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Preface

Asset pricing theory tries to understand the prices or values of claims to
uncertain payments. A low price implies a high rate of return, so one can
also think of the theory as explaining why some assets pay higher average
returns than others.

To value an asset, we have to account for the delay and for the risk of
its payments. The effects of time are not too difficult to work out. However,
corrections for risk are much more important determinants of many assets’
values. For example, over the last 50 years U.S. stocks have given a real
return of about 9% on average. Of this, only about 1% is due to interest
rates; the remaining 8% is a premium earned for holding risk. Uncertainty,
or corrections for risk make asset pricing interesting and challenging.

Asset pricing theory shares the positive versus normative tension present
in the rest of economics. Does it describe the way the world does work, or
the way the world should work? We observe the prices or returns of many
assets. We can use the theory positively, to try to understand why prices
or returns are what they are. If the world does not obey a model’s predic-
tions, we can decide that the model needs improvement. However, we can
also decide that the world is wrong, that some assets are ‘‘mis-priced’’ and
present trading opportunities for the shrewd investor. This latter use of asset
pricing theory accounts for much of its popularity and practical application.
Also, and perhaps most importantly, the prices of many assets or claims to
uncertain cash flows are not observed, such as potential public or private
investment projects, new financial securities, buyout prospects, and com-
plex derivatives. We can apply the theory to establish what the prices of
these claims should be as well; the answers are important guides to public
and private decisions.

Asset pricing theory all stems from one simple concept, presented in the
first page of the first chapter of this book: price equals expected discounted
payoff. The rest is elaboration, special cases, and a closet full of tricks that
make the central equation useful for one or another application.

xiii
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There are two polar approaches to this elaboration. I call them absolute
pricing and relative pricing. In absolute pricing, we price each asset by refer-
ence to its exposure to fundamental sources of macroeconomic risk. The
consumption-based and general equilibrium models are the purest exam-
ples of this approach. The absolute approach is most common in academic
settings, in which we use asset pricing theory positively to give an economic
explanation for why prices are what they are, or in order to predict how
prices might change if policy or economic structure changed.

In relative pricing, we ask a less ambitious question. We ask what we
can learn about an asset’s value given the prices of some other assets. We
do not ask where the prices of the other assets came from, and we use as
little information about fundamental risk factors as possible. Black--Scholes
option pricing is the classic example of this approach. While limited in
scope, this approach offers precision in many applications.

Asset pricing problems are solved by judiciously choosing how much
absolute and how much relative pricing one will do, depending on the
assets in question and the purpose of the calculation. Almost no problems
are solved by the pure extremes. For example, the CAPM and its successor
factor models are paradigms of the absolute approach. Yet in applications,
they price assets ‘‘relative’’ to the market or other risk factors, without answer-
ing what determines the market or factor risk premia and betas. The latter
are treated as free parameters. On the other end of the spectrum, even
the most practical financial engineering questions usually involve assump-
tions beyond pure lack of arbitrage, assumptions about equilibrium ‘‘market
prices of risk.’’

The central and unfinished task of absolute asset pricing is to under-
stand and measure the sources of aggregate or macroeconomic risk that
drive asset prices. Of course, this is also the central question of macro-
economics, and this is a particularly exciting time for researchers who want
to answer these fundamental questions in macroeconomics and finance.
A lot of empirical work has documented tantalizing stylized facts and links
between macroeconomics and finance. For example, expected returns vary
across time and across assets in ways that are linked to macroeconomic
variables, or variables that also forecast macroeconomic events; a wide class
of models suggests that a ‘‘recession’’ or ‘‘financial distress’’ factor lies behind
many asset prices. Yet theory lags behind; we do not yet have a well-described
model that explains these interesting correlations.

In turn, I think that what we are learning about finance must feed back
on macroeconomics. To take a simple example, we have learned that the risk
premium on stocks—the expected stock return less interest rates—is much
larger than the interest rate, and varies a good deal more than interest
rates. This means that attempts to line investment up with interest rates
are pretty hopeless—most variation in the cost of capital comes from the
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varying risk premium. Similarly, we have learned that some measure of
risk aversion must be quite high, or people would all borrow like crazy to
buy stocks. Most macroeconomics pursues small deviations about perfect-
foresight equilibria, but the large equity premium means that volatility is
a first-order effect, not a second-order effect. Standard macroeconomic
models predict that people really do not care much about business cycles
(Lucas [1987]). Asset prices reveal that they do—that they forego substantial
return premia to avoid assets that fall in recessions. This fact ought to tell
us something about recessions!

This book advocates a discount factor/generalized method of moments
view of asset pricing theory and associated empirical procedures. I summa-
rize asset pricing by two equations:

pt = E (mt+1xt+1),

mt+1 = f (data, parameters),

where pt = asset price, xt+1 = asset payoff, mt+1 = stochastic discount factor.
The major advantages of the discount factor/moment condition

approach are its simplicity and universality. Where once there were three
apparently different theories for stocks, bonds, and options, now we see
each as special cases of the same theory. The common language also allows
us to use insights from each field of application in other fields.

This approach allows us to conveniently separate the step of specify-
ing economic assumptions of the model (second equation) from the step
of deciding which kind of empirical representation to pursue or under-
stand. For a given model—choice of f (·)—we will see how the first equation
can lead to predictions stated in terms of returns, price-dividend ratios,
expected return-beta representations, moment conditions, continuous ver-
sus discrete-time implications, and so forth. The ability to translate between
such representations is also very helpful in digesting the results of empir-
ical work, which uses a number of apparently distinct but fundamentally
connected representations.

Thinking in terms of discount factors often turns out to be much sim-
pler than thinking in terms of portfolios. For example, it is easier to insist
that there is a positive discount factor than to check that every possible port-
folio that dominates every other portfolio has a larger price, and the long
arguments over the APT stated in terms of portfolios are easy to digest when
stated in terms of discount factors.

The discount factor approach is also associated with a state-space geom-
etry in place of the usual mean-variance geometry, and this book emphasizes
the state-space intuition behind many classic results.

For these reasons, the discount factor language and the associated state-
space geometry are common in academic research and high-tech practice.
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They are not yet common in textbooks, and that is the niche that this book
tries to fill.

I also diverge from the usual order of presentation. Most books
are structured following the history of thought: portfolio theory, mean-
variance frontiers, spanning theorems, CAPM, ICAPM, APT, option
pricing, and finally consumption-based model. Contingent claims are an
esoteric extension of option pricing theory. I go the other way around:
contingent claims and the consumption-based model are the basic and
simplest models around; the others are specializations. Just because they
were discovered in the opposite order is no reason to present them
that way.

I also try to unify the treatment of empirical methods. A wide variety
of methods are popular, including time-series and cross-sectional regres-
sions, and methods based on generalized method of moments (GMM) and
maximum likelihood. However, in the end all of these apparently different
approaches do the same thing: they pick free parameters of the model to
make it fit best, which usually means to minimize pricing errors; and they
evaluate the model by examining how big those pricing errors are.

As with the theory, I do not attempt an encyclopedic compilation of
empirical procedures. The literature on econometric methods contains lots
of methods and special cases (likelihood ratio analogues of common Wald
tests; cases with and without risk-free assets and when factors do and do not
span the mean-variance frontier, etc.) that are seldom used in practice. I try
to focus on the basic ideas and on methods that are actually used in practice.

The accent in this book is on understanding statements of theory, and
working with that theory to applications, rather than rigorous or general
proofs. Also, I skip very lightly over many parts of asset pricing theory
that have faded from current applications, although they occupied large
amounts of the attention in the past. Some examples are portfolio separa-
tion theorems, properties of various distributions, or asymptotic APT. While
portfolio theory is still interesting and useful, it is no longer a cornerstone
of pricing. Rather than use portfolio theory to find a demand curve for
assets, which intersected with a supply curve gives prices, we now go to
prices directly. One can then find optimal portfolios, but it is a side issue for
the asset pricing question.

My presentation is consciously informal. I like to see an idea in its sim-
plest form and learn to use it before going back and understanding all the
foundations of the ideas. I have organized the book for similarly minded
readers. If you are hungry for more formal definitions and background,
keep going, they usually show up later on.

Again, my organizing principle is that everything can be traced back to
specializations of the basic pricing equation p = E (mx). Therefore, after
reading the first chapter, one can pretty much skip around and read topics
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in as much depth or order as one likes. Each major subject always starts back
at the same pricing equation.

The target audience for this book is economics and finance Ph.D.
students, advanced MBA students, or professionals with similar background.
I hope the book will also be useful to fellow researchers and finance pro-
fessionals, by clarifying, relating, and simplifying the set of tools we have all
learned in a hodgepodge manner. I presume some exposure to undergrad-
uate economics and statistics. A reader should have seen a utility function, a
random variable, a standard error, and a time series, should have some basic
linear algebra and calculus, and should have solved a maximum problem by
setting derivatives to zero. The hurdles in asset pricing are really conceptual
rather than mathematical.
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1
Consumption-Based Model

and Overview

An investor must decide how much to save and how much to consume,
and what portfolio of assets to hold. The most basic pricing equation comes
from the first-order condition for that decision. The marginal utility loss
of consuming a little less today and buying a little more of the asset should
equal the marginal utility gain of consuming a little more of the asset’s payoff
in the future. If the price and payoff do not satisfy this relation, the investor
should buy more or less of the asset. It follows that the asset’s price should
equal the expected discounted value of the asset’s payoff, using the investor’s
marginal utility to discount the payoff. With this simple idea, I present many
classic issues in finance.

Interest rates are related to expected marginal utility growth, and hence
to the expected path of consumption. In a time of high real interest rates, it
makes sense to save, buy bonds, and then consume more tomorrow. There-
fore, high real interest rates should be associated with an expectation of
growing consumption.

Most importantly, risk corrections to asset prices should be driven by the
covariance of asset payoffs with marginal utility and hence by the covariance
of asset payoffs with consumption. Other things equal, an asset that does
badly in states of nature like a recession, in which the investor feels poor and
is consuming little, is less desirable than an asset that does badly in states of
nature like a boom in which the investor feels wealthy and is consuming a
great deal. The former asset will sell for a lower price; its price will reflect a
discount for its ‘‘riskiness,’’ and this riskiness depends on a co-variance, not
a variance.

Marginal utility, not consumption, is the fundamental measure of how
you feel. Most of the theory of asset pricing is about how to go from marginal
utility to observable indicators. Consumption is low when marginal utility
is high, of course, so consumption may be a useful indicator. Consumption
is also low and marginal utility is high when the investor’s other assets have
done poorly; thus we may expect that prices are low for assets that covary

3
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positively with a large index such as the market portfolio. This is a Capital
Asset Pricing Model. We will see a wide variety of additional indicators for
marginal utility, things against which to compute a covariance in order to
predict the risk-adjustment for prices.

1.1 Basic Pricing Equation

An investor’s first-order conditions give the basic consumption-based
model,

pt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
.

Our basic objective is to figure out the value of any stream of uncertain
cash flows. I start with an apparently simple case, which turns out to capture
very general situations.

Let us find the value at time t of a payoff x t+1. If you buy a stock today,
the payoff next period is the stock price plus dividend, x t+1 = pt+1 + dt+1.
x t+1 is a random variable: an investor does not know exactly how much he
will get from his investment, but he can assess the probability of various
possible outcomes. Do not confuse the payoff x t+1 with the profit or return;
x t+1 is the value of the investment at time t + 1, without subtracting or
dividing by the cost of the investment.

We find the value of this payoff by asking what it is worth to a typical
investor. To do this, we need a convenient mathematical formalism to cap-
ture what an investor wants. We model investors by a utility function defined
over current and future values of consumption,

U (ct , ct+1) = u(ct )+ βEt

[
u(ct+1)

]
,

where ct denotes consumption at date t . We often use a convenient power
utility form,

u(ct ) = 1
1 − γ

c1−γ
t .

The limit as γ → 1 is1

u(c) = ln(c).

1 To think about this limit precisely, add a constant to the utility function and write it as

u(ct ) = c1−γ
t − 1
1 − γ

.
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The utility function captures the fundamental desire for more
consumption, rather than posit a desire for intermediate objectives such as
mean and variance of portfolio returns. Consumption ct+1 is also random;
the investor does not know his wealth tomorrow, and hence how much he
will decide to consume tomorrow. The period utility function u(·) is increas-
ing, reflecting a desire for more consumption, and concave, reflecting the
declining marginal value of additional consumption. The last bite is never
as satisfying as the first.

This formalism captures investors’ impatience and their aversion to risk,
so we can quantitatively correct for the risk and delay of cash flows. Discount-
ing the future by β captures impatience, and β is called the subjective discount
factor. The curvature of the utility function generates aversion to risk and to
intertemporal substitution: The investor prefers a consumption stream that
is steady over time and across states of nature.

Now, assume that the investor can freely buy or sell as much of the payoff
xt+1 as he wishes, at a price pt . How much will he buy or sell? To find the
answer, denote by e the original consumption level (if the investor bought
none of the asset), and denote by ξ the amount of the asset he chooses to
buy. Then, his problem is

max
{ξ}

u(ct )+ Et

[
βu(ct+1)

]
s.t .

ct = et − ptξ ,

ct+1 = et+1 + xt+1ξ .

Substituting the constraints into the objective, and setting the derivative
with respect to ξ equal to zero, we obtain the first-order condition for an
optimal consumption and portfolio choice,

pt u ′(ct ) = Et

[
βu ′(ct+1)xt+1

]
, (1.1)

or

pt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
. (1.2)

The investor buys more or less of the asset until this first-order condition
holds.

Equation (1.1) expresses the standard marginal condition for an opti-
mum: pt u ′(ct ) is the loss in utility if the investor buys another unit of the asset;
Et

[
βu ′(ct+1)xt+1

]
is the increase in (discounted, expected) utility he obtains

from the extra payoff at t + 1. The investor continues to buy or sell the asset
until the marginal loss equals the marginal gain.
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Equation (1.2) is the central asset pricing formula. Given the payoff
x t+1 and given the investor’s consumption choice ct , ct+1, it tells you what
market price pt to expect. Its economic content is simply the first-order
conditions for optimal consumption and portfolio formation. Most of the
theory of asset pricing just consists of specializations and manipulations of
this formula.

We have stopped short of a complete solution to the model, i.e., an
expression with exogenous items on the right-hand side. We relate one
endogenous variable, price, to two other endogenous variables, consump-
tion and payoffs. One can continue to solve this model and derive the
optimal consumption choice ct , ct+1 in terms of more fundamental givens of
the model. In the model I have sketched so far, those givens are the income
sequence et , et+1 and a specification of the full set of assets that the investor
may buy and sell. We will in fact study such fuller solutions below. However,
for many purposes one can stop short of specifying (possibly wrongly) all
this extra structure, and obtain very useful predictions about asset prices
from (1.2), even though consumption is an endogenous variable.

1.2 Marginal Rate of Substitution/Stochastic Discount Factor

We break up the basic consumption-based pricing equation into

p = E (mx),

m = β
u ′(ct+1)

u ′(ct )
,

where mt+1 is the stochastic discount factor.

A convenient way to break up the basic pricing equation (1.2) is to
define the stochastic discount factor mt+1

mt+1 ≡ β
u ′(ct+1)

u ′(ct )
. (1.3)

Then, the basic pricing formula (1.2) can simply be expressed as

pt = Et (mt+1xt+1). (1.4)

When it is not necessary to be explicit about time subscripts or the dif-
ference between conditional and unconditional expectation, I will suppress
the subscripts and just write p = E (mx). The price always comes at t , the
payoff at t + 1, and the expectation is conditional on time-t information.
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The term stochastic discount factor refers to the way m generalizes standard
discount factor ideas. If there is no uncertainty, we can express prices via
the standard present value formula

pt = 1
R f

xt+1, (1.5)

where R f is the gross risk-free rate. 1/R f is the discount factor. Since gross
interest rates are typically greater than one, the payoff xt+1 sells ‘‘at a
discount.’’ Riskier assets have lower prices than equivalent risk-free assets,
so they are often valued by using risk-adjusted discount factors,

pi
t = 1

R i
Et

(
xi

t+1

)
.

Here, I have added the i superscript to emphasize that each risky asset i
must be discounted by an asset-specific risk-adjusted discount factor 1/R i .

In this context, equation (1.4) is obviously a generalization, and it says
something deep: one can incorporate all risk corrections by defining a single
stochastic discount factor—the same one for each asset—and putting it
inside the expectation. mt+1 is stochastic or random because it is not known
with certainty at time t . The correlation between the random components
of the common discount factor m and the asset-specific payoff xi generate
asset-specific risk corrections.

mt+1 is also often called the marginal rate of substitution after (1.3). In
that equation, mt+1 is the rate at which the investor is willing to substitute
consumption at time t + 1 for consumption at time t . mt+1 is sometimes also
called the pricing kernel. If you know what a kernel is and you express the
expectation as an integral, you can see where the name comes from. It is
sometimes called a change of measure or a state-price density.

For the moment, introducing the discount factor m and breaking the
basic pricing equation (1.2) into (1.3) and (1.4) is just a notational conve-
nience. However, it represents a much deeper and more useful separation.
For example, notice that p = E (mx) would still be valid if we changed the
utility function, but we would have a different function connecting m to
data. All asset pricing models amount to alternative ways of connecting the
stochastic discount factor to data. At the same time, we will study lots of
alternative expressions of p = E (mx), and we can summarize many empir-
ical approaches by applying them to p = E (mx). By separating our models
into these two components, we do not have to redo all that elaboration for
each asset pricing model.
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1.3 Prices, Payoffs, and Notation

The price pt gives rights to a payoff xt+1. In practice, this notation covers a
variety of cases, including the following:

Price pt Payoff xt+1

Stock pt pt+1 + dt+1

Return 1 R t+1

Price-dividend ratio
pt

dt

(
pt+1

dt+1
+ 1

)
dt+1

dt

Excess return 0 R e
t+1 = R a

t+1 − R b
t+1

Managed portfolio zt zt R t+1

Moment condition E (pt zt ) xt+1zt

One-period bond pt 1

Risk-free rate 1 R f

Option C max(ST − K , 0)

The price pt and payoff xt+1 seem like a very restrictive kind of security.
In fact, this notation is quite general and allows us easily to accommodate
many different asset pricing questions. In particular, we can cover stocks,
bonds, and options and make clear that there is one theory for all asset
pricing.

For stocks, the one-period payoff is of course the next price plus divi-
dend, x t+1 = pt+1 + dt+1. We frequently divide the payoff x t+1 by the price
pt to obtain a gross return

R t+1 ≡ xt+1

pt
.

We can think of a return as a payoff with price one. If you pay one dol-
lar today, the return is how many dollars or units of consumption you get
tomorrow. Thus, returns obey

1 = E (mR),

which is by far the most important special case of the basic formula
p = E (mx). I use capital letters to denote gross returns R , which have a numer-
ical value like 1.05. I use lowercase letters to denote net returns r = R − 1
or log (continuously compounded) returns r = ln(R), both of which have
numerical values like 0.05. One may also quote percent returns 100 × r .

Returns are often used in empirical work because they are typically
stationary over time. (Stationary in the statistical sense; they do not have
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trends and you can meaningfully take an average. ‘‘Stationary’’ does not
mean constant.) However, thinking in terms of returns takes us away from
the central task of finding asset prices. Dividing by dividends and creating a
payoff of the form

xt+1 =
(

1 + pt+1

dt+1

)
dt+1

dt

corresponding to a price pt/dt is a way to look at prices but still to examine
stationary variables.

Not everything can be reduced to a return. If you borrow a dollar at the
interest rate R f and invest it in an asset with return R , you pay no money
out-of-pocket today, and get the payoff R − R f . This is a payoff with a zero
price, so you obviously cannot divide payoff by price to get a return. Zero
price does not imply zero payoff. It is a bet in which the value of the chance of
losing exactly balances the value of the chance of winning, so that no money
changes hands when the bet is made. It is common to study equity strategies
in which one short-sells one stock or portfolio and invests the proceeds in
another stock or portfolio, generating an excess return. I denote any such
difference between returns as an excess return, R e . It is also called a zero-cost
portfolio.

In fact, much asset pricing focuses on excess returns. Our economic
understanding of interest rate variation turns out to have little to do with
our understanding of risk premia, so it is convenient to separate the two
phenomena by looking at interest rates and excess returns separately.

We also want to think about the managed portfolios, in which one invests
more or less in an asset according to some signal. The ‘‘price’’ of such a
strategy is the amount invested at time t , say zt , and the payoff is zt R t+1. For
example, a market timing strategy might make an investment in stocks pro-
portional to the price-dividend ratio, investing less when prices are higher.
We could represent such a strategy as a payoff using zt = a − b(pt/dt ).

When we think about conditioning information below, we will think of
objects like zt as instruments. Then we take an unconditional expectation
of pt zt = Et (mt+1xt+1)zt , yielding E (pt zt ) = E (mt+1xt+1zt ). We can think of
this operation as creating a ‘‘security’’ with payoff xt+1zt , and ‘‘price’’ E (pt zt )

represented with unconditional expectations.
A one-period bond is of course a claim to a unit payoff. Bonds, options,

investment projects are all examples in which it is often more useful to think
of prices and payoffs rather than returns.

Prices and returns can be real (denominated in goods) or nominal
(denominated in dollars); p = E (mx) can refer to either case. The only
difference is whether we use a real or nominal discount factor. If prices,
returns, and payoffs are nominal, we should use a nominal discount factor.
For example, if p and x denote nominal values, then we can create real
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prices and payoffs to write

pt

�t
= Et

[(
β

u ′(ct+1)

u ′(ct )

)
xt+1

�t+1

]
,

where� denotes the price level (cpi). Obviously, this is the same as defining
a nominal discount factor by

pt = Et

[(
β

u ′(ct+1)

u ′(ct )

�t

�t+1

)
xt+1

]
.

To accommodate all these cases, I will simply use the notation price pt

and payoff xt+1. These symbols can denote 0, 1, or zt and R e
t , R t+1, or zt R t+1,

respectively, according to the case. Lots of other definitions of p and x are
useful as well.

1.4 Classic Issues in Finance

I use simple manipulations of the basic pricing equation to introduce
classic issues in finance: the economics of interest rates, risk adjustments,
systematic versus idiosyncratic risk, expected return-beta representations, the
mean-variance frontier, the slope of the mean-variance frontier, time-varying
expected returns, and present-value relations.

A few simple rearrangements and manipulations of the basic pricing
equation p = E (mx) give a lot of intuition and introduce some classic issues
in finance, including determinants of the interest rate, risk corrections,
idiosyncratic versus systematic risk, beta pricing models, and mean-variance
frontiers.

Risk-Free Rate

The risk-free rate is related to the discount factor by

R f = 1/E (m).

With lognormal consumption growth and power utility,

r f
t = δ + γEt (� ln ct+1)− γ 2

2
σ 2

t (� ln ct+1).
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Real interest rates are high when people are impatient (δ), when expected
consumption growth is high (intertemporal substitution), or when risk is low
(precautionary saving). A more curved utility function (γ ) or a lower elas-
ticity of intertemporal substitution (1/γ ) means that interest rates are more
sensitive to changes in expected consumption growth.

The risk-free rate is given by

R f = 1/E (m). (1.6)

The risk-free rate is known ahead of time, so p = E (mx) becomes 1 =
E (mR f ) = E (m)R f .

If a risk-free security is not traded, we can define R f = 1/E (m) as the
‘‘shadow’’ risk-free rate. In some models it is called the ‘‘zero-beta’’ rate.
If one introduced a risk-free security with return R f = 1/E (m), investors
would be just indifferent to buying or selling it. I use R f to simplify formulas
below with this understanding.

To think about the economics behind real interest rates in a simple
setup, use power utility u ′(c) = c−γ . Start by turning off uncertainty, in
which case

R f = 1
β

(
ct+1

ct

)γ
.

We can see three effects right away:

1. Real interest rates are high when people are impatient, i.e. when β is
low. If everyone wants to consume now, it takes a high interest rate to
convince them to save.

2. Real interest rates are high when consumption growth is high. In times
of high interest rates, it pays investors to consume less now, invest more,
and consume more in the future. Thus, high interest rates lower the
level of consumption today, while raising its growth rate from today to
tomorrow.

3. Real interest rates are more sensitive to consumption growth if the power
parameter γ is large. If utility is highly curved, the investor cares more
about maintaining a consumption profile that is smooth over time, and
is less willing to rearrange consumption over time in response to interest
rate incentives. Thus it takes a larger interest rate change to induce him
to a given consumption growth.

To understand how interest rates behave when there is some uncertainty,
I specify that consumption growth is lognormally distributed. In this case,
the real risk-free rate equation becomes

r f
t = δ + γEt (� ln ct+1)− γ 2

2
σ 2

t (� ln ct+1), (1.7)
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where I have defined the log risk-free rate r f
t and subjective discount rate δ by

r f
t = ln R f

t ; β = e−δ,

and � denotes the first difference operator,

� ln ct+1 = ln ct+1 − ln ct .

To derive expression (1.7) for the risk-free rate, start with

R f
t = 1/Et

[
β

(
ct+1

ct

)−γ]
.

Using the fact that normal z means

E
(
e z
) = eE (z)+(1/2)σ2(z)

(you can check this by writing out the integral that defines the expectation),
we have

R f
t = [

e−δe−γEt (� ln ct+1)+(γ 2/2)σ2
t (� ln ct+1)

]−1
.

Then take logarithms. The combination of lognormal distributions and
power utility is one of the basic tricks to getting analytical solutions in
this kind of model. Section 1.5 shows how to get the same result in
continuous time.

Looking at (1.7), we see the same results as we had with the deterministic
case. Real interest rates are high when impatience δ is high and when con-
sumption growth is high; higher γ makes interest rates more sensitive to
consumption growth. The new σ 2 term captures precautionary savings. When
consumption is more volatile, people with this utility function are more wor-
ried about the low consumption states than they are pleased by the high
consumption states. Therefore, people want to save more, driving down
interest rates.

We can also read the same terms backwards: consumption growth is high
when real interest rates are high, since people save more now and spend it
in the future, and consumption is less sensitive to interest rates as the desire
for a smooth consumption stream, captured by γ , rises. Section 2.2 takes up
the question of which way we should read this equation—as consumption
determining interest rates, or as interest rates determining consumption.

For the power utility function, the curvature parameter γ simul-
taneously controls intertemporal substitution—aversion to a consump-
tion stream that varies over time, risk aversion—aversion to a consumption
stream that varies across states of nature, and precautionary savings, which
turns out to depend on the third derivative of the utility function. This link
is particular to the power utility function. More general utility functions
loosen the links between these three quantities.
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Risk Corrections

Payoffs that are positively correlated with consumption growth have lower
prices, to compensate investors for risk.

p = E (x)
R f

+ cov(m, x),

E (R i)− R f = −R f cov
(
m, R i

)
.

Expected returns are proportional to the covariance of returns with discount
factors.

Using the definition of covariance cov(m, x) = E (mx) − E (m)E (x), we
can write p = E (mx) as

p = E (m)E (x)+ cov(m, x). (1.8)

Substituting the risk-free rate equation (1.6), we obtain

p = E (x)
R f

+ cov(m, x). (1.9)

The first term in (1.9) is the standard discounted present-value formula.
This is the asset’s price in a risk-neutral world—if consumption is constant
or if utility is linear. The second term is a risk adjustment. An asset whose
payoff covaries positively with the discount factor has its price raised and
vice versa.

To understand the risk adjustment, substitute back for m in terms of
consumption, to obtain

p = E (x)
R f

+ cov
[
βu ′(ct+1), xt+1

]
u ′(ct )

. (1.10)

Marginal utility u ′(c) declines as c rises. Thus, an asset’s price is lowered if
its payoff covaries positively with consumption. Conversely, an asset’s price
is raised if it covaries negatively with consumption.

Why? Investors do not like uncertainty about consumption. If you buy
an asset whose payoff covaries positively with consumption, one that pays
off well when you are already feeling wealthy, and pays off badly when you
are already feeling poor, that asset will make your consumption stream more
volatile. You will require a low price to induce you to buy such an asset. If you
buy an asset whose payoff covaries negatively with consumption, it helps to
smooth consumption and so is more valuable than its expected payoff might
indicate. Insurance is an extreme example. Insurance pays off exactly when
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wealth and consumption would otherwise be low—you get a check when
your house burns down. For this reason, you are happy to hold insurance,
even though you expect to lose money—even though the price of insurance
is greater than its expected payoff discounted at the risk-free rate.

To emphasize why the covariance of a payoff with the discount factor
rather than its variance determines its riskiness, keep in mind that the
investor cares about the volatility of consumption. He does not care about
the volatility of his individual assets or of his portfolio, if he can keep a steady
consumption. Consider then what happens to the volatility of consumption
if the investor buys a little more ξ of payoff x . σ 2(c) becomes

σ 2(c + ξx) = σ 2(c)+ 2ξ cov(c , x)+ ξ 2σ 2(x).

For small (marginal) portfolio changes, the covariance between consumption
and payoff determines the effect of adding a bit more of each payoff on the
volatility of consumption.

We use returns so often that it is worth restating the same intuition for
the special case that the price is 1 and the payoff is a return. Start with the
basic pricing equation for returns,

1 = E (mR i).

I denote the return R i to emphasize that the point of the theory is to
distinguish the behavior of one asset R i from another R j .

The asset pricing model says that, although expected returns can vary
across time and assets, expected discounted returns should always be the
same, 1. Applying the covariance decomposition,

1 = E (m)E (R i)+ cov(m, R i) (1.11)

and, using R f = 1/E (m),

E (R i)− R f = −R f cov(m, R i) (1.12)

or

E (R i)− R f = −cov
[
u ′(ct+1), R i

t+1

]
E
[
u ′(ct+1)

] . (1.13)

All assets have an expected return equal to the risk-free rate, plus a risk
adjustment. Assets whose returns covary positively with consumption make
consumption more volatile, and so must promise higher expected returns
to induce investors to hold them. Conversely, assets that covary negatively
with consumption, such as insurance, can offer expected rates of return that
are lower than the risk-free rate, or even negative (net) expected returns.
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Much of finance focuses on expected returns. We think of expected
returns increasing or decreasing to clear markets; we offer intuition that
‘‘riskier’’ securities must offer higher expected returns to get investors to
hold them, rather than saying ‘‘riskier’’ securities trade for lower prices so
that investors will hold them. Of course, a low initial price for a given payoff
corresponds to a high expected return, so this is no more than a different
language for the same phenomenon.

Idiosyncratic Risk Does Not Affect Prices

Only the component of a payoff perfectly correlated with the discount
factor generates an extra return. Idiosyncratic risk, uncorrelated with the
discount factor, generates no premium.

You might think that an asset with a volatile payoff is ‘‘risky’’ and thus
should have a large risk correction. However, if the payoff is uncorrelated
with the discount factor m, the asset receives no risk correction to its price,
and pays an expected return equal to the risk-free rate! In equations, if

cov(m, x) = 0,

then

p = E (x)
R f

,

no matter how large σ 2(x). This prediction holds even if the payoff x is
highly volatile and investors are highly risk averse. The reason is simple: if
you buy a little bit more of such an asset, it has no first-order effect on the
variance of your consumption stream.

More generally, one gets no compensation or risk adjustment for hold-
ing idiosyncratic risk. Only systematic risk generates a risk correction. To give
meaning to these words, we can decompose any payoff x into a part corre-
lated with the discount factor and an idiosyncratic part uncorrelated with
the discount factor by running a regression,

x = proj(x |m)+ ε.

Then, the price of the residual or idiosyncratic risk ε is zero, and the price
of x is the same as the price of its projection on m. The projection of x
on m is of course that part of x which is perfectly correlated with m. The
idiosyncratic component of any payoff is that part uncorrelated with m. Thus
only the systematic part of a payoff accounts for its price.
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Projection means linear regression without a constant,

proj(x |m) = E (mx)
E (m2)

m.

You can verify that regression residuals are orthogonal to right-hand vari-
ables E (mε) = 0 from this definition. E (mε) = 0 of course means that the
price of ε is zero,

p(proj(x |m)) = p
(

E (mx)
E (m2)

m
)

= E
(

m2 E (mx)
E (m2)

)
= E (mx) = p(x).

The words ‘‘systematic’’ and ‘‘idiosyncratic’’ are defined differently in
different contexts, which can lead to some confusion. In this decomposi-
tion, the residuals ε can be correlated with each other, though they are not
correlated with the discount factor. The APT starts with a factor-analytic
decomposition of the covariance of payoffs, and the word ‘‘idiosyncratic’’
there is reserved for the component of payoffs uncorrelated with all of the
other payoffs.

Expected Return-Beta Representation

We can write p = E (mx) as

E (R i) = R f + βi ,mλm .

We can express the expected return equation (1.12), for a return R i , as

E (R i) = R f +
(

cov(R i , m)
var(m)

)(
− var(m)

E (m)

)
(1.14)

or
E (R i) = R f + βi ,mλm , (1.15)

where βi ,m is the regression coefficient of the return R i on m. This is a beta
pricing model. It says that each expected return should be proportional to the
regression coefficient, or beta, in a regression of that return on the discount
factor m. Notice that the coefficient λm is the same for all assets i , while the
βi ,m varies from asset to asset. The λm is often interpreted as the price of risk
and the β as the quantity of risk in each asset. As you can see, the price of
risk λm depends on the volatility of the discount factor.

Obviously, there is nothing deep about saying that expected returns are
proportional to betas rather than to covariances. There is a long historical
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tradition and some minor convenience in favor of betas. The betas refer to
the projection of R on m that we studied above, so you see again a sense in
which only the systematic component of risk matters.

With m = β(ct+1/ct )
−γ , we can take a Taylor approximation of

equation (1.14) to express betas in terms of a more concrete variable,
consumption growth, rather than marginal utility. The result, which I
derive more explicitly and conveniently in the continuous-time limit (1.38)
below, is

E (R i) = R f + βi ,�cλ�c , (1.16)

λ�c = γ var(�c).

Expected returns should increase linearly with their betas on consumption
growth itself. In addition, though it is treated as a free parameter in many
applications, the factor risk premium λ�c is determined by risk aversion and
the volatility of consumption. The more risk averse people are, or the riskier
their environment, the larger an expected return premium one must pay
to get investors to hold risky (high beta) assets.

Mean-Variance Frontier

All asset returns lie inside a mean-variance frontier. Assets on the frontier
are perfectly correlated with each other and with the discount factor. Returns
on the frontier can be generated as portfolios of any two frontier returns. We
can construct a discount factor from any frontier return (except R f ), and an
expected return-beta representation holds using any frontier return (except
R f ) as the factor.

Asset pricing theory has focused a lot on the means and variances of asset
returns. Interestingly, the set of means and variances of returns is limited.
All assets priced by the discount factor m must obey

∣∣E (R i)− R f
∣∣ ≤ σ(m)

E (m)
σ (R i). (1.17)

To derive (1.17) write for a given asset return R i

1 = E (mR i) = E (m)E (R i)+ ρm, Riσ(R i)σ (m)

and hence

E (R i) = R f − ρm, Ri
σ(m)
E (m)

σ (R i). (1.18)
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Correlation coefficients cannot be greater than 1 in magnitude, leading
to (1.17).

This simple calculation has many interesting and classic implications.

1. Means and variances of asset returns must lie in the wedge-shaped region
illustrated in Figure 1.1. The boundary of the mean-variance region in
which assets can lie is called the mean-variance frontier. It answers a nat-
urally interesting question, ‘‘how much mean return can you get for a
given level of variance?’’

2. All returns on the frontier are perfectly correlated with the discount
factor: the frontier is generated by |ρm, Ri | = 1. Returns on the upper
part of the frontier are perfectly negatively correlated with the discount
factor and hence positively correlated with consumption. They are ‘‘max-
imally risky’’ and thus get the highest expected returns. Returns on the
lower part of the frontier are perfectly positively correlated with the dis-
count factor and hence negatively correlated with consumption. They
thus provide the best insurance against consumption fluctuations.

3. We can go beyond perfect correlation. Consider a payoff m/E (m2). Its
price is E (m2)/E (m2) = 1, so it is a return. It is on the mean-variance
frontier. Thus, if we know m, we can construct a mean-variance effi-
cient return. We will expand on this theme in Chapter 5, in an explicitly
incomplete market.

4. All frontier returns are also perfectly correlated with each other, since
they are all perfectly correlated with the discount factor. This fact implies
that we can span or synthesize any frontier return from two such returns.
For example, if you pick any single frontier return R m , then all frontier

Figure 1.1. Mean-variance frontier. The mean and standard deviation of all assets priced by
a discount factor m must lie in the wedge-shaped region.
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returns R mv must be expressible as

R mv = R f + a
(
R m − R f

)

for some number a.
5. Since each point on the mean-variance frontier is perfectly correlated

with the discount factor, we must be able to pick constants a, b, d , e such
that

m = a + bR mv ,

R mv = d + em.

Thus, any mean-variance efficient return carries all pricing information. Given
a mean-variance efficient return and the risk-free rate, we can find a
discount factor that prices all assets and vice versa.

6. Given a discount factor, we can also construct a single-beta representa-
tion, so expected returns can be described in a single-beta representation using
any mean-variance efficient return (except the risk-free rate),

E (R i) = R f + βi ,mv

[
E (R mv)− R f

]
.

The essence of the beta pricing model is that, even though the means
and standard deviations of returns fill out the space inside the mean-
variance frontier, a graph of mean returns versus betas should yield a
straight line. Since the beta model applies to every return including R mv

itself, and R mv has a beta of 1 on itself, we can identify the factor risk
premium as λ = E (R mv − R f ).

The last two points suggest an intimate relationship between discount
factors, beta models, and mean-variance frontiers. I explore this relation
in detail in Chapter 6. A problem at the end of this chapter guides you
through the algebra to demonstrate points 5 and 6 explicitly.

7. We can plot the decomposition of a return into a ‘‘priced’’ or ‘‘systematic’’
component and a ‘‘residual,’’ or ‘‘idiosyncratic’’ component as shown in
Figure 1.1. The priced part is perfectly correlated with the discount factor,
and hence perfectly correlated with any frontier return. The residual or
idiosyncratic part generates no expected return, so it lies flat as shown in
the figure, and it is uncorrelated with the discount factor or any frontier
return. Assets inside the frontier or even on the lower portion of the
frontier are not ‘‘worse’’ than assets on the frontier. The frontier and
its internal region characterize equilibrium asset returns, with rational
investors happy to hold all assets. You would not want to put your whole
portfolio in one ‘‘inefficient’’ asset, but you are happy to put some wealth
in such assets.
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Slope of the Mean-Standard Deviation
Frontier and Equity Premium Puzzle

The Sharpe ratio is limited by the volatility of the discount factor. The
maximal risk-return trade-off is steeper if there is more risk or more risk
aversion, ∣∣∣∣E (R)− R f

σ(R)

∣∣∣∣ ≤ σ(m)
E (m)

≈ γ σ(� ln c).

This formula captures the equity premium puzzle, which suggests that either
people are very risk averse, or the stock returns of the last 50 years were good
luck which will not continue.

The ratio of mean excess return to standard deviation

E (R i)− R f

σ(R i)

is known as the Sharpe ratio. It is a more interesting characterization of a
security than the mean return alone. If you borrow and put more money
into a security, you can increase the mean return of your position, but you
do not increase the Sharpe ratio, since the standard deviation increases at
the same rate as the mean.

The slope of the mean-standard deviation frontier is the largest available
Sharpe ratio, and thus is naturally interesting. It answers ‘‘how much more
mean return can I get by shouldering a bit more volatility in my portfolio?’’

Let R mv denote the return of a portfolio on the frontier. From
equation (1.17), the slope of the frontier is

∣∣∣∣E (R
mv)− R f

σ(R mv)

∣∣∣∣ = σ(m)
E (m)

= σ(m)R f .

Thus, the slope of the frontier is governed by the volatility of the discount
factor.

For an economic interpretation, again consider the power utility
function, u ′(c) = c−γ ,

∣∣∣∣E (R
mv)− R f

σ(R mv)

∣∣∣∣ = σ
[
(ct+1/ct )

−γ ]
E
[(

ct+1/ct

)−γ ] . (1.19)

The standard deviation on the right hand side is large if consumption is
volatile or if γ is large. We can state this approximation precisely using the
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lognormal assumption. If consumption growth is lognormal,

∣∣∣∣E (R
mv)− R f

σ(R mv)

∣∣∣∣ =
√

e γ 2σ2(� ln ct+1) − 1 ≈ γ σ(� ln c). (1.20)

(A problem at the end of the chapter guides you through the algebra of
the first equality. The relation is exact in continuous time, and thus the
approximation is easiest to derive by reference to the continuous-time result;
see Section 1.5.)

Reading the equation, the slope of the mean-standard deviation frontier is
higher if the economy is riskier—if consumption is more volatile—or if investors
are more risk averse. Both situations naturally make investors more reluc-
tant to take on the extra risk of holding risky assets. Both situations also
raise the slope of the expected return-beta line of the consumption beta
model, (1.16). (Or, conversely, in an economy with a high Sharpe ratio, low
risk-aversion investors should take on so much risk that their consumption
becomes volatile.)

In postwar U.S. data, the slope of the historical mean-standard deviation
frontier, or of average return-beta lines, is much higher than reasonable risk
aversion and consumption volatility estimates suggest. This is the ‘‘equity
premium puzzle.’’ Over the last 50 years in the United States, real stock
returns have averaged 9% with a standard deviation of about 16%, while the
real return on treasury bills has been about 1%. Thus, the historical annual
market Sharpe ratio has been about 0.5. Aggregate nondurable and services
consumption growth had a mean and standard deviation of about 1%. We
can only reconcile these facts with (1.20) if investors have a risk-aversion
coefficient of 50!

Obvious ways of generalizing the calculation just make matters worse.
Equation (1.20) relates consumption growth to the mean-variance frontier
of all contingent claims. Market indices with 0.5 Sharpe ratios are if anything
inside that frontier, so recognizing market incompleteness makes matters
worse. Aggregate consumption has about 0.2 correlation with the market
return, while the equality (1.20) takes the worst possible case that consump-
tion growth and asset returns are perfectly correlated. If you add this fact,
you need risk aversion of 250 to explain the market Sharpe ratio! Individu-
als have riskier consumption streams than aggregate, but as their risk goes
up their correlation with any aggregate must decrease proportionally, so to
first order recognizing individual risk will not help either.

