form
is equivalent in every way to Figure 2.18 if we have L(s) = G(s)H(s) and place
a block 1/H(s) between the input X(s) and the input of the summing junction. We
will often make this transformation going forward as we narrow our focus to the
stability implications of L(s).

Hc(s) = L(s)

1 + L(s)
. (2.28)

If Hc(s) has poles on the jω axis, then it is necessarily true that for some ω0,

1 + L(jω0) = 0. (2.29)

This is a complete mathematical statement that captures what must be true
of the loop transmission in order to support oscillation. It is customary to
explicitly acknowledge the complex nature of L(jω) and break Eq. 2.29 into
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two pieces, one governing its magnitude and one governing its phase. We say
that a feedback system will oscillate at frequency ω0 if the loop transmission
satisfies

|L(jω0)| = 1 (2.30)

 L(jω0) = −π .

The fundamental oscillation condition is extremely important. If an engi-
neer remembers only one thing about feedback systems, this is it. But be
careful. Most internalize it by thinking wrongly about sinusoids “running
around the loop, reinforcing themselves.” If this makes no sense to you, then
good! Don’t try to understand this line of reasoning, and spare yourself the
trouble later of divorcing yourself from a false model that the human brain
seems almost hard-wired to accept. If you find yourself nodding approvingly
and saying to yourself, “That’s exactly what I remember,” then skip ahead to
Section 4.2 before coming back here.

2.4.3 Poles in the Right-Half Plane Are Bad

A well-functioning cruise control system in a car is a fine example of a stable
feedback system. The howling that results from a microphone getting too close
to the speaker that it drives bespeaks an unstable feedback system. Very loosely
speaking, stable feedback systems behave the way we want them to, faithfully
following our commands until we exceed the bandwidth limit of the system. In
contrast, unstable feedback systems go crazy as soon as you power them up.

We say that an LTI system is unstable if its transfer function has poles in
the right-half plane. It is common to use a “pole-zero” diagram to represent
poles and zeros pictorially. A pole-zero diagram is exactly what it sounds like:
it has a real axis and an imaginary axis, and the poles and zeros of the transfer
function in question are plotted there. For example, the transfer function

H(s) = (s + 10)2

s(s + 100)(s + 10 + 10j)(s + 10 − 10j)(s − 10)
(2.31)

has the pole-zero plot shown in Figure 2.22. A common convention is that a
pole is represented by a × and a zero by a ©. The right-half plane is exactly
what it sounds like: it is the infinite plane that includes everything to the right
of the σ = 0 line. This particular transfer function has a pole at s = 10,
which is in the right-half plane (RHP). It follows that the system it represents
is unstable.
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Right-half plane
jω

σ

Figure 2.22 Pole-zero plot for Eq. 2.31. The right-half plane is the shaded region.

So how, exactly, does it “go crazy” upon power up? Well, the ZIR for this
system will looking like

yZIR(t) = C0u(t) + C1e
−100t + C2e

−10t ej10t + C∗
2e−10t e−j10t + C3e

+10t .
(2.32)

It’s that last term that is trouble, because it causes the ZIR to go rocketing off
to infinity as time progresses, utterly overshadowing whatever else is going on
in the system.

Right-half-plane poles occur in feedback systems when we fail to properly
“compensate” them. Referring to Figure 2.23, if G(s) represents the actuator
and H(s) the sensor and feedback path, Hc(s) are the dynamics that the
designer introduces in order to get the desired behavior for the feedback
system. We call Hc(s) the “loop compensation,” or sometimes the “loop
filter.” Choosing the dynamics of Hc(s) is called “compensating” the loop.
Do we want the system to respond rapidly or slowly? Do we expect large
manufacturing variation in G(s), and therefore need the system to remain
stable in the face of this variation? Is it important that the DC error of
the control system be extremely small? These questions and more are what
the designer answers by choosing the loop compensation Hc(s). Root locus
techniques and the Nyquist stability criterion are two tools that the designer has
to ensure that whatever choice they make results in a stable feedback system.



2.5 Root Locus Techniques 77

-

Hc(s) G(s)

H(s)

Figure 2.23 A feedback loop with a designer-supplied “compensator,” or “loop
filter.”

2.5 Root Locus Techniques

The study of root locus techniques is a great introduction to the design of
feedback systems. When undertaking such a design, or “compensating the
feedback loop,” you really have only two tools at your disposal. The first tool
is introducing a (frequency-independent) gain in the system. The second tool
is adding “dynamics” to the loop in the form of poles and/or zeros. The picture
you should have in your mind is shown in Figure 2.24. Our convention will be

-

Hc(s) G(s)

H(s)

k

Figure 2.24 Separating the compensator into a “gain” part and a “dynamics” part.

that Hc(s) has a DC gain of unity so that we cleanly separate the “gain” part of
the compensation from the “dynamics” (the part that is frequency-dependent).

As we plunge into the design and analysis of feedback systems, it will
be useful to use as few symbols as possible. We already know that the
loop transmission is all that matters for stability, and going forward we will
lump all the dynamics of these systems into L(s). For example, referring to
Figure 2.24:

L(s) = kHc(s)G(s)H(s). (2.33)
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Whenever you are analyzing a feedback system, it is natural and useful to
transform the original system into a generic, unity-gain feedback loop as shown
in Figure 2.25. Take some time to convince yourself, using Black’s formula,

-

-

1
H(s)





G(s)

H(s)

H(s)G(s)

Figure 2.25 Redrawing a generic feedback loop as a unity-gain feedback loop.

that these systems are equivalent. Also note that the manipulation performed
here, with the block H(s) moving through the summing junction, can be
validated on the basis of simple algebra. This is worth understanding and then
using. The nice thing about transformation of Figure 2.25 is it provides a nice,
visual separation between ideal closed-loop transfer function, 1/H(s), and the
unity-gain feedback loop whose stability needs to be analyzed.

We’ll actually make one more choice that makes analysis easier. It will be
useful to keep a dimensionless gain k as a free parameter, and not lump it
in with the rest of the loop transmission. So going forward, instead of as in
Eq. 2.33 we will identify the loop transmission of Figure 2.24 as

L(s) = Hc(s)G(s)H(s) (2.34)

and focus our stability analysis on the modified block diagram of Figure 2.26.
Remember that the 1/H(s) block has not disappeared. When we go back

to compute the closed-loop response to some stimulus, we must include it.
For purposes of analyzing stability, however, all the essentials are contained in
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-

k L(s) = Hc(s)G(s)H(s)

Figure 2.26 Redrawing Figure 2.24 as a unity-gain feedback loop for purposes of
stability analysis. Note that we have dropped the 1/H(s) that properly belongs on
the left side of the summing junction, as it is unnecessary for feedback stability
analysis. However, we must put it back if we go to examine the complete closed-
loop response.

Figure 2.26.6 This will be our focus as we study root locus techniques and the
Nyquist stability criterion.

2.5.1 The Problem We’re Trying to Solve

It just so happens that an examination of Webster’s definitions of “root” and
“locus” brings some clarity to the study of root locus techniques. According to
Webster, the relevant definition of a root is a number that reduces an equation
to an identity when it is substituted for one variable. For purposes of this
chapter, the equation that we care about is

1 + kL(s) = 0, (2.35)

and the identity that it reduces to is 0 = 0 when s is chosen to be a root. Roots
of this equation are the all-important poles of the closed-loop feedback system.

Webster’s definition of “locus” is the set of all points whose location is
determined by stated conditions. In our case, the “stated condition” here is that
1 + kL(s) = 0 for some value of k, and the “points” whose locations matter to
us are points in the s-plane.

Putting these two definitions together, we arrive at a definition of “root
locus.” The root locus is simply the set of all points in the s-plane that satisfy
the equation 1 + kL(s) = 0 for some value of k.

A simple example goes a long way toward clarifying the problem that we
are trying to solve. Consider the feedback system in Figure 2.27. The question

6
We assume here that H(s) is open-loop stable. Remember that the feedback path observes the
output and, together with the summing junction, reports back how close that output is to the
command input. If that feedback path itself is unstable, you have problems.
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-

k L(s) = 1
s2

Figure 2.27 A first example for root locus analysis.

is, where are the closed-loop poles? Using Black’s formula, we can write down
the closed-loop transfer function easily as

Y (s)

X(s)
= k/s2

1 + k/s2
(2.36)

= k

s2 + k
.

The closed-loop pole locations are where the denominator equals zero:

s = ±j
√

k. (2.37)

Evidently the pole locations depend on k. We can start to examine this depen-
dence by constructing Table 2.2, a table of k values and the corresponding pole
locations. In addition to representing it as a table, we can graphically represent

Table 2.2 A few values of k

and the corresponding
closed-loop pole locations

k Pole locations

0 0, 0
1 ±j

2 ±j
√

2
10 ±j

√
10

the dependence of the pole locations on k using a parameterized pole-zero plot,
as shown in Figure 2.28. This figure shows that for any value of k, the closed-
loop poles will remain on the jω axis and therefore this system is an ideal
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jω

σk = 1

k = 1

k = 2

k = 2

k = 10

k = 10

Two at k = 0

Figure 2.28 Precursor to a root locus plot.

oscillator. The frequency of oscillation is determined by the constant k: the
larger k is, the greater the frequency of oscillation.

Now we can go one step further, which is to preempt the difficulties of
maintaining ever more rows in our table or an ever more crowded pole-zero
plot as we consider more values of k. What we do is graphically embrace the
continuous nature of k, and sketch out in the complex plane the continuous
locus of possible pole locations. Such a plot is called a root locus plot, and the
example corresponding to our system is shown in Figure 2.29. The convention
is that the arrows on the locus show the direction of migration for the closed-
loop poles as k increases.

The promise of root locus techniques is that they will yield guidance and
insight that is useful for design. What does this elementary root locus plot
tell us about compensating this particular closed-loop system? We see quickly
by looking at the root locus plot that if our goal is to build a stable control
system we cannot do so if our compensation block is limited to a frequency-
independent gain with no poles or zeros.7 For any value of k that we choose,
we will wind up with an oscillator whose oscillation frequency is determined
by k. If we want to control this system, we will have to be more clever
than that.

7
So-called proportional control.
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jω

σ

Figure 2.29 Our first, true root locus plot. The arrows on the loci show the
direction in which the closed-loop poles move as k increases.

2.5.2 The Amazing Things You Can Do with
Two Simple Conditions

There is a glaring hole in our otherwise promising development so far which is
quickly exposed by a short experiment. Using only hand analysis, try to repeat
the exercise of Section 2.5.1, but using the loop transmission

L(s) = (s + 1)

s2(s + 100)(s + 200)(s + 103)
. (2.38)

Our new method doesn’t look so promising now, does it?
Or at least it didn’t, until the advent of powerful numerical solvers capable

of factoring arbitrary polynomials in the blink of an eye. But back when root
locus techniques were invented, such computational aids did not exist.

So big deal, right? Can’t we just stop there, and rely on fast computers to
generate root locus plots for us if we are careful? Why should anyone bother
with the rest of this chapter, which helps you to sketch root locus plots quickly
by hand?

Experienced engineers will smile ruefully at such questions. Computational
tools are good and helpful, and do spare you from having to obtain exact
numerical answers via your skill at a drafting table. But as any designer will
tell you from painful, personal experience, there is nothing more hopeless than
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an engineer blindly surfing a simulator through a complex design space. If you
are serious about designing things that work, you must have methods that give
you conceptual insight into the design space. For feedback systems, root locus
methods form an excellent toolset for deciding on compensation strategy. Can
I add an integrator to L(s) to drive down the DC error and still hope to stabilize
the system? If k varies during the course of normal operation, will that result in
closed-loop poles being pushed into the right-half plane? These are the types
of questions that root locus methods help to answer quickly.

So the question is, how do we do a root locus plot with a complicated loop
transmission, as in Eq. 2.38? First, let’s make the difficulty explicit by writing
out the closed-loop transfer function. Using Black’s formula, we have

Y (s)

X(s)
= k(s + 1)

s2(s + 100)(s + 200)(s + 103) + k(s + 1)
. (2.39)

Even though we know the exact location of the open-loop poles, for the closed-
loop poles we are left factoring a fifth-order polynomial that is parameterized
in k. We have no choice but to throw ourselves onto a computer solver for
answers, right?

Wrong. Computer solvers will always have an important place in engineer-
ing design. But it turns out that the locus of the closed-loop poles can be
sketched by hand due to an astonishing number of implications of two simple
conditions. In order for s0 to be a pole of the closed loop system, it must satisfy

1. |kL(s0)| = 1;
2.  L(s0) = −180◦n, where n ∈ {. . . − 3, − 1,1,3 . . .}.
Most root locus developments start this way, by defining two conditions, the
magnitude and angle condition, in order. But it turns out that we can simplify
things even more by observing that the angle condition is the key. If we can
find a point s0 in the complex plane for which the angle condition is satisfied,
we then know that the angle condition is satisfied for a gain k given by

k =
∣∣∣∣ 1

L(s0)

∣∣∣∣ . (2.40)

So before diving into all of the rules for doing root locus plots, it will help
you if you internalize the following definition of a root locus plot: The root
locus is the locus in the complex plane consisting of all points for which the
angle condition is satisfied. With just this rule, and a review of the geometric
interpretation of poles and zeros (see Section 1.5.2), you can probably get
pretty far on your own with root locus plots.
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Take the example from Section 2.5.1, where we had a loop transmission
of k/s2. If we draw a pole-zero plot of the loop transmission, it looks like
Figure 2.30. What we notice is that there are two regions in the s-plane where
the angle condition can be satisfied: the jω axis above the origin, and the jω

jω

jω

σ

σ

Two at k = 0

+jω axis must be on locus

−jω axis must be on locus

Contours must go this way
for magnitude condition

Figure 2.30 Arriving at Figure 2.29 using the angle and magnitude conditions.
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below the origin. Why? Because the phase imparted by the poles of the loop
transmission (located at the origin) is an odd multiple of −180◦ only in these
two places: −180◦ along the jω axis above the origin, and −540◦ along the jω

axis below the origin. So right away, without having to construct any tables, we
can immediately mark off the regions that belong on the root locus as shown
in Figure 2.30. The only thing that we then must figure out is the direction
the closed-loop poles migrate as the gain k is increased. Here, admittedly, the
magnitude condition comes in handy. For small values of k, |s| must also be
small in order to satisfy |k/s2| = 1. Similarly, for large values of k, |s| must
grow to keep |k/s2| = 1. Evidently the arrows on the root locus plot point
outward from the origin.

With the preceding example as a guide, an excellent exercise is to puzzle
over the following examples. Get as far as you can, then compare with the
answers at the end of this chapter. Most importantly, try to see clearly why your
answer may differ from what is given. Finally, and this is critical, if you’ve got
one wrong, try it again with the book closed and on a new, blank sheet of paper.
This is an honest test of whether you’ve got it:

1. L(s) = k/s

2. L(s) = k/s(s + 1)

3. L(s) = k/(s + 1)3

4. L(s) = k(s + 2)/s(s + 1)

5. L(s) = ks/(s + 1)3

A Short List of Root Locus Rules
We have come to the point where a few rules about plotting root locus plots are
in order. It is actually not all that useful to start by memorizing these rules. In
so doing, you run a considerable risk of missing out on the understanding that
is so critical. It is far better to understand where the rules come from first, and
then let the memorization come from their repeated application.

• Rule 1 The number of branches, or paths of closed-loop poles, is equal to
the number of open-loop poles.

Take the opportunity now to remind yourself of the thought experiment that is
going on. We have a loop transmission of the general form k · n(s)/d(s), and
the experiment is to vary the parameter k from near zero to infinity, mapping
as we do so the locations of the closed-loop poles. These closed-loop poles are
the roots of the characteristic equation

1 + k
n(s)

d(s)
= 0, (2.41)
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which we can manipulate into the form

d(s) + kn(s) = 0. (2.42)

Remember that the transfer function of a physical system has at least as many
poles as zeros. This means the that the polynomial d(s) is of order greater than
or equal to that of n(s). This in turn means that the order of d(s) is equal to the
order of Eq. 2.42, and we conclude that the number of roots of the characteristic
equation is equal to the number of poles of the open-loop system. The simple
fact of closing a feedback loop around a system does not alter the number of
poles.

There is something very satisfying about this humble rule. While feedback
does not add or subtract poles to a system, the dynamics of the closed-loop
system are otherwise profoundly altered. It is often true, for example, that the
closed-loop system will settle much faster in response to a step than the open-
loop system would. Lest you think that you have gotten something for free,8

what we have usually given up is gain. That is a trade-off that is not really
visible in root locus plots, but look out for this moving forward.

• Rule 2 The branches of a root locus plot begin, for values of k near zero, at
the open-loop pole locations, and end, as k approaches infinity, at the
locations of the open-loop zeros.

This rule actually gets a little confusing unless you remember that trans-
fer functions with more poles than zeros are considered to have zeros at
infinity. That is, 1/s has a pole at the origin and one zero at infinity;
(s + 1)/(s + 2)(s + 10) has two poles, one zero at −1, and one zero at infinity.9

That said, validation of Rule 2 is found through considering the magnitude
condition. We require

|kL(s)| = 1. (2.43)

For k near zero, |L(s)| must be correspondingly close to infinite to satisfy the
magnitude condition. It follows that for small k, the locus in in the vicinity
of the poles of L(s). Similarly, for k approaching infinity, |L(s)| must be
correspondingly close to zero. It follows that the branches of the root locus
terminate on the zeros of L(s).