Clearly, either (1) people are a lot more risk averse than we might have
thought, (2) the stock returns of the last 50 years were largely good luck
rather than an equilibrium compensation for risk, or (3) something is deeply
wrong with the model, including the utility function and use of aggregate
consumption data. This ‘‘equity premium puzzle’’ has attracted the attention
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of a lot of research in finance, especially on the last item. I return to the
equity premium in more detail in Chapter 21.

Random Walks and Time-Varying Expected Returns

If investors are risk neutral, returns are unpredictable, and prices follow
martingales. In general, prices scaled by marginal utility are martingales, and
returns can be predictable if investors are risk averse and if the conditional
second moments of returns and discount factors vary over time. This is more
plausible at long horizons.

So far, we have concentrated on the behavior of prices or expected
returns across assets. We should also consider the behavior of the price
or return of a given asset over time. Going back to the basic first-order
condition,

pt u ′(ct ) = Et [βu ′(ct+1)(pt+1 + dt+1)]. (1.21)

If investors are risk neutral, i.e., if u(c) is linear or there is no variation
in consumption, if the security pays no dividends between t and t + 1, and
for short time horizons where β is close to 1, this equation reduces to

pt = Et (pt+1).

Equivalently, prices follow a time-series process of the form

pt+1 = pt + εt+1.

If the variance σ 2
t (εt+1) is constant, prices follow a random walk. More gen-

erally, prices follow a martingale. Intuitively, if the price today is a lot lower
than investors’ expectations of the price tomorrow, then investors will try to
buy the security. But this action will drive up the price of the security until
the price today does equal the expected price tomorrow. Another way of
saying the same thing is that returns should not be predictable; dividing by
pt , expected returns Et (pt+1/pt ) = 1 should be constant; returns should be
like coin flips.

The more general equation (1.21) says that prices should follow a mar-
tingale after adjusting for dividends and scaling by marginal utility. Since
martingales have useful mathematical properties, and since risk neutral-
ity is such a simple economic environment, many asset pricing results are
easily derived by scaling prices and dividends by discounted marginal util-
ity first, and then using ‘‘risk-neutral’’ formulas and risk-neutral economic
arguments.
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Since consumption and risk aversion do not change much day to day, we
might expect the random walk view to hold pretty well on a day-to-day basis.
This idea contradicts the still popular notion that there are ‘‘systems’’ or
‘‘technical analysis’’ by which one can predict where stock prices are going
on any given day. The random walk view has been remarkably successful.
Despite decades of dredging the data, and the popularity of media reports
that purport to explain where markets are going, trading rules that reliably
survive transactions costs and do not implicitly expose the investor to risk
have not yet been reliably demonstrated.

However, more recently, evidence has accumulated that long-horizon
excess returns are quite predictable, and to some this evidence indicates that
the whole enterprise of economic explanation of asset returns is flawed. To
think about this issue, write our basic equation for expected returns as

Et (R t+1)− R f
t = −covt (mt+1, R t+1)

Et (mt+1)

= −σt (mt+1)

Et (mt+1)
σt (R t+1)ρt (mt+1, R t+1) (1.22)

≈ γtσt (�ct+1)σt (R t+1)ρt (mt+1, R t+1),

where �ct+1 denotes consumption growth.
I include the t subscripts to emphasize that the relation applies to con-

ditional moments. Sometimes, the conditional mean or other moment of a
random variable is different from its unconditional moment. Conditional on
tonight’s weather forecast, you can better predict rain tomorrow than just
knowing the average rain for that date. In the special case that random vari-
ables are i.i.d. (independent and identically distributed), like coin flips, the
conditional and unconditional moments are the same, but that is a special
case and not likely to be true of asset prices, returns, and macroeconomic
variables. In the theory so far, we have thought of an investor, today, forming
expectations of payoffs, consumption, and other variables tomorrow. Thus,
the moments are really all conditional, and if we want to be precise we should
include some notation to express this fact. I use subscripts Et (xt+1) to denote
conditional expectation; the notation E (xt+1|It ) where It is the information
set at time t is more precise but a little more cumbersome.

Examining equation (1.22), we see that returns can be somewhat
predictable—the expected return can vary over time. First, if the conditional
variance of returns changes over time, we might expect the conditional
mean return to vary as well—the return can just move in and out along a line
of constant Sharpe ratio. This explanation does not seem to help much in
the data; variables that forecast means do not seem to forecast variances and
vice versa. Unless we want to probe the conditional correlation, predictable
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excess returns have to be explained by changing risk—σt (�ct+1)—or chang-
ing risk aversion γ . It is not plausible that risk or risk aversion change at
daily frequencies, but fortunately returns are not predictable at daily fre-
quencies. It is much more plausible that risk and risk aversion change over
the business cycle, and this is exactly the horizon at which we see predictable
excess returns. Models that make this connection precise are a very active
area of current research.

Present-Value Statement

pt = Et

∞∑
j=1

mt , t+j dt+j .

It is convenient to use only the two-period valuation, thinking of a price
pt and a payoff xt+1. But there are times when we want to relate a price to the
entire cash flow stream, rather than just to one dividend and next period’s
price.

The most straightforward way to do this is to write out a longer-term
objective,

Et

∞∑
j=0

β j u(ct+j ).

Now suppose an investor can purchase a stream {dt+j } at price pt . As with
the two-period model, his first-order condition gives us the pricing formula
directly,

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
dt+j = Et

∞∑
j=1

mt , t+j dt+j . (1.23)

You can see that if this equation holds at time t and time t + 1, then we
can derive the two-period version

pt = Et [mt+1(pt+1 + dt+1)]. (1.24)

Thus, the infinite-period and two-period models are equivalent.
(Going in the other direction is a little tougher. If you chain

together (1.24), you get (1.23) plus an extra term. To get (1.23) you also
need the ‘‘transversality condition’’ limj→∞ Et [mt , t+j pt+j ] = 0. This is an
extra first-order condition of the infinite-period investor, which is not
present with overlapping generations of two-period investors. It rules out
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‘‘bubbles’’ in which prices grow so fast that people will buy now just to resell
at higher prices later, even if there are no dividends.)

From (1.23) we can write a risk adjustment to prices, as we did with
one-period payoffs,

pt =
∞∑

j=1

Et dt+j

R f
t , t+j

+
∞∑

j=1

covt (dt+j , m t ,t+j ),

where R f
t , t+j ≡ Et (mt , t+j )

−1 is the j period interest rate. Again, assets
whose dividend streams covary negatively with marginal utility, and posi-
tively with consumption, have lower prices, since holding those assets gives
the investor a more volatile consumption stream. (It is common instead
to write prices as a discounted value using a risk-adjusted discount factor,
e.g., pi

t = ∑∞
j=1 Et d i

t+j/(R
i) j , but this approach is difficult to use correctly

for multiperiod problems, especially when expected returns can vary over
time.)

At a deeper level, the expectation in the two-period formula p = E (mx)
sums over states of nature. Equation (1.23) just sums over time as well and
is mathematically identical.

1.5 Discount Factors in Continuous Time

Continuous-time versions of the basic pricing equations.

Discrete Continuous

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
Dt+j pt u ′(ct ) = Et

∫ ∞

s=0
e−δsu ′(ct+s)Dt+s ds

mt+1 = β
u ′(ct+1)

u ′(ct )
�t = e−δt u ′(ct )

p = E (mx) 0 = �D dt + Et [d(�p)]

E (R) = R f − R f cov(m, R) Et

(
dp
p

)
+ D

p
dt = r f

t dt − Et

[
d�
�

dp
p

]

It is often convenient to express asset pricing ideas in the language
of continuous-time stochastic differential equations rather than discrete-
time stochastic difference equations as I have done so far. The appendix
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contains a brief introduction to continuous-time processes that covers what
you need to know for this book. Even if you want to end up with a discrete-
time representation, manipulations are often easier in continuous time. For
example, relating interest rates and Sharpe ratios to consumption growth
in the last section required a clumsy lognormal approximation; you will see
the same sort of thing done much more cleanly in this section.

The choice of discrete versus continuous time is one of modeling con-
venience. The richness of the theory of continuous-time processes often
allows you to obtain analytical results that would be unavailable in discrete
time. On the other hand, in the complexity of most practical situations,
you often end up resorting to numerical simulation of a discretized model
anyway. In those cases, it might be clearer to start with a discrete model. But
this is all a choice of language. One should become familiar enough with
discrete- as well as continuous-time representations of the same ideas to pick
the representation that is most convenient for a particular application.

First, we need to think about how to model securities, in place of price
pt and one-period payoff xt+1. Let a generic security have price pt at any
moment in time, and let it pay dividends at the rate Dt . (I will continue
to denote functions of time as pt rather than p(t) to maintain continuity
with the discrete-time treatment, and I will drop the time subscripts where
they are obvious, e.g., dp in place of dpt . In an interval dt , the security pays
dividends Dt dt . I use capital D for dividends to distinguish them from the
differential operator d .)

The instantaneous total return is

dpt

pt
+ Dt

pt
dt .

We model the price of risky assets as diffusions, for example,

dpt

pt
= µ(·) dt + σ(·) dz.

(I use the notation dz for increments to a standard Brownian motion, e.g.,
zt+� − zt ∼ N (0,�). I use the notation (·) to indicate that the drift and
diffusions µ and σ can be functions of state variables. I limit the discussion
to diffusion processes—no jumps.) What is nice about this diffusion model
is that the increments dz are normal. However, the dependence of µ and
σ on state variables means that the finite-time distribution of prices f (pt+�|It )

need not be normal.
We can think of a risk-free security as one that has a constant price equal

to 1 and pays the risk-free rate as a dividend,

p = 1 Dt = r f
t , (1.25)
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or as a security that pays no dividend but whose price climbs deterministically
at a rate

dpt

pt
= r f

t dt . (1.26)

Next, we need to express the first-order conditions in continuous time.
The utility function is

U
({ct }

) = E
∫ ∞

t=0
e−δt u(ct ) dt .

Suppose the investor can buy a security whose price is pt and that pays a
dividend stream Dt . As we did in deriving the present-value price relation in
discrete time, the first-order condition for this problem gives us the infinite-
period version of the basic pricing equation right away,2

pt u ′(ct ) = Et

∫ ∞

s=0
e−δsu ′(ct+s)Dt+s ds. (1.27)

This equation is an obvious continuous-time analogue to

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
Dt+j .

It turns out that dividing by u ′(ct ) is not a good idea in continuous time,
since the ratio u ′(ct+�)/u ′(ct ) is not well behaved for small time intervals.
Instead, we can keep track of the level of marginal utility. Therefore, define
the ‘‘discount factor’’ in continuous time as

�t ≡ e−δt u ′(ct ).

Then we can write the pricing equation as

pt�t = Et

∫ ∞

s=0
�t+sDt+s ds. (1.28)

(Some people like to define �t = u ′(ct ), in which case you keep the e−δt in
the equation. Others like to scale �t by the risk-free rate, in which case you

get an extra e− ∫ s
τ=0 r

f
t+τ dτ in the equation. The latter procedure makes it look

like a risk-neutral or present-value formula valuation.)

2 One unit of the security pays the dividend stream Dt , i.e., Dt dt units of the numeraire
consumption good in a time interval dt . The security costs pt units of the consumption good.
The investor can finance the purchase of ξ units of the security by reducing consumption
from et to ct = et − ξpt/dt during time interval dt . The loss in utility from doing so is
u ′(ct )(et − ct ) dt = u ′(ct )ξpt . The gain is the right-hand side of (1.27) multiplied by ξ .
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The analogue to the one-period pricing equation p = E (mx) is

0 = �D dt + Et

[
d(�p)

]
. (1.29)

To derive this fundamental equation, take the difference of equation (1.28)
at t and t +� (or, start directly with the first-order condition for buying the
security at t and selling it at t +�),

pt�t = Et

∫ �

s=0
�t+sDt+s ds + Et

[
�t+�pt+�

]
.

For � small the term in the integral can be approximated as

pt�t ≈ �t Dt�+ Et

[
�t+�pt+�

]
. (1.30)

We want to get to d something, so introduce differences by writing

pt�t ≈ �t Dt�+ Et

[
�t pt + (�t+�pt+� −�t pt )

]
. (1.31)

Canceling pt�t ,
0 ≈ �t Dt�+ Et (�t+�pt+� −�t pt ).

Taking the limit as � → 0,

0 = �t Dt dt + Et

[
d(�t pt )

]

or, dropping time subscripts, equation (1.29).
Equation (1.29) looks different than p = E (mx) because there is no

price on the left-hand side; we are used to thinking of the one-period pricing
equation as determining price at t given other things, including price at t+1.
But price at t is really here, of course, as you can see from equation (1.30)
or (1.31). It is just easier to express the difference in price over time rather
than price today on the left and payoff (including price tomorrow) on the
right.

With no dividends and constant �, 0 = Et (dpt ) = Et (pt+� − pt ) says that
price should follow a martingale. Thus, Et [d(�p)] = 0 means that marginal
utility-weighted price should follow a martingale, and (1.29) adjusts for div-
idends. Thus, it is the same as the equation (1.21), pt = Et [mt+1(pt+1 + dt+1)]
that we derived in discrete time.

Since we will write down price processes for dp and discount factor
processes for d�, and to interpret (1.29) in terms of expected returns, it is
often convenient to break up the d(�t pt ) term using Ito’s lemma:

d(�p) = p d�+� dp + dp d�. (1.32)
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Using the expanded version (1.32) in the basic equation (1.29), and dividing
by p� to make it pretty, we obtain an equivalent, slightly less compact but
slightly more intuitive version,

0 = D
p

dt + Et

[
d�
�

+ dp
p

+ d�
�

dp
p

]
. (1.33)

(This formula only works when both � and p can never be zero. It is often
enough the case that this formula is useful. If not, multiply through by �
and p and keep them in numerators.)

Applying the basic pricing equations (1.29) or (1.33) to a risk-free rate,
defined as (1.25) or (1.26), we obtain

r f
t dt = −Et

(
d�t

�t

)
. (1.34)

This equation is the obvious continuous-time equivalent to

R f
t = 1

Et (mt+1)
.

If a risk-free rate is not traded, we can use (1.34) to define a shadow risk-free
rate or zero-beta rate.

With this interpretation, we can rearrange equation (1.33) as

Et

(
dpt

pt

)
+ Dt

pt
dt = r f

t dt − Et

[
d�t

�t

dpt

pt

]
. (1.35)

This is the obvious continuous-time analogue to

E (R) = R f − R f cov(m, R). (1.36)

The last term in (1.35) is the covariance of the return with the discount
factor or marginal utility. Since means are order dt , there is no difference
between covariance and second moment in the last term of (1.35). The
interest rate component of the last term of (1.36) naturally vanishes as the
time interval gets short.

Ito’s lemma makes many transformations simple in continuous time.
For example, the nonlinear transformation between consumption and the
discount factor led us to some tricky approximations in discrete time. This
transformation is easy in continuous time (diffusions are locally normal, so
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it is really the same trick). With �t = e−δt u ′(ct ) we have

d�t = −δe−δt u ′(ct ) dt + e−δt u ′′(ct ) dct + 1
2

e−δt u ′′′(ct ) dc2
t ,

d�t

�t
= −δ dt + ct u ′′(ct )

u ′(ct )

dct

ct
+ 1

2
c2

t u ′′′(ct )

u ′(ct )

dc2
t

c2
t

.
(1.37)

Denote the local curvature and third derivative of the utility function as

γt = − ct u ′′(ct )

u ′(ct )
,

ηt = c2
t u ′′′(ct )

u ′(ct )
.

(For power utility, the former is the power coefficient γ and the latter is
ηt = γ (γ + 1).)

Using this formula we can quickly redo the relationship between interest
rates and consumption growth, equation (1.7),

r f
t = − 1

dt
Et

(
d�t

�t

)
= δ + γt

1
dt

Et

(
dct

ct

)
− 1

2
ηt

1
dt

Et

(
dc2

t

c2
t

)
.

We can also easily express asset prices in terms of consumption risk
rather than discount factor risk, as in equation (1.16). Using (1.37) in (1.35),

Et

(
dpt

pt

)
+ Dt

pt
dt − r f

t dt = γEt

(
dct

ct

dpt

pt

)
. (1.38)

Thus, assets whose returns covary more strongly with consumption get
higher mean excess returns, and the constant relating covariance to mean
return is the utility curvature coefficient γ .

Since correlations are less than 1, equation (1.38) implies that Sharpe
ratios are related to utility curvature and consumption volatility directly; we
do not need the ugly lognormal facts and an approximation that we needed
in (1.20). Using µp ≡ Et (dpt/pt ); σ 2

p = Et [(dpt/pt )
2]; σ 2

c = Et [(dct/ct )
2],

µp + Dt
pt

dt − r f
t dt

σp
≤ γ σc .
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Problems—Chapter 1

1. (a) The absolute risk-aversion coefficient is

−u ′′(c)
u ′(c)

.

We scale by u ′(c) because expected utility is only defined up to linear
transformations—a +bu(c) gives the same predictions as u(c)—and this
measure of the second derivative is invariant to linear transformations.
Show that the utility function with constant absolute risk aversion is

u(c) = −e−αc .

(b) The coefficient of relative risk aversion in a one-period model (i.e.,
when consumption equals wealth) is defined as

rra = − cu ′′(c)
u ′(c)

.

For power utility u(c) = c1−γ
1−γ , show that the risk-aversion coefficient

equals the power, γ .

(c) The elasticity of intertemporal substitution is defined in a non-
stochastic model with interest rate R as

ξ I ≡ − c 2/c1d(c 1/c 2)

dR/R
.

Show that with power utility u ′(c) = c−γ , the intertemporal substitution
elasticity is equal to 1/γ . (Hint: differentiate the first-order conditions)

2. Show that decomposition of a return into ‘‘systematic’’ and
‘‘idiosyncratic’’ components in Figure 1.1 has the following properties:
the systematic component has the same mean return as the original asset,
and the idiosyncratic component has zero mean return—the line is hori-
zontal; the systematic component is a return, while the idiosyncratic is an
excess return; the two components are uncorrelated, and the systematic
component is perfectly correlated with the discount factor m. (Hint: start
with a regression R i = a + bm + ε.)

3. (a) Suppose you have a mean-variance efficient return R mv and the
risk-free rate. Using the fact that R mv is perfectly correlated with the
discount factor, construct a discount factor m in terms of R f and R mv ,
with no free parameters. (You have to find the constants a and b in
m = a + bR mv . They will depend on things like E (R mv). It will be easier
to parameterize m = E (m)+ b [R mv − E (R mv)].)
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(b) Using this result, and the beta model in terms of m, show that
expected returns can be described in a single-beta representation using
any mean-variance efficient return (except the risk-free rate).

E (R i) = R f + βi ,mv

[
E (R mv)− R f

]
.

4. By drawing a line between two assets inside the mean-variance frontier,
it seems you can get arbitrarily high Sharpe ratios. Can the ‘‘Sharpe ratio’’
between two risky assets exceed the slope of the mean-variance frontier?
That is, if R mv is on the frontier, is it possible that

E (R i)− E (R j )

σ (R i − R j )
>

E (R mv)− R f

σ(R mv)
?

5. Show that if consumption growth is lognormal, then

∣∣∣∣E (R
mv)− R f

σ(R mv)

∣∣∣∣ = σ
[
(ct+1/ct )

−γ ]
E
[(

ct+1/ct

)−γ ] =
√

e γ 2σ2(� ln ct+1) − 1 ≈ γ σ(� ln ct+1).

(Start with σ 2(x) = E (x2) − E (x)2 and the lognormal property E (e z) =
e Ez+(1/2)σ2(z).)

6. There are assets with mean return equal to the risk-free rate, but sub-
stantial standard deviation of returns. Long-term bonds are pretty close
examples. Why would anyone hold such an asset? Wouldn’t it be better to
put your money in a mean-variance frontier asset?

7. The first-order conditions for an infinitely lived investor who can buy
an asset with dividend stream {dt } are

pt = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
dt+j . (1.39)

The first-order conditions for buying a security with price pt and payoff
xt+1 = dt+1 + pt+1 are

pt = Et

[
β

u ′(ct+1)

u ′(ct )

(
pt+1 + dt+1

)]
. (1.40)

(a) Derive (1.40) from (1.39)

(b) Derive (1.39) from (1.40). You need an extra condition. Show
that this extra condition is a first-order condition for maximization. To
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do this, think about what strategy the consumer could follow to improve
utility if the condition did not hold, both if this is if the only security
available and if the investor can trade all state- and date-contingent
claims.

8. Suppose a consumer has a utility function that includes leisure. (This
could also be a second good, or a good produced in another country.) Using
the continuous-time setup, show that expected returns will now depend on
two covariances, the covariance of returns with leisure and the covariance
of returns with consumption, so long as leisure enters nonseparably, i.e.,
u(c , l ) cannot be written v(c)+ w(l ). (This is a three line problem, but you
need to apply Ito’s lemma to �.)

9. From
1 = E (mR)

show that the negative of the mean log discount factor must be larger than
any mean return,

−E (ln m) > E (ln R).

How is it possible that E (ln R) is bounded—what about returns of the form
R = (1 − α)R f + αR m for arbitrarily large α? (Hint: start by assuming m
and R are lognormal. Then see if you can generalize the results using
Jensen’s inequality, E ( f (x)) > f (E (x)) for f convex. The return that solves
maxR E (ln R) is known as the growth optimal portfolio.)
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2
Applying the Basic Model

2.1 Assumptions and Applicability

Writing p = E (mx), we do not assume
1. Markets are complete, or there is a representative investor
2. Asset returns or payoffs are normally distributed (no options), or indepen-

dent over time
3. Two-period investors, quadratic utility, or separable utility
4. Investors have no human capital or labor income
5. The market has reached equilibrium, or individuals have bought all the

securities they want to
All of these assumptions come later, in various special cases, but we have

not made them yet. We do assume that the investor can consider a small
marginal investment or disinvestment.

The theory of asset pricing contains lots of assumptions used to derive
analytically convenient special cases and empirically useful representations.
In writing p = E (mx) or pu ′(ct ) = Et [βu ′(ct+1)xt+1], we have not made most
of these assumptions.

We have not assumed complete markets or a representative investor.
These equations apply to each individual investor, for each asset to which
he has access, independently of the presence or absence of other investors
or other assets. Complete markets/representative agent assumptions are
used if one wants to use aggregate consumption data in u ′(ct ), or other
specializations and simplifications of the model.

We have not said anything about payoff or return distributions. In
particular, we have not assumed that returns are normally distributed or
that utility is quadratic. The basic pricing equation should hold for any
asset, stock, bond, option, real investment opportunity, etc., and any mono-
tone and concave utility function. In particular, it is often thought that

35
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mean-variance analysis and beta pricing models require these kinds of
limiting assumptions or quadratic utility, but that is not the case. A mean-
variance efficient return carries all pricing information no matter what the
distribution of payoffs, utility function, etc.

This is not a ‘‘two-period model.’’ The fundamental pricing equation
holds for any two periods of a multiperiod model, as we have seen. Really,
everything involves conditional moments, so we have not assumed i.i.d.
returns over time.

I have written things down in terms of a time- and state-separable utility
function and I have focused on the convenient power utility example.
Nothing important lies in either choice. Just interpret u ′(ct ) as the partial
derivative of a general utility function with respect to consumption at time
t . State- or time-nonseparable utility (habit persistence, durability) compli-
cates the relation between the discount factor and real variables, but does
not change p = E (mx) or any of the basic structure.

We do not assume that investors have no nonmarketable human capital,
or no outside sources of income. The first-order conditions for purchase of
an asset relative to consumption hold no matter what else is in the budget
constraint. By contrast, the portfolio approach to asset pricing as in the
CAPM and ICAPM relies heavily on the assumption that the investor has no
nonasset income, and we will study these special cases below. For example,
leisure in the utility function just means that marginal utility u ′(c , l ) may
depend on l as well as c .

We do not even really need the assumption (yet) that the market is
‘‘in equilibrium,’’ that the investor has bought all of the asset that he wants
to, or even that he can buy the asset at all. We can interpret p = E (mx) as
giving us the value, or willingness to pay for, a small amount of a payoff xt+1

that the investor does not yet have. Here is why: If the investor had a little
ξ more of the payoff xt+1 at time t + 1, his utility u(ct ) + βEt u(ct+1) would
increase by

βEt

[
u(ct+1 + ξxt+1)− u(ct+1)

]

= βEt

[
u ′(ct+1)xt+1ξ + 1

2
u ′′(ct+1)(xt+1ξ)

2 + · · ·
]

.

If ξ is small, only the first term on the right matters. If the investor has to
give up a small amount of money vtξ at time t , that loss lowers his utility by

u(ct − vtξ)− u(ct ) = −u ′(ct )vtξ + 1
2

u ′′(ct )(vtξ)
2 + · · · .

Again, for small ξ , only the first term matters. Therefore, in order to
receive the small extra payoff ξxt+1, the investor is willing to pay the small
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amount vtξ , where

vt = Et

[
β

u ′(ct+1)

u ′(ct )
xt+1

]
.

If this private valuation is higher than the market value pt , and if the
investor can buy some more of the asset, he will. As he buys more, his
consumption will change; it will be higher in states where xt+1 is higher,
driving down u ′(ct+1) in those states, until the value to the investor has
declined to equal the market value. Thus, after an investor has reached his
optimal portfolio, the market value should obey the basic pricing equation
as well, using post-trade or equilibrium consumption. But the formula can
also be applied to generate the marginal private valuation, using pre-trade
consumption, or to value a potential, not yet traded security.

We have calculated the value of a ‘‘small’’ or marginal portfolio change
for the investor. For some investment projects, an investor cannot take
a small (‘‘diversified’’) position. For example, a venture capitalist or
entrepreneur must usually take all or nothing of a project with payoff
stream {xt }. Then the value of a project not already taken, E

∑
j β

j [u(ct+j +
xt+j ) − u(ct+j )], might be substantially different from its marginal counter-
part, E

∑
j β

j u ′(ct+j )xt+j . Once the project is taken, of course, ct+j + xt+j

becomes ct+j , so the marginal valuation still applies to the ex post consump-
tion stream. Analysts often forget this point and apply marginal (diversified)
valuation models such as the CAPM to projects that must be bought in dis-
crete chunks. Also, we have abstracted from short sales and bid/ask spreads;
this modification changes p = E (mx) from an equality to a set of inequalities.

2.2 General Equilibrium

Asset returns and consumption: which is the chicken and which is the
egg? I present the exogenous return model, the endowment economy model,
and the argument that it does not matter for studying p = E (mx).

So far, we have not said where the joint statistical properties of the
payoff xt+1 and marginal utility mt+1 or consumption ct+1 come from. We
have also not said anything about the fundamental exogenous shocks that
drive the economy. The basic pricing equation p = E (mx) tells us only what
the price should be, given the joint distribution of consumption (marginal
utility, discount factor) and the asset payoff.

There is nothing that stops us from writing the basic pricing equation as

u ′(ct ) = Et [βu ′(ct+1)xt+1/pt ].
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We can think of this equation as determining today’s consumption given asset
prices and payoffs, rather than determining today’s asset price in terms of
consumption and payoffs. Thinking about the basic first-order condition in
this way gives the permanent income model of consumption.

Which is the chicken and which is the egg? Which variable is exogenous
and which is endogenous? The answer is, neither, and for many purposes,
it does not matter. The first-order conditions characterize any equilibrium;
if you happen to know E (mx), you can use them to determine p; if you
happen to know p, you can use them to determine consumption and savings
decisions.

For most asset pricing applications we are interested in understanding
a wide cross section of assets. Thus, it is interesting to contrast the cross-
sectional variation in asset prices (expected returns) with cross-sectional
variation in their second moments (betas) with a single discount factor. In
most applications, the discount factor is a function of aggregate variables
(market return, aggregate consumption), so it is plausible to hold the prop-
erties of the discount factor constant as we compare one individual asset to
another. Permanent income studies typically dramatically restrict the num-
ber of assets under consideration, often to just an interest rate, and study
the time-series evolution of aggregate or individual consumption.

Nonetheless, it is an obvious next step to complete the solution of our
model economy; to find c and p in terms of truly exogenous forces. The
results will of course depend on what the rest of the economy looks like, in
particular the production or intertemporal transformation technology and
the set of markets.

Figure 2.1 shows one possibility for a general equilibrium. Suppose that
the production technologies are linear: the real, physical rate of return (the
rate of intertemporal transformation) is not affected by how much is invested.

Figure 2.1. Consumption adjusts when the rate of return is determined by a linear technology.
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Now consumption must adjust to these technologically given rates of return.
If the rates of return on the intertemporal technologies were to change, the
consumption process would have to change as well. This is, implicitly, how
the permanent income model works. This is how many finance theories such
as the CAPM and ICAPM and the Cox, Ingersoll, and Ross (1985) model
of the term structure work as well. These models specify the return process,
and then solve the consumer’s portfolio and consumption rules.

Figure 2.2 shows another extreme possibility for the production technol-
ogy. This is an ‘‘endowment economy.’’ Nondurable consumption appears
(or is produced by labor) every period. There is nothing anyone can do to
save, store, invest, or otherwise transform consumption goods this period
to consumption goods next period. Hence, asset prices must adjust until
people are just happy consuming the endowment process. In this case con-
sumption is exogenous and asset prices adjust. Lucas (1978) and Mehra and
Prescott (1985) are two very famous applications of this sort of ‘‘endowment
economy.’’

Which of these possibilities is correct? Well, neither, of course. The
real economy and all serious general equilibrium models look something
like Figure 2.3: one can save or transform consumption from one date to
the next, but at a decreasing rate. As investment increases, rates of return
decline.

Does this observation invalidate the modeling we do with the linear
technology (CAPM, CIR, permanent income) model, or the endowment
economy model? No. Start at the equilibrium in Figure 2.3. Suppose we
model this economy as a linear technology, but we happen to choose for
the rate of return on the linear technologies exactly the same stochastic pro-
cess for returns that emerges from the general equilibrium. The resulting
joint consumption-asset return process is exactly the same as in the origi-
nal general equilibrium! Similarly, suppose we model this economy as an

Figure 2.2. Asset prices adjust to consumption in an endowment economy.
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Figure 2.3. General equilibrium. The solid lines represent the indifference curve and pro-
duction possibility set. The dashed straight line represents the equilibrium rate of return. The
dashed box represents an endowment economy that predicts the same consumption and asset
return process.

endowment economy, but we happen to choose for the endowment pro-
cess exactly the stochastic process for consumption that emerges from the
equilibrium with a concave technology. Again, the joint consumption-asset
return process is exactly the same.

Therefore, there is nothing wrong in adopting one of the following
strategies for empirical work:

1. Form a statistical model of bond and stock returns, solve the opti-
mal consumption-portfolio decision. Use the equilibrium consumption
values in p = E (mx).

2. Form a statistical model of the consumption process, calculate asset prices
and returns directly from the basic pricing equation p = E (mx).

3. Form a completely correct general equilibrium model, including the
production technology, utility function, and specification of the market
structure. Derive the equilibrium consumption and asset price process,
including p = E (mx) as one of the equilibrium conditions.

If the statistical models for consumption and/or asset returns are right,
i.e., if they coincide with the equilibrium consumption or return pro-
cess generated by the true economy, either of the first two approaches
will give correct predictions for the joint consumption-asset return
process.

Most finance models, developed from the 1950s through the early
1970s, take the return process as given, implicitly assuming linear technolo-
gies. The endowment economy approach, introduced by Lucas (1978), is a
breakthrough because it turns out to be much easier. It is much easier to
evaluate p = E (mx) for fixed m than it is to solve joint consumption-portfolio
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problems for given asset returns, all to derive the equilibrium consumption
process. To solve a consumption-portfolio problem we have to model the
investor’s entire environment: we have to specify all the assets to which he has
access, what his labor income process looks like (or wage rate process, and
include a labor supply decision). Once we model the consumption stream
directly, we can look at each asset in isolation, and the actual computation
is almost trivial. This breakthrough accounts for the unusual structure of
the presentation in this book. It is traditional to start with an extensive study
of consumption-portfolio problems. But by modeling consumption directly,
we have been able to study pricing directly, and portfolio problems are an
interesting side trip which we can defer.

Most uses of p = E (mx) do not require us to take any stand on exogene-
ity or endogeneity, or general equilibrium. This is a condition that must
hold for any asset, for any production technology. Having a taste of the
extra assumptions required for a general equilibrium model, you can now
appreciate why people stop short of full solutions when they can address an
application using only the first-order conditions, using knowledge of E (mx)
to make a prediction about p.

It is enormously tempting to slide into an interpretation that E (mx)
determines p. We routinely think of betas and factor risk prices—components
of E (mx)—as determining expected returns. For example, we routinely say
things like ‘‘the expected return of a stock increased because the firm took
on riskier projects, thereby increasing its beta.’’ But the whole consumption
process, discount factor, and factor risk premia change when the produc-
tion technology changes. Similarly, we are on thin ice if we say anything
about the effects of policy interventions, new markets and so on. The equi-
librium consumption or asset return process one has modeled statistically
may change in response to such changes in structure. For such questions
one really needs to start thinking in general equilibrium terms. It may help
to remember that there is an army of permanent-income macroeconomists
who make precisely the opposite assumption, taking our asset return pro-
cesses as exogenous and studying (endogenous) consumption and savings
decisions.

2.3 Consumption-Based Model in Practice

The consumption-based model is, in principle, a complete answer to
all asset pricing questions, but works poorly in practice. This observation
motivates other asset pricing models.
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The model I have sketched so far can, in principle, give a complete
answer to all the questions of the theory of valuation. It can be applied
to any security—bonds, stocks, options, futures, etc.—or to any uncertain
cash flow. All we need is a functional form for utility, numerical values for
the parameters, and a statistical model for the conditional distribution of
consumption and payoffs.

To be specific, consider the standard power utility function

u ′(c) = c−γ . (2.1)

Then, excess returns should obey

0 = Et

[
β

(
ct+1

ct

)−γ
R e

t+1

]
. (2.2)

Taking unconditional expectations and applying the covariance decompo-
sition, expected excess returns should follow

E (R e
t+1) = −R f cov

[
β

(
ct+1

ct

)−γ
, R e

t+1

]
. (2.3)

Given a value for γ , and data on consumption and returns, you can
easily estimate the mean and covariance on the right-hand side, and check
whether actual expected returns are, in fact, in accordance with the formula.

Similarly, the present-value formula is

pt = Et

∞∑
j=1

β j

(
ct+j

ct

)−γ
dt+j . (2.4)

Given data on consumption and dividends or another stream of payoffs, you
can estimate the right-hand side and check it against prices on the left.

Bonds and options do not require separate valuation theories. For exam-
ple, an N -period default-free nominal discount bond (a U.S. Treasury strip)
is a claim to one dollar at time t + N . Its price should be

pt = Et

(
βN

(
ct+N

ct

)−γ
�t

�t+N
1
)

,

where�= price level ($/good). A European option is a claim to the payoff
max(St+T − K , 0), where St+T = stock price at time t + T , K = strike price.
The option price should be

pt = Et

[
βT

(
ct+T

ct

)−γ
max(St+T − K , 0)

]
.
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Figure 2.4. Mean excess returns of 10 CRSP size portfolios versus predictions of the power
utility consumption-based model. The predictions are generated by −R f cov(m, R i) with
m = β(ct+1/ct )

−γ . β = 0.98 and γ = 241 are picked by first-stage GMM to minimize
the sum of squared pricing errors (deviation from 45◦ line). Source: Cochrane (1996).

Again, we can use data on consumption, prices, and payoffs to check these
predictions.

Unfortunately, this specification of the consumption-based model
does not work very well. To give a flavor of some of the problems, Figure 2.4
presents the mean excess returns on the ten size-ranked portfolios of
NYSE stocks versus the predictions—the right-hand side of (2.3)—of the
consumption-based model. I picked the utility curvature parameter γ = 241
to make the picture look as good as possible. (The section on GMM esti-
mation below goes into detail on how to do this. The figure presents the
first-stage GMM estimate.) As you can see, the model is not hopeless—there
is some correlation between sample average returns and the consumption-
based model predictions. But the model does not do very well. The pricing
error (actual expected return − predicted expected return) for each port-
folio is of the same order of magnitude as the spread in expected returns
across the portfolios.

2.4 Alternative Asset Pricing Models: Overview

I motivate exploration of different utility functions, general equilibrium
models, and linear factor models such as the CAPM, APT, and ICAPM as ways
to circumvent the empirical difficulties of the consumption-based model.
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The poor empirical performance of the consumption-based model
motivates a search for alternative asset pricing models—alternative func-
tions m = f (data). All asset pricing models amount to different functions
for m. I give here a bare sketch of some of the different approaches; we
study each in detail in later chapters.

1) Different utility functions. Perhaps the problem with the consumption-
based model is simply the functional form we chose for utility. The
natural response is to try different utility functions. Which variables
determine marginal utility is a far more important question than the
functional form. Perhaps the stock of durable goods influences the
marginal utility of nondurable goods; perhaps leisure or yesterday’s
consumption affect today’s marginal utility. These possibilities are all
instances of nonseparabilities. One can also try to use micro data on indi-
vidual consumption of stockholders rather than aggregate consumption.
Aggregation of heterogeneous investors can make variables such as the
cross-sectional variance of income appear in aggregate marginal utility.

2) General equilibrium models. Perhaps the problem is simply with the con-
sumption data. General equilibrium models deliver equilibrium decision
rules linking consumption to other variables, such as income, invest-
ment, etc. Substituting the decision rules ct = f (yt , it , . . .) in the
consumption-based model, we can link asset prices to other, hopefully
better-measured macroeconomic aggregates.

In addition, true general equilibrium models completely describe
the economy, including the stochastic process followed by all variables.
They can answer questions such as why is the covariance (beta) of an
asset payoff x with the discount factor m the value that it is, rather than
take this covariance as a primitive. They can in principle answer struc-
tural questions, such as how asset prices might be affected by different
government policies or the introduction of new securities. Neither kind
of question can be answered by just manipulating investor first-order
conditions.

3) Factor pricing models. Another sensible response to bad consumption data
is to model marginal utility in terms of other variables directly. Factor
pricing models follow this approach. They just specify that the discount
factor is a linear function of a set of proxies,

mt+1 = a + bAf A
t+1 + bBf B

t+1 + · · · , (2.5)

where f i are factors and a, bi are parameters. (This is a different sense of
the use of the word ‘‘factor’’ than ‘‘discount factor’’ or ‘‘factor analysis.’’
I did not invent the confusing terminology.) By and large, the factors
are just selected as plausible proxies for marginal utility: events that
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describe whether typical investors are happy or unhappy. Among others,
the Capital Asset Pricing Model (CAPM) is the model

mt+1 = a + bR W
t+1,

where R W is the rate of return on a claim to total wealth, often proxied
by a broad-based portfolio such as the value-weighted NYSE portfolio.
The Arbitrage Pricing Theory (APT) uses returns on broad-based port-
folios derived from a factor analysis of the return covariance matrix.
The Intertemporal Capital Asset Pricing Model (ICAPM) suggests macro-
economic variables such as GNP and inflation and variables that forecast
macroeconomic variables or asset returns as factors. Term structure mod-
els such as the Cox--Ingersoll--Ross model specify that the discount factor
is a function of a few term structure variables, for example the short rate
of interest and a few interest rate spreads.

Many factor pricing models are derived as general equilibrium mod-
els with linear technologies and no labor income; thus they also fall into
the general idea of using general equilibrium relations (from, admit-
tedly, very stylized general equilibrium models) to substitute out for
consumption.

4) Arbitrage or near-arbitrage pricing. The mere existence of a representation
p = E (mx) and the fact that marginal utility is positive m ≥ 0 (these facts
are discussed in the next chapter) can often be used to deduce prices
of one payoff in terms of the prices of other payoffs. The Black--Scholes
option pricing model is the paradigm of this approach: Since the option
payoff can be replicated by a portfolio of stock and bond, any discount
factor m that prices the stock and bond gives the price for the option.
Recently, there have been several suggestions on how to use this idea in
more general circumstances by using very weak further restrictions on
m, and we will study these suggestions in Chapter 17.

We return to a more detailed derivation and discussion of these
alternative models of the discount factor m below. First, and with this
brief overview in mind, we look at p = E (mx) and what the discount
factor m represents in a little more detail.

Problems—Chapter 2

1. The representative consumer maximizes a CRRA utility function,

Et

∑
β j

c1−γ
t+j

1 − γ
.
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Consumption is given by an endowment stream.

(a) Show that with log utility, the price/consumption ratio of the
consumption stream is constant, no matter what the distribution of
consumption growth.

(b) Suppose there is news at time t that future consumption will be
higher. For γ < 1, γ = 1, and γ > 1, evaluate the effect of this news on
the price. Make sense of your results. (There is a real-world interpretation
here. It is often regarded as a puzzle that the market declines on good
economic news. This is attributed to an expectation by the market that
the Fed will respond to such news by raising interest rates. Note that γ > 1
in this problem gives a completely real and frictionless interpretation to
this phenomenon! I thank Pete Hecht for this nice problem.)

2. The linear quadratic permanent income model is a very useful general
equilibrium model that we can solve in closed form. It specifies a production
technology rather than fixed endowments, and it easily allows aggregation
of disparate consumers. (Hansen [1987] is a wonderful exposition of what
one can do with this setup.)

The consumer maximizes

E
∞∑

t=0

β t

(
−1

2

)
(ct − c∗)2

subject to a linear technology

kt+1 = (1 + r )kt + it ,

it = et − ct .

et is an exogenous endowment or labor income stream. Assume
β = 1/(1 + r ); the discount rate equals the interest rate or marginal pro-
ductivity of capital.

(a) Show that optimal consumption follows

ct = rkt + rβ
∞∑

j=0

β j Et et+j , (2.6)

ct = ct−1 + (Et − Et−1)rβ
∞∑

j=0

β j et+j , (2.7)

i.e., consumption equals permanent income, precisely defined, and
consumption follows a random walk whose innovations are equal to
innovations in permanent income.
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(b) Assume that the endowment et follows an AR(1)

et = ρet−1 + εt

and specialize (2.6) and (2.7). Calculate and interpret the result for ρ = 1
and ρ = 0. (The result looks like a ‘‘consumption function’’ relating
consumption to capital and current income, except that the slope of that
function depends on the persistence of income shocks. Transitory shocks
will have little effect on consumption, and permanent shocks a larger
effect.)

(c) Calculate the one-period interest rate (it should come out to r , of
course) and the price of a claim to the consumption stream. Express the
price in terms of ct . Interpret the price of the consumption stream as a
risk-neutral term and a risk premium, and explain the economics of the
risk premium. (This consumer gets more risk averse as consumption rises
to c∗. c∗ is the bliss point, so at the bliss point there is no average return
that can compensate the consumer for greater risk.)

3. Consider again CRRA utility,

Et

∑
β j c1−γ

t+j .

Consumption growth follows a two-state Markov process. The states are
�ct = ct/ct−1 = h, l , and a 2×2 matrix π governs the set of transition
probabilities, i.e., pr (�ct+1 = h|�ct = l ) = πl→h . (This is the Mehra--
Prescott [1985] model, but it will be faster to do it than to look it up. It
is a useful and simple endowment economy.)

(a) Find the risk-free rate (price of a certain real payoff of 1) in this
economy. This price is generated by

pb
t = Et (mt , t+11).

You are looking for two values, the price in the l state and the price in
the h state.

(b) Find the price of the consumption stream (the price at t of
{ct+1, ct+2, . . .}). To do this, guess that the price/consumption ratio must
be a function of state (h, l ), and find that function. From

pc
t = Et (mt , t+1(pc

t+1 + ct+1))

find a recursive relation for pc
t /ct , and hence find the two values of pc

t /ct ,
one for the h state and one for the l state.

(c) Pick β = 0.99 and try γ = 0.5, 5. (Try more values if you feel like it.)
Calibrate the consumption process to have a 1% mean and 1% standard
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deviation, and consumption growth uncorrelated over time. Calculate
prices and returns in each state.

(d) Now introduce serial correlation in consumption growth with γ = 5.
(You can do this by adding weight to the diagonal entries of the transition
matrix π .) What effect does this change have on the model?
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Contingent Claims Markets

Our first task is to understand the p = E (mx) representation a little more
deeply. In this chapter I introduce a very simple market structure, contingent
claims. This leads us to an inner product interpretation of p = E (mx) which
allows an intuitive visual representation of most of the theorems. We see
that discount factors exist, are positive, and the pricing function is linear,
just starting from prices and payoffs in a complete market. We don’t need
any utility functions. The next chapter shows that these properties can be
built up in incomplete markets as well.

3.1 Contingent Claims

I describe contingent claims. I interpret the stochastic discount factor
m as contingent claims prices divided by probabilities, and p = E (mx) as a
bundling of contingent claims.

Suppose that one of S possible states of nature can occur tomorrow, i.e.,
specialize to a finite-dimensional state space. Denote the individual states
by s. For example, we might have S = 2 and s = rain or s = shine.

A contingent claim is a security that pays one dollar (or one unit of the
consumption good) in one state s only tomorrow. pc(s) is the price today of
the contingent claim. I write pc to specify that it is the price of a contingent
claim and (s) to denote in which state s the claim pays off.

In a complete market investors can buy any contingent claim. They do not
necessarily have to trade explicit contingent claims; they just need enough
other securities to span or synthesize all contingent claims. For example, if
the possible states of nature are (rain, shine), one can span or synthesize

49
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any contingent claim, or any portfolio that can be achieved by combining
contingent claims, by forming portfolios of a security that pays 2 dollars if it
rains and one if it shines, or x 1 = (2, 1), and a risk-free security whose payoff
pattern is x 2 = (1, 1).

Now, we are on a hunt for discount factors, and the central point is:
If there are complete contingent claims, a discount factor exists, and it is equal

to the contingent claim price divided by probabilities.
Let x(s) denote an asset’s payoff in state of nature s. We can think of the

asset as a bundle of contingent claims—x(1) contingent claims to state 1,
x(2) claims to state 2, etc. The asset’s price must then equal the value of the
contingent claims of which it is a bundle,

p(x) =
∑

s

pc(s)x(s). (3.1)

I denote the price p(x) to emphasize that it is the price of the payoff x .
Where the payoff in question is clear, I suppress the (x). I like to think of
equation (3.1) as a happy-meal theorem: the price of a happy meal (in a
frictionless market) should be the same as the price of one hamburger, one
small fries, one small drink, and the toy.

It is easier to take expectations rather than sum over states. To this end,
multiply and divide the bundling equation (3.1) by probabilities,

p(x) =
∑

s

π(s)
(

pc(s)
π(s)

)
x(s),

where π(s) is the probability that state s occurs. Then define m as the ratio
of contingent claim price to probability,

m(s) = pc(s)
π(s)

.

Now we can write the bundling equation as an expectation,

p =
∑

s

π(s)m(s)x(s) = E (mx).

Thus, in a complete market, the stochastic discount factor m in
p = E (mx) exists, and it is just a set of contingent claims prices, scaled by
probabilities. As a result of this interpretation, the combination of discount
factor and probability is sometimes called a state-price density.

The multiplication and division by probabilities seems very artificial in
this finite-state context. In general, we posit states of nature ω that can take
continuous (uncountably infinite) values in a space�. In this case, the sums
become integrals, and we have to use some measure to integrate over �.
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Thus, scaling contingent claims prices by some probability-like object is
unavoidable.

3.2 Risk-Neutral Probabilities

I interpret the discount factor m as a transformation to risk-neutral
probabilities such that p = E ∗(x)/R f .

Another common transformation of p = E (mx) results in ‘‘risk-neutral’’
probabilities. Define

π∗(s) ≡ R f m(s)π(s) = R f pc(s),

where
R f ≡ 1

/∑
pc(s) = 1/E (m).

The π∗(s) are positive, less than or equal to one and sum to one, so they
are a legitimate set of probabilities. Now we can rewrite the asset pricing
formula as

p(x) =
∑

s

pc(s)x(s) = 1
R f

∑
π∗(s)x(s) = E ∗(x)

R f
.

I use the notation E ∗ to remind us that the expectation uses the risk-neutral
probabilities π∗ instead of the real probabilities π .

Thus, we can think of asset pricing as if agents are all risk neutral, but
with probabilities π∗ in the place of the true probabilities π . The proba-
bilities π∗ give greater weight to states with higher than average marginal
utility m.

There is something very deep in this idea: risk aversion is equivalent
to paying more attention to unpleasant states, relative to their actual prob-
ability of occurrence. People who report high subjective probabilities of
unpleasant events like plane crashes may not have irrational expectations;
they may simply be reporting the risk-neutral probabilities or the product
m ×π . This product is after all the most important piece of information for
many decisions: pay a lot of attention to contingencies that are either highly
probable or that are improbable but have disastrous consequences.

The transformation from actual to risk-neutral probabilities is given by

π ∗(s) = m(s)
E (m)

π(s).
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We can also think of the discount factor m as the derivative or change of
measure from the real probabilities π to the subjective probabilities π ∗. The
risk-neutral probability representation of asset pricing is quite common,
especially in derivative pricing where the results are often independent of
risk adjustments.

The risk-neutral representation is particularly popular in continuous-
time diffusion processes, because we can adjust only the means, leaving
the covariances alone. In discrete time, changing the probabilities typically
changes both first and second moments. Suppose we start with a process for
prices and discount factor

dp
p

= µp dt + σ p dz,

d�
�

= µ� dt + σ� dz,

and suppose that the discount factor prices the assets,

Et

(
dp
p

)
+ D

p
dt − r f dt = −Et

(
d�
�

dp
p

)

µp + D
p

− r f = −σ�σ p .

In the ‘‘risk-neutral measure’’ we just increase the drift of each price process
by its covariance with the discount factor, and write a risk-neutral discount
factor,

dp
p

= (µp + σ pσ�)dt + σ p dz = µp∗ dt + σ p dz,

d�
�

= µ� dt .

Under this new set of probabilities, we can just write a risk-neutral pricing
formula

E ∗
t

(
dp
p

)
+ D

p
dt − r f dt = 0

with E ∗
t (dp/p) = µp∗ dt . As before,

µp + σ pσ� + D
p

− r f = 0.
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3.3 Investors Again

We look at an investor’s first-order conditions in a contingent claims
market. The marginal rate of substitution equals the discount factor and the
contingent claim price ratio.

Though the focus of this chapter is on how to do without utility func-
tions, it is worth looking at the investor’s first-order conditions again in the
contingent claim context. The investor starts with a pile of initial wealth y
and a state-contingent income y(s). He may purchase contingent claims to
each possible state in the second period. His problem is then

max
{c , c(s)}

u(c)+
∑

s

βπ(s)u[c(s)] s.t. c +
∑

s

pc(s)c(s) = y +
∑

s

pc(s)y(s).

Introducing a Lagrange multiplierλon the budget constraint, the first-order
conditions are

u ′(c) = λ,

βπ(s)u ′[c(s)] = λpc(s).

Eliminating the Lagrange multiplier λ,

pc(s) = βπ(s)
u ′[c(s)]

u ′(c)

or

m(s) = pc(s)
π(s)

= β
u ′[c(s)]

u ′(c)
.

Coupled with p = E (mx), we obtain the consumption-based model again.
The investor’s first-order conditions say that the marginal rate of

substitution between states tomorrow equals the relevant price ratio,

m(s1)

m(s2)
= u ′[c(s1)]

u ′[c(s2)] .

m(s1)/m(s2) gives the rate at which the investor can give up consumption
in state 2 in return for consumption in state 1 through purchase and sales
of contingent claims. u ′[c(s1)]/u ′[c(s2)] gives the rate at which the investor
is willing to make this substitution. At an optimum, the marginal rate of
substitution should equal the price ratio, as usual in economics.

We learn that the discount factor m is the marginal rate of substitution
between date- and state -contingent commodities. That is why it, like c(s), is
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Figure 3.1. Indifference curve and contingent claim prices.

a random variable. Also, scaling contingent claims prices by probabilities
gives marginal utility, and so is not so artificial as it may have seemed above.

Figure 3.1 gives the economics behind this approach to asset pricing.
We observe the investor’s choice of date- or state-contingent consumption.
Once we know his utility function, we can calculate the contingent claim
prices that must have led to the observed consumption choice, from the
derivatives of the utility function.

The relevant probabilities are the investors’ subjective probabilities over
the various states. Asset prices are set, after all, by investors’ demands for
assets, and those demands are set by investors’ subjective evaluations of the
probabilities of various events. We often assume rational expectations, namely
that subjective probabilities are equal to objective frequencies. But this is an
additional assumption that we may not always want to make.

3.4 Risk Sharing

Risk sharing: In complete markets, individuals’ consumption moves
together. Only aggregate risk matters for security markets.

We deduced that the marginal rate of substitution for any individual
investor equals the contingent claim price ratio. But the prices are the same
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for all investors. Therefore, marginal utility growth should be the same for all
investors,

β i u ′(c i
t+1

)
u ′(c i

t

) = β j u ′(c j
t+1

)
u ′(c j

t

) , (3.2)

where i and j refer to different investors. If investors have the same homo-
thetic utility function (for example, power utility), then consumption itself
moves in lockstep,

c i
t+1

c i
t

= c j
t+1

c j
t

.

More generally, shocks to consumption are perfectly correlated across
individuals.

This prediction is so radical, it is easy to misread it at first glance. It
does not say that expected consumption growth is equal; it says that ex post
consumption growth is equal. If my consumption goes up 10%, yours goes
up exactly 10% as well, and so does everyone else’s. In a complete con-
tingent claims market, all investors share all risks, so when any shock hits,
it hits us all equally (after insurance payments). It does not say the con-
sumption level is the same—this is risk sharing, not socialism. The rich
have higher levels of consumption, but rich and poor share the shocks
equally.

This risk sharing is Pareto optimal. Suppose a social planner wished to
maximize everyone’s utility given the available resources. For example, with
two investors i and j , he would maximize

max λiE
∑

t

β t u
(
c i

t

)+ λj E
∑

t

β t u
(
c j

t

)
s.t. c i

t + c j
t = ca

t ,

where ca is the total amount available and λi and λj are i and j ’s rela-
tive weights in the planner’s objective. The first-order condition to this
problem is1

λiu ′(c i
t

) = λj u ′(c j
t

)
and hence the same risk sharing that we see in a complete market,
equation (3.2).

This simple fact has profound implications. First, it shows you why only
aggregate shocks should matter for risk prices. Any idiosyncratic income risk will

1 People can have different utility functions, and these need not be functions of current
consumption only, at the cost of more complex notation, i.e.,

λi u ′i(c i
t , ·) = λj u ′j (c j

t , ·)
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be equally shared, and so 1/N of it becomes an aggregate shock. Then
the stochastic discount factors m that determine asset prices are no longer
affected by truly idiosyncratic risks. Much of this idea that only aggregate
shocks matter stays with us in incomplete markets as well.

Obviously, the real economy does not yet have complete markets or full
risk sharing—individual consumptions do not move in lockstep. However,
this observation tells us much about the function of securities markets.
Security markets—state-contingent claims—bring individual consumptions
closer together by allowing people to share some risks. In addition, better
risk sharing is much of the force behind financial innovation. Many suc-
cessful new securities can be understood as devices to share risks more
widely.

3.5 State Diagram and Price Function

I introduce the state-space diagram and inner product representation for
prices, p(x) = E (mx) = m · x .

p(x) = E (mx) implies that p(x) is a linear function.

Think of the contingent claims price pc and asset payoffs x as vectors
in RS , where each element gives the price or payoff to the corresponding
state,

pc = [pc(1) pc(2) · · · pc(S)]′,
x = [x(1) x(2) · · · x(S)]′.

Figure 3.2 is a graph of these vectors in RS . Next, I deduce the geometry of
Figure 3.2.

The contingent claims price vector pc points into the positive orthant. We saw in
Section 3.3 that m(s) = u ′[c(s)]/u ′(c). Now, marginal utility should always be
positive (people always want more), so the marginal rate of substitution and
discount factor are always nonnegative, m > 0 and pc > 0. Do not forget, m
and pc are vectors, or random variables. Thus, m > 0 means the realization
of m is positive in every state of nature, or, equivalently every element of the
vector m is positive.

The set of payoffs with any given price lie on a (hyper)plane perpendicular to the
contingent claim price vector. We reasoned above that the price of the payoff x
must be given by its contingent claim value (3.1),

p(x) =
∑

s

pc(s)x(s). (3.3)
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Price = 2

State 2
Payoff

State 1 Payoff

Riskfree rate

Price = 0 (excess returns)

pc
Price = 1 (returns)

State 1 contingent claim

Figure 3.2. Contingent claims prices (pc) and payoffs.

Interpreting pc and x as vectors, this means that the price is given by the
inner product of the contingent claim price and the payoff.

If two vectors are orthogonal—if they point out from the origin at right
angles to each other—then their inner product is zero. Therefore, the set
of all zero-price payoffs must lie on a plane orthogonal to the contingent
claims price vector, as shown in Figure 3.2.

More generally, the inner product of two vectors x and pc equals the
product of the magnitude of the projection of x onto pc times the magnitude
of pc . Using a dot to denote inner product,

p(x) =
∑

s

pc(s)x(s) = pc · x = |pc | × |proj(x |pc)| = |pc | × |x | × cos(θ),

where |x | means the length of the vector x and θ is the angle between the
vectors pc and x . Since all payoffs on planes (such as the price planes in
Figure 3.2) that are perpendicular to pc have the same projection onto
pc , they must have the same inner product with pc and hence the same
price. (Only the price = 0 plane is, strictly speaking, orthogonal to pc . Lack-
ing a better term, I have called the nonzero price planes ‘‘perpendicular’’
to pc .) When vectors are finite dimensional, the prime notation is com-
monly used for inner products, pc ′x . This notation does not extend well to
infinite-dimensional spaces. The notation 〈pc |x〉 is also often used for inner
products.
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Planes of constant price move out linearly, and the origin x = 0 must have a
price of zero. If payoff y = 2x , then its price is twice the price of x ,

p(y) =
∑

s

pc(s)y(s) =
∑

s

pc(s)2x(s) = 2 p(x).

Similarly, a payoff of zero must have a price of zero.
We can think of p(x) as a pricing function, a map from the state space or

payoff space in which x lies (RS in this case) to the real line. We have just
deduced from the definition (3.3) that p(x) is a linear function, i.e., that

p(ax + by) = ap(x)+ bp(y).

The constant price lines in Figure 3.2 are of course exactly what one expects
from a linear function from RS to R. (One might draw the price on the z axis
coming out of the page. Then the price function would be a plane going
through the origin and sloping up with iso-price lines as given in Figure 3.2.)

Figure 3.2 also includes the payoffs to a contingent claim to the first
state. This payoff is one in the first state and zero in other states and thus
located on the axis. The plane of price = 1 payoffs is the plane of asset returns;
the plane of price = 0 payoffs is the plane of excess returns. A risk free unit
payoff (the payoff to a risk-free pure discount bond) lies on the (1, 1) point
in Figure 3.2; the risk-free return lies on the intersection of the 45◦ line
(same payoff in both states) and the price = 1 plane (the set of all returns).

Geometry with m in Place of pc
The geometric interpretation of Figure 3.2 goes through with the discount
factor m in the place of pc . We can define an inner product between the
random variables x and y by

x · y ≡ E (xy),

and retain all the mathematical properties of an inner product. For this
reason, random variables for which E (xy) = 0 are often called ‘‘orthogonal.’’

This language may be familiar from linear regressions. When we run a
regression of y on x ,

y = b ′x + ε,

we find the linear combination of x that is ‘‘closest’’ to y, by minimizing
the variance or ‘‘size’’ of the residual ε. We do this by forcing the residual
to be ‘‘orthogonal’’ to the right-hand variable E (xε) = 0. The projection
of y on x is defined as the fitted value, proj(y|x) = b ′x = E (xx ′)−1E (yx ′)x .
This idea is often illustrated by a residual vector ε that is perpendicular to a
plane defined by the right-hand variables x . Thus, when the inner product is
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defined by a second moment, the operation ‘‘project y onto x’’ is a regression.
(If x does not include a constant, you do not add one in this regression.)

The geometric interpretation of Figure 3.2 also is valid if we generalize
the setup to an infinite-dimensional state space, i.e., if we think of con-
tinuously valued random variables. Instead of vectors, which are functions
from RS to R, random variables are (measurable) functions from � to R.
Nonetheless, we can still think of them as vectors. The equivalent of Rs is now
a Hilbert space L2, which denotes spaces generated by linear combinations of
square integrable functions from � to the real line, or the space of random
variables with finite second moments. We can still define an ‘‘inner product’’
between two such elements by x · y = E (xy), and p(x) = E (mx) can still
be interpreted as ‘‘m is perpendicular to (hyper)planes of constant price.’’
Proving theorems in this context is a bit harder. You cannot just say things
like ‘‘we can take a line perpendicular to any plane’’; such things have to be
proved. Sometimes, finite-dimensional thinking can lead you to errors, so
it is important to prove things the right way, keeping the finite-dimensional
pictures in mind for interpretation. Hansen and Richard (1987) is a very
good reference for the Hilbert space machinery.
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4
The Discount Factor

Now we look more closely at the discount factor. Rather than derive a
specific discount factor as with the consumption-based model in the first
chapter, I work backwards. A discount factor is just some random variable
that generates prices from payoffs, p = E (mx). What does this expression
mean? Can one always find such a discount factor? Can we use this con-
venient representation without implicitly assuming all the structure of the
investors, utility functions, complete markets, and so forth?

The chapter focuses on two famous theorems. The law of one price states
that if two portfolios have the same payoffs (in every state of nature), then
they must have the same price. A violation of this law would give rise to an
immediate kind of arbitrage profit, as you could sell the expensive version
and buy the cheap version of the same portfolio. The first theorem states
that there is a discount factor that prices all the payoffs by p = E (mx) if and
only if this law of one price holds.

In finance, we reserve the term absence of arbitrage for a stronger idea,
that if payoff A is always at least as good as payoff B, and sometimes A is
better, then the price of A must be greater than the price of B. The second
theorem is that there is a positive discount factor that prices all the payoffs
by p = E (mx) if and only if there are no arbitrage opportunities, so defined.

These theorems are useful to show that we can use stochastic discount
factors without implicitly assuming anything about utility functions, aggre-
gation, complete markets, and so on. All we need to know about investors
in order to represent prices and payoffs via a discount factor is that they will
not leave law of one price violations or arbitrage opportunities on the table.
These theorems can be used to describe aspects of a payoff space (such as law
of one price, absence of arbitrage) by restrictions on the discount factor (such
as it exists and it is positive). Chapter 18 shows how it can be more conve-
nient to impose and check restrictions on a single discount factor than it is
to check the corresponding restrictions on all possible portfolios. Chapter 7
discusses these and other implications of the existence theorems.

61
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The theorems are credited to Ross (1978), Rubinstein (1976), and
Harrison and Kreps (1979). My presentation is a simplified version of
Hansen and Richard (1987) which contains rigorous proofs and some
important technical assumptions.

4.1 Law of One Price and Existence of a Discount Factor

The definition of the law of one price; price is a linear function.
p = E (mx) implies the law of one price.
The law of one price implies that a discount factor exists: There exists a

unique x∗ in X such that p = E (x∗x) for all x ∈ X = space of all available
payoffs. Furthermore, for any valid discount factor m,

x∗ = proj(m | X ).

So far we have derived the basic pricing relation p = E (mx) from envi-
ronments with a lot of structure: either the consumption-based model or
complete markets.

Suppose we observe a set of prices p and payoffs x , and that
markets—either the markets faced by investors or the markets under study
in a particular application—are incomplete, meaning they do not span the
entire set of contingencies. In what minimal set of circumstances does some
discount factor exist which represents the observed prices by p = E (mx)?
This section and the following answer this important question.

Payoff Space
The payoff space X is the set of all the payoffs that investors can purchase, or
it is a subset of the tradeable payoffs that is used in a particular study. For
example, if there are complete contingent claims to S states of nature, then
X = RS . But the whole point is that markets are (as in real life) incomplete,
so we will generally think of X as a proper subset of complete markets RS .

The payoff space includes some set of primitive assets, but investors can
also form new payoffs by forming portfolios of the primitive assets. I assume
that investors can form any portfolio of traded assets:

(A1) (Portfolio formation) x 1, x 2 ∈ X ⇒ ax 1 + bx 2 ∈ X for any real a, b.

Of course, X = RS for complete markets satisfies the portfolio forma-
tion assumption. If there is a single underlying, or basis payoff x , then the
payoff space must be at least the ray from the origin through x . If there
are two basis payoffs in R3, then the payoff space X must include the plane
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Figure 4.1. Payoff spaces X generated by one (top) and two (bottom) basis payoffs.

defined by these two payoffs and the origin. Figure 4.1 illustrates these
possibilities.

The payoff space is not the space of returns. The return space is a subset
of the payoff space; if a return R is in the payoff space, then you can pay a
price $2 to get a payoff 2R , so the payoff 2R with price 2 is also in the payoff
space. Also, −R is in the payoff space.

Free portfolio formation is in fact an important and restrictive simplify-
ing assumption. It rules out short sales constraints, bid/ask spreads, leverage
limitations, and so on. The theory can be modified to incorporate these
frictions, but it is a substantial modification.

If investors can form portfolios of a vector of basic payoffs x (say, the
returns on the NYSE stocks), then the payoff space consists of all portfolios or
linear combinations of these original payoffs X = {c ′x} where c is a vector of
portfolio weights. We also can allow truly infinite-dimensional payoff spaces.
For example, investors might be able to trade nonlinear functions of a basis



“chap04” — 2004/9/13 — page 64 — #4

64 4. The Discount Factor

payoff x , such as call options on x with strike price K , which have payoff
max[x(s)− K , 0].
The Law of One Price

(A2) (Law of one price, linearity) p(ax 1 + bx 2) = ap(x 1)+ bp(x 2).

It does not matter how one forms the payoff x . The price of a burger,
shake, and fries must be the same as the price of a Happy Meal. Graphically,
if the iso-price curves were not planes, then one could buy two payoffs on
the same iso-price curve, form a portfolio whose payoff is on the straight
line connecting the two original payoffs, and sell the portfolio for a higher
price than it cost to assemble it.

The law of one price basically says that investors cannot make instanta-
neous profits by repackaging portfolios. If investors can sell securities, this
is a very weak characterization of preferences. It says there is at least one
investor for whom marketing does not matter, who values a package by its
contents.

The law is meant to describe a market that has already reached equilib-
rium. If there are any violations of the law of one price, traders will quickly
eliminate them so they cannot survive in equilibrium.

A1 and A2 also mean that the 0 payoff must be available, and must have
price 0.

The Theorem
The existence of a discount factor implies the law of one price. This is obvious to
the point of triviality: if x = y + z, then E (mx) = E [m(y + z)]. The hard, and
interesting part of the theorem reverses this logic. We show that the law of
one price implies the existence of a discount factor.

Theorem: Given free portfolio formation A1, and the law of one price A2, there exists
a unique payoff x∗ ∈ X such that p(x) = E (x∗x) for all x ∈ X .

x∗ is a discount factor. A1 and A2 imply that the price function on X
looks like Figure 3.2: parallel hyperplanes marching out from the origin.
The only difference is that X may be a subspace of the original state space,
as shown in Figure 4.1. The essence of the proof, then, is that any linear
function on a space X can be represented by inner products with a vector
that lies in X .

Proof 1: (Geometric) We have established that the price is a linear func-
tion as shown in Figure 4.2. (Figure 4.2 can be interpreted as the plane
X of a larger-dimensional space as in the bottom panel of Figure 4.1, laid
flat on the page for clarity). Now we can draw a line from the origin per-
pendicular to the price planes. Choose a vector x∗ on this line. Since the
line is orthogonal to the price-zero plane we have 0 = p(x) = E (x∗x) for
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Figure 4.2. Existence of a discount factor x∗.

price-zero payoffs x immediately. The inner product between any payoff x
on the price = 1 plane and x∗ is |proj(x |x∗)|×|x∗|. Thus, every payoff on the
price = 1 plane has the same inner product with x∗. All we have to do is pick
x∗ to have the right length, and we obtain p(x) = 1 = E (x∗x) for every x on
the price = 1 plane. Then, of course we have p(x) = E (x∗x) for payoffs x
on the other planes as well. Thus, the linear pricing function implied by the
law of one price can be represented by inner products with x∗. �

The basic mathematical point is just that any linear function can be
represented by an inner product. The Riesz representation theorem extends
the proof to infinite-dimensional payoff spaces. See Hansen and Richard
(1987).

Proof 2: (Algebraic) We can prove the theorem by construction when the
payoff space X is generated by portfolios of N basis payoffs (for example,
N stocks). This is a common situation, so the formulas are also useful in
practice. Organize the basis payoffs into a vector x = [ x 1 x 2 · · · xN ]′ and
similarly their prices p. The payoff space is then X = {c ′x}. We want a
discount factor that is in the payoff space, as the theorem requires. Thus, it
must be of the form x∗ = c ′x . Construct c so that x∗ prices the basis assets.
We want p = E (x∗x) = E (xx ′c). Thus we need c = E (xx ′)−1p. If E (xx ′) is
nonsingular, this c exists and is unique. A2 implies that E (xx ′) is nonsingular
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(after pruning redundant rows of x). Thus,

x∗ = p ′E (xx ′)−1x (4.1)

is our discount factor. It is a linear combination of x so it is in X . It prices
the basis assets x by construction. It prices every x ∈ X : E [x∗(x ′c)] =
E [p ′E (xx ′)−1xx ′c] = p ′c . By linearity, p(c ′x) = c ′p. �

What the Theorem Does and Does Not Say
The theorem says there is a unique x∗ in X . There may be many other
discount factors m not in X . In fact, unless markets are complete, there are
an infinite number of random variables that satisfy p = E (mx). If p = E (mx),
then p = E [(m + ε)x] for any ε orthogonal to x , E (εx) = 0.

Not only does this construction generate some additional discount fac-
tors, it generates all of them: Any discount factor m (any random variable that
satisfies p = E (mx)) can be represented as m = x∗ +ε with E (εx) = 0. Figure 4.3
gives an example of a one-dimensional X in a two-dimensional state-space,
in which case there is a whole line of possible discount factors m. If markets
are complete, there is nowhere to go orthogonal to the payoff space X , so
x∗ is the only possible discount factor.

Reversing the argument, x∗ is the projection of any stochastic discount factor
m on the space X of payoffs. This is a very important fact: the pricing implications
of any discount factor m for a set of payoffs X are the same as those of the projection
of m on X . This discount factor is known as the mimicking portfolio for m.

Figure 4.3. Many discount factors m can price a given set of assets in incomplete markets.
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Algebraically,

p = E (mx) = E [(proj(m|X )+ ε)x] = E [proj(m|X )x].
Let me repeat and emphasize the logic. Above, we started with investors

or a contingent-claim market, and derived a discount factor. p = E (mx)
implies the linearity of the pricing function and hence the law of one price,
a pretty obvious statement in those contexts. Here we work backwards.
Markets are incomplete in that contingent claims to lots of states of nature
are not available. We found that the law of one price implies a linear pricing
function, and a linear pricing function implies that there exists at least one
and usually many discount factors even in an incomplete market.

We do allow arbitrary portfolio formation, and that sort of ‘‘com-
pleteness’’ is important to the result. If investors cannot form a portfolio
ax + by, they cannot force the price of this portfolio to equal the price of
its constituents. The law of one price is not innocuous; it is an assumption
about preferences, albeit a weak one. The point of the theorem is that this
is just enough information about preferences to deduce the existence of a
discount factor.

4.2 No Arbitrage and Positive Discount Factors

The definition of the absence of arbitrage: positive payoff implies positive
price.

There is a strictly positive discount factor m such that p = E (mx) if and
only if there are no arbitrage opportunities and the law of one price holds.

No arbitrage is another, slightly stronger, implication of marginal utility,
that can be reversed to show that there is a positive discount factor. We need
to start with the definition of arbitrage:

Definition (Absence of arbitrage): A payoff space X and pricing function p(x)
leave no arbitrage opportunities if every payoff x that is always nonnegative,
x ≥ 0 (almost surely), and positive, x > 0, with some positive probability,
has positive price, p(x) > 0.

No arbitrage says that you cannot get for free a portfolio that might pay
off positively, but will certainly never cost you anything. This definition is
different from the colloquial use of the word ‘‘arbitrage.’’ Most people use
‘‘arbitrage’’ to mean a violation of the law of one price—a riskless way of
buying something cheap and selling it for a higher price. ‘‘Arbitrages’’ here
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might pay off, but then again they might not. The word ‘‘arbitrage’’ is also
widely abused. ‘‘Risk arbitrage’’ is a Wall Street oxymoron that means making
specific kinds of bets.

An equivalent statement is that if one payoff dominates another, then its
price must be higher—if x ≥ y, then p(x) ≥ p(y). (Or, a bit more carefully
but more long-windedly, if x ≥ y almost surely and x > y with positive
probability, then p(x) > p(y). You cannot forget that x and y are random
variables.)

m > 0 Implies No Arbitrage
The absence of arbitrage opportunities is clearly a consequence of a positive
discount factor, and a positive discount factor naturally results from any sort
of utility maximization. Recall,

m(s) = β
u ′[c(s)]

u ′(c)
> 0.

It is a sensible characterization of preferences that marginal utility is always
positive. Few people are so satiated that they will throw away money.
Therefore, the marginal rate of substitution is positive. The marginal rate of
substitution is a random variable, so ‘‘positive’’ means ‘‘positive in every
state of nature’’ or ‘‘in every possible realization.’’

Now, if contingent-claims prices are all positive, a bundle of positive
amounts of contingent claims must also have a positive price, even in
incomplete markets. A little more formally,

Theorem: p = E (mx) and m(s) > 0 imply no arbitrage.

Proof: We have m > 0; x ≥ 0 and there are some states where x > 0.
Thus, in some states with positive probability mx > 0 and in other states
mx = 0. Therefore, E (mx) > 0. �

No Arbitrage and the Law of One Price Imply m > 0
Now we turn the observation around, which is again the hard and interesting
part. As the law of one price property guaranteed the existence of a discount
factor m, no arbitrage and the law of one price guarantee the existence of
a positive m.

The basic idea is pretty simple. No arbitrage means that the prices of
any payoff in the positive orthant (except zero, but including the axes)
must be strictly positive. The price = 0 plane divides the region of positive
prices from the region of negative prices. Thus, if the region of negative
prices is not to intersect the positive orthant, the iso-price lines must march
up and to the right, and the discount factor m must point up and to the
right. This is how we have graphed it all along, most recently in Figure 4.2.
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–1

Figure 4.4. Example for the theorem relating positive discount factors to the absence of arbi-
trage. The payoff x is an arbitrage opportunity: the payoff is positive, but it has a negative
price. The discount factor is not strictly positive.

Figure 4.4 illustrates the case that is ruled out: a whole region of negative
price payoffs lies in the positive orthant. For example, the payoff x is strictly
positive, but has a negative price. As a result, the (unique, since this market
is complete) discount factor m is negative in the y-axis state.

The theorem is easy to prove in complete markets. There is only one
m, x∗. If it is not positive in some state, then the contingent claim in that
state has a positive payoff and a negative price, which violates no arbitrage.
More formally,

Theorem: In complete markets, no arbitrage and the law of one price imply that there
exists a unique m > 0 such that p = E (mx).

Proof: From the law of one price, there is an x∗ such that p = E (x∗x). In
a complete market this is the unique discount factor. Suppose that x∗ ≤ 0
for some states. Then, form a payoff x that is 1 in those states, and zero
elsewhere. This payoff is strictly positive, but its price,

∑
s:x∗(s)<0 π(s)x

∗(s) is
negative, negating the assumption of no arbitrage. �

The tough part comes if markets are incomplete. There are now many
discount factors that price assets. Any m of the form m = x∗ + ε, with
E (εx) = 0, will do. We want to show that at least one of these is positive. But
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that one may not be x∗. Since the discount factors other than x∗ are not in the
payoff space X , we cannot use the construction of the last argument, since
that construction may yield a payoff that is not in X , and hence to which we
do not know how to assign a price. To handle this case, I adopt a different
strategy of proof. (This strategy is due to Ross [1978]. Duffie [1992] has a
more formal textbook treatment.) The basic idea is another ‘‘to every plane
there is a perpendicular line’’ argument, but applied to a space that includes
prices and payoffs together. The price = 0 plane is a separating hyperplane
between the positive orthant and the negative payoffs, and the proof builds
on this idea.

Theorem: No arbitrage and the law of one price imply the existence of a strictly positive
discount factor, m > 0, p = E (mx)∀x ∈ X .

Proof: Join (−p(x), x) together to form vectors in RS+1. Call M the set of
all (−p(x), x) pairs,

M = {(−p(x), x); x ∈ X }.
Given the law of one price, M is still a linear space: m 1 ∈ M , m 2 ∈ M ⇒
am 1 + bm 2 ∈ M . No arbitrage means that elements of M cannot consist
entirely of positive elements. If x is positive, −p(x) must be negative. Thus,
M is a hyperplane that only intersects the positive orthant RS+1

+ at the point 0.
We can then create a linear function F : RS+1 ⇒ R such that F (−p, x) = 0 for
(−p, x) ∈ M , and F (−p, x) > 0 for (−p, x) ∈ RS+1

+ except the origin. Since
we can represent any linear function by a perpendicular vector, there is a
vector (1, m) such that F (−p, x) = (1, m) ·(−p, x) = −p +m ·x or −p +E (mx)
using the second moment inner product. Finally, since F (−p, x) is positive
for (−p, x) > 0, m must be positive. �

In a larger space than RS+1
+ , as generated by continuously valued random

variables, the separating hyperplane theorem assures us that there is a linear
function that separates the two convex sets M and the equivalent of RS+1

+ ,
and the Riesz representation theorem tells us that we can represent F as an inner
product with some vector by F (−p, x) = −p + m · x .

What the Theorem Does and Does Not Say
The theorem says that a discount factor m > 0 exists, but it does not say
that m > 0 is unique. The top panel of Figure 4.5 illustrates the situation.
Any m on the line through x∗ perpendicular to X also prices assets. Again,
p = E [(m + ε)x] if E (εx) = 0. All of these discount factors that lie in the
positive orthant are positive, and thus satisfy the theorem. There are lots of
them! In a complete market, m is unique, but not otherwise.

The theorem says that a positive m exists, but it also does not say that every
discount factor m must be positive. The discount factors in the top panel
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Figure 4.5. Existence of a discount factor and extensions. The top graph shows that the positive
discount factor is not unique, and that discount factors may also exist that are not strictly
positive. In particular, x∗ need not be positive. The bottom graph shows that each particular
choice of m > 0 induces an arbitrage-free extension of the prices on X to all contingent claims.

of Figure 4.5 outside the positive orthant are perfectly valid—they satisfy
p = E (mx), and the prices they generate on X are arbitrage free, but they
are not positive in every state of nature. In particular, the discount factor x∗

in the payoff space is still perfectly valid—p(x) = E (x∗x)—but it need not
be positive.

This theorem shows that we can extend the pricing function defined
on X to all possible payoffs RS , and not imply any arbitrage opportunities
on that larger space of payoffs. It says that there is a pricing function p(x)
defined over all of RS , that assigns the same (correct, or observed) prices on
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X and that displays no arbitrage on all of RS . Graphically, it says that we can
draw parallel planes to represent prices on all of RS in such a way that the
planes intersect X in the right places, and the price planes march up and
to the right so the positive orthant always has positive prices. Any positive
discount factor m generates such a no-arbitrage extension, as illustrated in
the bottom panel of Figure 4.5. In fact, there are many ways to do this. Each
different choice of m > 0 generates a different extension of the pricing
function.

We can think of strictly positive discount factors as possible contingent-
claims prices. We can think of the theorem as answering the question: is it
possible that an observed and incomplete set of prices and payoffs is gen-
erated by some complete-markets, contingent-claim economy? The answer
is, yes, if there is no arbitrage on the observed prices and payoffs. In fact,
since there are typically many positive discount factors consistent with a
{X , p(x)}, there exist many contingent-claims economies consistent with our
observations.

Finally, the absence of arbitrage is another very weak characterization
of preferences and market equilibrium. The theorem tells us that this is
enough to allow us to use the p = E (mx) formalism with m > 0.

As usual, this theorem and proof do not require that the state-space is
RS . State-spaces generated by continuous random variables work just as well.

4.3 An Alternative Formula, and x* in Continuous Time

In terms of the covariance matrix of payoffs,

x∗ = E (x∗)+ [p−E (x∗)E (x)]′�−1(x−E (x)).

Analogously,
d�∗

�∗ = −r f dt −
(
µ+ D

p
− r

)′
�−1σdz

prices assets by construction in continuous time.

Being able to compute x∗ is useful in many circumstances. This section
gives an alternative formula in discrete time, and the continuous-time
counterpart.

A Formula that Uses Covariance Matrices
E (xx ′) in our previous formula (4.1) is a second moment matrix. We typ-
ically summarize data in terms of covariance matrices instead. Therefore,
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a convenient alternative formula is

x∗ = E (x∗)+ [p−E (x∗)E (x)]′�−1[x − E (x)], (4.2)

where
� ≡ E ([x−E (x)][x−E (x)]′)

denotes the covariance matrix of the x payoffs. (We could just substitute
E (xx ′) = � + E (x)E (x ′) in (4.1), but the inverse of this sum is not very
useful.)

We can derive this formula by postulating a discount factor that is a
linear function of the shocks to the payoffs,

x∗ = E (x∗)+ (x − E (x))′b,

and then finding b to ensure that x∗ prices the assets x :

p = E (xx∗) = E (x∗)E (x)+ E
[
x(x − Ex)′

]
b,

so
b = �−1

[
p − E (x∗)E (x)

]
.

If a risk-free rate is traded, then we know E (x∗) = 1/R f . If a risk-free
rate is not traded—if 1 is not in X —then this formula does not necessarily
produce a discount factor x∗ that is in X . In many applications, however, all
that matters is producing some discount factor, and the arbitrariness of the
risk-free or zero-beta rate is not a problem.

This formula is particularly useful when the payoff space consists solely
of excess returns or price-zero payoffs. In that case, x∗ = p ′E (xx ′)−1x gives
x∗ = 0. x∗ = 0 is in fact the only discount factor in X that prices all the assets,
but in this case it is more interesting (and avoids 1/0 difficulties when we
want to transform to expected return-beta or other representations) to pick
a discount factor not in X by picking a zero-beta rate or price of the risk-free
payoff. In the case of excess returns, for arbitrarily chosen R f , then, (4.2)
gives us

x∗ = 1
R f

− 1
R f

E (R e )′�−1(R e − E (R e )); � ≡ cov(R e ).

This approach is due to Hansen and Jagannathan (1991).

Continuous Time
The law of one price implies the existence of a discount factor process, and
absence of arbitrage implies a positive discount factor process in continuous
time as well as discrete time. At one level, this statement requires no new
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mathematics. If we reinvest dividends for simplicity, then a discount factor
must satisfy

pt�t = Et

(
�t+spt+s

)
.

Calling pt+s = xt+s , this is precisely the discrete time p = E (mx) that we
have studied all along. Thus, the law of one price or absence of arbitrage
are equivalent to the existence of a positive�t+s . The same conditions at all
horizons s are thus equivalent to the existence of a discount factor process,
or a positive discount factor process �t for all time t .

For calculations it is useful to find explicit formulas for a discount
factors. Suppose a set of securities pays dividends

Dt dt

and their prices follow
dpt

pt
= µt dt + σt dzt ,

where p and z are N × 1 vectors, µt and σt may vary over time, µ(pt , t , other
variables), E (dzt dz ′

t ) = Idt , and the division on the left-hand side is element
by element. (As usual, I will drop the t subscripts when not necessary for
clarity, but everything can vary over time.)