8
In engineering, we never get something for free.

9
In the limit of large s, (s + 1)/(s + 2)(s + 10) ≈ 1/s, and so “has a zero of multiplicity one at
infinity.” Similarly, the transfer function (s + 1)/(s + 2)(s + 10)(s + 100), which is ≈ 1/s2 in
the limit of large s, is said to have two zeros at infinity, or “a zero of multiplicity two at
infinity.”
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• Rule 3 Branches of the root locus lie on the real axis to the left of an odd
number of real poles and zeros.

First, remind yourself that complex conjugate pole pairs contribute nothing to
the phase of points along the real axis. From there, realize that Rule 3 is a
simple consequence of the angle condition:

 L(s0) = −180◦ · n,n ∈ {. . . − 3, − 1,1,3 . . .}. (2.44)

Figure 2.31 illustrates Rule 3.

jω

σ

off off off

on on on on

Figure 2.31 Illustrating Rule 3 for root locus plots: branches of the root locus lie
on the root axis to the left of an odd number of real poles and zeros. Note that the
complex pole pair in this figure is irrelevant for the application of Rule 3.

• Rule 4 If a branch lies on the real axis between two poles, the locus must
break away from real axis somewhere between those two poles. Similarly, if
a branch of the locus lies between two zeros, there must be an entry point
between the zeros.

Figure 2.32 shows an examples of Rule 4. In each case, convince yourself using
the geometric view of poles and zeros that the drawn locus is reasonable.

One more:

• Rule 5 As k gets large, P − Z branches of the locus go off to infinity
(Rule 2), where P is the number of open-loop poles and Z is the number of



88 2 The Basics of Feedback

jω

jω

L(s) = k 1
s(s+1)

L(s) = k
(s+2)
s(s+1)

σ

σ

Zero “off at infinity”

Figure 2.32 Illustrating Rule 4 for root locus plots. For the bottom figure, we say
that L(s) has two real poles, one real zero, and one zero “at infinity,” because
in the limit of large |s| the transfer function looks like k

s
. By the same logic,

the loop transmission 1
s(s+1)

is said to have two zeros at infinity. You might be
justly concerned that these transfer functions go to zero for large |s| regardless
of the angle of s. For purposes of Rule 4, though, use Rule 3 to keep yourself
grounded.
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open-loop zeros. These branches that go off to infinity approach asymptotes
that have angles αi to the real axis given by

αn = (2n + 1) · 180◦

P − Z
, (2.45)

where n = 0,1, . . . ,(P − Z − 1), and the centroid σ of the asymptotes lies
on the real axis at

σ = pi − zi

P − Z
. (2.46)

That’s the short list of root locus rules, and enough to get started. For the
curious, a more complete list of root locus rules can be found in any one of the
feedback texts listed in Chapter 6. It bears repeating that the angle condition is
a reliably excellent guide to finding one’s way through root locus plots. If you
remember only that first, and the magnitude condition second, then the major
features of even the most complicated root locus plots will be understandable.

2.5.3 Root Locus as a Design Tool

The hard thing about root locus is that, from the standpoint of hand calcula-
tions, it is very difficult to get numerical results. Imagine doing a root locus
plot, and discovering to your surprise and delight that if the gain k is tuned just
right, you can put your closed-loop poles exactly where you want them to be.
You discovered this, again in your imagination, by fluently applying all of the
rules of root locus plot drawing. Now that you know that a suitable value of k

exists, what is the numerical value of k?
Exactly. You have no idea, and there’s nothing in the root locus methodol-

ogy that has equipped you to even begin to answer that question.
The other reason root locus plots are difficult is that it is rarely practical

to draw them to scale. It is not uncommon, for example, for an open-loop
system to have poles that are several decades apart (a pole in the tens of
Hz, for example, and then poles scattered from 100 kHz to 1 MHz and
beyond). Capturing such a state of affairs on a pair of linear axes is completely
impractical. The right attitude to take about root locus plots is that they are
cartoons, even caricatures, that highlight the most outstanding features of a
given system in a way that is useful for design.

A good root locus plot can be a tool that tells us whether a design concept
for stabilizing a feedback system is sound or not. For example, suppose that
the element that we are trying to control through feedback is well modeled
by a single, low-frequency pole and a DC gain of a0, shown in Figure 2.33.
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Input Outputa0
τs+1

Figure 2.33 Simple model of a system block that we will control using a feedback
loop.

If we are “controlling this block using feedback,” what we mean is that we
will include this block in the forward path of a feedback loop according
to Figure 2.34, and choose H(s) such that the system output follows the
command input according to our dynamic criteria.

-

Command Outputa0
τs+1H(s)

Figure 2.34 Closing the loop around the block of Figure 2.33.

Suppose that what matters to us is to have high speed following, as high as
possible, while still ensuring that there is no DC error in response to a step. As
we will be reminded in Section 2.6.2, we can get zero DC error by placing a
pole at the origin in the forward path. As a first step in our exploration of the
design space, then, what we might do is put a pole at the origin, and see what
happens on the root locus plot.

The root locus plot is shown in Figure 2.35. (Note the application of rules
3 and 4 from our short list.) First, the good news: for any choice of k, we
never get a pole in the RHP! This means, technically, that the system is always
stable. We also know that by placing a pole at the origin, we have won the battle
against DC errors. But what about other aspects of the dynamic response? Are
there any sensible limits on the value of k?

It turns out that this is a good time to get acquainted with how a complex
pole pair in the closed-loop response causes a feedback system to behave. In
this particular example it is clear that the closed-loop behavior will be entirely
determined by a single complex pole pair, but it will often be true in real life
that the behavior of a feedback system is well approximated by that of a single
complex pole pair. Let’s explore this.
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jω

σ

Pole that was already here Pole added at origin
for zero DC error

Figure 2.35 Using an integrator as the compensator and closing a loop around the
block of Figure 2.33.

Why Are So Many Feedback Systems “Dominated”
by a Single Complex Pole Pair?

We have talked of root locus techniques as a way of evaluating strategies for
designing feedback systems. What we are missing is a basis for evaluation of
a root locus plot: does the strategy in question result in a stable system with
“acceptable” characteristics?

It will turn out that the behavior of many feedback systems is dominated
by either a single closed-loop pole, or a single complex pair of closed-loop
poles. The acceptability of the system behavior will in turn by determined
by the geometry of these dominant poles on the pole-zero diagram. We must
therefore address the question of “dominance” of a pole or pole pair, and then
the characteristics that these poles imbue to the behavior of the closed-loop
system.

First, the question of dominance. Consider a transfer function with two left-
half-plane poles, where we have normalized the transfer function such that its
DC gain is unity:

H(s) = p1p2

(s + p1)(s + p2)
(2.47)

= p1

s + p1
· p2

s + p2
.
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p1
s+p1

p2
s+p2

Figure 2.36 A two-pole system.

A block diagram of such a system is shown in Figure 2.36. Now, consider the
step response of such a system. If h(t) is the impulse response of the system,
it can be shown that the step response h(t) ∗ u(t) is

h(t) ∗ u(t) = p1p2

p2 − p1

(
1

p1
(1 − e−p1t ) − 1

p2
(1 − e−p2t )

)
u(t). (2.48)

The key from this point on is to realize that in many common systems, it just
so happens that the poles tend to be widely spaced, or there tends to be one
or two poles that are much slower than all of the rest. If that is the case, say,
|p1| � |p2|, then Eq. 2.48 simplifies to

h(t) ∗ u(t) ≈ (1 − e−p2t u(t)). (2.49)

That is, the time-domain step response looks very much as though it were that
of a single-pole system, where that pole corresponds to the slower of the two
poles. Checking: for |p2| � |p1|,

h(t) ∗ u(t) ≈ (1 − e−p1t u(t)). (2.50)

Again, the slower pole “dominates” the dynamics of the system. Over and over
again, you will find that the poles and zeros closest to the origin are the most
“important” in a system.

For the inexperienced, there may at first be some frustration when seeking
to apply this insight. One question: what degree of inequality satisfies |p1| �
|p2|? The answer is that this is the approximator’s art and it depends on how
accurate you want to be in your analysis. A useful starting point is that you
can assume that pole i dominates pole j if |pi | < 1/10 × |pj |. That is, if the
poles are separated by an order of magnitude, the slower one is the one that
matters most.

Now that we know what it means for a pole or pole pair to “dominate,”
let’s return to the question of why it is so common for closed-loop feedback
systems, for all their apparent complexity, to appear well approximated by
a single pole or complex pole pair. Start by understanding that that if you
are even bothering with the details of feedback theory, there is an inherent
aggressiveness in your design approach. You are saying, in effect, “How can
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I absolutely maximize performance of this feedback system, subject to the
constraint of keeping it stable?” When you stop optimizing, you are almost
always doing so because you have reached a point where a closed-loop pole
or pair of poles are as close to the right-half plane as you can tolerate. It is
normally true that these closed-loop poles, in their proximity to the right-half
plane, are also much closer to the origin than all of the other singularities.
It is because they are closer to the origin that they dominate the closed-loop
behavior.

Stability and the Characteristics of Second-Order Systems
For reasons described in the previous section, it will often happen that
complicated closed-loop systems behave very much as though they are second-
order. That is, the closed-loop transfer function is well approximated by

H(s) = 1

(s + σ0 + jω0)(s + σ0 − jω0)
. (2.51)

It is common to normalize transfer functions so that their DC gain is unity.
Doing that here, the result is

H(s) = 1
1

σ 2
0 +ω2

0
s2 + 2σ0

σ 2
0 +ω2

0
s + 1

. (2.52)

This is mathematically correct, but it is an ungainly and awkward description
of a system that will show up over and over again in the analysis of linear
systems. What we seek is a shorthand, a way of looking at a system dominated
by complex pole pair and describing its behavior without the need to resort to a
complicated equation. The purpose of this small section is to derive commonly
used parameters used to describe second-order systems, and relate them to the
transfer function.

If you kick a second order system with an impulse, the system will respond
according to

h(t) = e−σ0t sin ω0t . (2.53)

It turns out that the way that this system behaves is really determined by the
size of |σ0| relative to |ω0| (assume that σ0 > 0). Consider what happens to
the exponential over the time scale determined by the period of the oscillatory
term. For the period, we have

T = 2π

ω0
. (2.54)
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We are interested specifically in how much the amplitude of the oscillation dies
down relative to the period of that oscillation. The amplitude A(t) is e−σ0t , and
after one period T the amplitude is given by

A(T ) = e
−2π

(
σ0
ω0

)
. (2.55)

Now it is easy to see the importance of the relative magnitudes of σ0 and
ω0. If |ω0| � |σ0|, the impulse response will look like Figure 2.37. We call
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Figure 2.37 Impulse response (not step response) of a heavily damped second-
order system.

this type of response “heavily damped,” because there is very little “ringing.”
That is, the oscillatory response is overwhelmed by aggressive, exponential
decay of the envelope. In contrast, if |ω0| � |σ0|, then after one period T the
amplitude A(t) has hardly died down at all and what we see is the response
in Figure 2.38. We call this response “lightly damped” or exhibiting “a lot of
ringing.” An extreme example of a lightly damped system is a tuning fork,
whose period of oscillation might be on the order of millisecond but which
might take 30 seconds or more after being struck to become inaudible.

Once at peace with the importance of the relative magnitudes of σ0 and ω0,
we can return to a pole-zero diagram and gain fresh insight. Look at the three
cases shown in Figure 2.39. What jumps out right away is that small values of θ
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Figure 2.38 Impulse response (not step response) of a lightly damped second-
order system.

θ
θθ

jωjωjω

σσσ

σ0

ω0
ωn

Lighter damping

Heavier damping

Figure 2.39 The geometry of a complex pole pair and the damping ratio. At just
the point where θ = 0 and the two poles coincide on real axis, the system is said
to be “critically damped.”
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correspond to more heavily damped systems, whereas values of θ approaching
90◦ correspond to lightly damped systems.

Armed with this insight, we return to Eq. 2.52 with the goal of making the
form even a little bit less obscure. At first, θ appears nowhere to be found. But
after dusting off our old trigonometry textbooks and referring to Figure 2.39,
we notice that σ 2

0 +ω2
0 is the square of the hypotenuse of a right triangle whose

sides are of length |σ0| and |ω0|. We follow the convention of the literature of

calling
√

σ 2
0 + ω2

0 the natural frequency, or ωn.10

Continuing to lean on our trigonometric identities, we note that cos θ can
be expressed as

cos θ = σ0√
σ 2

0 + ω2
0

= σ0

ωn
. (2.56)

We are almost to the form of Eq. 2.52 that appears in virtually all textbooks on
linear systems. Having defined cos θ , Eq. 2.52 becomes

H(s) = 1
s2

ω2
n

+ 2
ωn

cos θ · s + 1
. (2.57)

The final step is to assign cos θ to the Greek symbol ζ , which we call the
“damping ratio.” We have at last the canonical form for a second-order transfer
function:

H(s) = 1
s2

ω2
n

+ 2 ζ
ωn

s + 1
. (2.58)

Going forward, remember when ζ ranges between 0 and 1: ζ = 1 corresponds
“critical damping” with two poles coincident on the real axis; ζ = 0 corre-
sponds to no damping, with two poles on the imaginary axis. When ζ > 1, the
situation corresponds to two poles on the real axis, and there is no oscillatory
part of the response.

There are a number of handy relationships that relate characteristics of the
step response Figure 2.4011 and frequency response Figure 2.41 to the damping
ratio ζ and natural frequency ωn.

Further explanation can be found in Thomas Lee’s excellent The Design
of CMOS Radio-Frequency Integrated Circuits.12 Very briefly, here is a list of
useful relationships:

10
Why “natural frequency”? Well, the units are right . . .

11
Note that this figure deals with the step response, whereas Figures 2.37 and 2.38 deal with the
impulse response.

12
Thomas Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge, UK:
Cambridge University Press, 1993).
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Figure 2.40 Second-order step response. This figure is the reference for Eqs.
2.59–2.61.

tr ≈ 2.2

ωh
. (2.59)

Equation 2.59 relates the rise time (tr) of the transient step response to the “3-
dB bandwidth” of the system. You would expect that the higher the bandwidth,
the shorter the rise time. By convention, the rise time is measured from the time
the response gets to 10 percent of its final value until the time it first reaches
90 percent of its final value:

P0 = 1 + exp

(
−πζ√
1 − ζ 2

)
. (2.60)

Equation 2.60 expresses the percentage overshoot in the step response in terms
of the damping ratio. As ζ approaches unity, note that there is no overshoot
and therefore P0 approaches 1:

ts2% = 4

ζωn
. (2.61)

Equation 2.61 is the “settling time,” or ts2%, is the time it takes for the step
response to settle to within 2 percent of its final value:
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Figure 2.41 Second-order frequency response. This figure is the reference for
Eqs. 2.62–2.64.

Mp = 1

2ζ
√

1 − ζ 2

(
ζ <

1√
2

)
. (2.62)

The Mp of Eq. 2.62 is called magnitude peaking in the frequency response.
It is well characterized by this expressions for light to moderate damping, but
becomes invalid when ζ exceeds about 1/

√
2:

ωp = ωn

√
1 − 2ζ 2. (2.63)

In Eq. 2.63, ωp is the frequency at which the magnitude peak occurs:

ωh = ωn

[
1 − 2ζ 2 +

√
2 − 4ζ 2 + 4ζ 4

] 1
2

. (2.64)

Equation 2.64 relates the 3-dB bandwidth, ωh, of the system to the natural
frequency and the damping ratio. As with all of these expressions, try out the
limits of the damping ratio (at zero, and then at 1) just to see if they behave the
way that you expect.
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Also, take a moment to go back to the example of Figure 2.35. We noted at
the time that we could increase k seemingly without limit, and still technically
have a stable system. We asked, in fact, if there were any sensible limits on
the value of k. With your knowledge of second–order systems refreshed, you
can go back now and see that two major things happen as k increases: first,
the system gets faster as ωh increases; second, the complex pole pair has a
smaller and smaller damping ratio ζ . A small damping ratio means lots of
ringing in the step response, and lots of peaking in the frequency response,
and both are usually undesirable in a control system. Going forward, we will
equivalently describe systems whose dominant complex pole pair is lightly
damped as having “small stability margins.” Think about this.

We close this section on the behavior of second-order systems with a
reminder to not lose sight of the forest because of the trees. The “trees” in
this case are all of the math surrounding second-order equations. The “forest”
is the following thought sequence: we often observe in physical systems
that their behavior in response to stimulus appears to be fully determined
by a single, complex pole pair; curious, we looked analytically at why
this is the case; convinced by both experiment and analysis that second-
order systems are everywhere, we developed a convenient shorthand around
concepts like the damping ratio, natural frequency, percentage overshoot, and
frequency peaking. This shorthand is simply convenient in the everyday work
of discussing second-order systems. For example, knowing all of the foregoing
we can now look at a root locus plot and estimate behavior based on the
geometry of the dominant closed-loop pole pair.

2.5.4 Root Locus in Discrete Time

Root locus analysis is fun and interesting, but in real life it is sometimes
complicated by the fact that we quite often do not have the complete pole-zero
map of our system components at hand. Op-amps and motors, for example,
almost never have their poles and zeros specified as part of their data sheets.
So in real life, before you can even do root locus analysis, there is usually
a detailed modeling step wherein you must sniff out approximations to the
relevant system functions.

An exception to this rule occurs when all aspects of the system are neatly
contained in the internals of a discrete-time signal processor. We need only
look at the code and/or the schematics to know exactly where all of the poles
and zeros lie. Root locus techniques shine here, and so it is worth spending a
moment on how to apply root locus in this context.
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It turns out there are two aspects to the discussion. The first concerns how
the closed-loop poles move in response to varying the parametric gain k, and
the second concerns interpreting the resulting pole-zero diagram.

Root Locus Rules
Figure 2.42 shows an example diagram for a discrete-time feedback control
system. The open-loop poles are α = rαej�α and β = rβe�β . The open-loop
transfer function is

-

 k
z−1

1−αz−1
z−1

1−βz−1

Figure 2.42 A DT feedback system.

kz−2

1 − (α + β)z−1 + αβz−2
, (2.65)

which we can write as

k

z2 − (α + β)z + αβ
. (2.66)

If we ask ourselves how the closed-loop poles behave as k varies, and if poles
are stil the values of z for which the closed-loop transfer transfer function
denominator vanishes, then . . . the problem is exactly the same as it was when
we first took up root locus in continuous time. All of the same rules apply! The
root locus rules from continuous time can be applied to discrete time with no
change. For example, if α = 1/4 and β = 1/2 in this example, then the root
locus plot will look like Figure 2.43. What differs is how we interpret this plot.
In continuous time, with the poles already in the RHP, we would say that this
system is unstable. How does it work in DT?

Interpreting Root Locus Plots in DT
In CT, the imaginary axis divided the complex plane into two regions. To the
left of the imaginary axis, we had complex exponentials that, oscillate how they
will, were doomed to die off exponentially in time. The right-half plane defined
exponentials that grow without bound. The imaginary axis itself defined a
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Im{z}

Re{z}
α + 0j

β + 0j 1 + 0j

Figure 2.43 A root locus plot for the example DT system.

strange, complex exponential purgatory, in which exponentials neither grew
nor died. They just stayed wiggling around nervously . . .

Things are different in DT, but only because the mathematical form of the
basic complex exponential is different. In DT, a complex exponential takes
the form

x[n] = rn
0 ej�0n. (2.67)

In this form, we can determine what exponentials will grow geometrically with
no reference to the complex part. Very simply, if |r| > 1, we have a problem. If
|r| < 1, the exponential will die as n increases. And if |r| = 1 exactly, we have

x[n] = cos �0n + j sin �0n. (2.68)

The result is that for DT, a circle of unit radius is what separates growing
exponentials from dying ones. Figure 2.44 illustrates this concept.

If we go back to the example from Section 2.5.4, we can see immediately
how the root locus plays out in Figure 2.45. Right away, we see that the system
starts out as stable for for small values of k, and goes unstable for sufficiently
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1

Im{z}

Re{z}

Stable region

1 + 0j

Figure 2.44 In DT, systems are stable if all of their poles fall within the unit circle.

large values of k. Notice that this differs significantly from the CT of two
open-loop poles on the real axis in the LHP. In the CT case, the system would
technically be stable no matter how large k became. The damping ratio would
get increasingly small, and judging from the time-domain step response the
system would appear to increasingly teeter on the edge of instability. But the
fact would remain that the poles would never cross the all-important jω axis.

2.5.5 A Useful Limit of DT

As we leave DT root locus for purposes of this book, it is useful to make
an observation by way of establishing a unification of CT and DT methods.
Suppose that we view CT as a limiting case of DT, which is to say that the
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1

Im{z}

Re{z}
α + 0j

β + 0j
1 + 0j

Figure 2.45 A root locus plot for example DT system with an overlay of the unit
circle.

“time” increment is extremely small compared to the time scales of all poles,
zeros, and, if relevant, signals, of interest. Start with a sampled CT exponential
for illustration,

x(t) = e−σ0t ejω0t (2.69)

x[n] = e−σ0n·�tejω0n·�t .

Suppose that x[n] as detailed in Eq. 2.69 is a term in the impulse response of a
DT system, which means that pole of the system is therefore

p = rej� (2.70)

= (
e−σ0·�t

)
ejω0·�t .

That is, for this DT pole we have r = e−σ0·�t and � = ω0 · �t . Now the limit
that we are interested in is for the time increment �t to be extremely small
compared to the time scale of the impulse response: the index n, say, must
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undergo one million steps before completing a full period of the oscillatory
part.13 This is the equivalent of stipulating both

|ω0 · �t | � 1 (2.71)

and

|σ0 · �t | � 1. (2.72)

In this limit, we can step toward rewriting Eq. 2.70 as a first-order
approximation:

p = rej� (2.73)

≈ (1 − σ0 · �t) (1 + jω0 · �t) .

Multiplying through, and keeping only terms that are constant or first-order in
�t , we get

p ≈ (1 + 0j) + (−σ0 · �t + jω0 · �t) . (2.74)

In this “oversampled” limit for DT systems, then, it is as though we “zoom in”
to the portion of the unit circle in the vicinity of 1 + 0j = 1 · ej0 as shown
in Figure 2.46. Zoomed in like this, we cannot see the mighty arc of the unit

1

Im{z}

Re{z}Re{z}

Poles of interest

unit circle

1 + 0j1 + 0j

Figure 2.46 DT in the oversampled limit.

circle; to us instead the arc appears more like a long, straight line very similar
to the jω axis of continuous time. Indeed, the 1 + 0j point looks and acts like

13
Our signal processing friends would call this oversampling. In contrast, sampling at the
Nyquist rate requires only that the index undergo two or more steps before completing a full
period of the oscillatory part.
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the origin in CT systems: poles to left of this “origin” decay exponentially;
poles with an imaginary part exhibit oscillatory behavior.

When we are not in this oversampled limit, a lot of weird stuff happens
which is alien to those whose introduction to LTI theory comes through CT
systems. The phenomenon of aliasing, for example, has no parallel in CT
signal processing, and there is no such thing as a maximum frequency sinusoid
(corresponding to � = π ). Between this odd behavior, and the disorienting
change in notation going from s to z, a reasonable response for a student is to
strictly segment CT and DT methods into different parts of their brain. True
mastery, however, lies in seeing the common foundation despite the superficial
differences. This oversampled limit is a good way to begin bridging the gap
between CT and DT.

2.6 Common Control Strategies

Root locus techniques are a great way to evaluate feedback control strategies.
When we speak of a “control strategy,” what we mean is the designing of the
dashed box in Figure 2.24. In this figure, we often are given G(s) in the form
of the thing we are trying to control (or, the “plant”), and H(s) in the form of
sensors wherewith we measure how the plant is actually behaving.

At this point is appropriate to introduce a few common control techniques.
They are simple, they work well, and with just this handful of techniques you
can get quite far in the design of single-input, single-output feedback systems.

2.6.1 Gain Reduction

Gain reduction to stabilize a feedback system is the absolute simplest thing
you can do, and the truth is that in engineering simplicity should never be cast
aside lightly. The experienced engineer cultivates simplicity, and parts with it
only with great reluctance.

As a practical matter, almost everyone has experience with gain reduction
from everyday life. Very often at a wedding reception or some other cele-
bratory occasion, the host will approach an amplified microphone to make
remarks to the guests. The signal from the microphone is greatly amplified and
fed to the speaker system. These speakers, in turn, are acoustically coupled
back to the microphone, completing what we now understand to be a feedback
loop. Not only that, it is a feedback loop with delay in the loop transmission.
The speed of sound is 343 m/s so if, say, the microphone is 10 m from
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the speakers, the delay is 29 ms, which is a massive phase shift at audio
frequencies.14 We all know what happens next: a tremendous, out-of-control
howling from the speakers, many guests cover their ears and, interestingly, a
few people shout, “Turn down the volume on the speakers!” That is to say,
“Reduce the gain in the feedback loop!”

Returning to our more familiar block diagrams, it is not hard to imagine a
situation in which gain reduction might help. We have argued that the behavior
of many common systems is “dominated” by one or two poles. That does not
mean, however, that other, faster poles do not exist. In fact, these faster poles
exert a strong influence on performance if we pursue our feedback strategy
with too much abandon.

As an example, suppose we had a plant that we had characterized as having
two poles as shown in Figure 2.47. Based on this simple model, we expect

-

 k
1

(τ1s+1)(τ2s+1)

Figure 2.47 Example for the gain reduction strategy.

the root locus to be on the left of Figure 2.48. However, even one unmodeled
pole somewhere out to the left on the real axis means the root locus in real life
behaves like the right side of Figure 2.48.

In the laboratory, the result of this unmodeled pole is that our closed-loop
poles are in the RHP and so: our robot shakes uncontrollably and tears itself
apart; our RF amplifier ignores our input signal and slams like a zombie from
supply rail to supply rail; our cruise control system becomes the subject of
a nation-wide recall. A conservative strategy for eliminating these unhappy
outcomes is that we reduce the gain parameter k.

Gain Reduction Is Bad
Always remember when you pull this trick, though, that it is a fairly radical
thing to do. That is, you are throwing away gain, and therefore immunity to
variation in the forward path, at all frequencies. Immunity to variation in the

14
Check for yourself: “middle C” on the piano is commonly tuned to 261.63 Hz.
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jωjω

σσ

High-frequency,
unmodeled pole

Figure 2.48 Based on our simple model of Figure 2.47, we expect the root locus
on the left. However, it is normally true that our physical model is incomplete and
that one or more high-frequency poles of the system are left out. This will mean
that as we increase k, rather than simply a complex pole pair that is ever more
lightly damped, we will have closed-loop poles actually enter the RHP as shown
on the right.

forward path is the magic of feedback. There are going to be times when you
decide it is the best thing to do, so don’t as a rule ban gain reduction from your
design practice. But there is usually a better way.

2.6.2 Dominant Poles and Integrators

A dominant pole is just what it sounds like: a low-frequency pole that is so
slow that it “dominates” the dynamics of the forward path. It is a great way
of simplifying life if the model of your plant has a lot of high-frequency stuff
going on.

But why would a low-frequency pole ever be good? Sounds an awful lot
like we’re slowing things down, and slow is always bad, right?

Well, no. Remember the main crime of gain reduction, which was that it
traded away precious gain at all frequencies. Qualitatively, it is the gain at low
frequencies in a feedback loop that makes the system “dependable,” “solid,”
and “repeatable,” while the gain at high frequencies is qualitatively responsible
for speed of response. So if we can’t have everything, very often an excellent
thing to do is to lock in the low-frequency feedback benefits by arranging for
extremely high gain in that region. The dominant pole then makes sure that
the loop gain falls below unity well before we get in the neighborhood of the
fundamental oscillation condition.

An integrator in the forward path is a deservedly popular incarnation of the
dominant pole compensation strategy. Remember this trick.



108 2 The Basics of Feedback

2.6.3 Lag and Lead Compensators

A good way to organize your thoughts on compensation is to prioritize
frequency ranges for which you must have a lot of gain, versus those for which
gain is unimportant. Dominant pole compensation is an example of prioritizing
basically DC performance over everything else. Lag and lead compensators are
the next step up in sophistication.

Roughly speaking, lag compensators are a method of prioritizing low
frequency (not just DC) gain, while lead compensators are a way of priori-
tizing high-frequency gain, or speed of response. Rather than present these
techniques in the abstract, it is helpful to imagine compensating a system that
has two poles according to Figure 2.49. The Bode plot of the plant, and the
root locus plot of the uncompensated system are as shown in Figure 2.50. You
can see that while we will never technically get poles in the RHP, we will get
unacceptable damping ratios if we crank up the gain too far. Given this as our
starting point, what can be done with lag and lead compensators?

-

 Hc(s)
1

(τ s+1)(100τs+1)

“Plant”

Figure 2.49 Example for lag and lead compensators.

log |H(s)|

-6 dB/octave
-20 dB/dec

-40 dB/dec
-12 dB/octave

ω

jω

σ

1
100τ

1
τ

Figure 2.50 Bode plot asymptotes and root locus for the system of Figure 2.49.
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τ

lag
pole

lag
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Figure 2.51 Bode plots showing the placement of a lag compensator.

A lag compensator is a pole-zero pair in which the pole is at a lower
frequency than the zero. We can imagine applying it in this situation in
one of two ways, shown in Figure 2.51. In the top plot, you can see that
we have discarded gain at high frequencies (associated with fast speed of
response) but done all we could to preserve gain at low frequencies. Resist
the urge to make your control systems respond faster than they need to. Real
systems almost always have unintended, high-frequency disturbances in the
signal paths. A sufficiently fast system will react to every perturbation and will
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be noticeably “twitchy” or “jumpy.” Don’t say you weren’t warned.15 In the
bottom graph, you can see that that we have used the lag to boost gain at low
frequencies while leaving the high-frequency gain untouched.

To see the effect of a lag compensator on stability, study the Bode plots
in Figure 2.60. You can see that the lag compensator allows us to do our

σσ

jωjω

Figure 2.52 A root locus plot illustrating lag compensation.

horse trading of low- and high-frequency gain while still allowing for closed-
loop poles with attractive damping ratios. A root locus plot illustrating lag
compensation is shown in Figure 2.52.

In contrast to the lag compensator, the lead compensator is about speed. We
use a lead compensator when we want to increase the gain at high frequencies,
but for stability reasons are unable to also increase the gain everywhere else.
A classic lead compensator looks like Figure 2.53. We see in the Bode plot that
the low-frequency gain is left unchanged, but we have increased immunity to
forward-path variations at high frequencies.

The root locus plot, in Figure 2.54, is also informative. We can see that
even controlling for damping ratio of the dominant pole pair, the real part of
the closed-loop complex pole pair moves to the left. We have thus sped up the
system without compromising stability. The slower, real pole moves toward
the zero for normal values of k, and the closer it gets to the zero, the less effect
it has on closed-loop dynamics.16

15
In electronics especially, it is easy to fall into the trap of thinking “fast” or “high bandwidth” is
just inherently good. It is usually more complicated than that. If you want to hit one of your
specifications out of the park, try lowering the power consumption of the systems that you
build.

16
Although if you look carefully at the closed-loop step response, you will often see a “long,
slow tail” that seems to ride on top of an otherwise normal-looking step response.
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Figure 2.53 Bode plot for a lead compensator.

σσ

jωjω

Figure 2.54 A root locus plot illustrating lead compensation.

2.6.4 PID Control

Taken together, gain reduction, dominant pole, lag-lead, and combinations
thereof, form a very satisfying way of navigating the compensator design
space. You can actually skip this subsection if you feel you have come to grips
with Section 2.6 up to this point.

If you are still reading this subsection, it is probably because you have heard
people talk about something called “PID” control. The short story is that PID,
or proportional-integral-derivative control, is another way to organize one’s
thoughts to navigate the frequency-dependent compensator space. We might
imagine a generic compensator with three adjustable parameters as shown in
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-

KP


KI
s

KDs

G(s)

Figure 2.55 Proportional-integral-derivative (PID) control.

Figure 2.55, where KP, KI, and KD determine just how much proportional
(gain), integral (dominant pole), and derivative (strategically placed zero,
perhaps for a lead or lag) to add to our compensator cocktail. Ultimately PID
control still has to be about poles and zeros and root locus, of course, and so to
see this we dive into a little bit of algebra:

H(s) = KP + KI

s
+ KDs (2.75)

= KDs2 + KPs + KI

s
.

Now, since we cannot build a pure differentiator, what with its infinite gain at
infinite frequency, the real deal will look more like

H(s) = KP + KI

s
+ KDs

τDs + 1
(2.76)

= (KPτD + KD)s2 + (KP + KIτD)s + KI

s(τDs + 1)
.

What we see is that with the three parameters KP, KI, and KD, we are free
to place a pair of zeros wherever we want, make a pole appear at the origin
(or not, by making KI = 0), and place one more real pole. With some work,
you can map a discussion of PID control onto a discussion of gain reduction,
dominant pole, and lead-lag compensation, and vice versa. It is best to study
these methods, and decide for yourself which one works best for you. And if
neither feel quite right, dive back into the concepts and come up with your own
way of seeing things.
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2.7 Answers to Sample Problems

Figure 2.56–2.60 are the answers to the problems posed in 2.5.2.

σ

jω

Figure 2.56 Example 1: L(s) = k
s

.

σ

jω

Figure 2.57 Example 2: L(s) = k
s(s+1)

.
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σ

jω

Figure 2.58 Example 3: L(s) = k

(s+1)3 .

σ

jω

Figure 2.59 Example 4: L(s) = k(s+2)
s(s+1)

.
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σ

jω

Figure 2.60 Example 5: L(s) = ks

(s+1)3 .



3
The Nyquist Stability Criterion

In this chapter we cover the Nyquist stability criterion: a much-feared, seldom-
understood, devoutly avoided analysis technique among practitioners of the
feedback art. If nothing else, it is worth understanding because it is the
foundation of its much-beloved, seldom-understood, devoutly applied cousin:
phase margin. Improper thinking about phase margin can fool you, but the
Nyquist criterion never does. Let’s unravel this.

3.1 An Authoritative Test of Stability

As good as root locus and transfer function based approaches are, we often find
ourselves in situations where the transfer function in all its algebraic glory is
not known. What is easy to measure, however, is the frequency response of the
system we wish to control. That is, we pass a sinusoid of a known frequency
through the block, note the resultant phase shift and amplitude scaling, and
repeat for a closely spaced group of frequencies in the band of interest. Could it
be true that given only the frequency response of a loop transmission, we have
enough information to determine the stability of the closed-loop system? It
sure seems like it ought to be possible. The Bode plot of the loop transmission
is a complete characterization, after all.