We can form a discount factor that prices these assets from a linear
combination of the shocks that drive the original assets,

d�∗

�∗ = −r f dt −
(
µ+ D

p
− r f

)′
�−1σdz, (4.3)

where � ≡ σσ ′ again is the covariance matrix of returns. You can easily
check that this equation solves

Et

(
dp
p

)
+ D

p
dt − r f dt = −Et

(
d�∗

�∗
dp
p

)
(4.4)

and

Et

(
d�∗

�∗

)
= −r f dt ,

or you can show that this is the only diffusion driven by dz, dt with these prop-
erties. If there is a risk-free rate r f

t (also potentially time-varying), then that
rate determines r f

t . If there is no risk-free rate, (4.3) will price the risky assets
for any arbitrary (or convenient) choice of r f

t . As usual, this discount factor
is not unique; �∗ plus orthogonal noise will also act as a discount factor:

d�
�

= d�∗

�∗ + dw; E (dw) = 0; E (dzdw) = 0.
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You can see that (4.3) is exactly analogous to the discrete-time formula (4.2).
(If you do not like answers that pop out of hats, guess a solution of the form

d�
�

= µ�dt + σ�dz.

Then find µ� and σ� to satisfy (4.4) for the risk-free and risky assets.)

Problems—Chapter 4

1. Does the absence of arbitrage imply the law of one price? Does the law
of one price imply the absence of arbitrage?

2. If the law of one price or absence of arbitrage hold in population, must
they hold in a sample drawn from that population?

3. This problem shows that the growth optimal portfolio introduced in
problem 9, Chapter 1 can also serve as a discount factor.

(a) Suppose you have a single return R . x∗ = R/E (R 2) is one dis-
count factor. What about R−1? Certainly E (R−1R) = 1, so what about
the theorem that x∗ is unique? Is R−1 always positive?

(b) Let R denote a N × 1 vector of asset returns. Show that the portfolio
that solves

max E [ln(α′R)] s.t. α′1 = 1

is also a discount factor. Is this discount factor always positive? Is it in the
payoff space? Can you find a formula for α?

(c) Find the continuous-time counterpart to the discount factor of
part b.
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5
Mean-Variance Frontier and

Beta Representations

Much empirical work in asset pricing is written in terms of expected
return-beta representations and mean-variance frontiers. This chapter
introduces expected return-beta representations and mean-variance
frontiers.

I discuss here the beta representation of factor pricing models. Chapters 6
and 9 discuss where the factor models came from. Chapter 6 shows how an
expected return-beta model is equivalent to a linear model for the discount
factor, i.e., m = b ′f . Chapter 9 discusses the derivation of popular factor
models such as the CAPM, ICAPM, and APT, i.e., under what assumptions
the discount factor is a linear function of other variables f such as the market
return.

I summarize the classic Lagrangian approach to the mean-variance
frontier. I then introduce a powerful and useful representation of the mean-
variance frontier due to Hansen and Richard (1987). This representation
uses the state-space geometry familiar from the existence theorems. It is
also useful because it is valid in infinite-dimensional payoff spaces, which
we shall soon encounter when we add conditioning information, dynamic
trading, or options.

77
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5.1 Expected Return-Beta Representations

The expected return-beta expression of a factor pricing model is

E (R i) = γ + βi , aλa + βi , bλb + · · · .

The model is equivalent to a restriction that the intercept is the same for
all assets in time-series regressions.

When the factors are excess returns, then λa = E ( f a). If the test assets
are also excess returns, then the intercept should be zero, α = 0.

Much empirical work in finance is cast in terms of expected return-beta
representations of linear factor pricing models, of the form

E (R i) = γ + βi , aλa + βi , bλb + · · · , i = 1, 2, . . . , N . (5.1)

The β terms are defined as the coefficients in a multiple regression of
returns on factors,

R i
t = ai + βi , a f a

t + βi , b f b
t + · · · + εi

t , t = 1, 2, . . . , T . (5.2)

This is often called a time-series regression, since one runs a regression over
time for each security i . The ‘‘factors’’ f are proxies for marginal utility
growth. I discuss the stories used to select factors at some length in Chapter 9.
For the moment keep in mind the canonical examples, f = consumption
growth, or f = the return on the market portfolio (CAPM). Notice that
we run returns R i

t on contemporaneous factors f j
t . This regression is not

about predicting returns from variables seen ahead of time. Its objective is
to measure contemporaneous relations or risk exposure: whether returns
are typically high in ‘‘good times’’ or ‘‘bad times’’ as measured by the factors.

The point of the beta model (5.1) is to explain the variation in aver-
age returns across assets. I write i = 1, 2, . . . , N in (5.1) to emphasize this
fact. The model says that assets with higher betas should get higher average
returns. Thus the betas in (5.1) are the explanatory (x) variables, which vary
asset by asset. The γ and λ—common for all assets—are the intercept and
slope in this cross-sectional relation. For example, equation (5.1) says that
if we plot expected returns versus betas in a one-factor model, we should
expect all (E (R i),βi) pairs to line up on a straight line with slope λ and
intercept γ .

βi , a is interpreted as the amount of exposure of asset i to factor a risks,
and λa is interpreted as the price of such risk exposure. Read the beta
pricing model to say: ‘‘for each unit of exposure β to risk factor a, you must
provide investors with an expected return premium λa .’’ Assets must give
investors higher average returns (low prices) if they pay off well in times
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that are already good, and pay off poorly in times that are already bad, as
measured by the factors.

One way to estimate the free parameters (γ , λ) and to test the
model (5.1) is to run a cross-sectional regression of average returns on
betas,

E (R i) = γ + βi , aλa + βi , bλb + · · · + αi , i = 1, 2, . . . , N . (5.3)

Again, the βi are the right-hand variables, and the γ and λ are the intercept
and slope coefficients that we estimate in this cross-sectional regression. The
errors αi are pricing errors. The model predicts αi = 0, and they should be
statistically insignificant and economically small in a test. In the chapters on
empirical technique, we will see test statistics based on the sum of squared
pricing errors.

The fact that the betas are regression coefficients is crucially important.
If the betas are also free parameters, then there is no content to the model.
More importantly (and this is an easier mistake to make), the betas can-
not be asset-specific or firm-specific characteristics, such as the size of the
firm, book to market ratio, or (to take an extreme example) the first let-
ter of its ticker symbol. It is true that expected returns are associated with or
correlated with many such characteristics. Stocks of small companies or of com-
panies with high book/market ratios do have higher average returns. But
this correlation must be explained by some beta regression coefficient. The
proper betas should drive out any characteristics in cross-sectional regres-
sions. If, for example, expected returns were truly related to size, one could
buy many small companies to form a large holding company. It would be a
‘‘large’’ company, and hence pay low average returns to the shareholders,
while earning a large average return on its holdings. The managers could
enjoy the difference. What ruins this promising idea? The ‘‘large’’ holding
company will still behave like a portfolio of small stocks—it will have their
high betas. Thus, only if asset returns depend on how you behave, not who you
are—on betas rather than characteristics—can a market equilibrium survive
such simple repackaging schemes.

Some Common Special Cases
If there is a risk-free rate, its betas in (5.1) are all zero,1 so the intercept is
equal to the risk-free rate,

R f = γ .

1 The betas are zero because the risk-free rate is known ahead of time. When we consider
the effects of conditioning information, i.e., that the interest rate could vary over time, we have
to interpret the means and betas as conditional moments. Thus, if you are worried about time-
varying risk-free rates, betas, and so forth, either assume all variables are i.i.d. (and thus that
the risk-free rate is constant), or interpret all moments as conditional on time-t information.
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We can impose this condition rather than estimate γ in the cross-sectional
regression (5.3). If there is no risk-free rate, then γ must be estimated in
the cross-sectional regression. Since it is the expected return of a portfolio
with zero betas on all factors, γ is called the (expected) zero-beta rate in this
circumstance.

We often examine factor pricing models using excess returns directly.
(There is an implicit, though not necessarily justified, division of labor
between models of interest rates and models of equity risk premia.)
Differencing (5.1) between any two returns R ei = R i − R j (R j does not
have to be risk free), we obtain

E (R ei) = βi , aλa + βi , bλb + · · · , i = 1, 2, . . . , N . (5.4)

Here, βia represents the regression coefficient of the excess return R ei on
the factors. This formulation removes the intercept γ .

It is often the case that the factors are also returns or excess returns. For
example, the CAPM uses the return on the market portfolio as the single
factor. In this case, the model should apply to the factors as well, and this
fact allows us to measure the λ coefficients directly rather than via a cross-
sectional regression. Each factor has beta of one on itself and zero on all
the other factors, of course. Therefore, if the factors are excess returns, we
have E ( f a) = λa , and so forth. We can then write the factor model as

E (R ei) = βi , aE ( f a)+ βi , bE ( f b)+ · · · , i = 1, 2, . . . , N . (5.5)

The cross-sectional beta pricing model (5.1)--(5.5) and the time-series
regression definition of the betas in (5.2) look very similar. It seems that one
can take expectations of the time-series regression (5.2) and arrive at the
beta model (5.1), in which case the latter would be vacuous since one can
always run a regression of anything on anything. The difference is subtle
but crucial: the time-series regressions (5.2) will in general have a different
intercept ai for each return i , while the intercept γ is the same for all assets
in the beta pricing equation (5.1). The beta pricing equation is a restriction
on expected returns, and thus imposes a restriction on intercepts in the
time-series regression.

In the special case that the factors are themselves excess returns, the
restriction is particularly simple: the time-series regression intercepts should
all be zero. In this case, we can avoid the cross-sectional regression entirely,
since there are no free parameters left.
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5.2 Mean-Variance Frontier:
Intuition and Lagrangian Characterization

The mean-variance frontier of a given set of assets is the boundary of the set
of means and variances of the returns on all portfolios of the given assets.
One can find or define this boundary by minimizing return variance for a
given mean return. Many asset pricing propositions and test statistics have
interpretations in terms of the mean-variance frontier.

Figure 5.1 displays a typical mean-variance frontier. As displayed in
Figure 5.1, it is common to distinguish the mean-variance frontier of all
risky assets, graphed as the hyperbolic region, and the mean-variance fron-
tier of all assets, i.e., including a risk-free rate if there is one, which is
the larger wedge-shaped region. Some authors reserve the terminology
‘‘mean-variance frontier’’ for the upper portion, calling the whole thing the
minimum variance frontier. The risky asset frontier lies between two asymp-
totes, shown as dotted lines. The risk-free rate is typically drawn below the
intersection of the asymptotes and the vertical axis, or the point of mini-
mum variance on the risky frontier. If it were above this point, investors with
a mean-variance objective would try to short the risky assets, which cannot
represent an equilibrium.

In general, portfolios of two assets fill out a hyperbolic curve through the
two assets. The curve is sharper the less correlated are the two assets, because
the portfolio variance benefits from increasing diversification. Portfolios of
a risky asset and risk-free rate give rise to straight lines in mean-standard
deviation space.

Figure 5.1. Mean-variance frontier.
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In Chapter 1, we derived a similar wedge-shaped region as the set of
means and variances of all assets that are priced by a given discount factor.
This chapter is about incomplete markets, so we think of a mean-variance
frontier generated by a given set of assets, typically less than complete.

When does the mean-variance frontier exist? That is, when is the set of
portfolio means and variances less than the whole {E , σ } space? We basically
have to rule out a special case: two returns are perfectly correlated but
have different means. In that case one could short one, buy the other, and
achieve infinite expected returns with no risk. More formally, eliminate
purely redundant securities from consideration, then

Theorem: So long as the variance-covariance matrix of returns is nonsingular, there
is a mean-variance frontier.

To prove this theorem, just follow the construction below. This theorem
should sound very familiar: Two perfectly correlated returns with different
mean are a violation of the law of one price. Thus, the law of one price
implies that there is a mean-variance frontier as well as a discount factor.

Lagrangian Approach to Mean-Variance Frontier

The standard definition and the computation of the mean-variance frontier
follow a brute-force approach.

Problem: Start with a vector of asset returns R . Denote by E the vector of
mean returns, E ≡ E (R), and denote by � the variance-covariance matrix
� = E [(R − E )(R − E )′]. A portfolio is defined by its weights w on the
initial securities. The portfolio return is w ′R where the weights sum to one,
w ′1 = 1. The problem ‘‘choose a portfolio to minimize variance for a given
mean’’ is then

min{w} w ′�w s.t. w ′E = µ; w ′1 = 1. (5.6)

Solution: Let

A = E ′�−1E ; B = E ′�−11; C = 1′�−11.

Then, for a given mean portfolio return µ, the minimum variance portfolio
has variance

var
(
R p
) = Cµ2 − 2Bµ+ A

AC − B2
(5.7)

and is formed by portfolio weights

w = �−1 E (Cµ− B)+ 1(A − Bµ)
(AC − B2)

.
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Equation (5.7) shows that the variance is a quadratic function of the
mean. The square root of a parabola is a hyperbola, which is why we draw
hyperbolic regions in mean-standard deviation space.

The minimum-variance portfolio is interesting in its own right. It appears
as a special case in many theorems and it appears in several test statistics. We
can find it by minimizing (5.7) over µ, giving µmin var = B/C . The weights of
the minimum variance portfolio are thus 1/C , or

w = �−11/(1′�−11).

We can get to any point on the mean-variance frontier by starting
with two returns on the frontier and forming portfolios. The frontier is
spanned by any two frontier returns. To see this fact, notice that w is a linear
function of µ. Thus, if you take the portfolios corresponding to any two
distinct mean returns µ1 and µ2, the weights on a third portfolio with mean
µ3 = λµ1 + (1 − λ)µ2 are given by w 3 = λw 1 + (1 − λ)w 2.

Derivation: To derive the solution, introduce Lagrange multipliers 2λ and
2δ on the constraints. The first-order conditions to (5.6) are then

�w − λE − δ1 = 0,

w = �−1(λE + δ1).
(5.8)

We find the Lagrange multipliers from the constraints,

E ′w = E ′�−1(λE + δ1) = µ,

1′w = 1′�−1(λE + δ1) = 1,

or [
E ′�−1E E ′�−11
1′�−1E 1′�−11

] [
λ

δ

]
=
[
µ

1

]
,

[
A B
B C

] [
λ

δ

]
=
[
µ

1

]
.

Hence,

λ = Cµ− B
AC − B2

,

δ = A − Bµ
AC − B2

.

Plugging in to (5.8), we get the portfolio weights and variance.
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5.3 An Orthogonal Characterization of the
Mean-Variance Frontier

Every return can be expressed as R i = R ∗ + wi R e∗ + ni .
The mean-variance frontier is R mv = R ∗ + wR e∗.
R ∗ is defined as x∗/p(x∗). It is a return that represents prices.
R e∗ is defined as R e∗ = proj(1|R e ). It represents mean excess returns,

E (R e ) = E (R e∗R e )∀R e ∈ R e .

The Lagrangian approach to the mean-variance frontier is straightfor-
ward but cumbersome. Our further manipulations will be easier if we follow
an alternative approach due to Hansen and Richard (1987). Technically,
Hansen and Richard’s approach is also valid when we cannot generate the
payoff space by portfolios of a finite set of basis payoffs c ′x . This happens, for
example, when we think about conditioning information in Chapter 8. Also,
it is the natural geometric way to think about the mean-variance frontier
given that we have started to think of payoffs, discount factors, and other ran-
dom variables as vectors in the space of payoffs. Rather than write portfolios
as combinations of basis assets, and pose and solve a minimization problem,
we first describe any return by a three-way orthogonal decomposition. The
mean-variance frontier then pops out easily without any algebra.

Definitions of R∗, Re∗

I start by defining two special returns. R ∗ is the return corresponding to the
payoff x∗ that can act as the discount factor. The price of x∗ is, like any other
price, p(x∗) = E (x∗x∗). Thus,

The definition of R ∗ is

R ∗ ≡ x∗

p(x∗)
= x∗

E (x∗2)
. (5.9)

The definition of R e∗ is

R e∗ ≡ proj(1 | R e ),

R e ≡ space of excess returns = {x ∈ X s.t . p(x) = 0}. (5.10)

Why R e∗? We are heading towards a mean-variance frontier, so it is
natural to seek a special return that changes means. R e∗ is an excess return
that represents means on R e with an inner product in the same way that
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x∗ is a payoff in X that represents prices with an inner product. As

p(x) = E (mx) = E [proj(m|X )x] = E (x∗x),

so
E (R e ) = E (1 × R e ) = E [proj(1 | R e )× R e ] = E (R e∗R e ).

If R ∗ and R e∗ are still a bit mysterious at this point, they will make more
sense as we use them, and discover their many interesting properties.

Now we can state a beautiful orthogonal decomposition.

Theorem: Every return R i can be expressed as

R i = R ∗ + wiR e∗ + ni ,

where wi is a number, and ni is an excess return with the property

E (ni) = 0.

The three components are orthogonal,

E (R ∗R e∗) = E (R ∗ni) = E (R e∗ni) = 0.

This theorem quickly implies the characterization of the mean-variance
frontier which we are after:

Theorem: R mv is on the mean-variance frontier if and only if

R mv = R ∗ + wR e∗ (5.11)

for some real number w.

As you vary the number w, you sweep out the mean-variance frontier.
E (R e∗) �= 0, so adding more w changes the mean and variance of R mv (unless
the market is risk-neutral, in which case R e∗ = 0 and the frontier collapses
to a point). You can interpret (5.11) as a ‘‘two-fund’’ theorem for the mean-
variance frontier. It expresses every frontier return as a portfolio of R ∗ and
R e∗, with varying weights on the latter.

As usual, first I will argue why the theorems are sensible, then I will
offer a simple algebraic proof. Hansen and Richard (1987) give a much
more careful algebraic proof.

Graphical Construction

Figure 5.2 illustrates the decomposition. Start at the origin (0). Recall that
the x∗ vector is perpendicular to planes of constant price; thus the R ∗ vector
lies perpendicular to the plane of returns as shown. Go to R ∗.
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Figure 5.2. Orthogonal decomposition and mean-variance frontier.

R e∗ is the excess return that is closest to the vector 1; it lies at right angles
to planes (in R e ) of constant mean return, shown in the E = 0, E = 1 lines,
just as the return R ∗ lies at right angles to planes of constant price. Since
R e∗ is an excess return, it is orthogonal to R ∗. Proceed an amount wi in the
direction of R e∗, getting as close to R i as possible.

Now move, again in an orthogonal direction, by an amount ni to get to
the return R i . We have thus expressed R i = R ∗ + wiR e∗ + ni in a way that
all three components are orthogonal.

Returns with n = 0, R ∗ + wR e∗, are the mean-variance frontier. Since
E (R 2) = σ 2(R) + E (R)2, we can define the mean-variance frontier by min-
imizing second moment for a given mean. The length of each vector in
Figure 5.2 is its second moment, so we want the shortest vector that is on
the return plane for a given mean. The shortest vectors in the return plane
with given mean are on the R ∗ + wR e∗ line.

The graph also shows how R e∗ represents means in the space of excess
returns. Expectation is the inner product with 1. Planes of constant expected
value in Figure 5.2 are perpendicular to the 1 vector, just as planes of constant
price are perpendicular to the x∗ or R ∗ vectors. I do not show the full
extent of the constant expected payoff planes for clarity; I do show lines of
constant expected excess return in R e , which are the intersection of constant
expected payoff planes with the R e plane. Therefore, just as we found an
x∗ in X to represent prices in X by projecting m onto X , we find R e∗ in R e

by projecting 1 onto R e . Yes, this is a regression with one on the left-hand
side and no constant. Planes perpendicular to R e∗ in R e are payoffs with
constant mean, just as planes perpendicular to x∗ in X are payoffs with the
same price.
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Algebraic Argument

Now, I present an algebraic proof of the decomposition and characterization
of mean-variance frontier. The algebra just represents statements about what
is at right angles to what with second moments.

Proof: Straight from their definitions, (5.9) and (5.10), we know that R e∗

is an excess return (price zero), and hence that R ∗ and R e∗ are orthogonal,

E (R ∗R e∗) = E (x∗R e∗)
E (x∗2)

= 0.

We define ni so that the decomposition adds up to R i as claimed, and we
define wi to make sure that ni is orthogonal to the other two components.
Then we prove that E (ni) = 0. Pick any wi and then define

ni ≡ R i − R ∗ − wiR e∗.

ni is an excess return so already orthogonal to R ∗,

E (R ∗ni) = 0.

To show E (ni) = 0 and ni orthogonal to R e∗, we exploit the fact that since
ni is an excess return,

E (ni) = E (R e∗ni).

Therefore, R e∗ is orthogonal to ni if and only if we pick wi so that E (ni) = 0.
We do not have to explicitly calculate wi for the proof.2

Once we have constructed the decomposition, the frontier drops out.
Since E (ni) = 0 and the three components are orthogonal,

E (R i) = E (R ∗)+ wiE (R e∗),

σ 2(R i) = σ 2(R ∗ + wiR e∗)+ σ 2(ni).

Thus, for each desired value of the mean return, there is a unique wi .
Returns with ni = 0 minimize variance for each mean. �

Decomposition in Mean-Variance Space

Figure 5.3 illustrates the decomposition in mean-variance space rather than
in state-space.

2 Its value

wi = E (R i )− E (R ∗)
E (R e∗)

is not particularly enlightening.
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Figure 5.3. Orthogonal decomposition of a return R i in mean-standard deviation space.

First, let us locate R ∗. R ∗ is the minimum second moment return. One
can see this fact from the geometry of Figure 5.2: R ∗ is the return closest
to the origin, and thus the return with the smallest ‘‘length’’ which is sec-
ond moment. As with OLS regression, minimizing the length of R ∗ and
creating an R ∗ orthogonal to all excess returns are the same thing. One can
also verify this property algebraically. Since any return can be expressed as
R = R ∗ + wR e∗ + n, E (R 2) = E (R ∗2)+ w2E (R e∗2)+ E (n2). n = 0 and w = 0
thus give the minimum second moment return.

In mean-standard deviation space, lines of constant second moment are
circles. Thus, the minimum second moment return R ∗ is on the smallest
circle that intersects the set of all assets, which lie in the hyperbolic mean-
variance frontier. Notice that R ∗ is on the lower, or ‘‘inefficient’’ segment of
the mean-variance frontier. It is initially surprising that this is the location of
the most interesting return on the frontier! R ∗ is not the ‘‘market portfolio’’
or ‘‘wealth portfolio,’’ which typically lie on the upper portion of the frontier.

Adding more R e∗ moves one along the frontier. Adding n does not
change mean but does change variance, so it is an idiosyncratic return that
just moves an asset off the frontier as graphed.

5.4 Spanning the Mean-Variance Frontier

The characterization of the mean-variance frontier in terms of R ∗ and R e∗

is most natural in our setup. However, you can equivalently span the mean-
variance frontier with any two portfolios that are on the frontier—any two
distinct linear combinations of R ∗ and R e∗. In particular, take any return

R α = R ∗ + γR e∗, γ �= 0. (5.12)



“chap05” — 2004/9/13 — page 89 — #13

5.5. A Compilation of Properties of R ∗, R e∗, and x∗ 89

Using this return in place of R e∗,

R e∗ = R α − R ∗

γ
,

you can express the mean-variance frontier in terms of R ∗ and R α:

R ∗ + wR e∗ = R ∗ + y(R α − R ∗)

= (1 − y)R ∗ + yR α,
(5.13)

where I have defined a new weight y = w/γ .
The most common alternative approach is to use a risk-free rate or a

risky rate that somehow behaves like the risk-free rate in place of R e∗ to
span the frontier. When there is a risk-free rate, it is on the frontier with
representation

R f = R ∗ + R f R e∗.

I derive this expression in equation (5.20) below. Therefore, we can use
(5.13) with R α = R f . When there is no risk-free rate, several risky returns
that retain some properties of the risk-free rate are often used. In Section 6.5
I present a ‘‘zero-beta’’ return, which is uncorrelated with R ∗, a ‘‘constant-
mimicking portfolio’’ return, which is the return on the traded payoff closest
to unity, R̂ = proj(1|X )/p[proj(1|X )], and the minimum variance return.
Each of these returns is on the mean-variance frontier, with form (5.12),
though with different values of γ . Therefore, we can span the mean-variance
frontier with R ∗ and any of these risk-free rate proxies.

5.5 A Compilation of Properties of R∗, Re∗, and x∗

The special returns R ∗, R e∗ that generate the mean-variance frontier have
lots of interesting and useful properties. Some I derived above, some I will
derive and discuss below in more detail, and some will be useful tricks later
on. Most properties and derivations are extremely obscure if you do not
look at the pictures!

(1)

E (R ∗2) = 1
E (x∗2)

. (5.14)

To derive this fact, multiply both sides of the definition R ∗ = x∗/E (x∗2)

by R ∗, take expectations, and remember R ∗ is a return so 1 = E (x∗R ∗).
(2) We can reverse the definition and recover x∗ from R ∗ via

x∗ = R ∗

E (R ∗2)
. (5.15)
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To derive this formula, start with the definition R ∗ = x∗/E (x∗2) and
substitute from (5.14) for E (x∗2).

(3) R ∗ can be used to represent prices just like x∗. This is not surprising,
since they both point in the same direction, orthogonal to planes of
constant price. Most obviously, from (5.15),

p(x) = E (x∗x) = E (R ∗x)
E (R ∗2)

∀x ∈ X .

For returns, we can nicely express this result as

E (R ∗2) = E (R ∗R) ∀R ∈ R . (5.16)

This fact can also serve as an alternative defining property of R ∗.
(4) R e∗ represents means on R e via an inner product in the same

way that x∗ represents prices on X via an inner product. R e∗ is
orthogonal to planes of constant mean in R e as x∗ is orthogonal to
planes of constant price. Algebraically, in analogy to p(x) = E (x∗x),
we have

E (R e ) = E (R e∗R e ) ∀R e ∈ R e . (5.17)

This fact can serve as an alternative defining property of R e∗.
(5) If a risk-free rate is traded, we can construct R f from R ∗ via

R f = 1
E (x∗)

= E (R ∗2)

E (R ∗)
. (5.18)

If not, this gives a ‘‘zero-beta rate’’ interpretation of the right-hand
expression. You can also derive this formula by applying (5.16) to R f .

(6) R e∗ and R ∗ are orthogonal,

E (R ∗R e∗) = 0.

More generally, R ∗ is orthogonal to any excess return.
(7) The mean-variance frontier is given by

R mv = R ∗ + wR e∗.

We proved this in Section 5.3; E (R 2) = E [(R ∗ + wR e∗ + n)2] =
E (R ∗2) + w2E (R e∗2) + E (n2), and E (n) = 0, so set n to zero. The
conditional mean-variance frontier allows w in the conditioning infor-
mation set. The unconditional mean-variance frontier requires w to
equal a constant (Chapter 8).

(8) R ∗ is the minimum second moment return. Graphically, R ∗ is the
return closest to the origin. To see this, use the decomposition in (7),
and set w2 and n to zero to minimize second moment (Figure 5.3).
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(9) R e∗ has the same first and second moment,

E (R e∗) = E (R e∗2).

Just apply fact (5.17) to R e∗ itself. Therefore,

var(R e∗) = E (R e∗2)− E (R e∗)2 = E (R e∗)[1 − E (R e∗)].
(10) If there is a risk-free rate, then R e∗ can also be defined as the residual

in the projection of 1 on R ∗:

R e∗ = 1 − proj(1|R ∗) = 1 − E (R ∗)
E (R ∗2)

R ∗ = 1 − 1
R f

R ∗. (5.19)

Figure 5.2 makes the first equality obvious. To prove it analytically,
note that since R ∗ and R e are orthogonal and together span X ,
1 = proj(1|R e )+ proj(1|R ∗) = R e∗ + proj(1|R ∗). The last equality
comes from equation (5.18).

You can also verify (5.19) analytically. Check that R e∗ so defined
is an excess return in X —its price is zero—and E (R e∗R e ) =
E (R e ); E (R ∗R e∗) = 0.

(11) As a result of (5.19), R f has the decomposition

R f = R ∗ + R f R e∗. (5.20)

Since R f > 1 typically, this means that R ∗ + R e∗ is located on the
lower portion of the mean-variance frontier in mean-variance space,
just a bit to the right of R f . If the risk-free rate were one, then the unit
vector would lie in the return space, and we would have R f = R ∗ +R e∗.
Typically, the space of returns is a little bit above the unit vector. As you
stretch the unit vector by the amount R f to arrive at the return R f , so
you stretch the amount R e∗ that you add to R ∗ to get to R f .

(12) If there is no risk-free rate, then we can use

proj(1|X ) = proj(proj(1|X )|R e )+ proj(proj(1|X )|R ∗)

= proj(1|R e )+ proj(1|R ∗)

to deduce an analogue to equation (5.19),

R e∗ = proj(1|X )− proj(1|R ∗) = proj(1|X )− E (R ∗)
E (R ∗2)

R ∗. (5.21)

(13) Since we have a formula x∗ = p ′E (xx ′)−1x for constructing x∗

from basis assets (see Section 4.1), we can construct R ∗ in this case
from

R ∗ = x∗

p(x∗)
= p ′E (xx ′)−1x

p ′E (xx ′)−1p
.

(p(x∗) = E (x∗x∗) leading to the denominator.)
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(14) We can construct R e∗ from a set of basis assets as well. Following the
definition to project one on the space of excess returns,

R e∗ = E (R e )′E (R e R e ′)−1R e ,

where R e is the vector of basis excess returns. (You can always use
R e = R − R ∗ to form excess returns.) This construction obviously
mirrors the way we constructed x∗ in Section 4.1 as x∗ = p ′E (xx ′)−1x ,
and you can see the similarity in the result, with E in place of p, since
R e∗ represents means rather than prices.

If there is a risk-free rate, we can also use (5.19) to construct R e∗:

R e∗ = 1 − 1
R f

R ∗ = 1 − 1
R f

p ′E (xx ′)−1x
p ′E (xx ′)−1p

. (5.22)

If there is no risk-free rate, we can use (5.21) to construct R e∗. The
central ingredient is

proj(1|X ) = E (x)′E (xx ′)−1x .

5.6 Mean-Variance Frontiers for Discount Factors:
The Hansen–Jagannathan Bounds

The mean-variance frontier of all discount factors that price a given set
of assets is related to the mean-variance frontier of asset returns by

σ(m)
E (m)

≥ |E (R e )|
σ(R e )

,

and hence

min
{all m that price x∈X }

σ(m)
E (m)

= max
{all excess returns Re in X }

E (R e )

σ (R e )
.

The discount factors on the frontier can be characterized analogously to the
mean-variance frontier of asset returns,

m = x∗ + we∗,

e∗ ≡ 1 − proj(1|X ) = proj(1|E ) = 1 − E (x)′E (xx ′)−1x ,

E = {m − x∗}.
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We derived in Chapter 1 a relation between the Sharpe ratio of an excess
return and the volatility of discount factors necessary to price that return,

σ(m)
E (m)

≥ |E (R e )|
σ(R e )

. (5.23)

Quickly,
0 = E (mR e ) = E (m)E (R e )+ ρm, Reσ(m)σ (R e ),

and |ρ| ≤ 1. If we had a risk-free rate, then we know in addition

E (m) = 1/R f .

Hansen and Jagannathan (1991) had the brilliant insight to read this
equation as a restriction on the set of discount factors that can price a given
set of returns, as well as a restriction on the set of returns we will see given
a specific discount factor. This calculation teaches us that we need very
volatile discount factors with a mean near one to understand stock returns.
This and more general related calculations turn out to be a central tool in
understanding and surmounting the equity premium puzzle, surveyed in
Chapter 21.

We would like to derive a bound that uses a large number of assets,
and that is valid if there is no risk-free rate. What is the set of {E (m), σ(m)}
consistent with a given set of asset prices and payoffs? What is the mean-
variance frontier for discount factors?

Obviously from (5.23) the higher the Sharpe ratio, the tighter the bound
on σ(m). This suggests a way to construct the frontier we are after. For any
hypothetical risk-free rate, find the highest Sharpe ratio. That is, of course,
the tangency portfolio. Then the slope to the tangency portfolio gives the
ratio σ(m)/E (m). Figure 5.4 illustrates.

As we increase 1/E (m), the slope to the tangency becomes lower, and the
Hansen--Jagannathan bound declines. At the mean return corresponding

Figure 5.4. Graphical construction of the Hansen--Jagannathan bound.
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to the minimum variance point, the HJ bound attains its minimum. As we
increase 1/E (m) further, the tangency point touches the lower part of the
frontier, the Sharpe ratio rises again, and so does the bound. If there were a
risk-free rate, then we know E (m), the return frontier is a V shape, and the
HJ bound is purely a bound on variance.

This discussion implies a beautiful duality between discount factor
volatility and Sharpe ratios:

min
{all m that price x∈X }

σ(m)
E (m)

= max
{all excess returns Re in X }

E (R e )

σ (R e )
. (5.24)

We need formulas for an explicit calculation. Following the same logic
we used to derive equation (4.2), we can find a representation for the set of
discount factors that price a given set of asset returns—that satisfy p = E (mx):

m = E (m)+ [p − E (m)E (x)]′�−1[x − E (x)] + ε, (5.25)

where � ≡ cov(x , x ′) and E (ε) = 0, E (εx) = 0. You can think of this as
a regression or projection of any discount factor on the space of payoffs,
plus an error. Since σ 2(ε) > 0, this representation leads immediately to an
explicit expression for the Hansen--Jagannathan bound,

σ 2(m) ≥ [p − E (m)E (x)]′�−1[p − E (m)E (x)]. (5.26)

As all asset returns must lie in a hyperbolic region in {E (R), σ(R)} space, all
discount factors must lie in a hyperbolic region in {E (m), σ(m)} space, as
illustrated in the right-hand panel of Figure 5.4.

We would like an expression for the discount factors on the bound, as we
wanted an expression for the returns on the mean-variance frontier instead
of just a formula for the means and variances. As we found a three-way
decomposition of all returns, in which two elements generated the mean-
variance frontier of returns, so we can find a three-way decomposition of
discount factors, in which two elements generate the mean-variance frontier
of discount factors (5.26). I illustrate the construction in Figure 5.5.

Any discount factor m must lie in the plane marked M , perpendicular
to X through x∗. Any m must be of the form

m = x∗ + we∗ + n.

Here, I have just broken up the residual ε in the familiar representation
m = x∗ + ε into two components. e∗ is defined as the residual from the
projection of 1 onto X or, equivalently the projection of 1 on the space E
of ‘‘excess m’s,’’ random variables of the form m − x∗.

e∗ ≡ 1 − proj(1|X ) = proj(1|E ).
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Figure 5.5. Decomposition of any discount factor m = x∗ + we + n.

e∗ generates means of m just as R e∗ did for returns:

E (m − x∗) = E [1 × (m − x∗)] = E [proj(1|E )(m − x∗)].
Finally n, defined as the leftovers, has mean zero since it is orthogonal to 1
and is orthogonal to X .

As with returns, then, the mean-variance frontier of discount factors is
given by

m = x∗ + we∗. (5.27)

If the unit payoff is in the payoff space, then we know E (m), and the
frontier and bound are just m = x∗, σ 2(m) ≥ σ 2(x∗). This is exactly like
the case of risk neutrality for return mean-variance frontiers, in which the
frontier reduces to the single point R ∗.

The construction (5.27) can be used to derive the formula (5.26) for
the Hansen--Jagannathan bound for the finite-dimensional cases discussed
above. It is more general, since it can be used in infinite-dimensional
payoff spaces as well. Along with the corresponding return formula
R mv = R ∗ + wR e∗, we see in Chapter 8 that it extends more easily to the calcu-
lation of conditional versus unconditional mean-variance frontiers (Gallant,
Hansen, and Tauchen [1990]).

It will make construction (5.27) come alive if we find equations for its
components. We find x∗ as before; it is the portfolio c ′x in X that prices x :

x∗ = p ′E (xx ′)−1x .
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Similarly, let us find e∗. The projection of 1 on X is

proj(1|X ) = E (x)′E (xx ′)−1x .

(After a while you get used to the idea of running regressions with 1 on the
left-hand side and random variables on the right-hand side!) Thus,

e∗ = 1 − E (x)′E (xx ′)−1x .

Again, you can construct time series of x∗ and e∗ from these definitions.
Finally, we now can construct the variance-minimizing discount factors

m∗ = x∗ + we∗ = p ′E (xx ′)−1x + w[1 − E (x)′E (xx ′)−1x]
or

m∗ = w + [p − wE (x)]′E (xx ′)−1x . (5.28)

As w varies, we trace out discount factors m∗ on the frontier with varying
means and variances.

E (m∗) = w + [p − wE (x)]′E (xx ′)−1E (x),

σ 2(m∗) = [p − wE (x)]′cov(xx ′)−1[p − wE (x)].
As you can see, Hansen--Jagannathan frontiers are equivalent to mean-

variance frontiers. For example, an obvious exercise is to see how much
the addition of assets raises the Hansen--Jagannathan bound. This is exactly
the same as asking how much those assets expand the mean-variance fron-
tier. Chen and Knez (1996) and De Santis (1993) test for mean-variance
efficiency using Hansen--Jagannathan bounds.

Hansen--Jagannathan bounds have the potential to do more than mean-
variance frontiers. Hansen and Jagannathan show how to solve the problem

min σ 2(m) s.t. p = E (mx), m > 0, E (m) fixed.

This is the ‘‘Hansen--Jagannathan bound with positivity.’’ It is strictly tighter
than the Hansen--Jagannathan bound since there is an extra restriction.
It allows you to impose no-arbitrage conditions. In stock applications, this
extra bound ended up not being that informative. However, in the option
application of this idea of Chapter 18, positivity is really important. That
chapter shows how to solve for a bound with positivity.

Hansen, Heaton, and Luttmer (1995) develop a distribution theory
for the bounds. Luttmer (1996) develops bounds with market frictions
such as short-sales constraints and bid/ask spreads, to account for ludi-
crously high apparent Sharpe ratios and bounds in short-term bond data.
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Cochrane and Hansen (1992) survey a variety of bounds, including bounds
that incorporate information that discount factors are poorly correlated with
stock returns (the HJ bounds use the extreme |ρ| = 1), bounds on condi-
tional moments that illustrate how many models imply excessive interest
rate variation, bounds with short-sales constraints and market frictions, etc.

Chapter 21 discusses the results of Hansen--Jagannathan bound calcu-
lations and what they mean for discount factors that can price stock and
bond return data.

Problems—Chapter 5

1. Prove that R e∗ lies at right angles to planes (in R e ) of constant mean
return, as shown in Figure 5.2.

2. Should we draw x∗ above, below, or on the plane of returns? Consider (a)
a risk-free economy (b) a risky, but risk-neutral economy (c) our economy
with market Sharpe ratio E (R − R f )/σ (R − R f ) 	 0.5 and R f = .01 on an
annual basis.

(Hint: Check whether p(x∗) is greater or less than 1.)

3. Show that if there is a risk-free rate—if the unit payoff is in the payoff
space X —then R e∗ = (R f − R ∗)/R f .

4. If no risk-free rate is traded, can you construct R e∗ from knowledge of
m, x∗, or R ∗?

5. What happens to R ∗, R e∗, and the mean-variance frontier if investors are
risk neutral?

(a) If a risk-free rate is traded?

(b) If no risk-free rate is traded?

(Hint: make a drawing or think about the case that payoffs are generated
by an N -dimensional vector of basis assets x .)

6. x∗ = proj(m|X ). Is R ∗ = proj(m|R)?
7. Prove (5.24). To do this, you have to find returns and m for which the
inequality is tight. Do the case with a risk-free rate first. Then try it with no
risk-free rate.
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6
Relation between Discount Factors,
Betas, and Mean-Variance Frontiers

In this chapter, I draw the connection between discount factors, mean-
variance frontiers, and beta representations. In the first chapter, I showed
how mean-variance and a beta representation follow from p = E (mx) in a
complete markets setting. Here, I discuss the connections in both directions
and in incomplete markets, drawing on the representations studied in the
last chapter.

The central theme of the chapter is that all three representations are
equivalent. Figure 6.1 summarizes the ways one can go from one representa-
tion to another. A discount factor, a reference variable for betas—the thing
you put on the right-hand side in the regressions that give betas—and a
return on the mean-variance frontier all carry the same information, and
given any one of them, you can find the others. More specifically,

1. p = E (mx) ⇒ β. Given m such that p = E (mx), then m, x∗, R ∗, or
R ∗ + wR e∗ all can serve as reference variables for betas.

2. p = E (mx) ⇒ mean-variance frontier. You can construct R ∗ from x∗ =
proj(m|X ), R ∗ = x∗/E (x∗2). Then R ∗, R ∗+wR e∗ are on the mean-variance
frontier.

3. Mean-variance frontier ⇒ p = E (mx). If R mv is on the mean-variance
frontier, then m = a + bR mv linear in that return is a discount factor; it
satisfies p = E (mx).

4. β ⇒ p = E (mx). If we have an expected return-beta model with factors
f , then m = b ′f linear in the factors satisfies p = E (mx).

5. If a return is on the mean-variance frontier, then there is an expected
return-beta model with that return as reference variable.

The following subsections discuss the mechanics of going from one
representation to the other in detail. The last section of the chapter collects
some special cases when there is no risk-free rate. The next chapter discusses

99
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Figure 6.1. Relation between three views of asset pricing.

some of the implications of these equivalence theorems, and why they are
important.

Roll (1977) pointed out the connection between mean-variance fron-
tiers and beta pricing. Ross (1978) and Dybvig and Ingersoll (1982) pointed
out the connection between linear discount factors and beta pricing.
Hansen and Richard (1987) pointed out the connection between a discount
factor and the mean-variance frontier.

6.1 From Discount Factors to Beta Representations

m, x∗, and R ∗ can all be the single factor in a single-beta representation.

Beta Representation Using m

p = E (mx) implies E (R i) = γ + βi , mλm . Start with

1 = E (mR i) = E (m)E (R i)+ cov(m, R i).