It turns out that the answer is yes. In order to see this, we will have to
take a brief detour through methods of complex analysis. The reward for your
effort will be knowledge of a truly authoritative and comprehensive test of
stability.

116
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3.1.1 True Delay and Root Locus

Imagine a loop transmission of the following simple form:

L(s) = k

s
e−sTD . (3.1)

This is an integrator, followed by a pure delay. Pure delays are a common fea-
ture in feedback systems; the notorious microphone-too-close-to-the-speaker
is a familiar example. This almost embarrassingly simple transfer function,
however, falls squarely outside the analytical reach of root locus techniques.
This is because we have no good way to capture e−sTD on a pole-zero plot.

So there you have it. We need another analysis technique if for no other
reason than to handle pure delays.

3.2 A Note on Conformal Mapping

The Nyquist stability criterion requires the use of a complex analysis technique
called conformal mapping. The concept is fairly simple1 and is as follows.

We are used to working with the complex variable s. We are also used the
complex valued function F(·), which takes variable s as an input and maps s

to a new complex value F(s). For a conformal map, we start with a contour
in the s-plane. For every point s0 on that contour, we evaluate F(s0) and get a
new complex value. We then plot this new set of complex values on a separate
set of axes.

That’s it. That’s conformal mapping. A few examples, now.
To understand Figure 3.1, it may be helpful to refer back to Section 1.5.2.

For all points on this specially chosen contour in the s-plane, the double pole
imparts a phase angle of −45◦ (= 2×22.5◦). As we progress along the contour
we get farther and farther away from the double pole, so the magnitude of
F(s) (which, in the F(s)-plane, is represented by the distance from the origin)
decreases. The resulting conformally mapped contour is sketched on the right
in the F(s)-plane of Figure 3.1.

The readers should place a heavy emphasis on the idea of “sketching,” as
opposed to “drawing accurately to scale.” Notice that no values were calculated
to determine, for example, exactly how far the mapped point A should be
from the origin. Get used to this; when you are drawing conformal maps by
hand, just as with root locus plots, you are a cartoonist, not a cartographer.

1
Don’t let most textbook treatments convince you otherwise.
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σ

A

A

B

B

jω

22.5◦

45◦

Im{F(s)}

Re{F(s)}

Figure 3.1 Conformal map example: F(s) = 1
(s+1)2 .

It will normally be true that contours in the s-planes will cover many orders of
magnitude in distance from the poles. It is impossible to draw these contours
to scale on a set of linear axes. You will see that these cartoons nevertheless
get across the salient features that we seek.

σ

A

A

B

B

jω
Im{F(s)}

Re{F(s)}

Figure 3.2 Another conformal map with F(s) = 1
(s+1)2 , this time mapping a

different contour.

In a second example, illustrated in Figure 3.2, notice that all of the points on
the chosen contour in the s-plane just happen to be equidistant from the double
pole. It follows that the corresponding mapped contour in the F(s)-plane will
consist entirely of points that are equidistant from the origin. And so it is.

Figure 3.3 shows a slightly more complicated example, but following the
guidelines of the first two examples gets you there. If you are new to conformal
mapping, or rusty, a great exercise is to cover up the solution (the figure in
the F(s)-plane) and try to reproduce it on your own with pencil and paper.
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σ
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jω Im{F(s)}

Re{F(s)}

Figure 3.3 A third conformal map using F(s) = 1
(s+1)2 , with a more complicated

contour.

A classic mistake here is to simply follow along and feel like you “get it.”
Also, resist the temptation to go to computer aids to draw things for you at this
point. Computers help the most when your conceptual understanding is firmly
in hand. Invest the time now with pencil and paper, and you will be better with
the computer when you use it.

3.3 Cauchy’s Principle of the Argument

We need one more tool to completely set the table for the Nyquist stability
criterion. That tool is called Cauchy’s principle of the argument, a famous
result from complex analysis.

It is simply stated.

Given a function F(s) and a closed contour C in the s-plane such that F(s) has no
poles or zeros on C, then

N = Z − P, (3.2)

where

N = no. of positive encirclements of the origin;

Z = no. of zeros of F(s) inside C;
P = no. of poles of F(s) inside C.

By “encirclements,” we mean net trips a full 360◦ around the origin, and
the positivity or negativity of such an encirclement is determined by the
direction of the original contour in the s-plane. Really, the less said about this
principle the better. Seeing a few examples is the best way of getting the idea.
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The principle itself can be understood as a straightforward consequence of
Section 1.5.2.

σ
AA

B

B

One negative
encirclement

jω Im{F(s)}

Re{F(s)}

Figure 3.4 A conformal map using only a single pole, F(s) = 1
(s+1)

, showing
one negative encirclement of the origin in the F(s)-plane.

σ
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B

B

One negative
encirclement

jω Im{F(s)}

Re{F(s)}

Figure 3.5 A conformal map using only a single pole, F(s) = 1
(s+1)

, with the
mapping contour going in the opposite direction as in Figure 3.4. This also results
in a negative encirclement, as it should.

A few examples are important to understanding encirclements. Note that
in both Figure 3.4 and Figure 3.5, the encirclement of the origin is the
opposite sense of the original contour C. When C encircled the pole in the
clockwise sense, the mapped contour encircled the origin in the counterclock-
wise sense, and vice versa. This is what we mean by a “negative” encirclement
for purposes of Cauchy’s principle of the argument.
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σ
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jω
Im{F(s)}

Re{F(s)}

Figure 3.6 A conformal map using the mapping function F(s) = s + 1. Since we
are circling a zero instead of a pole, we wind up with a positive encirclement of
the origin in the mapped plane.
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jω Im{F(s)}

Re{F(s)}

Figure 3.7 A conformal map using the mapping function F(s) = 1
(s+1)

. In this
case, we have no net encirclements of the origin in the mapped plane.

There are three more examples in Figures 3.6, 3.7, and 3.8. If you can work
through each of these examples on your own, starting with a blank sheet of
paper, then you will have the basic idea. You can decide for yourself how
proficient you want to become in problems such as these. Unless you are
pressed to do so by a demanding application or you are a student facing an
exam, exotic cases will come up only rarely.2

2
Note that you can improve through repetition, but that repetition without thinking leads only to
pattern matching. Take your time, and think through the steps.
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jω Im{F(s)}
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Figure 3.8 A conformal map using the mapping function F(s) = 1
(s+1)2 . This

mapping results in two net negative encirclements of the origin in the mapped
plane.

3.4 And Now . . . the Nyquist Stability Criterion

Okay, so now we are least novices with conformal mapping, and we have this
neat result that the conformal map of a closed contour in the s-plane circles the
origin if that closed contour encloses singularities like poles and zeros. How
do we relate this tool to the problem of the stability?

We want to know if a system is stable. If that system has transfer function
L(s)

1+L(s)
, the question then becomes whether F(s) = 1 + L(s) has any zeros

in the right-half plane. Now, how can we use our shiny new tool, Cauchy’s
principle of the argument? We might begin by sketching a contour that encloses
the whole of the right-half plane in Figure 3.9.3 We could do a conformal
map and count positive encirclements of the origin in the mapped plane. If the
number of positive encirclements is greater than or equal to 1, then the system
is unstable!

It is important to emphasize why this technique is useful as a practical
matter. It is normally true in applications that we do not have a closed-form
expression for the open-loop transfer function L(s). However, we can usually
measure L(s) directly and enjoy the astounding result that these measured
data, through the magic of conformal mapping and the Cauchy principle of
the argument, can tell us whether 1 + L(s) has any right-half plane zeros, and
if so, how many. This in turn tells us how many right-half plane poles our
closed-loop system has, if any. This overall method is called the Nyquist test,

3
Yes, the right-half plane is technically of infinite expanse. Remember: cartoonist, not
cartographer.
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Right-half plane

σ

jω

Figure 3.9 For the Nyquist stability criterion, we are looking for zeros of mapping
function F(s) = 1 + L(s) in the right-half plane.

or more formally, the Nyquist stability criterion. We will add some refinement
in the coming paragraphs to make it easier to use, but for the first time you
have the basic idea.

The sharp-eyed reader may point out that the accounting with the Cauchy
principle expresses encirclements of the origin in terms of both the poles and
zeros of 1 + L(s) within this all-RHP-encompassing contour. So if we’re
counting net encirclements, we might be fooled if we don’t separately keep
track of the RHP poles of 1 + L(s), which are the same as the poles of L(s).
And we just finished admitting that we don’t normally have a closed-form
expression for L(s). Gotcha!

No problem, in practice. If we switch on our open-loop system, provide it
no input, and the output races off exponentially in time toward one limit or
another, then we know that we have one or more RHP poles in L(s). If not,
then we don’t. And if we do, then we have no choice but to dig into the physics
of the system to find out how many such poles there are. Admittedly, that can
get complicated. But when the system is open-loop stable, as is typically the
case, then we don’t have to worry.4

4
Real-world examples of open-loop unstable systems include inverted pendulums, and often
magnetic levitation systems.
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We still have the practical problem of choosing sensible contours. Such a
contour should have at least two properties. First, we should be able to leverage
knowledge of the measured frequency response L(s) to do the mapping.
Second, it should encompass the whole of the RHP.

Right-half plane

σσ

jω

r = ∞r = ∞

Figure 3.10 The “D contour,” often used with the Nyquist stability criterion.

The contour in Figure 3.10 has both desirable properties. This is often called
the “D contour.” The flat part of the contour is the jω axis; we can measure
L(jω), and just add 1 (+0j ) to every measurement point to map this part of
the contour. The curved part of the contour seems like a problem, until we
realize that every point on the contour is an infinite distance from the poles
and zeros of L(s). Provided L(s) represents a physical system with more poles
than zeros, |L(s)| = 0 in the limit R → ∞. It follows that 1 + L(s) for all of
the parts on the curve of the contour map to 1 in the F(s)-plane.

We continue to drive toward a strategy for determining the stability of a
closed-loop feedback system based on frequency domain measurements of
L(s). We take the measured data and do a conformal map of the D contour



3.4 And Now . . . the Nyquist Stability Criterion 125

using mapping function F(s) = 1 + L(s). We count positive encirclements of
the origin in the F(s)-plane and use Cauchy’s principle of the argument.

There is at least one clever change we can make to make the application of
this strategy criterion easier.5 As it stands, we must take all of our frequency
domain data, add 1 + 0j to every data piont, and plot the new set of complex
points in what we are calling the F(s)-plane. We can save ourselves some
work, though, by using L(s) as the mapping function directly, taking advantage
of the fact that L(s) is very simply F(s) − 1. This means that our new
mapped contour is the same as the old, only translated to the left by 1. All this
means is that instead of counting encirclements of the origin, we now count
encirclements of −1 + 0j .

One other change that we can make harkens back to our practice in root
locus plots of keeping around a parameter as part of the loop transmission.
That is, L(s) = kL0(s). If we express L(s) in terms of our original mapping
function, we have

L0(s) = 1

k
(F (s) − 1). (3.3)

Why bother? What this means is that we do not need to redraw the Nyquist
plot every time we change the gain of the loop transmission. We can do one
Nyquist plot and count encirclements of the − 1

k
+ 0j point in the mapped

plane, where k is the gain parameter. It is an important tweak to the technique.
If it’s not clear why now, it will become clear the first time you labor through
the Nyquist test and then wonder what happens if you change the gain.

So there you have it! This is the Nyquist stability test. To summarize:

1. Draw a “D” contour in the complex plane.
2. Evaluate L0(s) at every point on the D contour, and plot these new

mapped points on the L0(s)-plane.
3. Count encirclements of the the − 1

k
+ 0j point, and apply the Cauchy

principle of the argument to determine how many zeros of 1 + L(s) are in
the RHP. If the answer is one or more, your system is not stable.

A simple example is in order. Consider applying our new methodology to
the single-pole loop transmission L0(s) = 1

(s+1)
, illustrated in Figure 3.11. In

this figure, you can see that the positive jω axis maps to the lower half of of the
conformal map; the negative jω axis maps to the upper half of the conformal

5
If this is your first trip through the Nyquist criterion, you might be impatient at this point over
making a long development even longer in service of “making things easier.” Hang in there. If
we skipped these last refinements, applying the Nyquist test by hand would quickly get
needlessly, annoyingly tedious.
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Figure 3.11 Applying the Nyquist stability test to L(s) = 1
s+1 . Note that the

entire curved part of the D contour maps to the origin in the L(s)-plane, because
r = ∞. This example illustrates, for positive k, that there are no zeros of 1+L(s)

in the RHP.

map; the curved part C of the D contour maps entirely to the origin in the
L(s)-plane. For positive frequencies, near the origin the magnitude of L(s) is
close to unity. As we sweep out to high positive frequencies, the magnitude
shrinks to zero and the phase contributed by the pole approaches 90◦. We
follow a similar mapping for negative frequencies. Overall, we are checking
for positive encirclements of the − 1

k
+ 0j because we are trying to determine

if there are any zeros of 1 + L(s) in the RHP.6

3.5 Bode Plots Help with Nyquist

One of the skills that is drilled into almost everyone who studies linear system
theory is how to draw a Bode plot. Now is a great time for you to review that
skill, especially if you are rusty. The methodology can easily be mapped to
our geometric understanding of poles and zeros as detailed in Section 1.5.2.
The reason that Bode plots are often broken out as a special topic is that, as it
happens, they can often be sketched with great accuracy using only pencil and
paper. It helps that the vertical scales for the magnitude plots are logarithmic,
and also that poles and zeros in nature are quite often separated by orders of
magnitude. For a variety of reasons, facility with Bode plots winds up being
extremely useful in engineering practice.

6
The emphasis and repetition here is because at some point nearly everyone confuses themselves
on poles and zeros with the Nyquist test. We are looking to see if there are closed-loop poles of

L(s)
1+L(s)

in the RHP. This means hunting for zeros of 1 + L(s) in the RHP.
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We bring this up now in connection with drawing Nyquist contours based on
the frequency response L(s). Remembering that the flat part of the D-contour
is just the jω axis, then our mapping function L(s) is nothing more than the
frequency response L(jω). It is useful to see an example of a Bode plot directly
leveraged into a Nyquist plot.

Consider the open-loop transfer function L(s):

L(s) = 100

(s + 1)(10−3s + 1)
. (3.4)

The Bode plot looks as shown in Figure 3.12. With practice, you can
render Nyquist plots from Bode plots as follows. Moving from left to right,

1
2

3 4

ω

ω

100 101 102 103 104

102

101

|L(s)|
100

10−1

10−2

10−3

0◦

−45◦

−90◦

−135◦

−180◦

 L(s)

105

−225◦

−270◦

10−4

Figure 3.12 A Bode plot for L(s) = 100
(s+1)(10−3s+1)

. Combining the magnitude
and phase plots in your mind will help you to synthesize the corresponding
Nyquist plot.
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and following the circled numbers in the Bode plot, we simply render the
qualitative features of the Bode plot into the Nyquist plot:

1. Figure 3.13: The magnitude declines slightly, and the pole causes the
phase to sweep toward −90◦.

2. Figure 3.14: We’ve passed the first pole, so the contour should now be
tracking steadily in toward the origin. The phase is at about −90◦.

3. Figure 3.15: We’ve hit another pole. We continue tracking toward the
origin, but begin sweeping toward our final angle of −180◦.

4. Figure 3.16: We asymptotically approach −180◦ as we bury ourselves into
the origin.

100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.13 The magnitude declines slightly, and the pole causes the phase to
sweep toward −90◦.

Note finally that we have only mapped the positive jω axis of our
D-contour. To map the other half, we exploit a known symmetry of L(s).
Assuming that L(s) is the Laplace transform of a purely real impulse response,
we know that L(s) is conjugate symmetric:  L(jω) = −  L(−jω), and
|L(jω)| = |L(−jω)|. Take all the time you need to convince yourself that this
means we can complete the Nyquist contour as shown in Figure 3.17.

In the next section, we will use Nyquist plots to evaluate the stability with
this L(s) as its forward path. Remember, too, that, as with root locus, we are
interested in the thought experiment of knowing what would happen if we
were to fiddle with the gain.That is, the actual system to keep in mind is in
Figure 3.18.
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100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.14 We’ve passed the first pole, so the contour should now be tracking
steadily toward the origin. The phase is at about −90◦.

100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.15 We’ve hit another pole. We continue tracking toward the origin but
begin sweeping toward our final angle of −180◦.
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100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.16 We asymptotically approach −180◦ as we bury ourselves into the
origin.

100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.17 Using the Bode plots in Figure 3.12 as a guide, we arrive at the
complete Nyquist plot for L(s) = 100

(s+1)(10−3s+1)
.
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-

k
100

(s+1)(10−3s+1)

Figure 3.18 Parameterized block diagram upon which we will perform our
Nyquist stability analysis. The loop transmission remains L(s) = 100

(s+1)(10−3s+1)
,

but with a multiplicative free parameter k.

3.6 Nyquist Plot Examples

Now for a couple of examples. For the first example, we can continue working
with

L(s) = 100

(s + 1)(10−3s + 1)
, (3.5)

since we’ve already gone to the trouble of doing the Nyquist contour. We
redraw the contour in Figure 3.19 and add the − 1

k
+ 0j point, whose

encirclements we intend to chronicle.

100 + 0j

Im{L(s)}

Re{L(s)}−1
k

Figure 3.19 The Nyquist plot of Figure 3.17, but with a − 1
k

+ 0j point added.
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Now, we set up a system of accounting. We know that

Z = N + P, (3.6)

where Z is the number of RHP zeros of 1 + L(s), P is the number of RHP
poles of L(s), and N is the number of positive encirclements (clockwise in
this case, since we went upward on the jω axis when traversing the D-contour.
This is important; make sure you understand this sign convention). We want
Z because the RHP zeros of 1 + L(s) are the RHP poles of the closed-loop
transfer function. If Z > 0, then our feedback system is unstable.

Begin the accounting. We know in this case that L(s) has no RHP poles, so
P is always zero. It helps to construct a table, such as in Table 3.1. For our

Table 3.1 Ranges of k and resulting stability determination

Range of k P N Z(= N + P) Stable?

∞ < k < −0.01 0 1 1 No!
−0.01 < k < 0 0 0 0 Yes
0 < k < ∞ 0 0 0 Yes

more visual learners, we can redraw the Nyquist contour and label ranges
for k as in Figure 3.20. Interestingly, there is a region where we have positive
feedback, e.g., k < 0, yet |k| is too small to actually cause instability. We
can check this against the root locus plot in Figure 3.21. In this figure, we
show the locus for positive values of k (which, in our convention, corresponds
to negative feedback). We conclude that no matter how big k gets, we never
actually get RHP poles in the closed-loop transfer function. It is true that
for very high values of k the pole pair would be so lightly damped as to be
unusable, but in the strictest sense, that is not unstable.

For negative values of k (corresponding, remember, to positive feedback)
the root locus looks like Figure 3.22. From this figure, we would conclude that
for small magnitudes of k, both real poles remain in the LHP. If we push it
and make the magnitude of k too big, we wind up with a real pole in the RHP
and all the trouble that causes. But we have the correspondence we sought:
the Nyquist method and the root locus method both yield the same qualitative
insights. Notice that in the case of Nyquist, we got quantitative values for k for
different stability outcomes, which is new and thrilling.

Now suppose, as often happens, that the transfer function of this last exam-
ple turned out to be only mostly accurate, and the truth is that we actually have
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100 + 0j

Im{L(s)}

Re{L(s)}−1
k

0 < k < ∞ −∞ < k < −0.01 −0.01 < k < 0j

Figure 3.20 The Nyquist plot of Figure 3.17 that allows for determining stability
for various values of k.

σ

jω

Figure 3.21 Checking Nyquist analysis with root locus. According to Figure 3.20,
there will be no closed-loop RHP poles for positive values of k. We arrive at the
same conclusion through root locus.
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σ

jω

Figure 3.22 Checking Nyquist analysis with root locus. According to Figure 3.20,
there will be no closed-loop RHP poles even for negative values of k, at least until
the magnitude of k becomes great enough. Again, Nyquist and root locus analysis
are in agreement.

some high-frequency poles that are unmodeled.7 With closed-loop systems
we must be careful. We can see this if we reanalyze that last example. This
time, we add a third, previously unmodeled pole at 104rps. That is to say, now

L(s) = 100

(s + 1)(10−3s + 1)(10−4s + 1)
. (3.7)

To aid in drawing the Nyquist contour, we start with the Bode plot as shown
in Figure 3.23. Following the same procedure as before, we can draw the
half of the Nyquist contour that corresponds to the positive jω axis, shown
now in Figure 3.24. We then complete the contour by exploiting the conjugate
symmetry of L(s). The complete contour is shown in Figure 3.25.

Now what happens when we do the accounting? It looks like for k = 1,
which is just the unmodified loop transmission L(s), the system is safely
stable. But whereas before, we were free to make k as large a positive value as
we wished, now it appears that we encounter trouble once k gets to 103 or so.
The new accounting is shown in Table 3.2.

7
This is almost always the case; we should never forget that the we employ mathematical models
because they are often useful, though never complete. Also, now is a good time to remind
yourself of why linear systems’ behavior is “dominated” by the low-frequency poles as shown
in Section 2.5.3.
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Table 3.2 Ranges of k and resulting stability determination,
now with a previously unmodeled pole

Range of k P N Z(= N + P) Stable?

∞ < k < −0.01 0 1 1 No
−0.01 < k < 0 0 0 0 Yes
0 < k < ∞ 0 0 0 Yes
103 < k < ∞ 0 1 1 No

ω

ω

100 101 102 103 104

102

101

|L(s)|
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 L(s)

105

−225◦

−270◦

10−4

Figure 3.23 A Bode plot for L(s) = 100
(s+1)(10−3s+1)(10−4s+1)

.
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100 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.24 Half of the Nyquist plot for L(s) = 100
(s+1)(10−3s+1)(10−4s+1)

, which
corresponds to the positive jω axis from the D-contour.

100 + 0j

Im{L(s)}

Re{L(s)}

0 < k < 103 −∞ < k < −0.01 −0.01 < k < 0j

103 < k < ∞

Figure 3.25 The full Nyquist plot for L(s) = 100
(s+1)(10−3s+1)(10−4s+1)

. The
accounting for ranges of k corresponds to Table 3.2.
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A takeaway here is that when it comes to design of feedback systems,
don’t get greedy on bandwidth and/or speed of response. The more aggressive
you get, the more likely you are to encounter dynamics of your model that are
not easy to account for.

With that, congratulations! If you have read this far, and worked to
understand the material, you have the basic idea behind a foundational stability
analysis technique. Do not expect yourself to be proficient at Nyquist plots yet,
however. There are important special cases that come up.8 Still, if you choose
to pursue proficiency, that path will be made easier having grounded yourself
in the concepts here.

As a final note, it worth emphasizing that while Nyquist and root locus
are both definitive stability tests, root locus is somewhat more limited since it
cannot treat pure delay, and because it requires closed-form expressions for the
transfer functions. What we are about to tackle in the next section, however,
is not definitive. Phase margin is handy: a rule of thumb that is useful and
accurate and informative in a wide variety of real-world applications.9 Use
it freely according to its strict definition. But when you seek to build that
symbiosis between analysis and conceptual understanding, let Nyquist and/or
root locus play the part of your analytical tool.

3.7 Phase Margin: Why You Never Really
Learned Nyquist

The Nyquist stability criterion is a comprehensive analytical tool that has a lot
to recommend it. It is unambiguous, and it tells you for sure whether the system
is stable. Maybe its finest attribute is that one can apply it using measured
frequency-domain data without having to generate an equation-based model.
The only downside? Applying it is a lot of work!

And that matters when doing design. When deeply engaged in an especially
iterative design process, it makes all the difference in the world whether
the impact of a design tweak can be assessed in seconds or minutes versus
hours or longer. When changes can be evaluated quickly, a designer feels
driven to optimize for for the absolute best performance, and is more likely
able to navigate the design space with ease, confidence, and purpose. When
the tweaking process is onerous, a psychological wall can build up against

8
For example, the Nyquist contour should not hit any singularities, so what does one do for the
case of an integrator, which is an open-loop pole at the origin? See how to handle this
particular case in Section 4.2.

9
That is to say, almost all situations that are not PhD qualifying exams.
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changing anything about the system for any reason, especially once the system
appears to be working reasonably well.10

With the Nyquist test, what we often do in real life is substitute for it with a
measure called phase margin. This is so much easier to use, and so much faster
to check, and so commonly gives the correct result that, well, it winds up being
the technique that many designers use and remember. Let’s revisit.

3.7.1 The Stability Margin Concept

The stability margin concept arises from the relative lack of nuance in the
discussions of root locus and Nyquist plots. Reading about these techniques,
you might get the mistaken impression that we limit our stability discussion to
stable or unstable, good or bad.

In practical application, we are interested in nuance. Why care about “how
stable” a system is? The answer is that degrees of stability typically trade
against other performance metrics that we care about.11 Consider a cruise
control system, in which a “step” input might be a command to go from 55 mph
to 60 mph. Figure 3.26 is how, as a driver, you expect the the car to react. If
the control system has poles that are close to the jω axis, however, you have
the disaster depicted in Figure 3.27. As we adjust the parameters of the control
system, there is likely to be a spectrum of behaviors as shown in Figure 3.28.

Thus the concept of stability margin is born. We ask, If the system is stable,
how “close” is it to being unstable? If the closed-loop poles are in the LHP,
are they deep in the LHP, or are they just shy of the jω axis? If there were no
positive encirclements of the −1/k point for the Nyquist plot, did the contours
“almost” circle it? It so happens that for all of these stability tests, coming
close to being unstable corresponds to step response behavior that is close to
oscillatory.

It turns out that “phase margin” is how we formally characterize degree of
stability in the case of Nyquist plots. The beauty of phase margin, we shall see,
is that you can measure it on a Bode plot and save yourself the whole trouble
of doing a proper Nyquist plot. You should just be aware that this is a shortcut
and that you should avoid generalizing from the phase margin definition for
conceptual insight. In fact, it might be worth it even now to take a peek at
Section 4.2 to make this cautionary note a little more concrete.

10
Of course, one hazard of having the ability to do fast tweaking is neurotic, mindless, blind
iterating devoid of insight into the trade-offs being made. Avoid.

11
An extremely common example is that safely stable systems often have a slower speed of
response, and/or a greater tolerance for component variations, than systems with a fast speed
of response.
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time

Figure 3.26 How we expect the cruise control in a car to react to a command to
go from 55 to 60 mph.

3.7.2 Phase Margin Definition

On a Nyquist plot, we know that we encounter instability if the Nyquist plot
encircles the −1 + 0j point. In characterizing the phase margin, by which we
mean, “How close do we come to encircling the −1 + 0j point,” we look at
the plot as shown in Figure 3.29. (Stare at this plot until you get it. If you are
stuck and remain so, revisit after you have read the rest of this chapter.)
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Speed

Control
setting

60 mph

60 mph

55 mph

55 mph

time

time

Figure 3.27 How we do not expect the cruise control in a car to react to a
command to go from 55 to 60 mph.

If you are having trouble at this point, it is probably because you remember
the concept of phase margin having to do with “how much phase you have to
add at the point where the magnitude crosses unity until you get to −180◦”. In
most treatments, this reasoning is usually reinforced by a Bode plot.

We are not going to do that here, because the whole thought experiment of
“adding phase” at a single frequency is so needlessly and gratuitously divorced
from physical reality. The author does not object to such divorces as a matter
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Figure 3.28 How we arrive at the concept of stability margins. All of these step
responses are indicative of dominant pole pairs solidly in the left-half plane and
therefore of stable systems. But it is hard to resist thinking of the bottom system
as being “closer” to instability than the top system. Don’t resist.
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−1 + 0j

Im{L(s)}

Re{L(s)}

φm

Figure 3.29 Phase margin: “When the Nyquist contour crosses the unity magni-
tude circle, how much more negative phase would be needed to barely encircle
the −1 + 0j point?”

of principle, but has observed the rapid descent from such innocent sloppiness
to the absolute misunderstanding described in Section 4.2. Let’s stick with
Nyquist plots for the moment.

To better understand this idea of “adding phase,” we should step back and
remember that there is no physical way to add phase at one frequency and leave
the rest of the Nyquist contour untouched.12 Our choices for adding phase
are actually quite limited: we can either add poles and/or zeros to the transfer
function, or add pure delay. That’s the list. The first option is complicated by
the fact that poles and zeros affect not just the phase, but also the magnitude
response. It follows that when adding a pole and/or a zero, the frequency at
which the transfer function reaches unity must change unless a corresponding
scalar gain also modifies the transfer function. But pure delay, on the other
hand, is somewhat simpler, as seen in the the Bode plot for D(s) = e−sT shown
in Figure 3.30. So if we modify a loop transmission L(s) by adding delay D(s),
then we affect points on the Nyquist curve corresponding to low frequencies
hardly at all, while at high frequencies we induce a veritable death spiral.13

12
And try to imagine how odd a contour would look under such a modification.

13
Here, “low frequencies” are those for which ω � 1

T
. Don’t breeze through this distinction,

but take however much time you need to absorb it. Whether delay has an impact totally
depends on the time scale that matters to you.
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Figure 3.30 Bode plot for a D(s), a pure delay.

Let’s go back to our previous example and add a delay such that at the
frequency at which |L(jω) = 1|, the phase of the delay is exactly −φm as
denoted on the Nyquist plot. Convince yourself that the new Nyquist plot
would look like the sketch in Figure 3.31. Now it makes sense. Adding a delay
whose phase at the frequency ωc for which |L(jωc)| = 1 would cause the
phase of L(jωc)D(jωc) to be −180◦ would indeed push the −1 + 0j point to
the brink of encirclement.14

Fine. We have been extremely careful in our construction here, and it may
seem that we have been overly so. At the end we find that we need not modify
the definition of phase margin that is given in any textbook on feedback theory,
which is

14
Once we have the phase to −(180◦ + ε) where ε is an infinitesimal, negative offset, we go
from “the brink of encirclement” to “encirclement.”
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−1 + 0j

Im{L(s)}

Re{L(s)}

Figure 3.31 The half Nyquist plot of Figure 3.24, but modified with delay term
D(s). Notice that for low frequencies, where the delay does not add much phase,
the Nyquist contour is unchanged. But if the delay is chosen to drive the phase
margin exactly to zero, the result is that the −1+0j intersects the Nyquist contour.
This becomes a full-blown encirclement for even the tiniest bit of additional delay.

• Phase margin: If ωc is the “unity-gain crossover frequency,” where
|L(jωc)| = 1, then the phase margin is the difference
φm =  L(jωc) − (−180◦).

Conveniently, the phase margin can be read directly off of a Bode plot as
shown in Figure 3.32. But a major point of this section is not to get lazy when
thinking about phase margin. It is very easy to look at a Bode plot and slip
into a mode of thinking where a phase, disembodied from physical reality, is
somehow “added” to a point on the transfer function where as if through magic
it creates or causes an oscillation. Always remember that the phase margin
trick originates in the Nyquist criterion, and it will create a much stronger
foundation for your understanding.

Finally, be careful not to overinterpret phase margin. In particular, it is
tempting to say that if it is bad for the loop transmission to have a gain
of unity when the phase is −180◦, it must be so much worse if the gain
exceeds unity when the phase is −180◦. Section 4.2 goes through an instructive
example of how this type of thinking can go wrong. Just remember to
use phase margin as helpful shortcut only. When you seek physical insight,
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ω

ω

100 101 102 103 104

102

101

|L(s)|
100

10−1

10−2

10−3

0◦

−45◦

−90◦

−135◦

−180◦

 L(s)

105

−225◦

−270◦

10−4 ωc

φm

Figure 3.32 Reading phase margin off of a Bode plot of the loop transmission
L(s). Variable ωc is often called the “unity-gain crossover frequency,” or just “the
crossover frequency.”

use the other analytical tools in your bag like Nyquist stability, root locus, and
the underlying differential equations that capture the physics of your system.

3.7.3 Phase Margin, Overshoot, Ringing,
and Magnitude Peaking

We now refer back to Section 2.5.3, where we justified the empirical obser-
vation that many systems behave as though they are dominated by a single
complex pole pair. In practice, it is useful to have a relationship between phase
margin and the characteristics of second-order systems.
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The following useful rules, along with justifications and cautionary notes,
can be found in Thomas Lee’s The Design of CMOS Radio-Frequency
Integrated Circuits.

• Damping ratio as a function of phase margin:

ζ ≈ φm

100
(3.8)

with φm expressed in degrees.
• Peak overshoot in the time-domain step response:

Po ≈ 1 + exp

(
−πφm√

104 − φm2

)
. (3.9)

• Resonant peaking in the magnitude part of the Bode plot:

Mp ≈ 1

sin φm
. (3.10)

The phase margin here is always expressed in degrees, as opposed to radians.
For many commonly encountered systems and phase margins, these relation-
ships will be good to rapidly estimate performance.

3.8 Nyquist and Bode Techniques for DT Systems

It is possible to run through all of the foregoing treatment for DT systems,
working out analogous frameworks. In practice, however, one tends not to need
these techniques. In DT systems, the exact pole locations are usually known.
Using computational aids, it is typically straightforward to do extremely
accurate root locus plots. The result is that while one can work out Nyquist
and Bode techniques in gory detail, this is typically done for analytical
completeness and not as a practical aid.



4
Some Common Loose Ends

After a brief trip through the basics of LTI systems in Chapter 1, we covered
the conceptual heart of feedback theory in Chapters 2 and 3. The intention was
that these chapters would be easy to follow and provide a satisfying connection
between mathematical formulations and conceptual, intuitive understanding.
While many specialized topics have been omitted, material of Chapters 2 and
3 formed the backbone of a feedback systems course that was taught for many
years at the Massachusetts Institute of Technology in Cambridge.

No written treatment of any subject can ever be complete, of course:
application will bring the readers experience. With experience, each reader
will decide for themselves what parts of this text are useful and what parts are
not, and what has been overlooked or omitted. The purpose of this chapter is to
fill some of the gaps that the author pondered during the journey from feedback
student to engineering practitioner.

4.1 “But in Control Theory, They Use Lots
of Linear Algebra . . . ”

If this section title sounds funny to you, then you have probably not spent much
time among engineering doctoral students. No matter. The point is that in some
circles, it would be considered remarkable to get to this point in a “guide”
to feedback theory and not once have touched the tools of linear algebra.
Matrices, eigenvalues and eigenvectors, singular value decomposition – these
form the language of “serious” control theorists.