Thus,

E (R i) = 1
E (m)

− cov(m, R i)

E (m)
.
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Multiply and divide by var(m), define γ ≡ 1/E (m) to get

E (R i) = γ +
(

cov(m, R i)

var(m)

)(
− var(m)

E (m)

)
= γ + βi , m λm .

As advertised, we have a single-beta representation.
For example, we can equivalently state the consumption-based model as:

mean asset returns should be linear in the regression betas of asset returns
on (ct+1/ct )

−γ . Furthermore, the slope of this cross-sectional relationship
λm is not a free parameter, though it is usually treated as such in empirical
evaluation of factor pricing models. λm should equal the ratio of variance to
mean of (ct+1/ct )

−γ .
The factor risk premium λm for marginal utility growth is negative.

Positive expected returns are associated with positive correlation with con-
sumption growth, and hence negative correlation with marginal utility
growth and m. Thus, we expect λm < 0.

β Representation Using x∗ and R∗

It is often useful to express a pricing model in a way that the factor is a payoff
rather than a real variable such as consumption growth. In applications,
we can then avoid measurement difficulties of real data. We have already
seen the idea of ‘‘factor-mimicking portfolios’’ formed by projection: project
m on to X , and the resulting payoff x∗ also serves as a discount factor.
Unsurprisingly, x∗ or the return R ∗ = x∗/E (x∗2) can also serve as factors in
an expected return-beta representation. When the factor is also a return,
the model is particularly simple, since the factor risk premium is also the
expected excess return.

Theorem: 1 = E (mR i) implies an expected return-beta model with x∗ = proj(m|X )
or R ∗ ≡ x∗/E (x∗2) as factors, E (R i) = γ + βi , x∗λx∗ and E (R i) = γ +
βi , R∗ [E (R ∗)− γ ].

Proof: Recall that p = E (mx) implies p = E [proj(m | X ) x], or p =
E (x∗x). Then

1 = E (mR i) = E (x∗R i) = E (x∗)E (R i)+ cov(x∗, R i).

Solving for the expected return,

E (R i) = 1
E (x∗)

− cov(x∗, R i)

E (x∗)
= 1

E (x∗)
− cov(x∗, R i)

var(x∗)
var(x∗)
E (x∗)

, (6.1)
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which we can write as the desired single-beta model,

E (R i) = γ + βi , x∗λx∗ .

Notice that the zero-beta rate 1/E (x∗) appears when there is no risk-free rate.
To derive a single-beta representation with R ∗, recall the definition,

R ∗ = x∗

E (x∗2)
.

Substituting R ∗ for x∗, equation (6.1) implies that we can in fact construct
a return R ∗ from m that acts as the single factor in a beta model,

E (R i) = E (R ∗2)

E (R ∗)
− cov(R ∗, R i)

E (R ∗)
= E (R ∗2)

E (R ∗)
+
(

cov(R ∗, R i)

var(R ∗)

)(
−var(R ∗)

E (R ∗)

)

or, defining Greek letters in the obvious way,

E (R i) = γ + βRi , R∗λR∗ . (6.2)

Since the factor R ∗ is also a return, its expected excess return over the zero-
beta rate gives the factor risk premium λR∗ . Applying equation (6.2) to R ∗

itself,

E (R ∗) = γ − var(R ∗)
E (R ∗)

. (6.3)

So we can write the beta model in an even more traditional form

E (R i) = γ + βRi , R∗ [E (R ∗)− γ ]. (6.4)

�

Recall that R ∗ is the minimum second moment frontier, on the lower
portion of the mean-variance frontier. This is why R ∗ has an unusual negative
expected excess return or factor risk premium, λR∗ = −var(R ∗)/E (R ∗) < 0.
γ is the zero-beta rate on R ∗.

Special Cases
A footnote to these constructions is that E (m), E (x∗), or E (R ∗) cannot be
zero, or you could not divide by them. This is a pathological case: E (m) = 0
implies a zero price for the risk-free asset, and an infinite risk-free rate. If
a risk-free rate is traded, we can simply observe that it is not infinite and
verify the fact. Also, in a complete market, E (m) cannot be zero since, by
absence of arbitrage, m > 0. We will see similar special cases in the remaining
theorems: the manipulations only work for discount factor choices that do
not imply zero or infinite risk-free rates. I discuss the issue in Section 6.6.
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The manipulation from expected return-covariance to expected return-
beta breaks down if var(m), var(x∗), or var(R ∗) is zero. This is the case of
pure risk neutrality. In this case, all expected returns become the same as
the risk-free rate.

6.2 From Mean-Variance Frontier to a Discount Factor
and Beta Representation

R mv is on mean-variance frontier ⇒ m = a + bR mv ; E (R i) − γ =
βi [E (R mv)− γ ].

We have seen that p = E (mx) implies a single-beta model with a mean-
variance efficient reference return, namely R ∗. The converse is also true: for
(almost) any return on the mean-variance frontier, we can derive a discount
factor m that is a linear function of the mean-variance efficient return. Also,
expected returns mechanically follow a single-beta representation using the
mean-variance efficient return as reference.

I start with the discount factor.

Theorem: There is a discount factor of the form m = a + bR mv if and only if R mv

is on the mean-variance frontier, and R mv is not the risk-free rate. (When there is no
risk-free rate, if R mv is not the constant-mimicking portfolio return.)

Graphical Argument
The basic idea is very simple, and Figure 6.2 shows the geometry for the
complete-markets case. The discount factor m = x∗ is proportional to R ∗.
The mean-variance frontier is R ∗ + wR e∗. Pick a vector R mv on the mean-
variance frontier as shown in Figure 6.2. Then stretch it (bR mv) and then
subtract some of the 1 vector (a). Since R e∗ is generated by the unit vector,
we can get rid of the R e∗ component and get back to the discount factor x∗

if we pick the right a and b.
If the original return vector were not on the mean-variance frontier,

then any linear combination a + bR mv with b �= 0 would point in some of
the n direction, which R ∗ and x∗ do not. If b = 0, though, just stretching up
and down the 1 vector will not get us to x∗. Thus, we can only get a discount
factor of the form a + bR mv if R mv is on the frontier.

You may remember that x∗ is not the only discount factor—all discount
factors are of the form m = x∗ + ε with E (εx) = 0. Perhaps a + bR gives one
of these discount factors, when R is not on the mean-variance frontier? This
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Figure 6.2. There is a discount factor m = a + bR mv if and only if R mv is on the mean-
variance frontier and not the risk-free rate.

does not work, however; n is still in the payoff space X while, by definition,
ε is orthogonal to this space.

If the mean-variance efficient return R mv that we start with happens to
lie right on the intersection of the stretched unit vector and the frontier,
then stretching the R mv vector and adding some unit vector are the same
thing, so we again cannot get back to x∗ by stretching and adding some unit
vector. The stretched unit payoff is the risk-free rate, so the theorem rules
out the risk-free rate. When there is no risk-free rate, we have to rule out
the ‘‘constant-mimicking portfolio return.’’ I treat this case in Section 6.6.

Algebraic Proof
Now, an algebraic proof that captures the same ideas.

Proof. For an arbitrary R , try the discount factor model

m = a + bR = a + b(R ∗ + wR e∗ + n). (6.5)

We show that this discount factor prices an arbitrary payoff if and only if
n = 0, and except for the w choice that makes R the risk-free rate (or the
constant-mimicking portfolio return if there is no risk-free rate).

We can determine a and b by forcing m to price any two assets. I find a
and b to make the model price R ∗ and R e∗:

1 = E (mR ∗) = aE (R ∗)+ bE (R ∗2),

0 = E (mR e∗) = aE (R e∗)+ bwE (R e∗2) = (a + bw)E (R e∗).
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Solving for a and b,

a = w
wE (R ∗)− E (R ∗2)

,

b = − 1
wE (R ∗)− E (R ∗2)

.

Thus, if it is to price R ∗ and R e∗, the discount factor must be

m = w − (R ∗ + wR e∗ + n)
wE (R ∗)− E (R ∗2)

. (6.6)

Now, let us see if m prices an arbitrary payoff xi . Any xi ∈ X can also be
decomposed as

xi = yiR ∗ + wiR e∗ + ni .

(See Figure 5.2 if this is not obvious.) The price of xi is yi , since both R e∗ and
ni are zero-price (excess return) payoffs. Therefore, we want E (mxi) = yi .
Does it?

E (mxi) = E
(
(w − R ∗ − wR e∗ − n)(yiR ∗ + wiR e∗ + ni)

wE (R ∗)− E (R ∗2)

)
.

Using the orthogonality of R ∗, R e∗, n; E (n) = 0 and E (R e∗2) = E (R e∗) to
simplify the product,

E (mxi) = wyiE (R ∗)− yiE (R ∗2)− E (nni)

wE (R ∗)− E (R ∗2)
= yi − E (nni)

wE (R ∗)− E (R ∗2)
.

To get p(xi) = yi = E (mxi), we need E (nni) = 0. The only way to guarantee
this condition for every payoff xi ∈ X is to insist that n = 0.

Obviously, this construction cannot work if the denominator of (6.6)
is zero, i.e., if w = E (R ∗2)/E (R ∗) = 1/E (x∗). If there is a risk-free
rate, then R f = 1/E (x∗), so we are ruling out the case R mv = R ∗ +
R f R e∗, which is the risk-free rate. If there is no risk-free rate, I interpret
R̂ = R ∗ + E (R ∗2)/E (R ∗)R e∗ as a ‘‘constant-mimicking portfolio return’’ in
Section 6.6. �

We can generalize the theorem somewhat. Nothing is special about
returns; any payoff of the form yR ∗ + wR e∗ or yx∗ + wR e∗ can be used to
price assets; such payoffs have minimum variance among all payoffs with
given mean and price. Of course, we proved existence, not uniqueness:
m = a + bR mv + ε, E (εx) = 0 also price assets as always.

To get from the mean-variance frontier to a beta pricing model, we can
just chain this theorem and the theorem of the last section together. There
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is a slight subtlety about special cases when there is no risk-free rate, but
since it is not important for the basic points I relegate the direct connection
and the special cases to Section 6.6.

6.3 Factor Models and Discount Factors

Beta pricing models are equivalent to linear models for the discount
factor m,

E (R i) = γ + λ′βi ⇔ m = a + b ′f .

We have shown that p = E (mx) implies a single-beta representation
using m, x∗, or R ∗ as factors. Let us ask the converse question: suppose
we have an expected return-beta model such as CAPM, APT, ICAPM, etc.
What discount factor does this model imply? I show that an expected return-
beta model is equivalent to a discount factor that is a linear function of the
factors in the beta model. This is an important and central result. It gives
the connection between the discount factor formulation emphasized in this
book and the expected return-beta, factor model formulation common in
empirical work.

You can write a linear factor model most compactly as m = b ′f , letting
one of the factors be a constant. However, since we want a connection to the
beta representation based on covariances rather than second moments, it is
easiest to fold means of the factors in to the constant, and write m = a + b ′f
with E ( f ) = 0 and hence E (m) = a.

The connection is easiest to see in the special case that all the test assets
are excess returns. Then 0 = E (mR e ) does not identify the mean of m, and
we can normalize a arbitrarily. I find it convenient to normalize to E (m) = 1,
or m = 1 + b ′[ f − E ( f )]. Then,

Theorem: Given the model

m = 1 + [ f − E ( f )]′b, 0 = E (mR e ), (6.7)

one can find λ such that

E (R e ) = β ′λ, (6.8)

where β are the multiple regression coefficients of excess returns R e on the factors.
Conversely, given λ in (6.8), we can find b such that (6.7) holds.
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Proof: From (6.7),

0 = E (mR e ) = E (R e )+ cov(R e , f ′)b,

E (R e ) = −cov(R e , f ′)b.

From covariance to beta is quick,

E (R e ) = −cov(R e , f ′)var( f )−1var( f )b = β ′λ.

Thus, λ and b are related by

λ = −var( f )b. �

When the test assets are returns, the same idea works just as well, but
gets a little more drowned in algebra since we have to keep track of the
constant in m and the zero-beta rate in the beta model.

Theorem: Given the model

m = a + b ′f , 1 = E (mR i), (6.9)

one can find γ and λ such that

E (R i) = γ + λ′βi , (6.10)

where βi are the multiple regression coefficients of R i on f with a constant. Conversely,
given γ and λ in a factor model of the form (6.10), one can find a, b such that
(6.9) holds.

Proof: We just have to construct the relation between (γ , λ) and (a, b)
and show that it works. Start with m = a + b ′f , 1 = E (mR), and hence, still
folding the mean of the factors in a so E ( f ) = 0,

E (R) = 1
E (m)

− cov(m, R)
E (m)

= 1
a

− E (Rf ′)b
a

. (6.11)

βi is the vector of the appropriate regression coefficients,

βi ≡ E ( ff ′)−1E ( fR i),

so to get β in the formula, continue with

E (R) = 1
a

− E (Rf ′)E ( ff ′)−1E ( ff ′)b
a

= 1
a

− β ′ E ( ff ′)b
a

.
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Now, define γ and λ to make it work,

γ ≡ 1
E (m)

= 1
a

,

λ ≡ −1
a

cov( f , f ′)b = − γE [mf ]. (6.12)

Using (6.12), we can just as easily go backwards from the expected return-
beta representation to m = a + b ′f .

As always, we have to worry about a special case of zero or infinite risk-
free rates. We rule out E (m) = E (a+b ′f ) = 0 to keep (6.11) from exploding,
and we rule out γ = 0 and cov( ff ′) singular to go from γ ,β, λ in (6.12)
back to m. �

Given either model, there is a model of the other form. They are
not unique. We can add to m any random variable orthogonal to returns,
and we can add spurious risk factors with zero β and/or λ, leaving pric-
ing implications unchanged. We can also express the multiple-beta model
as a single-beta model with m = a + b ′f as the single factor, or use its
corresponding R ∗.

Equation (6.12) shows that the factor risk premium λ can be interpreted
as the price of the factor; a test of λ �= 0 is often called a test of whether
the ‘‘factor is priced.’’ More precisely, λ captures the price E (mf )of the
(de-meaned) factors brought forward at the risk-free rate. If we start with
underlying factors ˜f such that the de-meaned factors are f = ˜f −E ( ˜f ),

λ ≡ −γ p
[ ˜f −E ( ˜f )] = −γ

[
p( ˜f )−E ( ˜f )

γ

]
.

λ represents the price of the factors less their risk-neutral valuation, i.e., the
factor risk premium. If the factors are not traded, λ is the model’s predicted
price rather than a market price. Low prices are high risk premia, resulting
in the negative sign. If the factors are returns with price one, then the factor
risk premium is the expected return of the factor, less γ , λ = E ( f )− γ .

Note that the ‘‘factors’’ need not be returns (though they may be);
they need not be orthogonal, and they need not be serially uncorrelated
or conditionally or unconditionally mean-zero. Such properties may occur
as natural special cases, or as part of the economic derivation of specific
factor models, but they are not required for the existence of a factor pricing
representation. For example, if the risk-free rate is constant, then Et (mt+1)

is constant and at least the sum b ′ft+1 should be uncorrelated over time. But
if the risk-free rate is not constant, then Et (mt+1) = Et (b ′ft+1) should vary
over time.
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Factor-Mimicking Portfolios

It is often convenient to use factor-mimicking payoffs

f ∗ = proj( f |X ),
factor-mimicking returns

f ∗ = proj( f |X )
p[proj( f |X )] ,

or factor-mimicking excess returns

f ∗ = proj( f |R e )

in place of true factors. These payoffs carry the same pricing information as the
original factors, and can serve as reference variables in expected return-beta
representations.

When the factors are not already returns or excess returns, it is con-
venient to express a beta pricing model in terms of its factor-mimicking
portfolios rather than the factors themselves. Recall that x∗ = proj(m|X )
carries all of m’s pricing implications on X ; p(x) = E (mx) = E (x∗x).
The factor-mimicking portfolios are just the same idea using the individual
factors.

Define the payoffs f ∗ by

f ∗ = proj( f |X ).

Then, m = b ′f ∗ carries the same pricing implications on X as does m = b ′f :

p = E (mx) = E (b ′f x) = E [b ′(proj f |X )x] = E [b ′f ∗x]. (6.13)

(I include the constant as one of the factors.)
The factor-mimicking portfolios also form a beta representation. Just

go from (6.13) back to an expected return-beta representation

E (R i) = γ ∗ + β∗′λ∗, (6.14)

and find λ∗, γ ∗ using (6.12). The β∗ are the regression coefficients of the
returns R i on the factor-mimicking portfolios, not on the factors, as they
should be.
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It is more traditional to use the returns or excess returns on the factor-
mimicking portfolios rather than payoffs as I have done so far. To generate
returns, divide each payoff by its price,

f ∗
i = proj( fi |X )

p[proj( fi |X )] .

The resulting bi will be scaled down by the price of the factor-mimicking
payoff, and the model is the same. Note that you project on the space of
payoffs, not of returns. Returns R are not a space, since they do not contain
zero.

If the test assets are all excess returns, you can even more easily project
the factors on the set of excess returns, which are a space since they do
include zero. If we define

f ∗ = proj( f |R e ),

then of course the excess returns f ∗ carry the same pricing implications as
the factors f for a set of excess returns; m = b ′f ∗ satisfies 0 = E (mR ei) and

E (R ei) = βi , f ∗ λ = βi , f ∗ E ( f ∗).

6.4 Discount Factors and Beta Models to Mean-Variance Frontier

From m, we can construct R ∗ which is on the mean-variance frontier
If a beta pricing model holds, then a linear combination of the factor-

mimicking portfolio returns is on the mean-variance frontier.
Any frontier return is a combination of R ∗ and one other return, a risk-

free rate or a risk-free rate proxy. Thus, any frontier return is a linear function
of the factor-mimicking returns plus a risk-free rate proxy.

It is easy to show that, given m, we can find a return on the mean-variance
frontier. Given m, construct x∗ = proj(m|X ) and R ∗ = x∗/E (x∗2). R ∗ is the
minimum second moment return, and hence on the mean-variance frontier.

Similarly, if you have a set of factors f for a beta model, then a lin-
ear combination of the factor-mimicking portfolios is on the mean-variance
frontier. A beta model is the same as m = b ′f . Since m is linear in f , x∗ is
linear in f ∗ = proj( f |X ), so R ∗ is linear in the factor-mimicking payoffs f ∗

or their returns f ∗/p( f ∗).
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Section 5.4 showed how we can span the mean-variance frontier with R ∗

and a risk-free rate, if there is one, or the zero-beta, minimum-variance, or
constant-mimicking portfolio return R̂ = proj(1|X )/p[proj(1|X )] if there is
no risk-free rate. The latter is particularly nice in the case of a linear factor
model, since we may consider the constant as a factor, so the frontier is
entirely generated by factor-mimicking portfolio returns.

6.5 Three Risk-Free Rate Analogues

I introduce three counterparts to the risk-free rate that show up in asset
pricing formulas when there is no risk-free rate. The three returns are the
zero-beta return, the minimum-variance return, and the constant-mimicking portfolio
return.

Three different generalizations of the risk-free rate are useful when a
risk-free rate or unit payoff is not in the set of payoffs. These are the zero-beta
return, the minimum-variance return, and the constant-mimicking portfolio
return. I introduce the returns in this section, and I use them in the next
section to state some special cases involving the mean-variance frontier. Each
of these returns maintains one property of the risk-free rate in a market in
which there is no risk-free rate. The zero-beta return is a mean-variance effi-
cient return that is uncorrelated with another given mean-variance efficient
return. The minimum-variance return is just that. The constant-mimicking
portfolio return is the return on the payoff ‘‘closest’’ to the unit payoff.
Each of these returns has a representation in the standard form R ∗ + wR e∗

with slightly different w. In addition, the expected returns of these risky
assets are used in some asset pricing representations. For example, the
zero-beta rate is often used to refer to the expected value of the zero-beta
return.

Each of these risk-free rate analogues is mean-variance efficient. Thus,
I characterize each one by finding its weight w in a representation of the
form R ∗ + wR e∗. We derived such a representation above for the risk-free
rate as equation (5.20),

R f = R ∗ + R f R e∗. (6.15)

In the last subsection, I show how each risk-free rate analogue reduces to
the risk-free rate when there is one.
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Zero-Beta Return for R∗

The zero-beta return for R ∗, denoted R γ , is the mean-variance efficient
return uncorrelated with R ∗. Its expected return is the zero-beta rate γ =
E (R γ ). This zero-beta return has representation

R γ = R ∗ + var(R ∗)
E (R ∗)E (R e∗)

R e∗,

and the corresponding zero-beta rate is

γ = E (R γ ) = E (R ∗2)

E (R ∗)
= 1

E (x∗)
.

The zero-beta rate is found graphically in mean-standard deviation space by
extending the tangency at R ∗ to the vertical axis. It is also the inverse of the
price that x∗ and R ∗ assign to the unit payoff.

The risk-free rate R f is of course uncorrelated with R ∗. Risky returns
uncorrelated with R ∗ earn the same average return as the risk-free rate if
there is one, so such returns might take the place of R f when R f does not
exist. For any return R γ that is uncorrelated with R ∗ we have E (R ∗R γ ) =
E (R ∗)E (R γ ), so

γ = E (R γ ) = E (R ∗R γ )

E (R ∗)
= E (R ∗2)

E (R ∗)
= 1

E (x∗)
.

I call γ the zero-beta rate, and R γ the zero-beta return. There is no
risk-free rate, so there is no security that just pays γ .

As you can see from the formula, the zero-beta rate is the inverse of
the price that R ∗ and x∗ assign to the unit payoff, which is another natu-
ral generalization of the risk-free rate. It is called the zero-beta rate because
cov(R ∗, R γ ) = 0 implies that the regression beta of R γ on R ∗ is zero. More
precisely, one might call it the zero-beta rate on R ∗, since one can calcu-
late zero-beta rates for returns other than R ∗ and they are not the same as
the zero-beta rate for R ∗. In particular, the zero-beta rate on the ‘‘market
portfolio’’ will generally be different from the zero-beta rate on R ∗.

I draw γ in Figure 6.3 as the intersection of the tangency and the verti-
cal axis. This is a property of any return on the mean-variance frontier: The
expected return on an asset uncorrelated with the mean-variance efficient
asset (a zero-beta asset) lies at the point so constructed. To check this geom-
etry, use similar triangles: The length of R ∗ in Figure 6.3 is

√
E (R ∗2), and

its vertical extent is E (R ∗). Therefore, γ /
√

E (R ∗2) = √
E (R ∗2)/E (R ∗), or
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Figure 6.3. Zero-beta rate γ and zero-beta return R γ for R ∗.

γ = E (R ∗2)/E (R ∗). Since R ∗ is on the lower portion of the mean-variance
frontier, this zero-beta rate γ is above the minimum-variance return.

Note that in general γ �= 1/E (m). Projecting m on X preserves asset
pricing implications on X but not for payoffs not in X . Thus if a risk-free
rate is not traded, x∗ and m may differ in their predictions for the risk-free
rate as they do for other nontraded assets.

The zero-beta return is the rate of return on the mean-variance frontier
with mean equal to the zero-beta rate, shown as R γ in Figure 6.3. We want
to characterize this return in R ∗ + wR e∗ form. To do this, we want to find w
such that

E (R γ ) = E (R ∗2)

E (R ∗)
= E (R ∗)+ wE (R e∗).

Solving, the answer is

w = E (R ∗2)− E (R ∗)2

E (R ∗)E (R e∗)
= var(R ∗)

E (R ∗)E (R e∗)
.

Thus, the zero-beta return is

R γ = R ∗ + var(R ∗)
E (R ∗)E (R e∗)

R e∗.

Note that the weight is not E (R γ ) = E (R ∗2)/E (R ∗), as R f = R ∗ + R f R e∗.
When there is no risk-free rate, the weight and the mean return are
different.
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Minimum-Variance Return

The minimum-variance return has the representation

R min. var. = R ∗ + E (R ∗)
1 − E (R e∗)

R e∗.

The risk-free rate obviously is the minimum-variance return when it
exists. When there is no risk-free rate, the minimum-variance return is

R min. var. = R ∗ + E (R ∗)
1 − E (R e∗)

R e∗. (6.16)

Taking expectations,

E (R min. var.) = E (R ∗)+ E (R ∗)
1 − E (R e∗)

E (R e∗) = E (R ∗)
1 − E (R e∗)

.

Thus, the minimum-variance return retains the nice property of the risk-free
rate, that its weight on R e∗ is the same as its mean,

R min. var. = R ∗ + E (R min. var.)R e∗,

just as R f = R ∗ + R f R e∗. When there is no risk-free rate, the zero-beta and
minimum-variance returns are not the same. You can see this fact clearly in
Figure 6.3.

We can derive expression (6.16) for the minimum-variance return by
brute force: choose w in R ∗ + wR e∗ to minimize variance:

min
w

var(R ∗ + wR e∗) = E [(R ∗ + wR e∗)2] − E (R ∗ + wR e∗)2

= E (R ∗2)+ w2E (R e∗)− E (R ∗)2

− 2wE (R ∗)E (R e∗)− w2E (R e∗)2.

The first-order condition is

0 = wE (R e∗)[1 − E (R e∗)] − E (R ∗)E (R e∗),

w = E (R ∗)
1 − E (R e∗)

.
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Constant-Mimicking Portfolio Return

The constant-mimicking portfolio return is defined as the return on the
projection of the unit vector on the payoff space,

R̂ = proj(1|X )
p[proj(1|X )] .

It has the representation

R̂ = R ∗ + E (R ∗2)

E (R ∗)
R e∗.

When there is a risk-free rate, it is the rate of return on a unit payoff,
R f = 1/p(1). When there is no risk-free rate, we might define the rate of
return on the mimicking portfolio for a unit payoff,

R̂ = proj(1|X )
p[proj(1|X )] .

I call this object the constant-mimicking portfolio return.
The mean-variance representation of the constant-mimicking portfolio

return is

R̂ = R ∗ + γR e∗ = R ∗ + E (R ∗2)

E (R ∗)
R e∗. (6.17)

Note that the weight γ equal to the zero-beta rate creates the constant-
mimicking return, not the zero-beta return. To show (6.17), start with
property (5.21),

R e∗ = proj(1|X )− E (R ∗)
E (R ∗2)

R ∗. (6.18)

Take the price of both sides. Since the price of R e∗ is zero and the price of
R ∗ is one, we establish

p[proj(1|X )] = E (R ∗)
E (R ∗2)

. (6.19)

Solving (6.18) for proj(1|X ), dividing by (6.19), we obtain the right-hand
side of (6.17).
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Risk-Free Rate

The risk-free rate has the mean-variance representation

R f = R ∗ + R f R e∗.

The zero-beta, minimum-variance, and constant-mimicking portfolio returns
reduce to this formula when there is a risk-free rate.

Again, we derived in equation (5.20) that the risk-free rate has the
representation,

R f = R ∗ + R f R e∗. (6.20)

Obviously, we should expect that the zero-beta return, minimum-variance
return, and constant-mimicking portfolio return reduce to the risk-free rate
when there is one. These other rates are

constant-mimicking: R̂ = R ∗ + E (R ∗2)

E (R ∗)
R e∗, (6.21)

minimum-variance: R min. var. = R ∗ + E (R ∗)
1 − E (R e∗)

R e∗, (6.22)

zero-beta: R α = R ∗ + var(R ∗)
E (R ∗)E (R e∗)

R e∗. (6.23)

To establish that these are all the same when there is a risk-free rate, we need
to show that

R f = E (R ∗2)

E (R ∗)
= E (R ∗)

1 − E (R e∗)
= var(R ∗)

E (R ∗)E (R e∗)
. (6.24)

We derived the first equality above as equation (5.18). To derive the second
equality, take expectations of (6.15),

R f = E (R ∗)+ R f E (R e∗) (6.25)

and solve for R f . To derive the third equality, use the first equality
from (6.24) in (6.25),

E (R ∗2)

E (R ∗)
= E (R ∗)+ R f E (R e∗).

Solving for R f ,

R f = E (R ∗2)− E (R ∗)2

E (R ∗)E (R e∗)
= var(R ∗)

E (R ∗)E (R e∗)
.
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6.6 Mean-Variance Special Cases with No Risk-Free Rate

We can find a discount factor from any mean-variance efficient return
except the constant-mimicking return.

We can find a beta representation from any mean-variance efficient return
except the minimum-variance return.

I collect in this section the special cases for the equivalence theorems
of this chapter. The special cases all revolve around the problem that the
expected discount factor, price of a unit payoff, or risk-free rate must not
be zero or infinity. This is typically an issue of theoretical rather than
practical importance. In a complete, arbitrage-free market, m > 0 so we
know E (m) > 0. If a risk-free rate is traded, you can observe ∞ > E (m) =
1/R f > 0. However, in an incomplete market in which no risk-free rate is
traded, there are many discount factors with the same asset pricing implica-
tions, and you might have happened to choose one with E (m) = 0 in your
manipulations. By and large, this is easy to avoid: choose another of the
many discount factors with the same pricing implications that does not have
E (m) = 0. More generally, when you choose a particular discount factor you
are choosing an extension of the current set of prices and payoffs; you are
viewing the current prices and payoffs as a subset of a particular contingent-
claim economy. Make sure you pick a sensible one. Therefore, we could
simply state the special cases as ‘‘when a risk-free rate is not traded, make
sure you use discount factors with 0 < E (m) < ∞.’’ However, it is poten-
tially useful and it certainly is traditional to specify the special return on the
mean-variance frontier that leads to the infinite or zero implied risk-free
rate, and to rule it out directly. This section works out what those returns
are and shows why they must be avoided.

The Special Case for Mean-Variance Frontier to Discount Factor

When there is no risk-free rate, we can find a discount factor that is a linear
function of any mean-variance efficient return except the constant-mimicking
portfolio return.

In Section 6.2, we saw that we can form a discount factor a + bR mv

from any mean-variance efficient return R mv except one particular return,
of the form R ∗+[E (R ∗2)/E (R ∗)]R e∗. This return led to an infinite m. We now



“chap06” — 2004/9/13 — page 118 — #20

118 6. Discount Factors, Betas, and Mean-Variance Frontiers

recognize this return as the risk-free rate, when there is one, or the constant-
mimicking portfolio return, if there is no risk-free rate.

Figure 6.4 shows the geometry of this case. To use no more than three
dimensions I had to reduce the return and excess return sets to lines. The
payoff space X is the plane joining the return and excess return sets as
shown. The set of all discount factors is m = x∗ + ε, E (εx) = 0, the
line through x∗ orthogonal to the payoff space X in the figure. I draw the
unit payoff (the dot marked ‘‘1’’ in Figure 6.4) closer to the viewer than
the plane X , and I draw a vector through the unit payoff coming out of
the page.

Take any return on the mean-variance frontier, R mv . (Since the return
space only has two dimensions, all returns are on the frontier.) For a given
R mv , the space a + bR mv is the plane spanned by R mv and the unit payoff.
This plane lies sideways in the figure. As the figure shows, there is a vector
a + bR mv in this plane that lies on the line of discount factors.

Next, the special case. This construction would go awry if the plane
spanned by the unit payoff and the return R mv were parallel to the line
containing the discount factor. Thus, the construction would not work for
the return marked R̂ in the figure. This is a return corresponding to a payoff
that is the projection of the unit payoff on to X , so that the residual will be
orthogonal to X , as is the line of discount factors.

With Figure 6.4 in front of us, we can also see why the constant-
mimicking portfolio return is not the same thing as the minimum-variance
return. Variance is the size or second moment of the residual in a projection
(regression) on 1:

var(x) = E [(x − E (x))2] = E [(x − proj(x |1))2] = ‖x − proj(x |1)‖2.

Figure 6.4. One can construct a discount factor m = a + bR mv from any mean-variance
efficient return except the constant-mimicking return R̂ .
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Thus, the minimum-variance return is the return closest to extensions of
the unit vector. It is formed by projecting returns on the unit vector. The
constant-mimicking portfolio return is the return on the payoff closest to 1.
It is formed by projecting the unit vector on the set of payoffs.

The Special Case for Mean-Variance Frontier to a Beta Model

We can use any return on the mean-variance frontier as the reference
return for a single-beta representation, except the minimum-variance return.

We already know mean-variance frontiers ⇔ discount factor and dis-
count factor ⇔ single-beta representation, so at a superficial level we can
string the two theorems together to go from a mean-variance efficient return
to a beta representation. However, it is more elegant to go directly, and the
special cases are also a bit simpler this way.

Theorem: There is a single-beta representation with a return R mv as factor,

E (R i) = γRmv + βi , Rmv [E (R mv)− γRmv ],
if and only if R mv is mean-variance efficient and not the minimum-variance return.

This famous theorem is given by Roll (1977) and Hansen and Richard
(1987). We rule out minimum variance to rule out the special case E (m) = 0.
Graphically, the zero-beta rate is formed from the tangency to the mean-
variance frontier as in Figure 6.3. I use the notation γRmv to emphasize
that we use the zero-beta rate corresponding to the particular mean-variance
return R mv that we use as the reference return. If we used the minimum-
variance return, that would lead to an infinite zero-beta rate.

Proof: The mean-variance frontier is R mv = R ∗ + wR e∗. Any return is
R i = R ∗ + wiR e∗ + ni . Thus,

E (R i) = E (R ∗)+ wiE (R e∗). (6.26)

Now,

cov(R i , R mv) = cov[(R ∗ + wR e∗), (R ∗ + wiR e∗)]
= var(R ∗)+ wwi var(R e∗)− (w + wi)E (R ∗)E (R e∗)

= var(R ∗)− wE (R ∗)E (R e∗)+ wi [w var(R e∗)

− E (R ∗)E (R e∗)].
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Thus, cov(R i , R mv) and E (R i) are both linear functions of wi . We can solve
cov(R i , R mv) for wi , plug into the expression for E (R i) and we are done.

To do this, of course, we must be able to solve cov(R i , R mv) for wi . This
requires

w �= E (R ∗)E (R e∗)
var(R e∗)

= E (R ∗)E (R e∗)
E (R e∗2)− E (R e∗)2

= E (R ∗)
1 − E (R e∗)

, (6.27)

which is the condition for the minimum-variance return. �

Problems—Chapter 6

1. In the argument that R mv on the mean-variance frontier, R mv = R ∗ +
wR e∗, implies a discount factor m = a + bR mv , do we have to rule out the
case of risk neutrality? (Hint: what is R e∗ when the economy is risk neutral?)

2. If you use factor-mimicking portfolios as in (6.13), you know that the
predictions for expected returns are the same as they are if you use the
factors themselves. Are the γ ∗, λ∗, and β∗ for the factor-mimicking portfolio
representation the same as the original γ , λ, and β of the factor pricing
model?

3. Suppose the CAPM is true, m = a − bR m prices a set of assets, and there
is a risk-free rate R f . Find R ∗ in terms of the moments of R m , R f .

4. If you express the mean-variance frontier as a linear combination of
factor-mimicking portfolios from a factor model, do the relative weights of
the various factor portfolios in the mean-variance efficient return change as
you sweep out the frontier, or do they stay the same? (Start with the risk-free
rate case.)

5. For an arbitrary mean-variance efficient return of the form R ∗ + wR e∗,
find its zero-beta return and zero-beta rate. Show that your rate reduces to
the risk-free rate when there is one.

6. When the economy is risk neutral, and if there is no risk-free rate, show
that the zero-beta, minimum-variance, and constant-mimicking portfolio
returns are again all equivalent, though not equal to the risk-free rate. What
is R ∗ in this economy? (R ∗ �= 1/R f since there is no risk-free rate.)
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7
Implications of Existence and

Equivalence Theorems

The existence of a discount factor means that p = E (mx) is innocuous,
and all content flows from the discount factor model.

The theorems apply to sample moments too; the dangers of fishing up
ex post or sample mean-variance efficient portfolios.

Sources of discipline in factor fishing expeditions.
The joint hypothesis problem. How efficiency tests are the same as tests

of economic discount factor models.
Factors vs. their mimicking portfolios.
Testing the number of factors.
Plotting contingent claims on the axis vs. mean and variance.

The theorems on the existence of a discount factor, and the equiva-
lence between the p = E (mx), expected return-beta, and mean-variance
views of asset pricing have important implications for how we approach and
evaluate empirical work.

The equivalence theorems are obviously important to the theme of
this book. They show that the choice of discount factor language versus
expected return-beta language or mean-variance frontier is entirely one of
convenience. Nothing in the more traditional statements is lost.

p = E (mx) is Innocuous
Before Roll (1977), expected return-beta representations had been derived
in the context of special and explicit economic models, especially the CAPM.
In empirical work, the success of any expected return-beta model seemed
like a vindication of the whole structure. The fact that, for example, one
might use the NYSE value-weighted index portfolio in place of the return on
total wealth predicted by the CAPM seemed like a minor issue of empirical
implementation.
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When Roll showed that mean-variance efficiency implies a single-beta
representation, all that changed. Some single-beta representation always
exists, since there is some mean-variance efficient return. The asset pric-
ing model only serves to predict that a particular return (say, the ‘‘market
return’’) will be mean-variance efficient. Thus, if one wants to ‘‘test the
CAPM’’ it becomes much more important to be choosy about the refer-
ence portfolio, to guard against stumbling on something that happens to
be mean-variance efficient and hence prices assets by construction.

This insight led naturally to the use of broader wealth indices
(Stambaugh [1982]) in the reference portfolio, to provide a more grounded
test of the CAPM. However, this approach has not caught on. Stocks are
priced with stock factors, bonds with bond factors, and so on. More recently,
stocks sorted on size, book/market, and past performance characteristics
are priced by portfolios sorted on those characteristics (Fama and French
[1993], [1996]). Part of the reason for this result is that the betas are small;
asset classes are not highly correlated so risk premia from one source of betas
have small impacts on another set of average returns. Also, more compre-
hensive wealth measures that include human capital and real estate do not
come with high-frequency price data, so adding them to a wealth portfolio
has little effect on betas. However, one is left with the nagging (and excit-
ing, to a researcher) suspicion that markets may be somewhat segmented,
especially at high frequency.

The good news in Roll’s existence theorem is that you can always start
by writing an expected return-beta model, knowing that you have imposed
almost no structure in doing so. The bad news is that you have not gotten very
far. All the economic, statistical, and predictive content comes in picking
the factors.

The theorem that, from the law of one price, there exists some discount
factor m such that p = E (mx) is just an updated restatement of Roll’s theo-
rem. The content is all in m = f (data), not in p = E (mx). Again, an asset
pricing framework that initially seemed to require a lot of completely unbe-
lievable structure—the representative consumer consumption-based model
in complete frictionless markets—turns out to require (almost) no structure
at all. Again, the good news is that you can always start by writing p = E (mx),
and need not suffer criticism about hidden contingent-claim or represen-
tative consumer assumptions in so doing. The bad news is that you have
not gotten very far by writing p = E (mx) as all the economic, statistical, and
predictive content comes in picking the discount factor model m = f (data).

Ex Ante and Ex Post
I have been deliberately vague about the probabilities underlying expecta-
tions and other moments in the theorems. The fact is, the theorems hold for
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any set of probabilities. Thus, the existence and equivalence theorems work
equally well ex ante as ex post : E (mx),β, E (R), and so forth can refer to agents’
subjective probability distributions, objective population probabilities, or to
the moments realized in a given sample.

Thus, if the law of one price holds in a sample, one may form an x∗

from sample moments that satisfies p(x) = E (x∗x), exactly, in that sample,
where p(x) refers to observed prices and E (x∗x) refers to the sample average.
Equivalently, if the sample covariance matrix of a set of returns is nonsingular,
there exists an ex post mean-variance efficient portfolio for which sample
average returns line up exactly with sample regression betas.

This observation points to a great danger in the widespread exer-
cise of searching for and statistically evaluating ad hoc asset pricing
models. Such models are guaranteed empirical success in a sample if one
places little enough structure on what is included in the discount factor or
reference portfolios. The only reason the model does not work perfectly is
the restrictions the researcher has imposed on the number or identity of the
factors included in m, or the parameters of the function relating the factors
to m. Since these restrictions are the entire content of the model, they had
better be interesting, carefully described, and well motivated!

Obviously, this is typically not the case or I would not be making such
a fuss about it. Most empirical asset pricing research posits an ad hoc pond
of factors, fishes around a bit in that pond, and reports statistical measures
that show ‘‘success,’’ in that the model is not statistically rejected in pricing
a set of portfolios. The discount factor pond is usually not large enough to
give the zero pricing errors we know are possible, yet the boundaries are
not clearly defined.

Discipline
What is wrong, you might ask, with finding an ex post efficient port-
folio or x∗ that prices assets by construction? Perhaps the lesson we
should learn from the existence theorems is to forget about economics,
the CAPM, marginal utility, and all that, and simply price assets with ex
post mean-variance efficient portfolios that we know set pricing errors
to zero!

The mistake is that a portfolio that is ex post efficient in one sample, and
hence prices all assets in that sample, is unlikely to be mean-variance effi-
cient, ex ante or ex post, in the next sample, and hence is likely to do a poor
job of pricing assets in the future. Similarly, the portfolio x∗ = p ′E (xx ′)−1x
(using the sample second moment matrix) that is a discount factor by con-
struction in one sample is unlikely to be a discount factor in the next sample;
the required portfolio weights p ′E (xx ′)−1 change, often drastically, from
sample to sample.
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For example, suppose the CAPM is true, the market portfolio is ex ante
mean-variance efficient, and sets pricing errors to zero if you use true or
subjective probabilities. Nonetheless, the market portfolio is unlikely to be
ex post mean-variance efficient in any given sample. In any sample, there
will be lucky winners and unlucky losers. An ex post mean-variance efficient
portfolio will be a Monday-morning quarterback; it will tell you to put large
weights on assets that happened to be lucky in a given sample, but are
no more likely than indicated by their betas to generate high returns in
the future. ‘‘Oh, if I had only bought Microsoft in 1982. . .’’ is not a useful
guide to forming a mean-variance efficient portfolio today. (In fact, mean-
reversion and book/market effects suggest that assets with unusually good
returns in the past are likely to do poorly in the future!)

The only solution is to impose some kind of discipline in order to avoid
dredging up spuriously good in-sample pricing.