The reason we have not needed the mathematical machinery of linear
algebra is that all of our discussion has concerned systems with one input and
one output. But to start to see the possible need for a new formalism, it helps to

147
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return to Section 1.1.2, where we discussed higher-order systems and remarked
that we can often represent them with systems of linear equations:

dx1

dt
= a11x1 + · · · + a1nxn, (4.1)

dx2

dt
= a21x1 + · · · + a2nxn,

...

dxn

dt
= an1x1 + · · · + annxn.

Remember that the xi were the “state” variables in the sense that when know
the value of all of the xis, we have completely determined the state of the
system.

What we have now in Eq. 4.1 is an undriven dynamical system, or a
system with no input. It starts with initial values for all of the xis, and the
state dynamically evolves according to Eq. 4.1. But what happens now if we
introduce a single input to the system? We expect that this input will influence
the time evolution of some or all of the state variables. If we label the input
u1(t), we express this input’s influence on the time evolution of the state
variables as

dx1

dt
= a11x1 + · · · + a1nxn + b11u1, (4.2)

dx2

dt
= a21x1 + · · · + a2nxn + b21u1,

...

dxn

dt
= an1x1 + · · · + annxn + bn1u1.

You actually already know how to handle this case of a single input. If you
were to write Eq. 4.2 as a single, high-order differential equation, you would
wind up with something of the form of Eq. 1.47.

But now, what if the system has two or more inputs? It happens. The
dynamics of a fighter jet, or a car for that matter, are shaped by multiple inputs
from the pilot and the environment.1

Before diving into the math, it is worth pondering for a moment what you
might do if confronted with analyzing this multiple-input system armed only

1
Control joystick, rudder pedals, and throttle or thruster controls in the case of a jet; accelerator
pedal, brakes, steering wheel in the case of a car; forces due to airflow on and around the body
in both.
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with the background covered in this book. Interestingly, if you were told that
this is a Multiple-Input, Linear Dynamical System that is Stable, you might
paralyze yourself trying to figure out how to use linear algebra to derive
pole locations. However, if removed from this analytical context, you would
almost certainly do an extremely sensible thing: get a “feel” for how the car
accelerates without touching the brakes and keeping the steering wheel fixed,
then see how the car steers when going a constant speed, then investigate the
braking distance with your foot off the accelerator and the steering wheel held
constant, and so on. Mathematically, this is investigating the system one input
at a time with all the other inputs either zeroed out or constant. While it is
possible to miss some dynamic behavior taking this “simplified” approach, the
experienced practitioner learns to never remove such “simple” methods from
his or her toolkit.

Back to math. How might the system of equations change to reflect the
presence of multiple inputs? If we have two inputs, it looks like this:

dx1

dt
= a11x1 + · · · + a1nxn + b11u1 + b12u2, (4.3)

dx2

dt
= a21x1 + · · · + a2nxn + b21u1 + b22u2,

...

dxn

dt
= an1x1 + · · · + annxn + bn1u1 + bn2u2.

It is at this point that we start looking for a formalism to spare us from so
much writing. This is not all laziness, although there is some of that. But if the
purpose of hand analysis is to aid in understanding, it will help to make the
writing as simple and clear as possible to aid in focusing on the concepts.2 To
this end, the formalism of linear algebra comes into play. We start by defining
a vector of state variables


x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ (4.4)

2
Keep your eye on this. The novice will sometimes approach a compact formulation and
complain that the details are “hidden.” This is a valid, understandable complaint. The right
sequence is to first wrestle with the complicated, ungainly formulation until the details are fully
understood. With time, the compact formulation, or shorthand, will start to be a relief.
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and two matrices. The first matrix, A, is the connection between the state
variables xi and their time derivatives. It contains the ajks of Eq. 4.3:

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
an1 an2 · · · ann

⎤
⎥⎥⎥⎦ . (4.5)

The second matrix contains the B coefficients In the case of two inputs, it
would look like

B =

⎡
⎢⎢⎢⎣

b11 b12

b21 b22
...

...
bn1 bn2

⎤
⎥⎥⎥⎦ . (4.6)

Ultimately this leaves us rewriting Eq. 4.3 as the compact

d

dt

x = A
x + B 
u. (4.7)

Nice, right? We typically go one step further and explicitly define a vector of
outputs, 
y, in terms of the system state and inputs


y = C 
x + D
u, (4.8)

where C and D are suitably dimensioned matrices.
And this is where your control theory friends take off. They are concerned

about the General Case, in which a system can have a huge number of inputs,
outputs, and state variables. Are the available inputs sufficient to fully control
the system? Are the available outputs sufficient to make a complete observation
of the system’s internal state? These are the questions that they ask, and the
properties of A in particular (such as its eigenvalues and eigenvectors) assume
central importance.

It is a worthy subject for those of you who are interested in complex
systems. Be assured that if you decide to study this subject, the insight that
you have gained from the careful examination of single-input, single-output
systems will serve you well and greatly aid your understanding.

4.2 The Problem of “Sinusoids Running Around Loops”

A major focus of this book has been to guide readers to unify the intuitive
concepts of feedback theory with the mathematical analysis. However, we treat
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in this section a particular unification that almost every student of this subject
gets disastrously wrong.

Disastrously wrong.
This particular misunderstanding grabs hold of some people so strongly

that, by mid-career, they simply cannot release themselves. Let’s get into it.

-

X(s)

 L(s)

Y (s)

Figure 4.1 A generic feedback loop for discussing the oscillation condition.

At issue is the intuition behind the oscillation condition. That is, for the
system in Figure 4.1, we know that it will oscillate at any frequency ω0 for
which

|L(jω0)| = 1 (4.9)

 L(jω0) = (2n + 1) · 180◦.

So what is the error? In trying to explain this condition, an extremely common
explanation goes as follows:

Oh, I get it. The sine wave starts out going through L(s) where it gets flipped 180◦.
Then it gets flipped again by the minus sign at the summing junction, so now it is
in phase and it just reinforces itself. The sinusoid runs around and around in the loop
indefinitely.

If this quote makes no sense to you, stop now, congratulate yourself, and move
on immediately to Section 4.3. Don’t give it any more thought.

For the rest of us, there are two problems with this explanation. The first
problem is going to sound pedantic but is actually quite deep: this conceptual
picture mixes time-domain statements with frequency-domain statements.
When we invoke a system function like L(s) and work in the frequency
domain, we are in the domain of frequencies, and concepts of time as a
succession of events do not enter into the picture. That is, when we say that
the Fourier transform of a signal is

1

jω + jω0
, (4.10)
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we mean that its representative back in the time domain is

e−jω0t . (4.11)

To be very clear, this is a sinusoid of infinite extent in time that “started”
before the Big Bang and will still be there to greet the Four Horsemen of the
Apocalypse.

When you have that infinite extent in your mind, you have to realize that
there is no sensical way to talk about such a signal as “running around a loop.”
Running around a loop, chasing one’s tail – these are thought pictures that
only work in a discretized, time-sequenced conceptual framework that has a
beginning and an end.

The second problem is that such thinking generalizes poorly. The error is
given an unfortunate assist by the language of phase margin: if you have zero
phase margin, you get an oscillation; therefore, you might think, if you go even
further and have gain greater than unity when the phase is −180◦, you have a
worse problem and the envelope of the oscillation will grow exponentially.3

A counterexample can be a powerful corrective. Behold:4

L(s) = k(τs + 1)2

s3
. (4.12)

We start by looking at a Bode plot in Figure 4.2, and calculating the phase
margin. According to the strict definition of phase margin, a feedback loop
with this loop transmission (k = 105 and τ = 0.1) would be stable, would have
its closed-loop poles safely in the left-half plane. And – as it does in almost all
practical cases – the strict phase margin check gives the correct result! But how
can this be when, as the Bode plot shows, there is a gain of approximately 100
when the phase is at −180◦? Can this be right?

We have doubts, and so we fall back on the full Nyquist criterion and make
sure. First, we must deal with the awkwardness of having poles at the origin
and therefore on the D contour, since these points on the contour would now
map to an infinity. Common practice is illustrated in Figure 4.3. We then revert

to the convention that the normalized loop transmission, L0(s), is (τ s+1)2

s3 .

3
Note that this thinking stretches beyond the strict definition of phase margin given in Section
3.7.2.

4
Having multiple poles at the origin is not as outrageous or contrived as it may seem at first. One
pole at the origin of the loop transmission guarantees zero steady-state error in response to a
step input; two poles at the origin does the same for a ramp input; and three gives zero
steady-state error for a quadratically rising or falling input. (You can use the final value theorem
to prove these results.) Phase-locked loops are one extremely common class of electronic
systems where ramp tracking ability is an important consideration.
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−135◦
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 L(s)
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−225◦

−270◦

10−1 ωc

pm = 90◦

High gain when
phase is −180◦! !

Figure 4.2 A Bode plot for L(s) = k(τs+1)2

s3 with k = 105 and τ = 0.1.

We can still make use of the Bode plot of Figure 4.2 if we recall that we must
slide the magnitude plot down by a factor of 105 since we want to use the
normalized loop transmission. We see quickly in Figure 4.4 that the Nyquist
criterion confirms this perhaps surprising result. With k = 105, we are in fact
in a region where there are no net encirclements of the −1/k point.5

Finally, the root locus for this famous loop transmission is shown in
Figure 4.5. This further confirms that for sufficiently high values of k, all poles
are safely in the LHP and we have a stable system.

5
For any who still think that Nyquist plots are inconvenient, notice how we got quantitative
stability results with easy hand analysis. The only other recourse was to find the roots of a
third-order polynomial. Not as difficult as it once was in this age of lightning-fast
computational aids, but still.
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σσ

jωjω

r = ∞r = ∞

−δ + 0j

Figure 4.3 Applying the Nyquist criterion when there are poles at the origin.
Common practice is shown on the left, where the D contour is modified to have a
tiny indentation to keep the contour from actually hitting the poles. On the right
is an alternative, where one concedes that the infinite DC gain of a true pole at the
origin is unrealizable, and so we shift those poles very slightly into the LHP.

σ

jω

r = ∞

− 1
k

Im{L0(s)}

Im{L0(s)}

Re{L0(s)}

Re{L0(s)}

−10−3 + 0j

Figure 4.4 Applying the Nyquist stability test to L(s) = k
(τs+1)2

s3 . As an inter-
mediate step, we plot first half of the Nyquist plot using the positive jω axis as
shown. Note that the Bode plot allows us to pick out a key numerical feature of the
Nyquist plot, which is that the −180 point has an approximate magnitude of 10−3.
We can use this to see if our k value is large enough to ensure no net encirclements
of the −1/k point.
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σ

jω

Figure 4.5 Root locus plot: L(s) = k(τs+1)2

s3 .

There are two key results here. First, despite the phase margin relying on
a very small fraction of the information contained in the frequency response
of the loop transmission, for almost all practical cases it does correctly and
usefully indicate stability for feedback systems when applied strictly according
to its definition. Second, we now have a concrete example wherewith to
dismantle this picture of “sinusoids running around in a loop,” since in this
case we had a gain of 100 where the phase was −180◦.

Fine. What is a useful picture to carry around in one’s head?
One useful conceptualization for the oscillation condition comes from the

idea of resonance, which crops up often in physical systems. Examples include:
a taut string suspended between two supports; or a metal cavity containing
electromagnetic fields; or a resonant air cavity. In these examples, only
certain vibration “modes” are allowed. These modes are “allowed” because
wave patterns at certain frequencies are able to satisfy inviolable “boundary
conditions.” For a concrete example, consider the taut string anchored at both
ends depicted in Figure 4.6. If one plucks the string, the string will vibrate as
a superposition of traveling, sinusoidal waves. What these waves all have in
common is that an integer number of half-wavelengths fit, exactly, between
the fixed supports, making them consistent with the boundary condition that
the string is fixed in position at x = 0 and x = L.

In feedback systems it is quite natural, and proper, to think of the oscillation
condition as a resonance phenomenon. We can imagine the relevant boundary
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x = 0 x = L

Figure 4.6 A taut string suspended between two supports. The only oscillatory
modes allowed are ones for which an integer number of half-wavelengths fits
between x = 0 and x = L.
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-
+ L(s)

A B

ejω0t

Figure 4.7 Oscillation in feedback systems as satisfying a boundary condition.
For a sinusoid to satisfy the oscillatory boundary condition, the signal at point A
must equal that at point B.

condition if we think of breaking the loop as shown in Figure 4.7. In order
for an oscillation to occur at frequency ω0, the boundary condition is that in
the open-loop configuration of Figure 4.7, the signal at point A must be equal
to that at point B. For a sinusoid, verify that this corresponds exactly to the
oscillation condition. Fix in your mind that oscillations are a type of resonance.

4.3 Discrete-Time Control of Continuous-Time Systems

Discrete-time control of continuous-time systems is an incredibly important
topic. It is very common for students to immerse themselves in “classical”
control theory, often in CT, only to be completely at sea when it comes to using
a digital computer for feedback control. The analytical tools that they have
developed seem to fit awkwardly, if at all. The purpose of this section is to plug
this gap. A DT feedback control system for a CT plant is shown in Figure 4.8.

DAC

-

ADC

 H(z) P (s)
X(z)

Figure 4.8 DT control of a CT plant. H(z) is the DT compensator, P(s)

is the plant, an “ADC” is an analog-to-digital converter, and a “DAC” is a
digital-to-analog converter. ADCs sample their analog input and produce digital
representations of the input voltage at each sample period. DACs reverse this
process, sampling a digital code at their input and producing an analog voltage
or current at each sample instant.
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DT control of CT systems can also be a very big topic. So how do we
constrain things so that a satisfying treatment can be contained in this small
volume? A straightforward way to do this is by appealing to a basic fact
of analog-to-digital converters (ADCs): they introduce delays.6 And we now
know that delays are deadly in real-time feedback control. So it will turn out
that while we could do a long, general analysis of DT control of CT systems,
what we shall do instead is insist ahead of time that delays associated with
data converters have a minimal impact on the control dynamics. The result is
a dramatic simplification that allows us to employ the full suite of CT analysis
techniques with minimal adaptation.

4.3.1 DT Processing of CT Signals

The first step is to determine how to analytically jump from CT to DT and
back again. That is to say, we look at Figure 4.9 (bottom) and ask how to
express Y (jω) in terms of X(jω) and H(ej�). We can break this down into
four substeps:

1. Express Xd(e
j�) in terms of X(jω).

2. Express Yd(e
j�) in terms of Xd(e

j�).
3. Express Y (jω) in terms of Yd(e

j�).
4. Tie it all together and express Y (jω) in terms of X(jω).

-ADC DAC

ADC DAC



H(z)

H(z) P (s)

X(jω)

x(t)

Xd(ej�)
xd[n]

Yd(ej�)
yd[n]

Y (jω)

y(t)

Figure 4.9 (top) “Unrolling” Figure 4.8 to get a clear look at the loop transmission
signal chain. (bottom) Same signal chain, boiled down to the essentials for
analyzing DT processing of CT signals.

6
Digital-to-analog converters (DACs) also introduce delays.
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Details now follow. If you are less interested in how to work this out, the final
result is given in Eq. 4.27. In fact, even if you are interested in the details, it
might be worth taking a peek ahead at Eq. 4.27. If you look at it carefully, you
may decide that this result is exactly what you would expect.

Great. We start with step 1, which is the ADC. It samples x(t) so that
xd[n] = x(nT).7 And right away, we have an ambiguity to ponder that gets
more alarming the more you think about it. The most straightforward way to
see the issue is to observe that the sinusoid x(t) = ejωt will produce exactly

the same samples as the sinusoid x(t) = e
j
(
ω+k 2π

T

)
t , where k is an integer.

Put another way, a pure sinusoid at frequency f will produce exactly the same
samples as a pure sinusoid at frequency f + kfs, where fs is the sampling
frequency 1

T
, and k is a positive or negative integer. It appears that if the

original signal is too broadband, it will get mangled by the sampling process.
It is worth a pause in your reading here to internalize this. The essen-

tial ambiguity associated with sampling a CT signal is called aliasing.
For example, imagine a CT input that happens to be periodic with period
Tsig, and so we can represent it as the Fourier series the way we did
in Eq. 1.76:

x(t) = A0 + A1 cos

(
2π

Tsig
t + φ1

)
+ A2 cos

(
2 · 2π

Tsig
t + φ2

)
· · · (4.13)

Convince yourself that if the sampling period happened to equal the repetition
period of this waveform, Tsig = T , then every sinusoid term of Eq. 4.13
would “alias” to DC in the frequency domain and x(nT) would be a constant
value!8

With a sampler, then, we have it that we cannot tell the difference between
a frequency component at f and a frequency component at f + kfs. The fix is
to agree ahead of time not to introduce signals at the input of the sampler that
fall outside the range − fs

2 < f < fs
2 . Sometimes this condition is enforced by

an “anti-aliasing filter,” which is a low-pass filter whose cutoff is at or below fs.
It is essential for DT processing of CT signals that we bandlimit the CT signals
in this way. When we sample too slowly to prevent aliasing, we say that we are
“undersampling.” Conversely, if we sample faster, sometimes much faster, than
what is required to avoid aliasing, we say that we are “oversampling.”

7
The ADC also quantizes x(t). We will assume here that the quantization level (number of bits)
is enough to have no effect on the behavior of the system. For those of you who are concerned:
if you know the effective number of bits (ENOB) of the converter, you may carry around in your
head that the maximum SNDR of the digitized signal is SNDR = 6.02 × ENOB + 1.76.