The situation is the same as in traditional regression analysis. Regres-
sions are used to forecast or to explain a variable y by other variables x in
a regression y = x ′β + ε. By blindly including right-hand variables, one
can produce models with arbitrarily good statistical measures of fit. But this
kind of model is typically unstable out of sample or otherwise useless for
explanation or forecasting. One has to carefully and thoughtfully limit the
search for right-hand variables x in order to produce good models.

What makes for an interesting set of restrictions? Econometricians
wrestling with y = x ′β + ε have been thinking about this question for about
50 years, and the best answers are 1) use economic theory to carefully specify
the right-hand side and 2) use a battery of cross-sample and out-of-sample
stability checks.

Alas, this advice is hard to follow. Economic theory is usually either
silent on what variables to put on the right-hand side of a regression, or
allows a huge range of variables. The same is true in finance. ‘‘What are the
fundamental risk factors?’’ is still an unanswered question. At the same time
one can appeal to the APT and ICAPM to justify the inclusion of just about
any desirable factor. (Fama [1991] calls these theories a ‘‘fishing license.’’)
Thus, you will grow old waiting for theorists to provide sharp restrictions.

Following the purely statistical advice, the battery of cross-sample and
out-of-sample tests often reveals the model is unstable, and needs to be
changed. Once it is changed, there is no more out-of-sample left to check it.
Furthermore, even if one researcher is pure enough to follow the method-
ology of classical statistics, and wait 50 years for another fresh sample to
be available before contemplating another model, his competitors and
journal editors are unlikely to be so patient. In practice, then, out-of-sample
validation is not as strong a guard against fishing as one might hope.

Nonetheless, these are the only tools we have to guard against fishing.
In my opinion, the best hope for finding pricing factors that are robust
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out of sample and across different markets, is to try to understand the
fundamental macroeconomic sources of risk. By this I mean, tying asset
prices to macroeconomic events, in the way the ill-fated consumption-based
model does via mt+1 = βu ′(ct+1)/u ′(ct ). The difficulties of the consumption-
based model have made this approach lose favor in recent years. However,
the alternative approach is also running into trouble in that the number
and identity of empirically determined risk factors do not seem stable. In
the quarter century since Merton (1973a) and Ross (1976a) inaugurated
multiple-factor models, the standard set of risk factors has changed about
every two years. Efforts such as Lettau and Ludvigson (2001a), to find
macroeconomic explanations for empirically determined risk factors may
prove a useful compromise.

In any case, one should always ask of a factor model, ‘‘what is the com-
pelling economic story that restricts the range of factors used?’’ and/or what
statistical restraints are used to keep from discovering ex post mean-variance
efficient portfolios, or to ensure that the results will be robust across sam-
ples. The existence theorems tell us that the answers to these questions are
the only content of the exercise. If the purpose of the model is not just to
predict asset prices but also to explain them, this puts an additional burden
on economic motivation of the risk factors.

There is a natural resistance to such discipline built in to our current
statistical methodology for evaluating models and papers. When the last
author fished around and produced an ad hoc factor pricing model that
generates 1% average pricing errors, it is awfully hard to persuade read-
ers, referees, journal editors, and clients that your economically motivated
factor pricing model is interesting despite 2% average pricing errors. Your
model may really be better and will therefore continue to do well out of
sample when the fished model falls by the wayside of financial fashion,
but it is hard to get past statistical measures of in-sample fit. One hungers
for a formal measurement of the number of hurdles imposed on a factor
fishing expedition, like the degrees-of-freedom correction in �R 2. Absent
a numerical correction, we have to use judgment to scale back apparent
statistical successes by the amount of economic and statistical fishing that
produced them.

Mimicking Portfolios
The theorem x∗ = proj(m|X ) also has interesting implications for empirical
work. The pricing implications of any model can be equivalently represented
by its factor-mimicking portfolio. If there is any measurement error in a set
of economic variables driving m, the factor-mimicking portfolios for the
true m will price assets better than an estimate of m that uses the measured
macroeconomic variables.
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Thus, it is probably not a good idea to evaluate economically interesting
models with statistical horse races against models that use portfolio returns
as factors. Economically interesting models, even if true and perfectly
measured, will just equal the performance of their own factor-mimicking
portfolios, even in large samples. Add any measurement error, and the eco-
nomic model will underperform its own factor-mimicking portfolios. And
both models will always lose in sample against ad hoc factor models that find
nearly ex post efficient portfolios.

This said, there is an important place for models that use returns as
factors. After we have found the underlying macro factors, practitioners
will be well advised to look at the factor-mimicking portfolio on a day-by-
day basis. Good data on the factor-mimicking portfolios will be available
on a minute-by-minute basis. For many purposes, one does not have to
understand the economic content of a model.

But this fact does not tell us to circumvent the process of understand-
ing the true macroeconomic factors by simply fishing for factor-mimicking
portfolios. The experience of practitioners who use factor models seems to
bear out this advice. Large commercial factor models resulting from exten-
sive statistical analysis (otherwise known as fishing) perform poorly out of
sample, as revealed by the fact that the factors and loadings (β) change all
the time.

Irrationality and Joint Hypothesis
Finance contains a long history of fighting about ‘‘rationality’’ versus
‘‘irrationality’’ and ‘‘efficiency’’ versus ‘‘inefficiency’’ of asset markets. The
results of many empirical asset pricing papers are sold as evidence that
markets are ‘‘inefficient’’ or that investors are ‘‘irrational.’’ For example,
the crash of October 1987, and various puzzles such as the small-firm,
book/market, seasonal effects, or long-term predictability have all been
sold this way.

However, none of these puzzles documents an exploitable arbitrage
opportunity. Therefore, we know that there is a ‘‘rational model’’—a
stochastic discount factor, an efficient portfolio to use in a single-beta
representation—that rationalizes them all. And we can confidently pre-
dict this situation to continue; real arbitrage opportunities do not last
long! Fama (1970) contains a famous statement of the same point. Fama
emphasized that any test of ‘‘efficiency’’ is a joint test of efficiency and
a ‘‘model of market equilibrium.’’ Translated, an asset pricing model,
or a model of m. No test based only on asset market data can conclu-
sively show that markets are ‘‘rational’’ or not. Small wonder that 30 years
and thousands of papers have not moved the debate an inch closer to
resolution.
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But surely markets can be ‘‘irrational’’ or ‘‘inefficient’’ without requiring
arbitrage opportunities? Yes, they can, if (and only if) the discount factors that
generate asset prices are disconnected from marginal rates of substitution or trans-
formation in the real economy. But now we are right back to specifying and
testing economic models of the discount factor! At best, an asset pricing
puzzle might be so severe that the required discount factors are completely
‘‘unreasonable’’ (by some standard) measures of real marginal rates of sub-
stitution and/or transformation, but we still have to say something about what
a reasonable marginal rate looks like.

In sum, the existence theorems mean that there are no quick proofs of
‘‘rationality’’ or ‘‘irrationality.’’ The only game in town for the purpose of
explaining asset prices is thinking about economic models of the discount
factor.

The Number of Factors
Many asset pricing tests focus on the number of factors required to price a
cross section of assets. The equivalence theorems imply that this is a silly
question. A linear factor model m = b ′f or its equivalent expected return-
beta model E (R i) = α+β ′

if λf are not unique representations. In particular,
given any multiple-factor or multiple-beta representation, we can easily find
a single-beta representation. The single factor m = b ′f will price assets just
as well as the original factors f , as will x∗ = proj(b ′f |X ) or the corresponding
R ∗. All three options give rise to single-beta models with exactly the same
pricing ability as the multiple-factor model. We can also easily find equivalent
representations with different numbers (greater than one) of factors. For
example, write

m = a + b 1 f 1 + b 2 f 2 + b 3 f 3 = a + b 1 f 1 + b 2

(
f 2 + b 3

b 2
f 3

)
= a + b 1 f 1 + b 2 f̂ 2

to reduce a ‘‘three-factor’’ model to a ‘‘two-factor’’ model. In the ICAPM
language, consumption itself could serve as a single state variable, in place
of the S state variables presumed to drive it.

There are times when one is interested in a multiple-factor representa-
tion. Sometimes the factors have an economic interpretation that is lost on
taking a linear combination. But the pure number of pricing factors is not a
meaningful question.

Discount Factors vs. Mean, Variance, and Beta
Chapter 6 showed how the discount factor, mean-variance, and expected
return-beta models are all equivalent representations of asset pricing. It
seems a good moment to contrast them as well; to understand why the
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mean-variance and beta language developed first, and to think about why
the discount factor language seems to be taking over.

Asset pricing started by putting mean and variance of returns on the
axes, rather than payoff in state 1, payoff in state 2, etc. as we do now.
The early asset pricing theorists, in particular Markowitz (1952), posed the
question just right: they wanted to treat assets in the apples and oranges,
indifference curve and budget set framework of microeconomics. The prob-
lem was, what labels to put on the axes? Clearly, ‘‘IBM stock’’ and ‘‘GM stock’’
is not a good idea; investors do not value securities per se, but value some
aspects of the stream of random cash flows that those securities give rise to.

Their brilliant insight was to put the mean and variance of the portfolio
return on the axes: to treat these as ‘‘hedonics’’ by which investors valued
their portfolios. Investors plausibly want more mean and less variance. They
gave investors ‘‘utility functions’’ defined over this mean and variance, just as
standard utility functions are defined over apples and oranges. The mean-
variance frontier is the ‘‘budget set.’’

With this focus on portfolio mean and variance, the next step was to
realize that each security’s mean return measures its contribution to the
portfolio mean, and that regression betas on the overall portfolio give each
security’s contribution to the portfolio variance. The mean-return versus
beta description for each security followed naturally (Sharpe [1964]).

In a deep sense, the transition from mean-variance frontiers and beta
models to discount factors represents the realization that putting con-
sumption in state 1 and consumption in state 2 on the axes—specifying
preferences and budget constraints over state-contingent consumption—is
a much more natural mapping of standard microeconomics into finance
than putting mean, variance, etc. on the axes. If for no other reason,
the contingent-claim budget constraints are linear, while the mean-variance
frontier is not. Thus, I think, the focus on means and variance, the mean-
variance frontier, and expected return-beta models is all due to an accident
of history, that the early asset pricing theorists happened to put mean and
variance on the axes rather than state-contingent consumption. Of course,
contingent claims go back just as far, to Debreu (1959). However, Debreu
seemed to think of them as an unrealistic mathematical formalism. It has
taken us a long time to realize that a contingent claim framework can be
applied to real-world phenomena.

Well, here we are, why prefer one language over another? The discount
factor language has an advantage for its simplicity, generality, mathematical
convenience, and elegance. These virtues are to some extent in the eye of
the beholder, but to this beholder, it is inspiring to be able to start every asset
pricing calculation with one equation, p = E (mx). This equation covers all
assets, including bonds, options, and real investment opportunities, while
the expected return-beta formulation is not useful or very cumbersome in
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the latter applications. Thus, it has seemed that there are several different
asset pricing theories: expected return-beta for stocks, yield-curve models
for bonds, arbitrage models for options. In fact all three are just cases of
p = E (mx). As a particular example, arbitrage, in the precise sense of positive
payoffs with negative prices, has not entered the equivalence discussion at
all. I do not know of any way to cleanly graft absence of arbitrage on to
expected return-beta models. You have to tack it on after the fact—‘‘by the
way, make sure that every portfolio with positive payoffs has a positive price.’’
It is trivially easy to graft it on to a discount factor model: just add m > 0.

The discount factor and state-space language also makes it easier to
think about different horizons and the present-value statement of models.
p = E (mx) generalizes quickly to pt = Et

∑
j mt , t+j xt+j , while returns have to

be chained together to think about multiperiod models.
The choice of language is not about normality or return distributions.

There is a lot of confusion about where return distribution assumptions
show up in finance. I have made no distributional assumptions in any of the
discussion so far. Second moments as in betas and the variance of the mean-
variance frontier show up because p = E (mx) involves a second moment.
One does not need to assume normality to talk about the mean-variance
frontier. Returns on the mean-variance frontier price other assets even when
returns are not normally distributed.
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8
Conditioning Information

Asset pricing theory really describes prices in terms of conditional
moments. The investor’s first-order conditions are

pt u ′(ct ) = βEt

[
u ′(ct+1)xt+1

]
,

where Et means expectation conditional on the investor’s time-t information.
Sensibly, the price at time t should be higher if there is information at time
t that the discounted payoff is likely to be higher than usual at time t + 1.
The basic asset pricing equation should be

pt = Et (m t+1xt+1).

(Conditional expectation can also be written

pt = E
[
m t+1xt+1|It

]
when it is important to specify the information set It .)

If payoffs and discount factors were independent and identically dis-
tributed (i.i.d.) over time, then conditional expectations would be the same
as unconditional expectations and we would not have to worry about the
distinction between the two concepts. But stock price/dividend ratios, and
bond and option prices all change over time, which must reflect changing
conditional moments of something on the right-hand side.

One approach is to specify and estimate explicit statistical models of
conditional distributions of asset payoffs and discount factor variables (e.g.,
consumption growth, market return). This approach is useful in some
applications, but it is usually cumbersome. As we make the conditional
mean, variance, covariance, and other parameters of the distribution of
(say) N returns depend flexibly on M information variables, the number of
required parameters can quickly exceed the number of observations.

More importantly, this explicit approach typically requires us to assume
that investors use the same model of conditioning information that we do.
We obviously do not even observe all the conditioning information used

131
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by economic agents, and we cannot include even a fraction of observed
conditioning information in our models. The basic feature and beauty of
asset prices (like all prices) is that they summarize an enormous amount
of information that only individuals see. The events that make the price of
IBM stock change by a dollar, like the events that make the price of tomatoes
change by 10 cents, are inherently unobservable to economists or would-
be social planners (Hayek [1945]). Whenever possible, our treatment of
conditioning information should allow agents to see more than we do.

If we do not want to model conditional distributions explicitly, and if we
want to avoid assuming that investors only see the variables that we include in
an empirical investigation, we eventually have to think about unconditional
moments, or at least moments conditioned on less information than agents
see. Unconditional implications are also interesting in and of themselves.
For example, we may be interested in finding out why the unconditional
mean returns on some stock portfolios are higher than others, even if every
agent fundamentally seeks high conditional mean returns. Most statistical
estimation essentially amounts to characterizing unconditional means, as
we will see in the chapter on GMM. Thus, rather than model conditional distri-
butions, this chapter focuses on what implications for unconditional moments
we can derive from the conditional theory.

8.1 Scaled Payoffs

One can incorporate conditioning information by adding scaled payoffs
and doing everything unconditionally. I interpret scaled returns as payoffs to
managed portfolios.

pt = Et (m t+1xt+1) ⇒ E (pt zt ) = E (mt+1xt+1zt ).

Conditioning Down

The unconditional implications of any pricing model are pretty easy to state.
From

pt = Et (m t+1xt+1)

we can take unconditional expectations to obtain1

E (pt ) = E (m t+1xt+1). (8.1)

1 We need a small technical assumption that the unconditional moment or moment con-
ditioned on a coarser information set exists. For example, if X and Y are normal (0, 1), then
E
(

X
Y |Y ) = 0 but E

(
X
Y

)
is infinite.
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Thus, if we just interpret p to stand for E (pt ), everything we have done
above applies to unconditional moments. In the same way, we can also
condition down from agents’ fine information sets to coarser sets that we
observe,

pt = E (m t+1xt+1 |�) ⇒ E (pt |I ⊂ �) = E (m t+1xt+1 | I ⊂ �)

⇒ pt = E (m t+1xt+1 | It ⊂ �t ) if pt ∈ It .

In making the above statements I used the law of iterated expectations,
which is important enough to highlight it. This law states that your best
forecast today of your best forecast tomorrow is the same as your best forecast
today. In various useful guises,

E (Et (x)) = E (x),

Et−1(Et (xt+1)) = Et−1(xt+1),

E [E (x |�)|I ⊂ �] = E [x |I ].

Instruments and Managed Portfolios

We can do more than just condition down. Suppose we multiply the payoff
and price by any variable or instrument zt observed at time t . Then,

zt pt = Et (m t+1xt+1zt )

and, taking unconditional expectations,

E (pt zt ) = E (m t+1xt+1zt ). (8.2)

This is an additional implication of the conditional model, not captured by
just conditioning down as in (8.1). This trick originates from the GMM
method of estimating asset pricing models, discussed below. The word
instruments for the z variables comes from the instrumental variables estimation
heritage of GMM.

To think about equation (8.2), group (xt+1zt ). Call this product a payoff
x = xt+1zt , with price p = E (pt zt ). Then (8.2) reads

p = E (mx)

once again. Rather than thinking about (8.2) as a instrumental variables
estimate of a conditional model, we can think of it as a price and a payoff,
and apply all the asset pricing theory directly.

This interpretation is not as artificial as it sounds. zt xt+1 are the payoffs
to managed portfolios. An investor who observes zt can, rather than ‘‘buy and
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hold,’’ invest in an asset according to the value of zt . For example, if a high
value of zt forecasts that asset returns are likely to be high the next period,
the investor might buy more of the asset when zt is high and vice versa. If the
investor follows a linear rule, he puts zt pt dollars into the asset each period
and receives zt xt+1 dollars the next period.

This all sounds new and different, but practically every test uses man-
aged portfolios. For example, the size, beta, industry, book/market, and so
forth portfolios of stocks are all managed portfolios, since their composition
changes every year in response to conditioning information—the size, beta,
etc., of the individual stocks. This idea is also closely related to the idea of
dynamic spanning. Markets that are apparently very incomplete can in reality
provide many more state contingencies through dynamic (conditioned on
information) trading strategies.

Equation (8.2) offers a very simple view of how to incorporate the extra
information in conditioning information: Add managed portfolio payoffs, and
proceed with unconditional moments as if conditioning information did not exist!

The linearity of xz is not an important restriction. If the investor wanted
to place, say, 2+3z2 dollars in the asset, we could capture this desire with an
instrument z 2 = 2 + 3z2. Nonlinear (measurable) transformations of time-t
random variables are again random variables.

We can thus incorporate conditioning information while still looking
at unconditional moments instead of conditional moments, without any of
the statistical machinery of explicit models with time-varying moments. The
only subtleties are: 1) The set of asset payoffs expands dramatically, since
we can consider all managed portfolios as well as basic assets, potentially
multiplying every asset return by every information variable. 2) Expected
prices of managed portfolios show up for p instead of just p = 0 and p = 1
if we started with basic asset returns and excess returns.

8.2 Sufficiency of Adding Scaled Returns

Checking the expected price of all managed portfolios is, in principle,
sufficient to check all the implications of conditioning information.

E (z t pt ) = E (mt+1x t+1z t )∀z t ∈ It ⇒ pt = E (mt+1x t+1|It )

We have shown that we can derive some extra implications from the
presence of conditioning information by adding scaled returns. But does
this exhaust the implications of conditioning information? Are we missing
something important by relying on this trick? The answer is, in principle, no.
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I rely on the following mathematical fact: The conditional expectation
of a variable yt+1 given an information set It , E (yt+1 | It ) is equal to a regression
forecast of yt+1 using every variable zt ∈ It . Now, ‘‘every random variable’’
means every variable and every nonlinear (measurable) transformation of
every variable, so there are a lot of variables in this regression! (The word
projection and proj(yt+1|zt ) are used to distinguish the best forecast of yt+1

using only linear combinations of zt .) Applying this fact to our case, let
yt+1 = m t+1xt+1 − pt . Then E [(m t+1xt+1 − pt )zt ] = 0 for every zt ∈ It implies
0 = E (m t+1xt+1 − pt | It ). Thus, no implications are lost in principle by
looking at scaled returns.

We really don’t have to write the zt explicitly. xt+1zt is a payoff available
at time t + 1 and pt zt is its price. Thus, the space of all payoffs X t+1 already
includes the time-(t + 1) payoffs you can generate with a basis set of assets
xt+1 and all dynamic strategies that use information in the set It . With that
definition of the space X t+1 we can write the sufficiency of scaled returns,
simply recognizing that zt pt is a price and zt xt+1 is a payoff, as

E (pt ) = E (m t+1xt+1)∀xt+1 ∈ X t+1 ⇒ pt = E (m t+1xt+1 | It )

‘‘All linear and nonlinear transformations of all variables observed at
time t ’’ sounds like a lot of instruments, and it is. But there is a practical limit
to the number of instruments zt one needs to scale by, since only variables
that forecast returns or m (or their higher moments and co-moments) add
any information.

Since adding instruments is the same thing as including potential man-
aged portfolios, the thoughtful choice of a few instruments is the same
thing as the thoughtful choice of a few assets or portfolios that one makes
in any test of an asset pricing model. Even when evaluating completely
unconditional asset pricing models, one always forms portfolios and omits
many possible assets from analysis. Few studies, in fact, go beyond check-
ing whether a model correctly prices 10--25 stock portfolios and a few bond
portfolios. Implicitly, one feels that the chosen payoffs do a pretty good job
of spanning the set of available risk loadings or mean returns, and hence
that adding additional assets will not affect the results. Nonetheless, since
data are easily available on thousands of NYSE, AMEX and NASDAQ stocks,
to say nothing of government and corporate bonds, mutual funds, foreign
exchange, foreign equities, real investment opportunities, etc., the use of a
few portfolios means that a tremendous number of potential asset payoffs
are left out in an ad hoc manner.

Similarly, if one had a small set of instruments that capture all the pre-
dictability of discounted returns mt+1R t+1, then there would be no need
to add more instruments. Thus, we carefully but arbitrarily select a few
instruments that we think do a good job of characterizing the conditional
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distribution of returns. Exclusion of potential instruments is exactly the
same thing as exclusion of assets. It is no better founded, but the fact that it
is a common sin may lead one to worry less about it.

There is nothing really special about unscaled returns, and no funda-
mental economic reason to place them above scaled returns. A mutual fund
might come into being that follows the managed portfolio strategy and then
its unscaled returns would be the same as an original scaled return. Models
that cannot price scaled returns are no more interesting than models that
can only price (say) stocks with first letter A through L. There are some
econometric reasons to trust results for nonscaled returns a bit more, since
the correlation of a slow moving instrument with a discounted payoff may
be poorly measured in short samples. Transactions costs raise doubts about
instruments that move quickly, implying highly dynamic trading strategies.
But transactions costs also raise doubts about the unconditional pricing
errors of small illiquid and thinly traded stocks.

Of course, the other way to incorporate conditioning information is
by constructing explicit parametric models of conditional distributions.
With this procedure one can in practice test all of a model’s implica-
tions about conditional moments. However, the parametric model may
be incorrect, or may not reflect some variable used by investors. Includ-
ing instruments may not be as efficient if the statistical model is literally
and completely true, but it is still consistent if the parametric model is
incorrect.

8.3 Conditional and Unconditional Models

A conditional factor model does not imply a fixed-weight or uncondi-
tional factor model:

1) m t+1 = b ′
t ft+1, pt = Et (m t+1x t+1) does not imply that ∃b s.t . mt+1 =

b ′ft+1, E (pt ) = E (mt+1x t+1).
2) Et (R t+1) = β ′

tλt does not imply E (R t+1) = β ′λ.
3) Conditional mean-variance efficiency does not imply unconditional

mean-variance efficiency.
The converse statements are true, if managed portfolios are included.

For explicit discount factor models—models whose parameters are con-
stant over time—the fact that one looks at conditional versus unconditional
implications makes no difference to the statement of the model:

pt = Et (m t+1x t+1) ⇒ E (pt ) = E (m t+1x t+1)
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and that’s it. Examples include the consumption-based model with power
utility, m t+1 = β(ct+1/ct )

−γ , and the log utility CAPM, m t+1 = 1/R W
t+1.

However, linear factor models include parameters that may vary over
time and as functions of conditioning information. In these cases the transi-
tion from conditional to unconditional moments is much more subtle. We
cannot easily condition down the model at the same time as we condition
down the prices and payoffs.

Conditional vs. Unconditional Factor Models in
Discount Factor Language

As an example, consider the CAPM

m = a − bR W ,

where R W is the return on the market or wealth portfolio. We can find a
and b from the condition that this model correctly price any two returns,
for example R W itself and a risk-free rate:

⎧⎨
⎩

1 = Et

(
m t+1R W

t+1

)
1 = Et (m t+1)R

f
t

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = 1

R f
t

+ bEt

(
R W

t+1

)
,

b = Et

(
R W

t+1

)− R f
t

R f
t σ

2
t

(
R W

t+1

) .
(8.3)

As you can see, a > 0 and b > 0. To make a payoff proportional to
the minimum second moment return (on the lower part of the mean-
variance frontier), we need a portfolio long the risk-free rate and short
the market R W .

Equation (8.3) shows explicitly that a and b must vary over time, as
Et

(
R W

t+1

)
, σ 2

t

(
R W

t+1

)
, and R f

t vary over time. If it is to price assets condition-
ally, the CAPM must be a linear factor model with time-varying weights, of
the form

m t+1 = a t − b t R W
t+1.

This fact means that we can no longer transparently condition down.
The statement that

1 = Et

[(
a t − b t R W

t+1

)
R t+1

]
does not imply that we can find constants a and b so that

1 = E
[(

a − bR W
t+1

)
R t+1

]
.
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Just try it. Taking unconditional expectations,

1 = E
[(

a t − b t R W
t+1

)
R t+1

]
= E

[
a t R t+1 − b t R W

t+1R t+1

]
= E (a t )E (R t+1)− E (b t )E

(
R W

t+1R t+1

)
+ cov(a t , R t+1)− cov

(
b t , R W

t+1R t+1

)
.

Thus, the unconditional model

1 = E
[(

E (a t )− E (b t )R W
t+1

)
R t+1

]

Only holds if the covariance terms above happen to be zero. Since a t and b t

are formed from conditional moments of returns, the covariances will not,
in general, be zero.

On the other hand, suppose it is true that a t and b t are constant over
time. Even if R f

t and R W
t are not i.i.d., the combinations given by (8.3) may

be constant over time. Then

1 = Et

[(
a − bR W

t+1

)
R t+1

]
does imply

1 = E
[(

a − bR W
t+1

)
R t+1

]
.

Furthermore, the latter unconditional model implies the former condi-
tional model, if the latter holds for all managed portfolios.

Conditional vs. Unconditional in an Expected Return-Beta Model

To put the same observation in beta pricing language,

Et

(
R i

t+1

) = R f
t + β i

t λt (8.4)

does not imply that
E
(
R i

t+1

) = γ + β iλ. (8.5)

Obviously, conditioning down (8.4) to (8.5) leads to a covariance
term between β i

t and λt . Therefore, the conditional model does not in
general lead to an unconditional model. Again, there are special cases
in which the conditional model does condition down. If b t = b con-
stant in the discount factor representation, we know the model conditions
down. The risk premium in an expected return-beta model is given by
λt = vart ( f )b t . Thus, if factor risk premia move in proportion to the
conditional variance of the factors, this is equivalent to a constant b,
so the model will condition down. There are additional special cases as
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well. If the covariance of returns with factors is constant over time, the
model will condition down despite varying b t . You can see this simply by
Et (R e ) = β ′

tλt = covt (R e , f ′)vart ( f )−1λt , so with a constant conditional
covariance, E (R e ) = cov(R e , f ′)E

[
vart ( f )−1λt

] = cov(R e , f ′)λ. (We do not
need λ = Et (λt ).) The model also conditions down if conditional betas are
constant over time. A problem at the end of the chapter guides you through
the algebra of these special cases, in both expected return-beta and discount
factor representations.

A Precise Statement

Let us formalize these observations somewhat. Let X denote the space of all
portfolios of the primitive assets, including managed portfolios in which the
weights may depend on conditioning information, i.e., scaled returns.

A conditional factor pricing model is a model m t+1 = a t +b ′
t ft+1 that satisfies

pt = Et (m t+1x t+1) for all x t+1 ∈ X .
An unconditional factor pricing model is model m t+1 = a+b ′ft+1 that satisfies

E (pt ) = E (m t+1x t+1) for all x t+1 ∈ X . It might be more appropriately called
a fixed-weight factor pricing model.

Given these definitions it is almost trivial that the unconditional model
is just a special case of the conditional model, one that happens to have
fixed weights. Thus, a conditional factor model does not imply an unconditional
factor model (because the weights may vary) but an unconditional factor model
does imply a conditional factor model.

There is one important subtlety. The payoff space X is common, and
contains all managed portfolios in both cases. The payoff space for the
unconditional factor pricing model is not just fixed combinations of a set
of basis assets. For example, we might check that the static (constant a, b)
CAPM captures the unconditional mean returns of a set of assets. If this
model does not also price those assets scaled by instruments, then it is not a
conditional model, or, as I argued above, really a valid factor pricing model
at all.

Of course, everything applies for the relation between a conditional fac-
tor pricing model using a fine information set (like investors’ information
sets) and conditional factor pricing models using coarser information sets
(like ours). If a set of factors prices assets with respect to investors’ informa-
tion, that does not mean the same set of factors prices assets with respect to
our, coarser, information sets.

Mean-Variance Frontiers

Define the conditional mean-variance frontier as the set of returns that minimize
vart (R t+1) given Et (R t+1). (This definition includes the lower segment as
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usual.) Define the unconditional mean-variance frontier as the set of returns
including managed portfolio returns that minimize var(R t+1) given E (R t+1).
These two frontiers are related by:

If a return is on the unconditional mean-variance frontier, it is on the
conditional mean-variance frontier.

However,

If a return is on the conditional mean-variance frontier, it need not be on
the unconditional mean-variance frontier.

These statements are exactly the opposite of what you first expect from
the language. The law of iterated expectations E (Et (x)) = E (x) leads
you to expect that ‘‘conditional’’ should imply ‘‘unconditional.’’ But we
are studying the conditional versus unconditional mean-variance frontier,
not raw conditional and unconditional expectations, and it turns out that
exactly the opposite words apply. Of course, ‘‘unconditional’’ can also mean
‘‘conditional on a coarser information set.’’

Again, keep in mind that the unconditional mean-variance frontier
includes returns on managed portfolios. This definition is eminently rea-
sonable. If you are trying to minimize variance for given mean, why tie
your hands to fixed-weight portfolios? Equivalently, why not allow yourself
to include in your portfolio the returns of mutual funds whose advisers
promise the ability to adjust portfolios based on conditioning information?

You could form a mean-variance frontier of fixed-weight portfolios of a
basis set of assets, and this is what many people often mean by ‘‘uncon-
ditional mean-variance frontier.’’ The return on the true unconditional
mean-variance frontier will, in general, include some managed portfolio
returns, and so will lie outside this mean-variance frontier of fixed-weight portfo-
lios. Conversely, a return on the fixed-weight portfolio MVF is, in general,
not on the unconditional or conditional mean-variance frontier. All we know
is that the fixed-weight frontier lies inside the other two. It may touch, but
it need not. This is not to say the fixed-weight unconditional frontier is
uninteresting. For example, returns on this frontier will price fixed-weight
portfolios of the basis assets. The point is that this frontier has no connec-
tion to the other two frontiers. In particular, a conditionally mean-variance
efficient return (conditional CAPM) need not unconditionally price the
fixed-weight portfolios.

I offer several ways to see this relation between conditional and
unconditional mean-variance frontiers.

Using the Connection to Factor Models
We have seen that the conditional CAPM m t+1 = a t − b t R W

t+1 does not
imply an unconditional CAPM m t+1 = a − bR W

t+1. We have seen that the
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existence of such a conditional factor model is equivalent to the statement
that the return R W

t+1 lies on the conditional mean-variance frontier, and the
existence of an unconditional factor model m t+1 = a − bR W

t+1 is equivalent
to the statement that R W is on the unconditional mean-variance frontier.
Then, from the ‘‘trivial’’ fact that an unconditional factor model is a special
case of a conditional one, we know that R W on the unconditional frontier
implies R W on the conditional frontier but not vice versa.

Using the Orthogonal Decomposition
We can see the relation between conditional and unconditional mean-
variance frontiers using the orthogonal decomposition characterization of
the mean-variance frontier, R mv = R ∗ +wR e∗ (see chapter 5). This beautiful
argument is the main point of Hansen and Richard (1987).

By the law of iterated expectations, x∗ and R ∗ generate expected prices
and R e∗ generates unconditional means as well as conditional means:

E
[
p = Et (x∗x)

] ⇒ E (p) = E (x∗x),

E
[
Et (R ∗2) = Et (R ∗R)

] ⇒ E (R ∗2) = E (R ∗R),

E
[
Et (R e∗R e ) = Et (R e )

] ⇒ E (R e∗R e ) = E (R e ).

This fact is subtle and important. For example, starting with x∗ =
p ′

t Et (x t+1x ′
t+1)

−1x t+1, you might think we need a different x∗, R ∗, R e∗ to rep-
resent expected prices and unconditional means, using unconditional
probabilities to define inner products. The three lines above show that this
is not the case. The same old x∗, R ∗, R e∗ represent conditional as well as
unconditional prices and means.

Recall that a return is mean-variance efficient if and only if it is of the
form

R mv = R ∗ + wR e∗.

Thus, R mv is conditionally mean-variance efficient if w is any number in the
time-t information set:

conditional frontier: R mv
t+1 = R ∗

t+1 + wt R e∗
t+1,

and R mv is unconditionally mean-variance efficient if w is any constant:

unconditional frontier: R mv
t+1 = R ∗

t+1 + wR e∗
t+1.

Constants are in the t information set; time-t random variables are not
necessarily constant. Thus unconditional efficiency (including managed
portfolios) implies conditional efficiency but not vice versa. As with the fac-
tor models, once you see the decomposition, it is a trivial argument about
whether a weight is constant or time varying.
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Brute Force and Examples
If you are still puzzled, an additional argument by brute force may be
helpful.

If a return is on the unconditional mean-variance frontier it must be
on the conditional mean-variance frontier at each date. If not, you could
improve the unconditional mean-variance trade-off by moving to the con-
ditional mean-variance frontier at each date. The unconditional mean-
variance frontier solves

min E (R 2) s.t . E (R) = µ.

Writing the unconditional moment in terms of conditional moments, the
problem is

min E
[
Et (R 2)

]
s.t . E

[
Et (R)

] = µ.

Now, suppose you could lower Et (R 2) at one date t without affecting Et (R)
at that date. This change would lower the objective, without changing the
constraint. Thus, you should have done it: you should have picked returns
on the conditional mean-variance frontiers.

It almost seems that, reversing the argument, we can show that
conditional efficiency implies unconditional efficiency, but it does not. Just
because you have minimized Et (R 2) for given value of Et (R) at each date t
does not imply that you have minimized E (R 2) for a given value of E (R).
In showing that unconditional efficiency implies conditional efficiency we
held fixed Et (R) at each date at µ, and showed it is a good idea to minimize
σt (R). In trying to go backwards, the problem is that a given value of E (R)
does not specify what Et (R) should be at each date. We can increase Et (R)
in one conditioning information set and decrease it in another, leaving the
return on the conditional mean-variance frontier.

Figure 8.1 presents an example. Return B is conditionally mean-variance
efficient. It also has zero unconditional variance, so it is the unconditionally
mean-variance efficient return at the expected return shown. Return A is
on the conditional mean-variance frontiers, and has the same unconditional
expected return as B. But return A has some unconditional variance, and so
is inside the unconditional mean-variance frontier.

As a second example, the risk-free rate is only on the unconditional
mean-variance frontier if it is a constant. Remember the expression (6.15)
for the risk-free rate,

R f = R ∗ + R f R e∗.

The unconditional mean-variance frontier is R ∗ + wR e∗ with w a constant.
Thus, the risk-free rate is only unconditionally mean-variance efficient if
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Figure 8.1. Return A is on the conditional mean-variance frontiers but not the unconditional
mean-variance frontier. Return B is on the conditional and unconditional frontier.

it is a constant. Of course, the risk-free rate is always on the conditional
frontier.

Implications: Hansen--Richard Critique

Many models, such as the CAPM, imply a conditional linear factor model
m t+1 = a t + b ′

t ft+1. These theorems show that such a model does not imply
an unconditional model. Equivalently, if the model predicts that the market
portfolio is conditionally mean-variance efficient, this does not imply that the
market portfolio is unconditionally mean-variance efficient. We often test
the CAPM by seeing if it explains the average returns of some portfolios or
(equivalently) if the market is on the unconditional mean-variance frontier.
The CAPM may quite well be true (conditionally) and fail these tests; assets
may do better in terms of unconditional mean versus unconditional variance,
while obeying the CAPM conditionally.

The situation is not repaired by simple inclusion of some conditioning
information. Models such as the CAPM imply a conditional linear factor
model with respect to investors’ information sets. However, the best we can
hope to do is to test implications conditioned down on variables that we can
observe and include in a test. Thus, a conditional linear factor model is not
testable!

I like to call this observation the ‘‘Hansen--Richard critique’’ by analogy
to the ‘‘Roll Critique.’’ Roll pointed out, among other things, that the wealth
portfolio might not be observable, making tests of the CAPM impossible.
Hansen and Richard point out that the conditioning information of agents
might not be observable, and that one cannot omit it in testing a conditional
model. Thus, even if the wealth portfolio were observable, the fact that we
cannot observe agents’ information sets dooms tests of the CAPM.
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8.4 Scaled Factors: A Partial Solution

You can expand the set of factors to test conditional factor pricing models

factors = f t+1 ⊗ zt .

The problem is that the parameters of the factor pricing model m t+1 =
a t +b t f t+1 may vary over time. A partial solution is to model the dependence of
parameters a t and b t on variables in the time-t information set; let a t = a(zt ),
b t = b(zt ), where zt is a vector of variables observed at time t (including a
constant). In particular, why not try linear models

a t = a ′zt , b t = b ′zt .

Linearity is not restrictive: z2
t is just another instrument. The only crit-

icism one can make is that some instrument zjt might be important for
capturing the variation in a t and b t , and was omitted. For instruments on
which we have data, we can meet this objection by trying zjt and seeing
whether it does, in fact, enter significantly. However, for instruments zt that
are observed by agents but not by us, this criticism remains valid.

Linear discount factor models lead to a nice interpretation as scaled
factors, in the same way that linearly managed portfolios are scaled returns.
With a single factor and instrument, write

mt+1 = a(z t )+ b(z t ) f t+1 (8.6)

= a0 + a1z t + (b0 + b1z t ) f t+1

= a0 + a1z t + b0 f t+1 + b1

(
z t f t+1

)
. (8.7)

Thus, in place of the one-factor model with time-varying coefficients (8.6),
we have a three-factor model (zt , f t+1, zt f t+1) with fixed coefficients, (8.7).

Since the coefficients are now fixed, we can use the scaled-factor model
with unconditional moments:

pt = Et

[(
a0 + a1z t + b0 f t+1 + b1

(
z t f t+1

))
x t+1

] ⇒
E (pt ) = E

[(
a0 + a1z t + b0 f t+1 + b1(z t f t+1)

)
x t+1

]
.

For example, in standard derivations of CAPM, the market (wealth port-
folio) return is conditionally mean-variance efficient; investors want to hold
portfolios on the conditional mean-variance frontier; conditionally expected
returns follow a conditional single-beta representation, or the discount factor
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m follows a conditional linear factor model

m t+1 = a t − b t R W
t+1

as we saw above.
But none of these statements mean that we can use the CAPM uncondi-

tionally. Rather than throw up our hands, we can add some scaled factors.
Thus, if, say, the dividend/price ratio and term premium do a pretty good
job of summarizing variation in conditional moments, the conditional CAPM
implies an unconditional, five-factor (plus constant) model. The factors are a con-
stant, the market return, the dividend/price ratio, the term premium, and
the market return times the dividend/price ratio and the term premium.
Jagannathan and Wang (1996) test whether similar factors can explain
CAPM anomalies.

The unconditional pricing implications of such a five-factor model
could, of course, be summarized by a single-beta representation. The refer-
ence portfolio would not be the market portfolio, of course, but a mimicking
portfolio of the five factors. However, the single mimicking portfolio would
not be easily interpretable in terms of a single-factor conditional model
and two instruments. In this case, it might be more interesting to look at a
multiple-beta or multiple-factor representation.

If we have many factors f and many instruments z, we should in principle
multiply every factor by every instrument,

m = b 1 f 1 + b 2 f 1 z 1 + b 3 f 1 z 2 + · · · + b N +1 f 2 + b N +2 f 2 z 1 + b N +3 f 2 z 2 + · · · .

This operation can be compactly summarized with the Kronecker product nota-
tion, a⊗b, which means ‘‘multiply every element in vector a by every element
in vector b, or

m t+1 = b ′( f t+1 ⊗ z t ).

8.5 Summary

When you first think about it, conditioning information sounds
scary—how do we account for time-varying expected returns, betas, fac-
tor risk premia, variances, covariances, etc. However, the methods outlined
in this chapter allow a very simple and beautiful solution to the problems
raised by conditioning information. To express the conditional implica-
tions of a given model, all you have to do is include some well-chosen scaled
or managed portfolio returns, and then pretend you never heard about
conditioning information.
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Some factor models are conditional models, and have coefficients that
are functions of investors’ information sets. In general, there is no way to test
such models, but if you are willing to assume that the relevant conditioning
information is well summarized by a few variables, then you can just add
new factors, equal to the old factors scaled by the conditioning variables,
and again forget that you ever heard about conditioning information.

You may want to remember conditioning information as a diagnostic, or
when giving an economic interpretation of the results. It may be interesting
to take estimates of a many-factor model, m t = a0 + a1z t + b0 f t+1 + b1z t f t+1,
and see what they say about the implied conditional model, m t = (a0 +
a1z t )+ (b0 + b1z t ) f t+1. You may want to make plots of conditional b’s, betas,
factor risk premia, expected returns, etc. But you do not have to worry a lot
about conditioning information in estimation and testing.

Problems—Chapter 8
1. If there is a risk-free asset, is it on the (a) conditional, or (b)
unconditional mean-variance frontier, or (c) on both?

2. If there is a conditionally risk-free asset—a claim to 1 is traded at each
date, does this mean that there is an unconditionally risk-free asset? (Define
the latter first!) How about vice versa?

3. Suppose you took the unconditional population moments E (R), E (RR ′)
of assets returns and constructed the mean-variance frontier. Does this
frontier correspond to the conditional or the unconditional mean-variance
frontier, or neither?

4. (a) Show that σ 2(xt+1) = E
[
σ 2

t (xt+1)
] + σ 2 [Et (xt+1)]. When do vari-

ances condition down—when is the unconditional variance equal to
the average conditional variance? (Hint: Start with xt+1 = Et (xt+1) +
[xt+1 − Et (xt+1)].)
(b) Find the analogous decomposition for covariances. When is the
unconditional covariance equal to the average conditional covariance?

5. A conditional model does not necessarily imply an unconditional model,
but a conditional model might, with some other side conditions, condition
down. Using the ER −β representation and using the m = a+bf representa-
tion, show that the following three conditions are each sufficient for a model
to condition down. To keep things simple, consider only the case of excess
returns 0 = Et (mR e ); Et (R e ) = β ′

tλt , and without loss of generality normalize
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your factors to have conditional mean zero, m = 1 + b ′f t+1; Et ( f t+1) = 0
(with excess returns, the mean Et (m) is unidentified).

(a) b t = b = constant ⇔ λt = −vart ( ff ′)b; market prices of risk move
one for one with conditional variance, no restriction on conditional betas.

(b) covt

(
R e

t+1, f ′
t+1

) = constant, even though b t may vary over time.

(c) Constant conditional betas, vart ( ff ′)−1covt

(
R e

t+1, f ′
t+1

) = β even
though the individual covariance and variance may vary arbitrarily over
time. No limit on λ.
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9
Factor Pricing Models

In Chapter 2, I noted that the consumption-based model, while a complete
answer to most asset pricing questions in principle, does not (yet) work well
in practice. This observation motivates efforts to tie the discount factor m
to other data. Linear factor pricing models are the most popular models of
this sort in finance. They dominate discrete-time empirical work.

Factor pricing models replace the consumption-based expression for
marginal utility growth with a linear model of the form

m t+1 = a + b ′f t+1.

a and b are free parameters. As we saw in Chapter 6, this specification is
equivalent to a multiple-beta model

E (Rt+1) = γ + β ′λ,

where β are multiple regression coefficients of returns R on the factors f ,
and γ and λ are free parameters.

The big question is, what should one use for factors f t+1? Factor pricing
models look for variables that are good proxies for aggregate marginal utility
growth, i.e., variables for which

β
u ′(ct+1)

u ′(ct )
≈ a + b ′f t+1 (9.1)

is a sensible and economically interpretable approximation.
More directly, the essence of asset pricing is that there are spe-

cial states of the world in which investors are especially concerned that
their portfolios not do badly. They are willing to trade off some overall
performance—average return—to make sure that portfolios do not do badly
in these particular states of nature. The factors are variables that indicate
that these ‘‘bad states’’ have occurred.

149
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In any sensible economic model, as well as in the data, consumption
is related to returns on broad-based portfolios, to interest rates, to growth
in GDP, investment, or other macroeconomic variables, and to returns on
real production processes. All of these variables can measure the state of
the economy.

Furthermore, consumption and marginal utility respond to news: if a
change in some variable today signals high income in the future, then con-
sumption rises now, by permanent income logic. This fact opens the door
to forecasting variables: any variable that forecasts asset returns (‘‘changes in
the investment opportunity set’’) or that forecasts macroeconomic variables
is a candidate factor. Variables such as the term premium, dividend/price
ratio, stock returns, etc., can be defended as pricing factors on this logic.
Though they are not direct measures of aggregate good or bad times, they
forecast such times.

Should factors be unpredictable over time? The answer is, sort of. If
there is a constant real interest rate, then marginal utility growth should be
unpredictable. (‘‘Consumption is a random walk’’ in the quadratic utility
permanent income model.) To see this, look at the first-order condition
with a constant interest rate,

u ′(ct ) = βR f Et

[
u ′(ct+1)

]
,

or in a more time-series notation,

u ′(ct+1)

u ′(ct )
= 1
βR f

+ εt+1, Et (εt+1) = 0.

The real risk-free rate is not constant, but it does not vary a lot, especially
compared to asset returns. Measured consumption growth is not exactly
unpredictable but it is the least predictable macroeconomic time series,
especially if one accounts properly for temporal aggregation (consumption
data are quarterly averages). Thus, factors that proxy for marginal utility
growth, though they do not have to be totally unpredictable, should not be
highly predictable. If one chooses highly predictable factors, the model will
counterfactually predict large interest rate variation.

In practice, this consideration means that you should choose the right
units: Use GNP growth rather than level, portfolio returns rather than prices
or price/dividend ratios, etc. However, unless you want to impose an exactly
constant risk-free rate, you do not have to filter or prewhiten factors to make
them exactly unpredictable. Furthermore, we often apply factor pricing
models to excess returns in a way that the conditional mean of the discount
factor is not identified, and hence has no effect on the results.
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This view of factors as intuitively motivated proxies for marginal utility
growth is sufficient to carry the reader through current empirical tests of
factor models. The extra constraints that result from formal derivations in
this chapter have not much constrained empirical specifications.

The derivations all proceed in the way I have motivated factor models:
One writes down a general equilibrium model, in particular a specification
of the production technology by which real investment today results in real
output tomorrow. This general equilibrium produces relations that express
the determinants of consumption from exogenous variables, and relations
linking consumption to other endogenous variables; equations of the form
ct = g ( ft ). One then uses this kind of equation to substitute out for con-
sumption in the basic first-order conditions. The CAPM and ICAPM are
general equilibrium models with linear technologies, rates of return R that
do not depend on the quantity invested.

The derivations accomplish two things: they determine one particular
list of factors that can proxy for marginal utility growth, and they prove that
the relation should be linear. Some assumptions can often be substituted for
others in the quest for these two features of a factor pricing model.

This is a point worth remembering: all factor models are derived as special-
izations of the consumption-based model. Many authors of factor model papers
disparage the consumption-based model, forgetting that their factor model
is the consumption-based model plus extra assumptions that allow one to
proxy for marginal utility growth from some other variables. (Constantinides
[1989] is a good statement of this point.)

In Chapter 7, I argued that clear economic foundation was important
for factor models, since it helps us to guard against fishing. Alas, the current
state of factor pricing models is not a particularly good guard. One can call
for better theories or derivations, more carefully aimed at limiting the list of
potential factors and describing the fundamental macroeconomic sources
of risk, and thus providing more discipline for empirical work. But the
best minds in finance have been working on this problem for 40 years, so
a ready solution is not immediately in sight. Furthermore, even current
theory can provide more discipline than is commonly imposed in empirical
work. So it’s not clear that tighter theories will change practice. For example,
the derivations of the CAPM and ICAPM make predictions for the risk-free
rate and for factor risk premia that are often ignored; these quantities are
typically estimated as free parameters. The ICAPM gives tighter restrictions
on state variables than are commonly checked: ‘‘State variables’’ should
forecast something.

The derivations also show how special and unrealistic are the general
equilibrium setups necessary to derive popular specifications such as CAPM
and ICAPM. This observation motivates a more serious look at real general
equilibrium models.
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9.1 Capital Asset Pricing Model (CAPM)

The CAPM is the model m = a + bR w ; R w = wealth portfolio return.
I derive it from the consumption-based model by (1) two-period quadratic
utility; (2) two periods, exponential utility, and normal returns; (3) infinite
horizon, quadratic utility, and i.i.d. returns; (4) log utility.

The CAPM, credited to Sharpe (1964) and Lintner (1965a, b), is the
first, most famous, and (so far) most widely used model in asset pricing.
It ties the discount factor m to the return on the ‘‘wealth portfolio.’’ The
function is linear,

m t+1 = a + bR W
t+1.

a and b are free parameters. One can find theoretical values for the param-
eters a and b by requiring the discount factor m to price any two assets,
such as the wealth portfolio return and risk-free rate, 1 = E (mR W ) and
1 = E (m)R f . [For example, see equation (8.3).] In empirical applications,
we can also pick a and b to best price larger cross sections of assets. We do not
have good data on, or even a good empirical definition for, the return on
total wealth. It is conventional to proxy R W by the return on a broad-based
stock portfolio such as the value- or equally-weighted NYSE, S&P500, etc.

The CAPM is, of course, most frequently stated in equivalent expected
return-beta language,

E (R i) = γ + βi , RW
[
E (R W )− γ

]
.

This section briefly describes some classic derivations of the CAPM.
Again, we need to find assumptions that defend which factors proxy for
marginal utility (R W here), and assumptions to defend the linearity between
m and the factor.

I present several derivations of the same model. Many of these
derivations use classic and widely applicable modeling assumptions. You
can also see that various sets of assumptions can often be used to get
to the same place. By seeing several derivations, you can see how one
assumption can be traded for another. For example, the CAPM does not
require normal distributions, if one is willing to swallow quadratic utility
instead.
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Two-Period Quadratic Utility

Two-period investors with no labor income and quadratic utility imply
the CAPM.

Investors have quadratic preferences and only live two periods,

U (ct , ct+1) = −1
2
(c∗ − ct )

2 − 1
2
βE
[
(c∗ − ct+1)

2
]
. (9.2)

Their marginal rate of substitution is thus

m t+1 = β
u ′(ct+1)

u ′(ct )
= β

(c∗ − ct+1)

(c∗ − ct )
.

The quadratic utility assumption means marginal utility is linear in consump-
tion. Thus, we have achieved one target of the derivation, linearity.

Investors are born with wealth Wt in the first period and earn no labor
income. They can invest in N assets with prices pi

t and payoffs xi
t+1, or, to keep

the notation simple, returns R i
t+1. They choose how much to consume at the

two dates, ct and ct+1, and portfolio weights wi . Thus, the budget constraint is

ct+1 = Wt+1,

Wt+1 = R W
t+1

(
Wt − ct

)
,

R W
t+1 =

N∑
i=1

wiR i
t+1,

N∑
i=1

wi = 1.

(9.3)

R W is the rate of return on total wealth.
The two-period assumption means that investors consume everything

in the second period, by constraint (9.3). This fact allows us to substitute
wealth and the return on wealth for consumption, achieving the second
goal of the derivation, naming the factor that proxies for consumption or
marginal utility:

m t+1 = β
c∗ − R W

t+1(Wt − ct )

c∗ − ct
= βc∗

c∗ − ct
− β(Wt − ct )

c∗ − ct
R W

t+1 , (9.4)

i.e.,
m t+1 = at − bt R W

t+1.
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Exponential Utility, Normal Distributions

u(c) = −e−αc and a normally distributed set of returns also produces
the CAPM.

The combination of exponential utility and normal distributions is
another set of assumptions that deliver the CAPM in a one- or two-period
model. This structure has a particularly convenient analytical form. Since
it gives rise to linear demand curves, it is very widely used in models that
complicate the trading structure, by introducing incomplete markets or
asymmetric information. Grossman and Stiglitz (1980) is a very famous
example.

I present a model with consumption only in the last period. (You can
do the quadratic utility model of the last section this way as well.) Utility is

E
[
u(c)

] = E
[−e−αc

]
.

α is known as the coefficient of absolute risk aversion. If consumption is normally
distributed, we have

Eu(c) = −e−αE (c)+(α2/2)σ2(c).

Suppose this investor has initial wealth W which can be split between
a risk-free asset paying R f and a set of risky assets paying return R . Let y
denote the amount of this wealth W (amount, not fraction) invested in each
security. Then, the budget constraint is

c = yf R f + y′R ,

W = yf + y′1.

Plugging the first constraint into the utility function, we obtain

Eu(c) = −e−α[yf R f +y′E (R)]+(α2/2)y′�y . (9.5)

As with quadratic utility, the two-period model is what allows us to set con-
sumption to wealth and then substitute the return on the wealth portfolio
for consumption growth in the discount factor.

Maximizing (9.5) with respect to y, yf , we obtain the first-order condition
describing the optimal amount to be invested in the risky asset,

y = �−1 E (R)− R f

α
.
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Sensibly, the investor invests more in risky assets if their expected return
is higher, less if his risk aversion coefficient is higher, and less if the assets
are riskier. Notice that total wealth does not appear in this expression. With
this setup, the amount invested in risky assets is independent of the level
of wealth. This is why we say that this investor has constant absolute rather
than relative (to wealth) risk aversion. Note also that these ‘‘demands’’ for
the risky assets are linear in expected returns.

Inverting the first-order conditions, we obtain

E (R)− R f = α�y = α cov(R , R W ). (9.6)

The investor’s total risky portfolio is y′R . Hence, �y gives the covariance of
each return with y′R , and also with the investor’s overall portfolio y f R f +y′R .
If all investors are identical, then the market portfolio is the same as the
individual’s portfolio so �y also gives the correlation of each return with
R m = yf R f + y′R . (If investors differ in risk aversion α, the same thing goes
through but with an aggregate risk aversion coefficient.)

Thus, we have the CAPM. This version is especially interesting because
it ties the market price of risk to the risk aversion coefficient. Applying (9.6)
to the market return itself, we have

E (R W )− R f = ασ 2(R W ).

Quadratic Value Function, Dynamic Programming

We can let investors live forever in the quadratic utility CAPM so long as
we assume that the environment is independent over time. Then the value
function is quadratic, taking the place of the quadratic second-period utility
function. This case is a nice introduction to dynamic programming.

The two-period structure is unpalatable, since most investors live longer
than two periods. It is natural to try to make the same basic ideas work with
less restrictive assumptions.

We can derive the CAPM in a multiperiod context by replacing the
second-period quadratic utility function with a quadratic value function.
However, the quadratic value function requires the additional assump-
tion that returns are i.i.d. (no ‘‘shifts in the investment opportunity set’’).
This observation, due to Fama (1970), is also a nice introduction to dynamic
programming , which is a powerful way to handle multiperiod problems by
expressing them as two-period problems. Finally, I think this derivation
makes the CAPM more realistic, transparent, and intuitively compelling.
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Buying stocks amounts to taking bets over wealth; really the fundamental
assumption driving the CAPM is that marginal utility of wealth is linear in
wealth and does not depend on other state variables.

Let us start in a simple ad hoc manner by just writing down a ‘‘utility
function’’ defined over this period’s consumption and next period’s wealth,

U = u(ct )+ βEt V (Wt+1).

This is a reasonable objective for an investor, and does not require us to
make the very artificial assumption that he will die tomorrow. If an investor
with this ‘‘utility function’’ can buy an asset at price pt with payoff xt+1, his
first-order condition (buy a little more, then x contributes to wealth next
period) is

pt u ′(ct ) = βEt

[
V ′(Wt+1)xt+1

]
.

Thus, the discount factor uses next period’s marginal value of wealth in
place of the more familiar marginal utility of consumption

m t+1 = β
V ′(Wt+1)

u ′(ct )
.

(The envelope condition states that, at the optimum, a penny saved has the
same value as a penny consumed, u ′(ct ) = V ′(Wt ). We could also use this
condition to express the denominator in terms of wealth.)

Now, suppose the value function were quadratic,

V (Wt+1) = −η
2
(Wt+1 − W ∗)2.

Then, we would have

m t+1 = −βηWt+1 − W ∗

u ′(ct )
= −βηR W

t+1(Wt − ct )− W ∗

u ′(ct )

=
[
βηW ∗

u ′(ct )

]
+
[

− βη(Wt − ct )

u ′(ct )

]
R W

t+1,

or, once again,
m t+1 = at + bt R W

t+1,

the CAPM!
Let us be clear about the assumptions and what they do.

(1) The value function only depends on wealth. If other variables entered the
value function, then ∂V /∂W would depend on those other variables, and
so would m. This assumption bought us the first objective of any derivation:
the identity of the factors. The ICAPM, below, allows other variables in the
value function, and obtains more factors. (Actually, other variables could
enter the value function so long as they do not affect the marginal value of
wealth. The weather is an example: You, like I, might be happier on sunny
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days, but you do not value additional wealth more on sunny than on rainy
days. Hence, covariance with weather does not affect how you value stocks.)

(2) The value function is quadratic. We wanted the marginal value function
V ′(W ) to be linear, to buy us the second objective, showing m is linear in
the factor. Quadratic utility and value functions deliver a globally linear
marginal value function V ′(W ).

Why is the Value Function Quadratic?
You might think we are done. But good economists are unhappy about
a utility function that has wealth in it. Few of us are like Disney’s Uncle
Scrooge, who got pure enjoyment out of a daily swim in the coins in his
vault. Wealth is only valuable because it gives us access to more consumption.
Utility functions should always be written over consumption. One of the few
real rules in economics to keep our theories from being vacuous is that ad
hoc ‘‘utility functions’’ over other objects like wealth (or means and variances
of portfolio returns) should eventually be defended as arising from a more
fundamental desire for consumption or leisure.

More practically, being careful about the derivation makes clear that
the superficially plausible assumption that the value function is only a func-
tion of wealth derives from the much less plausible, in fact certainly false,
assumption that interest rates are constant, the distribution of returns is
i.i.d., and that the investor has no risky labor income. So, let us see what it
takes to defend the quadratic value function in terms of some utility function.

Suppose investors last forever, and have the standard sort of utility
function

U = Et

∞∑
j=0

β j u(ct+j ).

Again, investors start with wealth W0 which earns a random return R W and
they have no other source of income. In addition, suppose that interest rates
are constant, and stock returns are i.i.d. over time.

Define the value function as the maximized value of the utility function in
this environment. Thus, define V (W ) as1

V (Wt ) ≡ max
{ct , ct+1, ct+2, ..., wt , wt+1, ...}

Et

∞∑
j=0

β j u(ct+j )

s.t. Wt+1 = R W
t+1(Wt − ct ); R W

t = w ′
t Rt ; w ′

t 1 = 1.

(9.7)

1 There is also a transversality condition or a lower limit on wealth Wt > W in the budget
constraints. This keeps the consumer from consuming a bit more and rolling over more and
more debt, and it means we can write the budget constraint in present-value form.
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(I use vector notation to simplify the statement of the portfolio problem;
R ≡ [

R 1 R 2 · · · R N
]′

, etc.) The value function is the total level of utility
the investor can achieve, given how much wealth he has, and any other vari-
ables constraining him. This is where the assumptions of no labor income,
a constant interest rate, and i.i.d. returns come in. Without these assump-
tions, the value function as defined above might depend on these other
characteristics of the investor’s environment. For example, if there were
some variable, say, ‘‘D/P’’ that indicated returns would be high or low for a
while, then the investor might be happier, and have a high value, when D/P
is high, for a given level of wealth. Thus, we would have to write V (Wt , D/Pt ).

Value functions allow you to express an infinite-period problem as a two-
period problem. Break up the maximization into the first period and all the
remaining periods, as follows:

V (Wt ) = max
{ct , wt }

{
u(ct )+ βEt

[
max

{ct+1, ct+2,...,wt+1, wt+2,...}
Et+1

∞∑
j=0

β j u(ct+1+j )

]}

or
V (Wt ) = max

{ct , wt }
{
u(ct )+ βEt V (Wt+1)

}
(9.8)

Thus, we have defended the existence of a value function. Writing down
a two-period ‘‘utility function’’ over this period’s consumption and next
period’s wealth is not as crazy as it might seem.

The value function is also an attractive view of how people actually make
decisions. People do not think ‘‘If I buy an expensive lunch today, I will not
be able to go out to dinner one night 20 years from now’’—trading off goods
directly as expressed by the utility function. They think ‘‘I cannot ‘afford’ an
expensive lunch’’ meaning that the decline in the value of wealth is not worth
the increase in the marginal utility of consumption. Thus, the maximization
in (9.8) describes people’s psychological approach to utility maximization.

The remaining question is, can the value function be quadratic? What
utility function assumption leads to a quadratic value function? Here is the
fun fact: A quadratic utility function leads to a quadratic value function in this
environment. This fact is not a law of nature; it is not true that for any u(c),
V (W ) has the same functional form. But it is true here and a few other
special cases. The ‘‘in this environment’’ clause is not innocuous. The value
function—the achieved level of expected utility—is a result of the utility
function and the constraints.

How could we show this fact? One way would be to try to calculate
the value function by brute force from its definition, equation (9.7). This
approach is not fun, and it does not exploit the beauty of dynamic program-
ming, which is the reduction of an infinite-period problem to a two-period
problem.
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Instead solve (9.8) as a functional equation. Guess that the value func-
tion V (Wt+1) is quadratic, with some unknown parameters. Then use the
recursive definition of V (Wt ) in (9.8), and solve a two-period problem—find
the optimal consumption choice, plug it into (9.8), and calculate the value
function V (Wt ). If the guess was right, you obtain a quadratic function for
V (Wt ), and determine any free parameters.

Let us do it. Specify

u(ct ) = −1
2

(
ct − c∗)2

.

Guess
V (Wt+1) = −η

2
(Wt+1 − W ∗)2

with η and W ∗ parameters to be determined later. Then the problem (9.8) is
(I do not write the portfolio choice w part for simplicity; it does not change
anything)

V (Wt ) = max
{ct }

[
− 1

2
(ct − c∗)2 − β

η

2
E (Wt+1 − W ∗)2

]

s. t . Wt+1 = R W
t+1(Wt − ct ).

(Et is now E since I assumed i.i.d.) Substituting the constraint into the
objective,

V (Wt ) = max
{ct }

[
− 1

2
(ct − c∗)2 − β

η

2
E
[
R W

t+1(Wt − ct )− W ∗]2
]

. (9.9)

The first-order condition with respect to ct , using ĉ to denote the optimal
value, is

ĉt − c∗ = βηE
{[

R W
t+1(Wt − ĉt )− W ∗]R W

t+1

}
.

Solving for ĉt ,

ĉt = c∗ + βηE
{[

R W 2
t+1Wt − ĉt R W 2

t+1 − W ∗R W
t+1

]}
,

ĉt

[
1 + βηE

(
R W 2

t+1

)] = c∗ + βηE
(
R W 2

t+1

)
Wt − βηW ∗E

(
R W

t+1

)
,

ĉt = c∗ − βηE
(
R W

t+1

)
W ∗ + βηE

(
R W 2

t+1

)
Wt

1 + βηE
(
R W 2

t+1

) . (9.10)

This is a linear function of Wt . Writing (9.9) in terms of the optimal value
of c , we get

V (Wt ) = −1
2
(ĉt − c∗)2 − β

η

2
E
[
R W

t+1(Wt − ĉt )− W ∗]2
. (9.11)
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This is a quadratic function of Wt and ĉt . A quadratic function of a linear func-
tion is a quadratic function, so the value function is a quadratic function of Wt .
If you want to spend a pleasant few hours doing algebra, plug (9.10) into
(9.11), check that the result really is quadratic in Wt , and determine the coef-
ficients η, W ∗ in terms of fundamental parameters β, c∗, E (R W ), E (R W 2) (or
σ 2(R W )). The expressions for η, W ∗ do not give much insight, so I do not
do the algebra here.

Log Utility

Log utility rather than quadratic utility also implies a CAPM. Log utility
implies that consumption is proportional to wealth, allowing us to substitute
the wealth return for consumption data.

The point of the CAPM is to avoid the use of consumption data, and
to use wealth or the rate of return on wealth instead. Log utility is another
special case that allows this substitution. Log utility is much more plausible
than quadratic utility. Rubinstein (1976) introduced the log utility CAPM.

Suppose that the investor has log utility

u(c) = ln(c).

Define the wealth portfolio as a claim to all future consumption. Then, with
log utility, the price of the wealth portfolio is proportional to consumption itself,

pW
t = Et

∞∑
j=1

β j u ′(ct+j )

u ′(ct )
ct+j = Et

∞∑
j=1

β j ct

ct+j
ct+j = β

1 − β
ct .

The return on the wealth portfolio is proportional to consumption growth,

R W
t+1 = pW

t+1 + ct+1

pW
t

= (β/(1 − β)+ 1)
β/(1 − β)

ct+1

ct
= 1
β

ct+1

ct
= 1
β

u ′(ct )

u ′(ct+1)
.

Thus, the log utility discount factor equals the inverse of the wealth portfolio
return,

mt+1 = 1
R W

t+1

. (9.12)

Equation (9.12) could be used by itself: it attains the goal of replacing
consumption data by some other variable. (Brown and Gibbons [1985] test
a CAPM in this form.) Note that log utility is the only assumption so far. We
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do not assume constant interest rates, i.i.d. returns, or the absence of labor
income.

Log utility has a special property that ‘‘income effects offset substitution
effects,’’ or in an asset pricing context, that ‘‘discount rate effects offset
cashflow effects.’’ News of higher consumption = dividend should make the
claim to consumption more valuable. However, through u ′(c) it also raises
the discount rate, lowering the value of the claim to consumption. For log
utility, these two effects exactly offset.

Linearizing Any Model

Taylor expansions, the continuous time limit, and normal distributions
can all turn a nonlinear linear model m = g (f ) into a linear model m = a +bf .

The twin goals of a linear factor model derivation are to derive what
variables drive the discount factor, wealth in the case of the CAPM, and to
derive a linear relation between the discount factor and these variables. The
first goal is often easier than the second. For example, the log utility CAPM
got us the right variable, the return on the market potfolio, but a nonlinear
functional form. This section covers three standard tricks that are used to
obtain a linear functional form. Section 9.3 considers whether linearity is
still an important goal.

Taylor Expansion
The most obvious way to linearize the model is by a Taylor expansion,

m t+1 = g (ft+1) ≈ at + bt ft+1.

I write the coefficients as at and bt because the chosen expansion point may
well change over time, so that ft+1 does not stray too far from the expansion
point. For example, a natural expansion point is the conditional mean of
the factor. Then,

m t+1 ≈ g (Et ( ft+1))+ g ′(Et ( ft+1))( ft+1 − Et ( ft+1)).

Continuous Time
We can often derive an exact linearization in continuous time. Then, if the
discrete time interval is short enough, we can apply the continuous time
result as an approximation.

Write the nonlinear discount factor as


t = g ( ft , t)
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so

d
t = ∂g
∂t

dt + ∂g
∂f

dft + 1
2
∂2g
∂f 2

df 2
t .

Then, the basic pricing equation in continuous time for asset i reads

Et

(
dpi

t

pi
t

)
+ Di

t

pi
t

dt − r f
t dt = −Et

(
dpi

t

pi
t

d
t


t

)

= − 1
g ( f , t)

∂g ( ft , t)
∂f

Et

(
dpi

t

pi
t

dft

)
,

or, for a short discrete time interval,

Et (R i
t+1)− R f

t ≈ covt (R i
t+1, f t+1)

(
− 1

g ( f , t)
∂g ( ft , t)
∂f

)

≈ βi , f ; tλ
f
t .

Working backward, we have a discrete-time discount factor that is linear in f .
Consumption-based model. We used this trick in Chapter 1 to derive a

linearized version of the consumption-based model. With


t = e−δt c−γ
t ,

we have
d
t


t
= −δdt − γ

dct

ct
+ γ (γ + 1)

dc2
t

c2
t

and hence

Et

(
dpi

t

pi
t

)
+ Di

t

pi
t

dt − r f
t dt = −Et

(
dpi

t

pi
t

d
t


t

)

= γEt

(
dpi

t

pi
t

dct

ct

)

or, for a short discrete time interval,

Et (R i
t+1)− R f

t ≈ γ covt

(
R i

t+1,
ct+1

ct

)

≈ βi ,�c ; tλ
�c
t .

Log utility CAPM. The price of the consumption stream or wealth
portfolio is, in continuous time,

u ′(ct )pW
t = Et

∫ ∞

0
e−δsu ′(ct+s)ct+sds.
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With log utility, we have u ′(ct ) = 1/ct , so again the value of the market
portfolio is exactly proportional to consumption,

pW
t

ct
=
∫ ∞

0
e−δsds = 1

δ
.

The discount factor is proportional to the inverse of the value of the market
portfolio,


t = e−δt u ′(ct ) = e−δt

ct
= e−δt

δpW
t

so
d
t


t
= −δdt − dpW

t

pW
t

+ 1
2

dpW 2
t

pW 2
t

.

Now, the basic pricing equation in continuous time for asset i reads

Et

(
dpi

t

pi
t

)
+ Di

t

pi
t

dt − r f
t dt = Et

(
dpi

t

pit

dpW
t

pWt
t

)

or, for a short discrete time interval,

Et (R i
t+1)− R f

t ≈ covt

(
R i

t+1, R W
t+1

)
≈ βi , W ; t vart

(
R W

t

)
≈ βi , W ; tλ

W
t (9.13)

Working backwards, equation (9.13) corresponds to a discrete-time discount
factor that is a linear function of the market return.

Normal distributions in discrete time: Stein’s lemma
The essence of the continuous time approximation is that diffusion pro-
cesses are locally normally distributed. If we assume that returns are
normally distributed in discrete time, we can make the linearization exact
in discrete time.

Again, the point of the linearization is to give us an expected return-beta
model with betas calculated against the factors themselves rather than non-
linear functions of the factors. We need a way to transform from cov(g ( f ), R)
to cov( f , R). The central mathematical trick is Stein’s lemma:

Lemma: If f , R are bivariate normal, g ( f ) is differentiable and E |g ′( f )| < ∞,
then

cov[g ( f ), R ] = E [g ′( f )]cov( f , R).

At this point, we’re really done. We can substitute covariances and betas
with the nonlinear function g ( f ) with covariances and betas with f itself.
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Though it may belabor the point, this lemma allows us to derive a linear
discount factor:

p = E (mx) = E (g ( f )x)

= E [g ( f )]E (x)+ cov[g ( f ), x]
= E [g ( f )]E (x)+ E [g ′( f )]cov[f , x]
= E ({E [g ( f )] + E [g ′( f )]( f − Ef )}x)
= E ({E [g ( f )] − E [g ′( f )]E ( f )+ E [g ′( f )]f }x)

or

mt+1 = {Et [g ( ft+1)] − Et [g ′( ft+1)]Et ( ft+1)} + Et [g ′( ft+1)]ft+1

= at + bt ft+1.

Similarly, it allows us to derive an expected return-beta model using the
factors

Et

(
R i

t+1

) = R f
t − covt

(
R i

t+1, m t+1

)
= R f

t − Et [g ′( ft+1)]covt

(
R i

t+1, ft+1

)
(9.14)

= R f
t + βi , f ; tλ

f
t . (9.15)

Two period CAPM. The classic use of Stein’s lemma allows us to substitute
a normal distribution assumption for the quadratic utility assumption in the
two period CAPM. Repeating the analysis starting with equation (9.2), using
an arbitrary utility function, we have

m t+1 = β
u ′(ct+1)

u ′(ct )
= β

u ′[R W
t+1(Wt − ct )

]
u ′(ct )

.

Assuming that R W and R i are normally distributed, using Stein’s lemma, we
have

covt

(
R i

t+1, m t+1

) = E

[
β
(Wt − ct )u ′′[R W

t+1(Wt − ct )
]

u ′(ct )

]
covt

(
R i

t+1, R W
t+1

)
.

Up to the technical assumption that the expectation exists, the trick
is done.

Log utility CAPM. Interestingly, Stein’s lemma cannot be applied to the
log utility CAPM because the market return cannot be normally distributed.
It’s easy to miss this fact, since in empirical applications we usually take the
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factor risk premium λ in equation (9.15) as a free parameter. However, the
term in equation (9.14), applied to the log utility CAPM g ( f ) = 1/R W is

E
(
R i

t+1

) = R f
t + Et

(
1

R W 2
t+1

)
covt

(
R i

t+1, R W
t+1

)
.

If R W
t+1 is normally distributed, E

(
1/R W 2

t+1

)
does not exist. The Stein’s lemma

condition E |g ′( f )| < ∞ is violated.
This is not a little technical problem to be swept under the rug. If R W

is normally distributed, it can range from −∞ to ∞, including negative
values. To get a non-positive return on the wealth portfolio, price and con-
sumption must be non-positive. Log utility and 1/c marginal utility blow
up as consumption nears zero. A log utility consumer will never choose a
consumption path with zero or negative consumption. The return on the
wealth portfolio cannot be normally distributed in a log utility economy.

This fact warns us not to apply the approximation derived from the
continuous time model, (9.15), to a long time horizon. We can derive a
CAPM-like relation for log returns, by assuming that the market and each
asset return are jointly log normally distributed. The horizon should be short
enough that the distinction between log and actual returns is small.

Similarly, even though we can approximate a nonlinear discount factor
model—(ct+1/ct )

−γ or 1/R W
t+1—by a linear discount factor model for short

time horizons, it would be a mistake to do so for longer time horizons, or
to discount a stream of dividends. a − bR W becomes a worse and worse
approximation to 1/R W . In particular, the former can become negative
while the latter does not. The point of Rubinstein (1976), in fact, was not to
derive a log utility CAPM, but to advocate the nonlinear model m = 1/R W

as a good way to use the CAPM for arbitrage-free multiperiod discounting.

9.2 Intertemporal Capital Asset Pricing Model (ICAPM)

Any ‘‘state variable’’ zt can be a factor. The ICAPM is a linear factor model
with wealth and state variables that forecast changes in the distribution of
future returns or income.

The ICAPM generates linear discount factor models

m t+1 = a + b ′ft+1

in which the factors are ‘‘state variables’’ for the investor’s consumption-
portfolio decision.
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The ‘‘state variables’’ are the variables that determine how well the
investor can do in his maximization. Current wealth is obviously a state
variable. Additional state variables describe the conditional distribution of
asset returns the agent will face in the future or ‘‘shifts in the investment
opportunity set.’’ In multiple-good or international models, relative price
changes are also state variables.

Optimal consumption is a function of the state variables, ct = g (zt ). We
can use this fact once again to substitute out consumption, and write

m t+1 = β
u ′[g (zt+1)

]
u ′[g (zt )

] .

From here, it is a simple linearization to deduce that the state variables zt+1

will be factors.
Alternatively, the value function depends on the state variables

V (Wt+1, zt+1),

so we can write

m t+1 = β
VW (Wt+1, zt+1)

VW (Wt , zt )
.

(The marginal value of a dollar must be the same in any use, so u ′(ct ) =
VW (Wt , zt ).)

This completes the first step, naming the proxies. To obtain a linear
relation, we can take a Taylor approximation, assume normality and use
Stein’s lemma, or, most conveniently, move to continuous time. Starting
from


t = e−δt VW (Wt , zt )

we have

d
t


t
= −δdt + Wt VWW (Wt , zt )

VW (Wt , zt )

dWt

Wt

+ VWz(Wt , zt )

VW (Wt , zt )
dzt

+ (second derivative terms).

The elasticity of marginal value with respect to wealth is often called the
coefficient of relative risk aversion,

rrat ≡ −WVWW (Wt , zt )

VW (Wt , zt )
.

It captures the investor’s reluctance to take monetary or wealth bets.
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Substituting into the basic pricing equation, we obtain the ICAPM,
which relates expected returns to the covariance of returns with wealth,
and also with the other state variables,

E
dpi

t

pi
t

+ Di
t

pi
t

dt − r f
t dt = rrat E

(
dWt

Wt

dpi
t

pi
t

)
− VWz,t

VW,t
E
(

dz t
dpi

t

pi
t

)
.

From here, it is fairly straightforward to express the ICAPM in terms
of betas rather than covariances, or as a linear discount factor model. Most
empirical work occurs in discrete time; we often simply approximate the
continuous-time result as

Et

(
R i

t+1

)− R f
t ≈ rrat covt

(
R i

t+1,�Wt+1/Wt

)+ λzt covt

(
R i

t+1,�zt+1

)
.

We can substitute covariance with the wealth portfolio in place of
covariance with wealth—shocks to the two are the same—and we can use
factor-mimicking portfolios for the other factors dz as well. The factor-
mimicking portfolios are interesting for portfolio advice as well, as they
give the purest way of hedging against or profiting from state variable risk
exposure.

This short presentation does not do justice to the beauty of Merton’s
portfolio theory and ICAPM. What remains is to actually state the consumer’s
problem and prove that the value function depends on W and z, the state
variables for future investment opportunities, and that the optimal port-
folio holds the market and hedge portfolios for the investment opportunity
variables. Working this out is not vacuous. For example, we saw that the log
utility CAPM holds even with time-varying investment opportunities. Thus
the ICAPM will only work if the utility curvature parameter is not equal
to one.

9.3 Comments on the CAPM and ICAPM

Conditional vs. unconditional models.
Do they price options?
Why bother linearizing?
The wealth portfolio.
The implicit consumption-based model, and ignored predictions.
Portfolio intuition and recession state variables.

A look at the formal derivations of the models should allow us to under-
stand their empirical application and to understand, if not settle, common
controversies.
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Is the CAPM Conditional or Unconditional?
Is the CAPM a conditional or an unconditional factor model? That is, are the
parameters a and b in m = a − bR W constants, or do they change at each
time period, as conditioning information changes? We saw in Chapter 8
that a conditional CAPM does not imply an unconditional CAPM. If con-
ditional, additional steps must be taken to say anything about observed
average returns and empirical failures might just come from conditioning
information.

The two-period quadratic utility-based derivation results in a conditional
CAPM, since the parameters at and bt in equation (9.4), change over time.
Also we know from equation (8.3) that at and bt must vary over time if the
conditional moments of R W , R f vary over time. This two-period investor
chooses a portfolio on the conditional mean-variance frontier, which is not
on the unconditional frontier. The multiperiod quadratic utility CAPM only
holds if returns are i.i.d. so it only holds if there is no difference between
conditional and unconditional models.

On the other hand, the log utility CAPM expressed with the inverse
market return holds both conditionally and unconditionally. There are no
free parameters that can change with conditioning information:

1 = Et

(
1

R W
t+1

R t+1

)
⇔ 1 = E

(
1

R W
t+1

R t+1

)
.

However, it makes additional predictions that can be quickly rejected, which
I will detail below. Furthermore, when we linearize the log utility CAPM, all
the coefficients are again time-varying.

In sum, alternative assumptions give different answers. Whether the
CAPM can be rescued by more careful treatment of conditioning informa-
tion remains an empirical question.

Should the CAPM Price Options?
You may hear the statement ‘‘the CAPM is not designed to price derivative
securities.’’ This statement also depends on which derivation one has in
mind. The quadratic utility CAPM and the log utility CAPM should apply to
all payoffs: stocks, bonds, options, contingent claims, etc. Rubinstein (1976)
shows that the log utility CAPM delivers the Black-Scholes option pricing
formula. However, if we assume normal return distributions to obtain a
linear CAPM in discrete time, we can no longer hope to price options,
since option returns are nonnormally distributed. Even the normal dis-
tribution for regular returns is a questionable assumption. Again, having
looked at the derivations, we see that theory is not decisive on this
point.
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Why Linearize?
Why bother linearizing a model? Why take the log utility model m = 1/R W

which should price any asset, and turn it into m t+1 = at +bt R W
t+1 that loses the

clean conditioning-down property, cannot price nonnormally distributed
payoffs and must be applied at short horizons? The tricks were developed
when it was hard to estimate nonlinear models. It is clear how to estimate a
β and a λ by regressions, but estimating nonlinear models used to be a big
headache. Now, GMM has made it easy to estimate and evaluate nonlinear
models. Thus, in my opinion, linearization is not that important anymore.
If the nonlinear model makes important predictions or simplifications that
are lost on linearizing, there is no reason to lose those features.

What about the Wealth Portfolio?
The log utility derivation makes clear just how expansive is the concept of
the wealth portfolio. To own a (share of the) consumption stream, you have
to own not only all stocks, but all bonds, real estate, privately held capital,
publicly held capital (roads, parks, etc.), and human capital—a nice word
for ‘‘people.’’ Clearly, the CAPM is a poor defense of common proxies such
as the value-weighted NYSE portfolio. And keep in mind that since it is
easy to find ex post mean-variance efficient portfolios of any subset of assets
(like stocks) out there, taking the theory seriously is our only guard against
fishing.

Implicit Consumption-Based Models
Many users of alternative models clearly are motivated by a belief that the
consumption-based model does not work, no matter how well measured
consumption might be. This view is not totally unreasonable; perhaps trans-
actions costs de-link consumption and asset returns at high frequencies, and
the perfect risk-sharing behind the use of aggregate consumption has always
seemed extreme.

However, the derivations make clear that the CAPM and ICAPM are
not alternatives to the consumption-based model; they are special cases of
that model. In each case mt+1 = βu ′(ct+1)/u ′(ct ) still operates. We just
added assumptions that allowed us to substitute other variables in place
of ct . You cannot adopt the CAPM on the belief that the consumption-based
model is wrong. If you think the consumption-based model is fundamen-
tally wrong, the economic justification for the alternative factor models
evaporates as well.

Now that we have seen the derivations, the only consistent motivation for
factor models is a belief that consumption data are unsatisfactory. However,
while asset return data are well measured, it is not obvious that the S&P500
or other portfolio returns are terrific measures of the return to total wealth.
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‘‘Macro factors’’ used by Chen, Roll, and Ross (1986) and others are distant
proxies for the quantities they want to measure, and macro factors based
on other NIPA aggregates (investment, output, etc.) suffer from the same
measurement problems as aggregate consumption.

In large part, the ‘‘better performance’’ of the CAPM and ICAPM rel-
ative to consumption-based models comes from throwing away content.
Again, m t+1 = δu ′(ct+1)/u ′(ct ) is there in any CAPM or ICAPM. The CAPM
and ICAPM do make predictions concerning consumption data, and these
predictions are often wildly implausible, not only of admittedly poorly mea-
sured aggregate consumption data but of any imaginable perfectly measured
individual consumption data as well.

For example, the log utility CAPM predicts

R W
t+1 = 1

β

ct+1

ct
. (9.16)

Equation (9.16) implies that the standard deviation of the wealth port-
folio return equals the standard deviation of consumption growth. The
standard deviation of stock returns is about 16%, that of measured con-
sumption growth is only 1%, and it is inconceivable that perfectly measured
consumption varies 16 times more.

Worse, equation (9.16) links consumption with returns ex post as well as
ex ante. The wealth portfolio return is high, ex post , when consumption is
high. This holds at every frequency: If stocks go up between 12:00 and 1:00, it
must be because (on average) we all decided to have a big lunch. This seems
silly. Aggregate consumption and asset returns are likely to be de-linked at
high frequencies, but how high (quarterly?) and by what mechanism are
important questions to be answered. In any case, this is another implication
of the log utility CAPM that is just thrown out.