8
Hint: substitute t = nTsig into Eq. 4.13.
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Having taken care of the aliasing issue, we can mostly proceed in peace to
get Xd(e

j�) in terms of X(jω). With ωs = 2πfs, we write the original samples
in terms of the CT Fourier transform X(jω):

xd[n] = x(nT) = 1

2π

∫ ωs/2

−ωs/2

X(jω)ejωTndω. (4.14)

We are a mere change of variables9 away from the familiar DT Fourier
transform of Eq. 1.151. Let ωT = �, which means 1

Td� = dω. For the limits

of integration, we have 2πfs·T
2 = π , and write

xd[n] = 1

2π

1

T

∫ π

−π

X

(
j
�

T

)
ej�nd�. (4.15)

Finally, we complete the first step of the process by writing

Xd(e
j�) = 1

T
X

(
j
�

T

)
. (4.16)

Step 1, finished!
Step 2 is easy:

Yd(e
j�) = H(ej�)Xd(e

j�) (4.17)

Yd(e
j�) = 1

T
H(ej�)X

(
j
�

T

)
.

Step 3 is writing Y (jω) in terms of Yd(e
j�), or capturing mathematically

the operation of a DAC. Most DACs operate exactly the way you would think:
for each sample y[n], it just holds the correct output voltage (or current) until
the next sample. The result is that the abstract sequence of lollipops that
we usually use to depict DT signals becomes a staircase voltage waveform
Figure 4.10.

Fine. Mathematically, we write the output waveform y(t) as

y(t) =
∑
n

y[n]p(t − nT), (4.18)

where p(t) is a pulse shape known as a “zero-order hold.” Recalling the
definition of the unit step function u(t) from Eq. 1.123, we write

9
For many of you, it has probably been a while since you saw, or executed, a “mere” change of
variables for an integral. The reason for changing variables here is to allow us to work in either
the DT or CT formalisms with familiar notation (e.g., frequency as ω or f in CT, � in DT). To
convince yourself that everything is okay, carefully compare Eqs. 4.14 and 4.15 and see that
the two definite integrals will always give the same result.
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y[n]

n

y(t)

tT 2T

Figure 4.10 Internal to the DT processor, we represent the signal as the sequence
of samples on the left. A typical output of a DAC is the staircase waveform on the
right, where the output levels are either analog currents or analog voltages.

p(t) = u(t) − u(t − T). (4.19)

We’re driving toward getting Y (jω) now, so we take the Fourier transform of
Eq. 4.18. Remember from Eq. 2.24 that the Fourier transform of p(t − nT) is
P(jω)e−jωnT. Y (jω) is therefore

Y (jω) =
∑
n

y[n]P(jω)e−jωnT (4.20)

= P(jω)
∑
n

y[n]e−jωnT.

Notice that the part of Y (jω) left under the summation, y[n]e−jωnT, is actually
periodic in ω. That is, the summation evaluated at ω0 is the same if we evaluate
it at ω0 + k 2π

T
, which is ω0 + kωs, where k is a positive or negative integer.10

Otherwise, notice that the part under the summation is just Yd(j�) with
� = ωT.

For P(jω), we have

P(jω) =
∫ ∞

−∞
[u(t) − u(t − T)]e−jωtdt (4.21)

= 1 − e−jωT

jω
.

10
Lest you think this to be mere theoretical trivia: if you look at the output of a real-life DAC on
a spectrum analyzer, you will see spectral “replicas” spaced out at multiples of the sampling
frequency. This is a fundamental artifact of sampling, and we battle it in the real world with a
combination of filtering and the highest practical sampling rate.
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Now we’re going to do a few more steps that will look like an arbitrary math
dance but will actually give additional clarity:

1 − e−jωT

jω
= e−jωT/2

(
ejωT/2 − e−jωT/2

jω

)
(4.22)

= e−jωT/2

(
2 sin ωT/2

ω

)

= e−jωT/2

(
sin ωT/2

ω/2

)

P(jω) = Te−jωT/2

(
sin ωT/2

ωT/2

)
.

The multiplicative term e−jωT/2 shows that a DAC with a zero-order hold
imposes a half-sample delay in the outgoing signal stream. This makes sense
if you think about it: what you would really want from a zero-order hold is
for the middle of the pulse to coincide with sample instant nT, and therefore
for the pulse to start a time T/2 earlier than it actually does. Also, notice that
we have placed a factor of T out front to cancel the factor of T placed in the
denominator. This little nicety makes the expression in parentheses the classic
sinc function, in this case sinc(ωT/2).

We are near the end. We have for Y (jω)

Y (jω) = Te−jωT/2sinc(ωT/2)Yd(e
−jωT). (4.23)

Substituting now for Yd(e
−jωT), we have

Y (jω) = Te−jωT/2

(
sin ωT/2

ωT/2

)
· 1

T
· Xperiodized(jω)H(ejωT). (4.24)

Two bits of housekeeping. We will, of course, cancel the factors of T. Next,
Xperiodized(jω) is just X(jω) with replicas placed at integer multiples of the
sampling frequency as required by Eq. 4.20:

Xperiodized(jω) =
∑

k

X(j (ω + kωs)). (4.25)

However, in a practical system, we will assume that we are not aliasing when
we sample the inputs and that DAC output replicas are attenuated through a
combination of high sample rate and low-pass filtering. If we take care of
these details, we arrive at the coveted result of passing a CT signal through
a DT filter:

Y (jω) = X(jω)H(ejωT) · sinc(ωT/2) · e−jωT/2. (4.26)
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Make one final observation, which is that fast sampling compared to the
frequency components of X(jω) corresponds to ωT = 2πf/fs << 1, which
means Eq. 4.26 becomes

Y (jω) ≈ X(jω)H(ejωT). (4.27)

It pretty much had to work out this way. In words, what Eq. 4.27 says is,
“Map the frequency components of X onto the j� axis according to � = ωT;
apply the filtering function H as you normally would; then return to CT.” The
rest of Eq. 4.26, the delay term and the sinc term, assert themselves when
the sampling frequency is no longer large compared to the highest-frequency
components in X. For real-time control, we shall see that you are better off
oversampling. And the more the better.

4.3.2 Don’t Kid Around: Just Oversample

Having worked out how to jump from CT to DT and back again, we turn our
attention to the system at hand. Again, Figure 4.8 is a representative block
diagram. Concerned as we are with the dynamics of feedback control, we
immediately move to the relevant loop transmission, shown in Figure 4.9 (top).
Out of respect for the headaches that even small delays can cause, we are
going to rely on the more exact expression in Eq. 4.26 and write the loop
transmission as

L(jω) = H(ejωT) · sinc(ωT/2) · e−jωT/2. (4.28)

It is helpful now to introduce a modification to the loop transmission based
on the behavior or real-world data converters. Even the fastest ADCs intro-
duce delay between the input and output: some of the fastest, so-called
pipelined ADCs explicitly exploit “latency,” or delay, in exchange for a
high sample rate. Other data converters, such as successive-approximation
ADCs, introduce latency in exchange for a higher degree of quantization. For
many applications, such as digital communications, a delay of even a few
hundred samples simply does not matter. But for real-time control, these delays
are of critical importance. We will therefore modify our loop transmission
according to

L(jω) = H(ejωT) · sinc(ωT/2) · e
−jωT

(
1
2 +nADC+nDAC

)
. (4.29)

We come now to the critical point, which is, what do we consider “fast”
sampling? The author suggests that “fast” sampling is sampling fast enough
that the phase impact of the delay terms in Eq. 4.29 are no greater than that
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of a a pole that is a decade above the highest frequency of interest.11 It turns
out that a single, real pole exerts a phase pull of −5.6◦ at a frequency that is
one-tenth of its magnitude. So we require

ωT

(
1

2
+ nADC + nDAC

)
≤
(

5.6◦

360◦

)
· 2π ≈ 0.0977 rad, (4.30)

which means, for all frequencies ω of interest,

ωT ≤ 0.0977 rad
1
2 + nADC + nDAC

. (4.31)

A numerical example will save this whole development from being too
abstract. At the time of this writing, Analog Devices Inc. offered a low-latency
ADC with an advertised latency of 2.5 samples. Low-latency DACs are more
common, again at the time of writing, but even assuming no extra latency for
the DAC we still have the half-sample delay from Eq. 4.26. Assuming we are
using these super low-latency data converters, then, we have that

ωT ≤ 0.0977 rad

3
≈ 0.0326. (4.32)

We can go back and check that we have satisfied our assumptions by looking
at the real and imaginary parts of the delay term at this outer limit where
ωT = 0.0326:12

e−jωT( 1
2 +nADC+nDAC) = e

−j (0.0326)·
(

1
2 +2.5

)
(4.33)

= e−j (0.0977)

= cos(0.0977) − j sin(0.0977)

= 0.995 − j0.0975.

If you check, the angle of the delay term is indeed −5.6◦. Even better, the sinc
term works out to be satisfyingly close to 1:

sinc(ωT/2) = sin (0.0326/2)

0.0326/2
= 9.999557 × 10−1 ≈ 1. (4.34)

We conclude that if we sample fast enough to keep data converter artifacts from
introducing significant delays and phase shifts, we justify the approximation
of Eq. 4.27. In a practical control system, it is reasonable to assert that the
highest frequency “of interest” is the unity crossover frequency of the loop

11
A natural “frequency of interest” in control systems is the unity crossover frequency, where we
measure phase margin.

12
If you’re checking these calculations with your own calculator, remember that the arguments
of sin and cos are in radians.
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transmission, ωc = 2π ·fc. Applying our criterion for keeping sampling delays
from disrupting the loop dynamics, we find that we require the sampling
frequency, fs = 1/T, to be

ωc · 1

fs
≤ 0.0326 (4.35)

fs ≥ 2πfc

0.0326
fs ≥ 193 · fc.

That is to say, we are oversampling by quite a lot! Those of you familiar with
signal processing might recall the theoretical minimum sample rate to avoid
aliasing, which would have been

fs ≥ 2 · fc. (4.36)

But remember that delay is bad for real-time feedback control. Regardless of
how elaborate your analysis gets, there is simply no causal tool for fighting
delay when we sit down to do feedback compensation. The best policy is to
architect your system from the start to prevent large phase shifts from delays.
In the case of DT control of CT systems, this means heavily oversampling.

4.3.3 Relationship between z and s in Mixed-Signal Control

We have already established that, for DT processing of CT signals, and when
we do enough oversampling, the loop transmission is well approximated by
L(jω) ≈ H(ejωT) (Eq. 4.27). When we consider now the design of DT
compensators, it is helpful to check that this “rule” generalizes to

L(s) = H(esT). (4.37)

Can we do this?13 To find out, we lower our head and turn the crank, dusting
off the rarely used full form of the inverse Laplace transform, which we last
saw in Eq. 1.113:

x(nT) = 1

2πj

∫ σ0+j∞

σ0−j∞
X(s)esTnds. (4.38)

We mentioned before that this is a contour integral. The contour along which
we integrate is the vertical line in the complex plane for which the real part

13
If your first reaction is, “Of course, why wouldn’t we be able to?” well, you are correct. Does
not hurt to check, though. You can perhaps concede that through the first few lines of the
derivation, anyway, this final result is conceivably in doubt.
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of s is σ0. The only restriction on σ0 is that it must be a value for which the
original Laplace transform converges.

It turns out that that way through the wilderness here is by doing three
changes of variables. Ultimately, we want to make Eq. 4.38 turn into something
like an inverse Z-transform of the samples x[n]. That is, we are looking to end
with an expression like

x[n] ∝
∮

X(·)zn−1dz. (4.39)

Now if you compare Eqs. 4.38 and 4.39, you may despair of getting from one
to the other. But recall that z is a complex variable and that when we are in
DT, we tend to write it as z = rej�. Try blindly substituting this form of z

into Eq. 4.39, and recall that we just finished a development where we found
the equivalence � = ωT. There are many details to fill in, which we will do
in the following, but do that simple substitution to see that Eqs. 4.38 and 4.39
maybe aren’t as far apart as they look at first.

The first change of variables for Eq. 4.38 will be s = σ0 + jω. For the
contour of integration, σ0 is a constant, and so for purposes of the change of
variables ds = j · dω. We are now integrating X(σ0 + jω) and sweeping the
variable ω, so in order to keep the result of the integration the same the limits
on the definite integral must change to −∞ and +∞. The steps look like the
following:

x(nT) = 1

2πj

∫ σ0+j∞

σ0−j∞
X(s)esTnds (4.40)

= 1

2πj

∫ +∞

−∞
X(σ0 + jω)e(σ0+jω)Tnj · dω

= 1

2π

∫ +∞

−∞
X(σ0 + jω)e(σ0+jω)Tndω.

Finally, if we assume that there is no aliasing then X(σ0 + jω) is zero for
ω outside of the range of [−ωs/2,ωs/2], and so we finish this first change of
variables by writing

x(nT) = 1

2π

∫ +ωs/2

−ωs/2

X(σ0 + jω)e(σ0+jω)Tndω. (4.41)

The second change of variables is ωT = �. We aim to sweep � as the
variable of integration. To keep the result of the definite integral unchanged
we will: replace dω with 1

T · d�; the argument of X(·) inside the integral
becomes σ0 + j �

T ; and, crucially, the limits of integration become ±ωs
2 · T.
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But ωs = 2πfs = 2π
T . So the actual limits of integration become ±π , and

we have

x(nT) = 1

2π

1

T

∫ +π

−π

X

(
σ0 + j

�

T

)
eσ0Tnej�nd�. (4.42)

We will do the third and final change of variables after making a substitution
r = eσ0T:

x(nT) = 1

2π

1

T

∫ +π

−π

X

(
σ0 + j

�

T

)
(rej�)nd�. (4.43)

Now the final change of variables: z = rej�, and it will be important to recall
that r is fixed as we do our integral because σ0 is fixed:

dz = jrej�d�, (4.44)

dz = jzd�,

d� = 1

j
z−1dz.

The final bit of trickery is, as always, to keep the result of the integral the same
as part of doing the change of variables z = rej�. We can do this by changing
this contour integral to a new contour integral, this time with a circle in the
z-plane with radius r = eσ0T. Since we go from −π to π it is a complete
circle. Substituting in for d�, and of course replacing rej� with z, we wind
up with

x[n] = x(nT) = 1

2πj

1

T

∮
X

(
σ0 + j

�

T

)
zn−1dz. (4.45)

This is none other than the Z-transform that we sought from the beginning.
The final result is that

Xd(z) = 1

T
X

(
σ0 + j

�

T

)
, (4.46)

together with the important relations

σ0 = 1

T
ln |z| (4.47)

� = arg z.

At long last, we have the Z- and Laplace transform analogs to the Fourier
transform relation of Eq. 4.16. Notice that if we stick to the unit circle in the z

domain, σ0 = 0 and Eqs. 4.16 and 4.46 are equivalent, exactly as they should
be. In fact, what we really have here is a generalized mapping from s to z and
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back again. When we have taken care to avoid aliasing, we can in fact treat the
s and z variables on either side of the data converters through the relations

z = esT = eσTejωT (4.48)

and the reverse

σ = 1

T
ln |z| (4.49)

ωT = arg z = �.

We go through all of this to generalize Section 4.3.1, and we generalize
because we want to describe how to analytically design DT compensators for
CT systems in Section 4.3.4. Fortunately, steps 2–4 for the generalization work
out way more easily than step 1 did.

Step 2:

Yd(z) = H(z)Xd(z), (4.50)

where Xd(z) is defined in Eq. 4.46.
Step 3, writing Y (jω) in terms of Yd(z):

y(t) =
∑
n

y[n]p(t − nT) (4.51)

Y (s) = P(s)
∑
n

e−sT

= P(s)[Yd(z)]|z=esT

= P(s)H(esT)Xd(e
sT).

We drive toward the generalization of Eq. 4.26 with

Y (s) = 1

T
P(s)H(esT)X(s). (4.52)

P(s) is the zero-order hold 1−e−sT

s
, so

Y (s) = 1

T
· 1 − e−sT

s
· H(esT)X(s). (4.53)

We complete this analysis by looking in the oversampling limit, for which
|sT| � 1 and thus e−sT ≈ 1 − sT. In the oversampling limit, we arrive at

Y (s) ≈ H(esT)X(s), (4.54)

as we hoped we would. This result allows for a relatively simple analytical
framework for designing feedback compensators in mixed signal systems, as
we shall see in the next subsection.
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4.3.4 DT Compensators for CT Systems

Where does this all lead for the design of DT compensators for CT systems?
A very simple approach is to do your compensator design as if you were
staying in CT. After you have chosen a compensator H(s), take an inventory
of your poles pi and zeros zi. For every desired pole in H(s) you place a pole
at epiT in the DT compensator, and similarly place your zeros at eziT.

Note that the major consequence of strong oversampling is that we are in
the limit of DT as described in Section 2.5.5. That is, all of our poles and
zeros are concentrated near the 1 + 0j point on the unit circle. An interesting
weirdness of being in DT, though, is the possibility of placing unit sample
delays in the transfer function. As we have emphasized, there are so many
reasons to avoid this. But it will happen that most realizable transfer functions
in DT will come with one or more sample delays. Recall that the Z-transform
of a unit delay is z−1; these delays will show up as poles at the origin of the
z-plane. These special poles do not translate one-to-one to equivalent poles in
CT. Rather, we must tally them up and tack on a multiplicative e−sTm term to
our CT equivalent, where m is an integer equal to the total number of DT poles
at the origin.

4.3.5 The Other Useful Extreme: Slow Sampling

Up to this point in Section 4.3, we have argued strongly the merits of
oversampling. That is, the sample interval T is extremely short compared to
the dynamics of the plant that is being controlled.

But it is not always true that high speed of response is the most important
design goal. In some control applications, it is sufficient for the machine to
slowly step to its final value, and all that matters is that it get there eventually,
and with high accuracy. In such applications, the DT controller may make a
step in the right direction, poll all relevant sensors to see how close it is to
the final goal, and then take another step. This is a situation where the sample
interval T is extremely long compared to the dynamics of the plant. During
a sample interval, the plant has time to completely settle, so that from the
standpoint of the DT controller it appears to be infinitely fast. In this situation,
one may regard the problem as a pure DT feedback control problem and need
not worry about crossing back and forth between CT and DT analysis domains.

4.3.6 A Note on the Bias toward CT Methods

The readers will note that CT analysis methods are given a privileged place in
the preceding analysis. The primary reason for this is that CT analysis tools
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tend to be a little friendlier to pencil-and-paper analysis, which strengthens
understanding and intuition before optimizing with computer tools.

But different people have different preferences, and the best designs come
when the individual designer is convinced that their method is the best. So if
you are drawn more to DT methods and design tools, the good news is that the
z = esT mapping described in Section 4.3.4 still works for you. You will need
to model the CT element that is being controlled. Then for each of its poles
and zeros, you will map them to their DT equivalents in your control model.
From there, analyze and design the way that works best for you.

4.3.7 Sometimes, Real-Time Computer Control Is Hopeless

Many times, despite targeting high sampling rates for the data converters, the
sample delays in DT systems add up and become overwhelming. The practice
of “pipelining” digital signal paths is near-universal, and normally for good
reason: the impact of propagation delays in complex logic paths would greatly
reduce achievable clock rates unless latency was actively traded for speed. And
then there is the realization of digital filters themselves (H(z)). Figure 4.11
shows a canonical DT integrator, the simplest of DT filters. A look at the
transfer function

X(z)

 z−1
Y (z)

+

Figure 4.11 A typical DT integrator. Notice that neither input to the summing
junction is inverting. The governing difference equation is y[n+1] = x[n]+y[n].

H(z) = z−1

1 − z−1
= z−1 · 1

1 − z−1
(4.55)

reveals that in addition to the desired pole at the 1+0j point, we also get a unit
sample delay z−1 that is most undesired. Although there are forms of the DT
integrator that lack this particular drawback, it is often true that digital filters
are beset by a substantial number of sample delays.

It would seem that there is no way out, that the situation is hopeless. That
is . . . true. But if the plant we are controlling has characteristics that only
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ADC

DAC
x[n]

F(·)≈ F−1(·)

μP

Adaptation

y(t)

Figure 4.12 Adaptive predistortion. In these systems, “stability” relates to the
ability of the system to stably converge to an accurate inverse model F−1(·).
A digital microprocessor (μP) manages the adaptation.

vary slowly, we can do astonishingly well by building a system like that
shown in Figure 4.12. In this strategy, the digital controller uses feedback
data to adapt an “inverse model” of the plant. This is essentially open-loop
control that learns from past mistakes, and it is immensely powerful. It is how
virtually every cellular base station in the world today implements “adaptive,
digital predistortion.” The delays in the signal path have an impact only on
how quickly we are able to converge on an inverse model, and more delay
will in fact increase convergence time. But because the transmit chain in
base stations change characteristics due to factors like temperature changes
and aging, we can slow down adaption as far as we need to accommodate
convergence without ever sacrificing needed throughput.



5
Feedback in the Real World

A nice thing about feedback theory in textbooks is its relative neatness and
simplicity. In a block diagram, for example, it does not matter how many
inputs the output of a given block is driving. In the real world, “loading effects”
are where the behavior of a system block may be altered depending on what
its output is connected to. Also true in abstract treatments is that the only
connections present are the ones that you see. There is no such thing as an
unmodeled coupling between one block and another.1

All this means is that when you go out to apply feedback theory to the real
world, you cannot expect to accomplish its application simply by rote. It will
require flexibility and creativity and will benefit from deepening experience,
just like any other rewarding, high-level discipline. Learn to embrace this, if
you have not already. Rote application would be boring!

5.1 Finding Loop Transmissions

Consider a machine that we will call a “cooling unit.” The idea is that in
response to an input voltage, the cooling unit acts to cool a room at a rate
proportional to an input voltage. Suppose further that the unit is capable of
“negative cooling.” That is, it heats the room if the input voltage is negative.

Now, we said that the rate of cooling/heating is proportional to the input
voltage. This means that the temperature, TR, is related to the input voltage of
the cooling unit vin according to

dTR

dt
∝ −kvin, (5.1)

1
Or between the output of one block and the input of that same block, which is an unintended
feedback loop.

172
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or equivalently,

TR ∝ −k

∫
vindt . (5.2)

Here k is a positive constant that, in this simplified model, captures such effects
as the size of the room (larger rooms have smaller ks) and the coupling of the
cooling/heating element to the air. Details for now. The point here is that we
are now ready to draw a block diagram of a feedback system for controlling
the temperature of the room. We see that the forward path is going to have
a pole at the origin, so as a first pass, we’ll try nothing more complicated
than proportional control. Our controller, then, is the simple gain block of
Figure 5.1, and our “plant” is the combination of the cooling unit and the
thermal dynamics of the room, shown illustrated in Figure 5.2. Let us not
forget that we are reading the room temperature with an electronic sensor that
converts temperature to voltage via a proportionality constant kT as shown in
Figure 5.3.

kc

Figure 5.1 Proportional control for the temperature system.

−k

s

vcool T

Figure 5.2 Capturing the relationship between input voltage to the cool-
ing/heading unit and room temperature.

kT
T vmeas

Figure 5.3 The temperature sensor converts temperature to voltage with some
proportionality constant kT.
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We are ready to connect it all together on paper and consider the question
of stability. Going from rote memory of feedback theory, we might draw
something like Figure 5.4.

-

kc
e(t)

− k
s

Tvcoolvcmd

kT
vmeas



Figure 5.4 A simple control loop for the temperature of a room.

5.1.1 Is the Sign Right? A Useful Check

But before diving into all of the details of analysis, it is useful to do a simple
check to see if the sign of the loop transmission is right. In the author’s
experience of designing and building feedback systems over many years, this
simple check has proven time and again to be a most useful way to help get
one’s mind around the inner workings of the system. The check is, is the sign
of the loop transmission right? That is, in response to a discrepancy between
the desired temperature and the measured temperature, does the system act to
reduce instead of increase the discrepancy?

The way to check this is to look at the open-loop system resulting from
“breaking apart” the original closed-loop system. As shown in Figure 5.5, this
open-loop system has two inputs, vcmd and vmeas. And now, we do a very
simple check. Suppose that the temperature in the room is lower than the
desired temperature, so that we have vcmd − vmeas > 0. In this case, e(t) will
be a positive voltage, as will vcool. You can see that the integrator will attempt
to drive its output, which is actually the temperature in the room, lower and
lower as long as the condition vcmd − vmeas > 0 persists. This is exactly what
we do not want. It’s the behavior of a right-half-plane pole!

The sign of the loop transmission is wrong. Without doing root locus or
Nyquist or any other stability analysis, a simple check reveals that what we
first wrote down is backward and makes no sense. Fortunately there is an easy
fix: make kc < 0.
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-
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e(t)

− k
s

Tvcoolvcmd

vmeas



Figure 5.5 Checking the sign of the loop transmission.

Now, it is true that this mistake would ultimately be caught by any of the
stability analysis techniques we have discussed in this book. It is also true that
getting the sign of the loop transmission right is no guarantee of stability. But
getting the sign wrong does almost guarantee instability. Keep an eye on this
in your own designs. It is a great way to stay grounded in the physical behavior
of the system.

5.2 A Common Application: Howling Speakers
and Microphones

The readers will not find it difficult to find applications of feedback theory
in the real world. Applications abound in the author’s speciality of electronic
circuits: op-amp circuits, phase-locked loops, � modulators, and oscillators
(both intentional and accidental) are but a start to a very, very long list. It is
impossible to do anything but scratch the surface of potential applications in a
single book, much less a single chapter.

So scratch the surface we shall, with an example that is familiar to almost
everyone: the howling public address system. These systems consist of a
microphone, an amplifier, and a loudspeaker and are intended to allow a
single person to address a large crowd without having to shout. You know the
scenario: at just about every wedding reception, a member of the wedding party
stands up to make their remarks and kicks things off by tapping the microphone
and asking, “Can you all hear me?” The system faithfully responds with an
ear-splitting howl, and the guests duck and cover their ears. The moment is
saved when someone shouts, “Turn down the volume!” Which is just another
way of saying, “Lower the gain in the loop transmission of that feedback
loop!” Let’s examine.
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A(s)

r0

Figure 5.6 Microphone, amplifier, and loudspeaker of a public address system.

The beginnings of a plausible model are sketched in Figure 5.6. We can
see the potential issue right away: the output of the speaker depends on both
the intended input (the person’s voice) and the output of the speaker itself. It
certainly is a feedback system. How do we determine its stability?

To answer this, we must map out a reasonable model of the loop trans-
mission.2 We can start with the audio amplifier itself. Since the purpose of
the audio amplifier is to amplify only signals that are in the audio range with
reasonable flatness, we might suppose that it has a transfer function with a
single pole at 20 kHz. The transfer function is sketched in Figure 5.7.

Thinking about the assumptions that we have made, we may well feel
satisfied that we have a reasonable framework for an amplifier. But we find that
we do not immediately have a number to plug in for the gain of the amplifier,
and the assumption that it has a single pole is reasonable but is still a fairly big
assumption. Must we give up so soon after starting?

This is a great example of needing to use creativity and judgment in a
real-world application. One approach at this point could have been to stop
the wedding reception, dismantle the amplifier, get data sheets for all of the
components, and really get a detailed model on paper. Another approach is

2
Sometimes students are hesitant to commit to a mathematical form for a model. What if, they
suppose, they get it wrong? Rest assured: you are practically guaranteed to get it wrong! This is
true for everyone! The point is to commit, honestly and carefully, your full understanding to a
model, and then check the model’s validity through experiment. If your model turns out to be
correct, great! If not, the process is to understand the behavior that your model failed to capture,
modify your model accordingly, and thoughtfully analyze why you made the errors that you
did. Repeat as many times as necessary There may be no other way to build real understanding.
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|A(s)|

 A(s)

0◦

−90◦

a0

ω
2π · 20kHz

Figure 5.7 A Bode plot for the amplifier in Figure 5.6.

to proceed with what we have, noting that our model already has analytical
features that may give us insight if we pursue things further. While we shall go
with the latter approach for now, this is a legitimate judgement call that will
be either validated or repudiated as we take next steps. Keep a sharp eye out
for the ego’s involvement here: it is easy, and paralyzing, to get too hung up
on being “right” on all of these little decisions along the way. Feel your way
through, and learn from your mistakes rather than fear them.

We press ahead, inserting variables as placeholders for values we don’t
know in the transfer function of the amplifier A(s):

A(s) = a0

τs + 1
, (5.3)

where τ is 1
2π ·20kHz . At this point we might look up and wonder a little. After

all, if the sign of the loop transmission works out in our favor, there is no way
to get oscillations with only a single pole in the transfer function.3 It must be
true that there are physically important effects that are we have not modeled.

It turns out that we must include two effects when we model the coupling
between the speaker output and the microphone input. The first effect could be
that the speed of sound through air is about 343 m/s, so there is a delay term in
the loop transmission. But should it matter? We can do a quick check. Suppose

3
Verify this for yourself with your analytical tool of choice: algebra, root locus, Nyquist, phase
margin.
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the microphone and the speaker are separated by a relatively short 3 meters
(approx. 10 feet). This equates to a delay of 9 ms. A sound wave right in the
heart of the audio range has a frequency of 1 kHz, or a period of 1 ms. So even
this modest separation between the speaker and the microphone introduces a
whopping 9 × 360◦ = 3240◦ of phase! We definitely expect this delay to be
important.

The second effect that our experience says makes a difference is that
separating the microphone and the speaker seems to help things. While this
certainly adds even more phase from the delay that we just discussed, it is also
true that the coupling between microphone and speaker is weakened. Sound
dies away, after all, the farther you are from the source, and happens to do so
in an inverse-square manner. To within a constant, we may model this as a gain
block that depends on r0, the separation between microphone and speaker:

AA = kA

r2
0

. (5.4)

If we put all of this together, we have a model of the feedback loop shown
in Figure 5.8. The summing junction is the microphone, which combines the
intended input (the voice of the person speaking) with the unintended input
(the output of the loudspeaker).

+


kA
r2
0 e

−
(

r0
343 m/s

)
s

a0
τs+1

Figure 5.8 A block diagram model for the public address system.

We’ll do one more thing, which is has to do with the fact that the summing
junction here has positive signs associated with both inputs, in contrast to the
usual way things are done. How you deal with this is up to you. The author’s
personal preference is to make it a minus sign, and insert an e−jπ block in the
feedback path, as shown in Figure 5.9.

Fantastic – the hard part is actually done. Once you have the problem
captured as neatly contained blocks in a diagram, the stability analysis goes
quickly, and all the more so if you’ve had a lot of practice. Now we just have
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-


kA
r2
0 e

−
(

r0
343 m/s

)
s

a0
τs+1e−jπ

Figure 5.9 Same system as in Figure 5.8, but force fitting it into the negative
feedback framework that we have used throughout this book.

−1 + 0j

a0kA
r2
0

Im{L(s)}

Re{L(s)}

Figure 5.10 A parameterized half Nyquist plot (positive frequencies) for Figure
5.9. The 90◦ phase shift from the amplifier is in there somewhere. But for audio
frequencies, this phase will get utterly swamped out by a propagation delay for r0

greater than a few centimeters.

to maintain our flexibility, since we can’t draw all the details of the Nyquist
plot without exact values for kA,r0, s0, and a0.4 A parameterized Nyquist plot
is shown in Figure 5.10.

4
This is actually better in the early stages of understanding the physics of a system. Later, when
we want to nail down a design, the numerical values of the various parameters become more
important.
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What do we see? Our main concern is whether we will see oscillations,
that horrible howling that these systems are famous for, when we turn on the
power. What we see from the Nyquist plot is that if a0, the amplifier gain, is too
big, and/or the distance between the microphone and speaker is too small, the
Nyquist contour will indeed expand beyond the −1+0j point, and we will have
what we dread. So our model, as rough as it is, manages to capture analytically
what we know from experience: when the howling starts, we should either turn
down the volume (lower a0) or move the speaker and the microphone farther
apart (increase r0).



6
Conclusion and Further Reading

Well, there you have it: A Guide to Feedback Theory, and along the way a
walk back through the linear systems that are the mathematical foundation
of your entire engineering study. Think deeply about these topics, and in so
doing, do not forget to play and have fun. Follow your curiosity, and try to
work out answers to your own questions as they come up. When you get stuck,
talk about your stuckness with like-minded people, search the internet or your
engineering library for answers, or, surprisingly, walk away for some time, and
let your subconscious chew on the problem for a while.

What follows is a list of books that had a great impact on me as I learned
and pondered feedback topics over the last 35 years. I was an undergraduate in
the EECS department at MIT in the mid- to late 1990s, which this list certainly
reflects. Otherwise, what you will find here are not just clear expositions of the
stated subject materials, although they are certainly that. These books always
struck me as extremely personal, where the authors shared their peculiar takes
on widely discussed subjects.

Feynman, Richard, Robert Leighton, and Matthew Sands. The Feynman
Lectures on Physics. Reading, MA: Addison-Wesley, 1963.

Halliday, David, and Robert Resnick. Fundamentals of Physics. 3rd ed.
Hoboken, NJ: John Wiley, 1988.

Hildebrand, Francis B. Advanced Calculus for Applications. Upper Saddle
River, NJ: Prentice Hall, 1976.

Kailath, Thomas. Linear Systems. Upper Saddle River, NJ: Prentice Hall,
1980.

Karu, Zoher Z. Signals and Systems Made Ridiculously Simple. Huntsville,
AL: ZiZi Press, 1995.

Lee, Thomas. The Design of CMOS Radio-Frequency Integrated Circuits.
Cambridge, UK: Cambridge University Press, 1993.
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Roberge, James K. Operational Amplifiers: Theory and Practice. New York,
NY: John Wiley, 1975.

Siebert, William M. Circuits, Signals, and Systems. Cambridge, MA: MIT
Press, 1986.

Strang, Gilbert. Introduction to Linear Algebra. Wellesley, MA:
Wellesley-Cambridge Press, 1993.

It is worth emphasizing one more time: remember to play, whether it be
with pencil and paper, your favorite simulator, MATLAB, or whatever. If a
derivation in this book intrigues you or seems important, pay attention to
that curiosity. Close the book, take out a blank sheet of paper, and see how
much of the derivation you can recover on your own. When you get stuck,
just remember that getting stuck usually exposes a lack of understanding as
opposed to an inability to remember. Think deeply about where you are stuck
and why, address the misunderstanding, and then try again on a new sheet of
paper. This is a great way to deepen your understanding.
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