All of the models make further predictions, including the size of the
factor risk premia λ, the magnitude of the risk-free rate, or predictions about
prices (p/c = constant for the log utility CAPM) that are conventionally
ignored when ‘‘testing’’ them.

In sum, the poor performance of the consumption-based model is an
important nut to chew on, not just a blind alley or failed attempt that we
can safely disregard and go on about our business.

Identity of State Variables
The ICAPM does not tell us the identity of the state variables zt , and many
authors use the ICAPM as an obligatory citation to theory on the way to using
factors composed of ad hoc portfolios, leading Fama (1991) to character-
ize the ICAPM as a ‘‘fishing license.’’ The ICAPM really is not quite such an
expansive license. One could do a lot to insist that the factor-mimicking port-
folios actually are the projections of some identifiable state variables on the
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space of returns, and one could do a lot to make sure the candidate state vari-
ables really are plausible state variables for an explicitly stated optimization
problem. For example, one could check that investment--opportunity-set
state variables actually do forecast something. The fishing license comes as
much from habits of applying the theory as from the theory itself.

On the other hand, the conventions of empirical work may be healthy.
The CAPM and multiple factor models are obviously very artificial. Their
central place really comes from a long string of empirical successes rather
than theoretical purity. Perhaps researchers are wise to pick and choose
implications of what are, after all, stylized quantitative parables.

Portfolio Intuition and Recession State Variables
I have derived the factor models as instances of the consumption-based
model, tricks for substituting consumption out of the discount factor. The
more traditional portfolio approach to multifactor models gives a lot of
useful intuition, which helps to explain why the CAPM and successor fac-
tor models have been so compelling for so long despite the artificiality of
these formal derivations. The traditional intuition looks past consumption
to think directly about its determinants in sources of income or news.

Start at a portfolio R W . Now, think about changing the port-
folio—adding ε more R i and ε less R f . This modification raises the mean
portfolio return by εE (R i − R f ). This change also raises the variance of the
portfolio return to

σ 2(R W + ε(R i − R f )) = σ 2(R W )+ 2εcov(R W , R i)+ ε2var(R i).

Thus, for small ε (we’re really taking a derivative here), this modification
raises the portfolio variance by 2εcov(R W , R i).

This is the central insight. The covariance (or beta) of R i with R W measures
how much a marginal increase in R i affects the portfolio variance. I highlight
portfolio variance. Modern asset pricing starts when we realize that investors
care about portfolio returns, not about the behavior of specific assets.

The benefit of the portfolio change is the increased portfolio mean
return, εE (R i − R f ). The cost of the change is the increased portfolio
variance, 2εcov(R W , R i). At an optimum, the cost-benefit tradeoff must be
the same for each asset. Thus, at an optimum, mean excess returns must
be proportional to the covariance of returns with the investor’s portfolio,
or beta.

The ICAPM adds long investment horizons and time-varying investment
opportunities to this picture. An investor with a long horizon (and utility
more curved than log) is unhappy when news comes that future returns
are lower, because his long-term wealth or consumption will be lower. He
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will thus prefer stocks that do well on such news, hedging the reinvest-
ment risk. Demanding more of such stocks, investors raise their prices and
depress their expected returns for a given market beta. Thus, equilibrium
expected returns depend on covariation with news of future returns, as well
as covariation with the current market return. The ICAPM remained on the
theoretical shelf for 20 years mostly because it took that long to accumulate
empirical evidence that returns are, in fact, predictable.

Most current theorizing and empirical work, while citing the ICAPM,
really considers another source of additional risk factors: Investors have jobs.
Or they own houses and shares of small businesses. The CAPM and ICAPM
simplify matters by assuming pure (retired) investors who sit on a pile of
wealth, all invested in stocks or bonds. Alternatively, these models assume
leisure and consumption are separable and that all sources of income includ-
ing labor income correspond to traded securities. For this reason, the only
risk in the CAPM is the market return, and the only state variables in the
ICAPM are those that forecast future market returns.

People with jobs will prefer stocks that don’t fall in recessions. Demand-
ing such stocks, they drive up prices and drive down expected returns.
Thus, expected returns may depend on additional betas that capture labor
market conditions, house values, fortunes of small businesses, or other non-
marketed assets. Yet these state variables need not forecast returns on any
traded assets—this is not the ICAPM. Much current empirical work seems
to be headed towards additional state variables of this type for ‘‘distress,’’
‘‘recession,’’ etc. However, I know of no famous paper or name to cite for
this idea, perhaps because at this point its theoretical content is so obvious.

It is crucial that the extra factors affect the average investor. If an event
makes investor A worse off and investor B better off, then investor A buys
assets that do well when the event happens, and investor B sells them. They
transfer the risk of the event, but the price or expected return of the asset
is unaffected. For a factor to affect prices or expected returns, the average
investor must be affected by it. We should expect many factors, common
movements in returns, that do not carry risk prices. Industry portfolios seem
to be an example; industries move together but average returns do not vary
by industry once you control for other betas.

As you can see, this traditional intuition is encompassed by consump-
tion, or marginal utility more generally. Bad labor market outcomes or bad
news about future returns are bad news that raise the marginal utility of
wealth, which equals the marginal utility of consumption. The promise
of the consumption-based model was that it would give us a single indi-
cator that captures all of these general-equilibrium determinants. It still
does, theoretically, but not (yet) in empirical practice.
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9.4 Arbitrage Pricing Theory (APT)

The APT: If a set of asset returns are generated by a linear factor model,

R i = E (R i)+
N∑

j=1

βij ˜f j + εi ,

E (εi) = E (εi ˜f j ) = 0.

Then (with additional assumptions) there is a discount factor m linear in the
factors m = a + b ′f that prices the returns.

The APT, developed by Ross (1976a), starts from a statistical characteri-
zation. There is a big common component to stock returns: when the market
goes up, most individual stocks also go up. Beyond the market, groups of
stocks move together, such as computer stocks, utilities, small stocks, value
stocks, and so forth. Finally, each stock’s return has some completely idiosyn-
cratic movement. This is a characterization of realized returns, outcomes, or
payoffs. The point of the APT is to start with this statistical characterization
of outcomes, and derive something about expected returns or prices.

The intuition behind the APT is that the completely idiosyncratic move-
ments in asset returns should not carry any risk prices, since investors can
diversify idiosyncratic returns away by holding portfolios. Therefore, risk
prices or expected returns on a security should be related to the security’s
covariance with the common components or ‘‘factors’’ only.

The job of this section is then (1) to describe a mathematical model of
the tendency for stocks to move together, and thus to define the ‘‘factors’’
and residual idiosyncratic components, and (2) to think carefully about
what it takes for the idiosyncratic components to have zero (or small) risk
prices, so that only the common components matter to asset pricing.

There are two lines of attack for the second item. (1) If there were no
residual, then we could price securities from the factors by arbitrage (really,
by the law of one price). Perhaps we can extend this logic and show that
if the residuals are small , they must have small risk prices. (2) If investors
all hold well-diversified portfolios, then only variations in the factors drive
consumption and hence marginal utility.

Much of the original appeal of the APT came from the first line of attack,
the idea that we could derive pricing implications without the economic
structure required of the CAPM, ICAPM, or any other model derived as a
specialization of the consumption-based model. In this section, I will first try
to see how far we can in fact get with purely law of one price arguments. I will
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conclude that the answer is, ‘‘not very far,’’ and that the most satisfactory
argument for the APT must rely on some economic restrictions.

Factor Structure in Covariance Matrices

I define and examine the factor decomposition

xi = ai + β ′
i f + εi , E (εi) = 0, E ( f εi) = 0.

The factor decomposition is equivalent to a restriction on the payoff covari-
ance matrix.

The APT models the tendency of asset payoffs (returns) to move
together via a statistical factor decomposition

xi = ai +
M∑

j=1

βij fj + εi = ai + β ′
i f + εi . (9.17)

The fj are the factors, the βij are the betas or factor loadings, and the εi are
residuals. As usual, I use the same letter without subscripts to denote a vector,
for example f = [

f1 f2 . . . fK

]′
. A discount factor m, pricing factors f in

m = b ′f , and this factor decomposition (or factor structure) for returns are totally
unrelated uses of the word ‘‘factor.’’ The APT is conventionally written with
xi = returns, but it ends up being much less confusing to use prices and
payoffs.

It is a convenient and conventional simplification to fold the factor
means into the first, constant, factor and write the factor decomposition
with zero-mean factors ˜f ≡ f − E ( f ),

xi = E (xi)+
M∑

j=1

βij ˜f j + εi . (9.18)

Remember that E (xi) is still just a statistical characterization, not a predic-
tion of a model.

We can construct the factor decomposition as a regression equation.
Define the βij as regression coefficients, and then the εi are uncorrelated
with the factors by construction,

E (εi) = 0; E (εi ˜f j ) = 0.
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The content—the assumption that keeps (9.18) from describing any arbi-
trary set of payoffs—is an assumption that the εi are uncorrelated with each
other ,

E (εiεj ) = 0.

(More general versions of the model allow some limited correlation across
the residuals but the basic story is the same.)

The factor structure is thus a restriction on the covariance matrix of
payoffs. For example, if there is only one factor, then

cov(xi , xj ) = E [(βi ˜f + εi)(βj ˜f + εj )] = βiβjσ
2( f )+

{
σ 2
εi if i = j ,

0 if i �= j .

Thus, with N = number of securities, the N (N −1)/2 elements of a variance-
covariance matrix are described by N betas and N + 1 variances. A vector
version of the same thing is

cov(x , x ′) = ββ ′σ 2( f )+

⎡
⎢⎢⎣
σ 2

1 0 0

0 σ 2
2 0

0 0
. . .

⎤
⎥⎥⎦ .

With multiple (orthogonalized) factors, we obtain

cov(x , x ′) = β1β
′
1σ

2( f1)+ β2β
′
2σ

2( f2)+ · · · + (diagonal matrix).

In all these cases, we describe the covariance matrix as a singular matrix ββ ′

(or a sum of a few such singular matrices) plus a diagonal matrix.
If we know the factors we want to use ahead of time, say the market

(value-weighted portfolio) and industry portfolios, or size and book/market
portfolios, we can estimate a factor structure by running regressions. Often,
however, we do not know the identities of the factor portfolios ahead of
time. In this case we have to use one of several statistical techniques under
the broad heading of factor analysis (that is where the word ‘‘factor’’ came
from in this context) to estimate the factor model. One can estimate a
factor structure quickly by simply taking an eigenvalue decomposition of
the covariance matrix, and then setting small eigenvalues to zero.

Exact Factor Pricing

With no error term,
xi = E (xi)1 + β ′

i
˜f

implies
p(xi) = E (xi)p(1)+ β ′

i p( ˜f )
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and thus

m = a + b ′f , p(xi) = E (mxi), E (R i) = R f + β ′
iλ,

using only the law of one price.

Suppose that there are no idiosyncratic terms εi . This is called an exact
factor model. Now look again at the factor decomposition,

xi = E (xi)1 + β ′
i
˜f . (9.19)

It started as a statistical decomposition. But it also says that the payoff xi can
be synthesized as a portfolio of the factors and a constant (risk-free payoff).
Thus, the price of xi can only depend on the prices of the factors f ,

p(xi) = E (xi)p(1)+ β ′
i p( ˜f ). (9.20)

The law of one price assumption lets you take prices of right and left sides.
If the factors are returns, their prices are 1. If the factors are not returns,

their prices are free parameters which can be picked to make the model fit
as well as possible. Since there are fewer factors than payoffs, this procedure
is not vacuous.

We are really done, but the APT is usually stated as ‘‘there is a discount
factor linear in f that prices returns R i ,’’ or ‘‘there is an expected return-beta
representation with f as factors.’’ Therefore, we should take a minute to show
that the rather obvious relationship (9.20) between prices is equivalent to
discount factor and expected return statements.

Assuming only the law of one price, we know there is a discount factor
m linear in factors that prices the factors. We usually call it x∗, but call it
f ∗ here to remind us that it prices the factors. If the discount factor prices
the factors, it must price any portfolio of the factors; hence f ∗ prices all
payoffs xi that follow the factor structure (9.19). To see the point explic-
itly, denote f̂ = [

1 ˜f ]′ the factors including the constant. As with x∗,
f ∗ = p( f̂ )′E ( f̂ f̂ ′)−1 f̂ = a + b ′f satisfies p( f̂ ) = E ( f ∗ f̂ ) and p(1) = E ( f ∗).

We could now go from m linear in the factors to an expected return-
beta model using the connections between the two representations outlined
in Chapter 6. But there is a more direct and elegant connection. Start
with (9.20), specialized to returns xi = R i and of course p(R i) = 1. Use
p(1) = 1/R f and solve for expected return as

E (R i) = R f + β ′
i

[− R f p( ˜f )] = R f + β ′
iλ.

The last equality defines λ. Expected returns are linear in the betas, and
the constants (λ) are related to the prices of the factors. This is the same
definition of λ that we arrived at in Chapter 6 connecting m = b ′f to
expected return-beta models.
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Approximate APT Using the Law of One Price

Attempts to extend the exact factor pricing model to an approximate
factor pricing model when errors are ‘‘small,’’ or markets are ‘‘large,’’ still
only using law of one price.

For fixed m, the APT gets better and better as R 2 or the number of assets
increases.

However, for any fixed R 2 or size of market, the APT can be arbitrarily bad.
These observations mean that we must go beyond the law of one price to

derive factor pricing models.

Actual returns do not display an exact factor structure. There is some
idiosyncratic or residual risk; we cannot exactly replicate the return of a
given stock with a portfolio of a few large factor portfolios. However, the
idiosyncratic risks are often small. For example, factor model regressions of
the form (9.17) often have very high R 2, especially when portfolios rather
than individual securities are on the left-hand side. And the residual risks are
still idiosyncratic: Even if they are a large part of an individual security’s vari-
ance, they should be a small contribution to the variance of well-diversified
portfolios. Thus, there is reason to hope that the APT holds approximately,
especially for reasonably large portfolios. Surely, if the residuals are ‘‘small’’
and/or ‘‘idiosyncratic,’’ the price of an asset cannot be ‘‘too different’’ from
the price predicted from its factor content?

To think about these issues, start again from a factor structure, but this
time put in a residual,

xi = E (xi)1 + β ′
i
˜f + εi .

Again take prices of both sides,

p(xi) = E (xi)p(1)+ β ′
i p( ˜f )+ E (mεi).

Now, what can we say about the price of the residual p(εi) = E (mεi)?
Figure 9.1 illustrates the situation. Portfolios of the factors span a payoff

space, the line from the origin through β ′
i f in the figure. The payoff we want

to price, xi , is not in that space, since the residual εi is not zero. A discount
factor f ∗ that is in the f payoff space prices the factors. The set of all discount
factors that price the factors is the line m perpendicular to f ∗. The residual
εi is orthogonal to the factor space, since it is a regression residual, and to
f ∗ in particular, E ( f ∗εi) = 0. This means that f ∗ assigns zero price to the
residual. But the other discount factors on the m line are not orthogonal
to εi , so generate nonzero price for the residual εi . As we sweep along the
line of discount factors m that price the f , in fact, we generate every price
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Figure 9.1. Approximate arbitrage pricing.

from −∞ to ∞ for the residual. Thus, the law of one price does not nail
down the price of the residual εi and hence does not determine the price
or expected return of xi .

Limiting Arguments
We would like to show that the price of xi has to be ‘‘close to’’ the price of
β ′

i f . One notion of ‘‘close to’’ is that in some appropriate limit the price of
xi converges to the price of β ′

i f . ‘‘Limit’’ means, of course, that you can get
arbitrarily good accuracy by going far enough in the direction of the limit
(for every ε > 0 there is a δ . . .). Thus, establishing a limit result is a way to
argue for an approximation.

Here is one theorem that seems to imply that the APT should be a
good approximation for portfolios that have high R 2 on the factors. I state
the argument for the case that there is a constant factor, so the constant
is in the f space and E (εi) = 0. The same ideas work in the less usual
case that there is no constant factor, using second moments in place of
variance.

Theorem: Fix a discount factor m that prices the factors. Then, as var(εi)→ 0,
p(xi) → p(β ′

i f ).

This is easiest to see by just looking at the graph. E (εi) = 0 so var(εi) =
E (εi2) = ‖εi‖2. Thus, as the size of the εi vector in Figure 9.1 gets smaller, xi

gets closer and closer to β ′
i f . For any fixed m, the induced pricing function

(lines perpendicular to the chosen m) is continuous. Thus, as xi gets closer
and closer to β ′

i f , its price gets closer and closer to p(β ′
i f ).

The factor model is defined as a regression, so

var(xi) = var(β ′
i f )+ var(εi).
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Thus, the variance of the residual is related to the regression R 2,

var(εi)

var(xi)
= 1 − R 2.

The theorem says that as R 2 → 1, the price of the residual goes to zero.
We were hoping for some connection between the fact that the risks are

idiosyncratic and factor pricing. Even if the idiosyncratic risks are a large part
of the payoff at hand, they are a small part of a well-diversified portfolio.
The next theorem shows that portfolios with high R 2 do not have to happen
by chance; well-diversified portfolios will always have this characteristic.

Theorem: As the number of primitive assets increases, the R 2 of well-diversified
portfolios increases to 1.

Proof: Start with an equally weighted portfolio

xp = 1
N

N∑
i=1

xi .

Going back to the factor decomposition (9.17) for each individual asset
xi , the factor decomposition of xp is

xp = 1
N

N∑
i=1

(
ai + β ′

i f + εi
) = 1

N

N∑
i=1

ai + 1
N

N∑
i=1

β ′
i f + 1

N

N∑
i=1

εi

= ap + β
′
p f + εp .

The last equality defines notation αp ,βp , εp . But

var(εp) = var
(

1
N

N∑
i=1

εi

)
.

So long as the variance of εi is bounded, and given the factor assumption
E (εiεj ) = 0,

lim
N →∞

var(εp) = 0.

Obviously, the same idea goes through so long as the portfolio spreads
some weight on all the new assets, i.e., so long as it is ‘‘well diversified.’’ �

These two theorems can be interpreted to say that the APT holds
approximately (in the usual limiting sense) for either portfolios that nat-
urally have high R 2, or well-diversified portfolios in large enough markets.
(Chamberlain and Rothschild (1983) is a classic treatment.) We have only
used the law of one price.
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Law of One Price Arguments Fail
Now, let me pour some cold water on these results. I fixed m and then let
other things take limits. The flip side is that for any nonzero residual εi , no
matter how small, we can pick a discount factor m that prices the factors and
assigns any price to xi ! As often in mathematics, the order of ‘‘for all’’ and
‘‘there exists’’ matters a lot.

Theorem: For any nonzero residual εi , there is a discount factor that prices the factors
f (consistent with the law of one price) and that assigns any desired price in (−∞, ∞)

to the payoff x i .

So long as ‖εi‖ > 0, as we sweep the choice of m along the dashed line
of figure 9.1, the inner product of m with εi and hence xi varies from −∞
to ∞. Thus, for a given size R 2 < 1, or a given finite market, the law of
one price says absolutely nothing about the prices of payoffs that do not
exactly follow the factor structure. The law of one price says that two ways of
constructing the same portfolio must give the same price. If the residual is
not exactly zero, there is no way of replicating the payoff xi from the factors
and no way to infer anything about the price of xi from the price of the
factors.

I think the contrast between this theorem and those of the last subsec-
tion accounts for most of the huge theoretical controversy over the APT.
(For example, Shanken [1985], Dybvig and Ross [1985].) If you fix m and
take limits of N or ε, the APT gets arbitrarily good. But if you fix N or ε, as
one does in any application, the APT can get arbitrarily bad as you search
over possible m.

The lesson I learn is that the effort to extend prices from an original set of
securities ( f in this case) to new payoffs that are not exactly spanned by the
original set of securities, using only the law of one price, is fundamentally
doomed. To extend a pricing function, you need to add some restrictions
beyond the law of one price.

Beyond the Law of One Price: Arbitrage and Sharpe Ratios

We can find a well-behaved approximate APT if we impose the law of one
price and a restriction on the volatility of discount factors, or, equivalently,
a bound on the Sharpe ratio achievable by portfolios of the factors and test
assets.

The approximate APT based on the law of one price fell apart because
we could always choose a discount factor sufficiently ‘‘far out’’ to gener-
ate an arbitrarily large price for an arbitrarily small residual. But those
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discount factors are surely ‘‘unreasonable.’’ Surely, we can rule them out,
reestablishing an approximate APT, without jumping all the way to fully
specified discount factor models such as the CAPM or consumption-based
model.

A natural first idea is to impose the no-arbitrage restriction that m
must be positive. Graphically, we are now restricted to the solid m line in
Figure 9.1. Since that line only extends a finite amount, restricting us to
strictly positive m ′s gives rise to finite upper and lower arbitrage bounds on
the price of εi and hence xi . (The phrase arbitrage bounds comes from option
pricing, and we will see these ideas again in that context. If this idea worked,
it would restore the APT to ‘‘arbitrage pricing’’ rather than ‘‘law of one
pricing.’’)

Alas, in applications of the APT (as often in option pricing), the
arbitrage bounds are too wide to be of much use. The positive discount
factor restriction is equivalent to saying ‘‘if portfolio A gives a higher pay-
off than portfolio B in every state of nature , then the price of A must be
higher than the price of B.’’ Since stock returns and factors are continu-
ously distributed, not two-state distributions as I have graphed for Figure 9.1,
there typically are no strictly dominating portfolios, so adding m > 0 does
not help.

A second restriction does let us derive an approximate APT that is useful
in finite markets with R 2 < 1. We can restrict the variance and hence the
size (‖m‖ = E (m2) of the discount factor. Figure 9.1 includes a plot of the
discount factors with limited variance, size, or length in the geometry of that
figure. The restricted range of discount factors produces a restricted range
of prices for xi . The restricted range of discount factors gives us upper and
lower price bounds for the price of xi in terms of the factor prices. Precisely,
the upper and lower bounds solve the problem

min
{m}

(or max
{m}

) p(xi) = E (mxi) s.t. E (mf ) = p( f ), m ≥ 0, σ 2(m) ≤ A.

Limiting the variance of the discount factor is of course the same as lim-
iting the maximum Sharpe ratio (mean/standard deviation of excess return)
available from portfolios of the factors and xi . Recall from Chapter 1 that

E (R e )

σ (R e )
≤ σ(m)

E (m)
.

Though a bound on Sharpe ratios or discount factor volatility is not a totally
preference-free concept, it clearly imposes a great deal less structure than
the CAPM or ICAPM which are essentially full general-equilibrium models.
Ross (1976a) included this suggestion in his original APT paper, though
it seems to have disappeared from the literature since then in the failed
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effort to derive an APT from the law of one price alone. Ross pointed out
that deviations from factor pricing could provide very high Sharpe ratio
opportunities, which seem implausible though not violations of the law of
one price. Saá-Requejo and I (2000) dub this idea ‘‘good-deal’’ pricing, as
an extension of ‘‘arbitrage pricing.’’ Limiting σ(m) rules out ‘‘good deals’’
as well as pure arbitrage opportunities.

Having imposed a limit on discount factor volatility or Sharpe ratio A,
then the APT limit does work, and does not depend on the order of ‘‘for
all’’ and ‘‘there exists.’’

Theorem: As εi → 0 and R 2 → 1, the price p(xi) assigned by any discount factor
m that satisfies E (mf ) = p( f ), m ≥ 0, σ 2(m) ≤ A approaches p(β ′

i f ).

9.5 APT vs. ICAPM

A factor structure in the covariance of returns or high R 2 in regressions of
returns on factors can imply factor pricing (APT) but factors can price returns
without describing their covariance matrix (ICAPM).

Differing inspiration for factors.
The disappearance of absolute pricing.

The APT and ICAPM stories are often confused. Factor structure can
imply factor pricing (APT), but factor pricing does not require a factor
structure. In the ICAPM there is no presumption that factors f in a pricing
model m = b ′f describe the covariance matrix of returns. The factors do not
have to be orthogonal or i.i.d. either. High R 2 in time-series regressions of
the returns on the factors may imply factor pricing (APT), but again are not
necessary (ICAPM). The regressions of returns on factors can have low R 2

in the ICAPM. Factors such as industry may describe large parts of returns’
variances but not contribute to the explanation of average returns.

The biggest difference between APT and ICAPM for empirical work
is in the inspiration for factors. The APT suggests that one start with a
statistical analysis of the covariance matrix of returns and find portfolios
that characterize common movement. The ICAPM suggests that one start
by thinking about state variables that describe the conditional distribution
of future asset returns. More generally, the idea of proxying for marginal
utility growth suggests macroeconomic indicators, and indicators of shocks
to nonasset income in particular.

The difference between the derivations of factor pricing models, and in
particular an approximate law of one price basis versus a proxy for marginal
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utility basis seems not to have had much impact on practice. In practice,
we just test models m = b ′f and rarely worry about derivations. The best
evidence for this view lies in the introductions of famous papers. Chen,
Roll, and Ross (1986) describe one of the earliest popular multifactor mod-
els, using industrial production and inflation as some of the main factors.
They do not even present a factor decomposition of test asset returns, or
the time-series regressions. A reader might well categorize the paper as a
macroeconomic factor model or perhaps an ICAPM, but their introduction
calls it an APT. Fama and French (1993) describe the currently most popular
multifactor model, and their introduction describes it as an ICAPM in which
the factors proxy for state variables. But the factors are portfolios of assets
sorted on size and book/market just like the test assets, the time-series R 2

are all above 90%, and much of the explanation involves ‘‘common move-
ment’’ in test assets captured by the factors. A reader might well categorize
the model as much closer to an APT.

In the preface, I made a distinction between relative pricing and absolute
pricing. In the former, we price one security given the prices of others, while
in the latter, we price each security by reference to fundamental sources
of risk. The factor pricing stories are interesting in that they start with a
nice absolute pricing model, the consumption-based model, and throw out
enough information to end up with relative models. The CAPM prices R i

given the market, but throws out the consumption-based model’s description
of where the market return came from. Though the derivation says the
CAPM should price any asset as an absolute model, everyone knows better
than to test it, say, on options data. The APT is a true relative pricing model.
It pretends to do no more than extend the prices of factor portfolios to
‘‘nearby’’ securities.

Problems—Chapter 9

1. Suppose the investor only has a one-period horizon. He invests wealth W
at date zero, and only consumes with expected utility Eu(c) = Eu(W )

in period 1. Derive the quadratic utility CAPM in this case. (This is an
even simpler derivation. The Lagrange multiplier on initial wealth W now
becomes the denominator of m in place of u ′(c0).)

2. Figure 9.1 suggests that m > 0 is enough to establish a well-
behaved approximate APT. The text claims this is not true. Which is
right?

3. In this problem, we’ll explore the Arbitrage Pricing Theory. R e is a N-
dimensional vector of excess returns, R ef is a K-dimensional vector of excess
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returns on factor portfolios, K < N . The regression of returns onto factors is

R e = α + β ′R ef + ε.

By construction, we have E (ε) = 0, E (εR ef ′) = 0

(a) Show that if the price of the errors ε is zero, then the APT conclusion
holds,

α = 0, E (R e ) = β ′E (R ef ).

(b) Find the maximum Sharpe ratio you can obtain from portfolios of
R e , R ef , as a function of alphas and the error covariance. Intuitively, if the
alphas are large and covariance of the errors is small, you can obtain large
Sharpe ratios, though not pure arbitrage (law of one price) opportunities.
We can use this argument to assess how small α should be for a given prior
on how large a reasonable Sharpe ratio is.

You can approach this question by brute force, but I’d rather you use
discount factor methods. Exploit the fact that the maximum Sharpe ratio
you can obtain from a set of securities is proportional to the minimum
discount factor volatility among discount factors that price those portfo-
lios, and the minimum variance discount factor is the one in the payoff
space, that is,

max{Rei =w ′Re}
E (R ei)

σ (R ei)
= min{m:p=E (mx)}

σ(m)
E (m)

= σ(m∗)
E (m∗)

.

Assume there is a risk-free rate R f to nail down E (m). This will be easiest
if you exploit the fact that the residuals ε are, by construction, mean zero
and orthogonal to factors. Then you can look for discount factors of the
form

m = 1
R f

+ f ∗ + ε∗,

that is, m = 1
R f + w ′ [R ef − E (R ef )

]+ ω′ε . You will find two terms for the
Sharpe ratio, one involving the Sharpe ratio you can get from trading in
the factors alone, and an additional one that comes from the alphas.

(c) Consider one excess return R e in isolation, and treat the CAPM as
an APT. If β = 1, σ(R em) = 16%, and the maximum extra Sharpe ratio is
0.5 (the market premium), so the total Sharpe ratio should be less than
one, find the maximum alpha given that R 2 in the time-series regression
is 0.8, 0.9, 0.95, 0.99.
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PART II
Estimating and Evaluating

Asset Pricing Models
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Our first task in bringing an asset pricing model to data is to estimate the
free parameters: the β and γ in m = β(ct+1/ct )

−γ , or the b in m = b ′f . Then
we want to evaluate the model. Is it a good model or not? Is another model
better?

Statistical analysis helps us to evaluate a model by providing a distribution
theory for numbers such as parameter estimates that we create from the data.
A distribution theory pursues the following idea: Suppose that we generate
artificial data over and over again from a statistical model. For example, we
could specify that the market return is an i.i.d. normal random variable, and
a set of stock returns is generated by R ei

t = αi + βiR em
t + εi

t . After picking
values for the mean and variance of the market return and the αi ,βi , σ 2(εi),
we could ask a computer to simulate many artificial data sets. We can repeat
our statistical procedure in each of these artificial data sets, and graph the
distribution of any statistic which we have estimated from the real data, i.e.,
the frequency that it takes on any particular value in our artificial data sets.

In particular, we are interested in a distribution theory for the esti-
mated parameters, to give us some sense of how much the data really has to
say about their values; and for the pricing errors, which helps us to judge
whether pricing errors we observe are just bad luck of one particular his-
torical accident or if they indicate a failure of the model. We also will want
to generate distributions for statistics that compare one model to another,
or that provide other interesting evidence, to judge how much sample luck
affects those calculations.

The statistical methods I discuss in this part achieve these ends. They
give methods for estimating free parameters, they provide a distribution
theory for those parameters, and they provide distributions for statistics
that we can use to evaluate models, most often a quadratic form of pricing
errors in the form α̂′V −1α̂.

I start by focusing on the GMM approach. The GMM approach is a natu-
ral fit for a discount factor formulation of asset pricing theories, since we just
use sample moments in the place of population moments. As you will see,
there is no singular ‘‘GMM estimate and test.’’ GMM is a large canvas and a
big set of paints and brushes; a flexible tool for doing all kinds of sensible
(and, unless you are careful, not-so-sensible) things to the data. Then I con-
sider traditional regression tests, naturally paired with expected return-beta
statements of factor models, and their maximum likelihood formalization.
I emphasize the fundamental similarities between these three methods,
as I emphasized the similarity between p = E (mx), expected return-beta
models, and mean-variance frontiers. A concluding chapter highlights some
of the differences between the methods, as I contrasted p = E (mx) and beta
or mean-variance representations of the models.
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10
GMM in Explicit Discount

Factor Models

The basic idea in the GMM approach is very straightforward. The asset
pricing model predicts

E (pt ) = E
[
m(datat+1, parameters) xt+1

]
. (10.1)

The most natural way to check this prediction is to examine sample averages,
i.e., to calculate

1
T

T∑
t=1

pt and
1
T

T∑
t=1

[
m(datat+1, parameters) xt+1

]
. (10.2)

GMM estimates the parameters by making the sample averages in (10.2)
as close to each other as possible. It seems natural, before evaluating a
model, to pick parameters that give it its best chance. GMM then works
out a distribution theory for the estimates. This distribution theory is a
generalization of the simplest exercise in statistics: the distribution of the
sample mean. Then, it suggests that we evaluate the model by looking at
how close the sample averages of price and discounted payoff are to each
other, or equivalently by looking at the pricing errors. GMM gives a sta-
tistical test of the hypothesis that the underlying population means are in
fact zero.
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10.1 The Recipe

Definitions:

ut+1(b) ≡ mt+1(b)xt+1 − pt ,

gT (b) ≡ ET

[
ut (b)

]
,

S ≡
∞∑

j=−∞
E
[
ut (b) ut−j (b)′

]
.

GMM estimate:
b̂ 2 = argminb gT (b)

′ Ŝ−1gT (b).

Standard errors:

var(b̂ 2) = 1
T
(d ′S−1d)−1; d ≡ ∂gT (b)

∂b
.

Test of the model (‘‘overidentifying restrictions’’):

TJT = T min
[
gT (b)

′S−1gT (b)
] ∼ χ 2 (#moments − #parameters).

It is easiest to start our discussion of GMM in the context of an explicit
discount factor model, such as the consumption-based model. I treat the
special structure of linear factor models later. I start with the basic classic
recipe as given by Hansen and Singleton (1982).

Discount factor models involve some unknown parameters as well as
data, so I write mt+1(b) when it is important to remind ourselves of this
dependence. For example, if mt+1 = β(ct+1/ct )

−γ , then b ≡ [β γ ]′. I write
b̂ to denote an estimate when it is important to distinguish estimated from
other values.

Any asset pricing model implies

E (pt ) = E
[
mt+1(b)xt+1

]
. (10.3)

It is easiest to write this equation in the form E (·) = 0,

E
[
mt+1(b)xt+1 − pt

] = 0. (10.4)

x and p are typically vectors; we typically check whether a model for m can
price a number of assets simultaneously. Equations (10.4) are often called
the moment conditions.

It is convenient to define the errors ut (b) as the object whose mean should
be zero,

ut+1(b) = mt+1(b)xt+1 − pt .
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Given values for the parameters b, we could construct a time series on ut

and look at its mean.
Define gT (b) as the sample mean of the ut errors, when the parameter

vector is b in a sample of size T :

gT (b) ≡ 1
T

T∑
t=1

ut (b) = ET

[
ut (b)

] = ET

[
mt+1(b)xt+1 − pt

]
.

The second equality introduces the handy notation ET for sample means,

ET (·) = 1
T

T∑
t=1

(·).

(It might make more sense to denote these estimates Ê and ĝ . However,
Hansen’s T subscript notation is so widespread that doing so would cause
more confusion than it solves.)

The first-stage estimate of b minimizes a quadratic form of the sample
mean of the errors,

b̂1 = argmin{b} gT (b)
′WgT (b)

for some arbitrary matrix W (often, W = I ). This estimate is consistent
and asymptotically normal. You can and often should stop here, as I explain
below.

Using b̂1, form an estimate Ŝ of

S ≡
∞∑

j=−∞
E
[
ut (b) ut−j (b)′

]
. (10.5)

(Below I discuss various interpretations of and ways to construct this esti-
mate.) Form a second-stage estimate b̂ 2 using the matrix Ŝ in the quadratic
form,

b̂ 2 = argminb gT (b)
′ Ŝ−1gT (b).

b̂ 2 is a consistent, asymptotically normal, and asymptotically efficient esti-
mate of the parameter vector b. ‘‘Efficient’’ means that it has the smallest
variance-covariance matrix among all estimators that set different linear
combinations of gT (b) to zero or all choices of weighting matrix W . The
variance-covariance matrix of b̂ 2 is

var(b̂ 2) = 1
T
(d ′S−1d)−1,
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where

d ≡ ∂gT (b)
∂b

or, more explicitly,

d = ET

(
∂

∂b

[
(mt+1(b)xt+1 − pt )

])∣∣∣∣
b=b̂

.

(More precisely, d should be written as the object to which ∂gT /∂b ′ con-
verges, and ∂gT /∂b ′ is an estimate of that object used to form a consistent
estimate of the asymptotic variance-covariance matrix.)

This variance-covariance matrix can be used to test whether a parameter
or group of parameters is equal to zero, via

b̂i√
var(b̂)ii

∼ N (0, 1)

and
b̂j

[
var(b̂)jj

]−1
b̂j ∼ χ 2(#included b)

where bj = subvector, var(b)jj = submatrix.
Finally, the test of overidentifying restrictions is a test of the overall fit of

the model. It states that T times the minimized value of the second-stage
objective is distributed χ 2 with degrees of freedom equal to the number of
moments less the number of estimated parameters:

TJT = T min
{b}
[
gT (b)

′S−1gT (b)
] ∼ χ 2(#moments − #parameters).

10.2 Interpreting the GMM Procedure

gT (b) is a pricing error. It is proportional to α.
GMM picks parameters to minimize a weighted sum of squared pricing

errors.
The second stage picks the linear combination of pricing errors that are

best measured, by having smallest sampling variation. First and second stage
are like OLS and GLS regressions.

The standard error formula can be understood as an application of the
delta method.

The JT test evaluates the model by looking at the sum of squared pricing
errors.
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Pricing Errors
The moment conditions are

gT (b) = ET

[
mt+1(b)xt+1

]− ET

[
pt

]
.

Thus, each moment is the difference between actual (ET (p)) and predicted
(ET (mx)) price, or pricing error. What could be more natural than to pick
parameters so that the model’s predicted prices are as close as possible to
the actual prices, and then to evaluate the model by how large these pricing
errors are?

In the language of expected returns, the moments gT (b) are propor-
tional to the difference between actual and predicted returns: Jensen’s
alphas, or the vertical distance between the points and the line in a graph
of actual vs. predicted average returns such as Figure 2.4. To see this fact,
recall that 0 = E (mR e ) can be translated to a predicted expected return,

E (R e ) = −cov(m, R e )

E (m)
.

Therefore, we can write the pricing error as

g (b) = E (mR e ) = E (m)
(

E (R e )−
(

−cov(m, R e )

E (m)

))

= 1
R f
(actual mean return − predicted mean return).

If we express the model in expected return-beta language,

E (R ei) = αi + β ′
iλ,

then the GMM objective is proportional to the Jensen’s alpha measure of
mis-pricing,

g (b) = 1
R f
αi .

First-Stage Estimates
If we could, we would pick b to make every element of gT (b) = 0—to have
the model price assets perfectly in sample. However, there are usually more
moment conditions (returns times instruments) than there are parameters.
There should be, because theories with as many free parameters as facts
(moments) are vacuous. Thus, we choose b to make the pricing errors gT (b)
as small as possible, by minimizing a quadratic form,

min
{b}

gT (b)
′WgT (b). (10.6)

W is a weighting matrix that tells us how much attention to pay to each
moment, or how to trade off doing well in pricing one asset or linear
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combination of assets versus doing well in pricing another. In the com-
mon case W = I , GMM treats all assets symmetrically, and the objective is
to minimize the sum of squared pricing errors.

The sample pricing error gT (b)may be a nonlinear function of b. Thus,
you may have to use a numerical search to find the value of b that minimizes
the objective in (10.6). However, since the objective is locally quadratic, the
search is usually straightforward.

Second-Stage Estimates: Why S−1?
What weighting matrix should you use? The weighting matrix directs GMM
to emphasize some moments or linear combinations of moments at the
expense of others. You might start with W = I , i.e., try to price all assets
equally well. A W that is not the identity matrix can be used to offset dif-
ferences in units between the moments. You might also start with different
elements on the diagonal of W if you think some assets are more interesting,
more informative, or better measured than others.

The second-stage estimate picks a weighting matrix based on statisti-
cal considerations. Some asset returns may have much more variance than
others. For those assets, the sample mean gT = ET (mt Rt − 1) will be a much
less accurate measurement of the population mean E (mR−1), since the sam-
ple mean will vary more from sample to sample. Hence, it seems like a good
idea to pay less attention to pricing errors from assets with high variance of
mt Rt − 1. One could implement this idea by using a W matrix composed of
inverse variances of ET (mt Rt −1) on the diagonal. More generally, since asset
returns are correlated, one might think of using the covariance matrix of
ET (mt Rt −1). This weighting matrix pays most attention to linear combinations
of moments about which the data set at hand has the most information.
This idea is exactly the same as heteroskedasticity and cross-correlation
corrections that lead you from OLS to GLS in linear regressions.

The covariance matrix of gT = ET (ut+1) is the variance of a sample
mean. Exploiting the assumption that E (ut ) = 0, and that ut is stationary
so E (u1u 2) = E (ut ut+1) depends only on the time interval between the two
u’s, we have

var(gT ) = var

(
1
T

T∑
t=1

ut+1

)

= 1
T 2

[
TE (ut u ′

t )+ (T − 1)
(
E (ut u ′

t−1)+ E (ut u ′
t+1)

)+ · · · ].
As T → ∞, (T − j)/T → 1, so

var(gT ) → 1
T

∞∑
j=−∞

E (ut u ′
t−j ) = 1

T
S .
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The last equality denotes S , known for other reasons as the spectral density
matrix at frequency zero of ut . (Precisely, S so defined is the variance-covariance
matrix of the gT for fixed b. The actual variance-covariance matrix of gT
must take into account the fact that we chose b to set a linear combination
of the gT to zero in each sample. I give that formula below. The point here
is heuristic.)

This fact suggests that a good weighting matrix might be the inverse
of S . In fact, Hansen (1982) shows formally that the choice

W = S−1, S ≡
∞∑

j=−∞
E (ut u ′

t−j ),

is the statistically optimal weighting matrix, meaning that it produces
estimates with lowest asymptotic variance.

You may be familiar with the formula σ(u)/
√

T for the standard devi-
ation of a sample mean. This formula is a special case that holds when the
u ′

t s are uncorrelated over time. If Et (ut u ′
t−j ) = 0, j �= 0, then the previous

equation reduces to

var

(
1
T

T∑
t=1

ut+1

)
= 1

T
E (uu ′) = var(u)

T
.

This is probably the first statistical formula you ever saw—the variance of the
sample mean. In GMM, it is the last statistical formula you will ever see as well.
GMM amounts to just generalizing the simple ideas behind the distribution
of the sample mean to parameter estimation and general statistical contexts.

The first- and second-stage estimates should remind you of standard
linear regression models. You start with an OLS regression. If the errors
are not i.i.d., the OLS estimates are consistent, but not efficient. If you
want efficient estimates, you can use the OLS estimates to obtain a series of
residuals, estimate a variance-covariance matrix of residuals, and then do
GLS. GLS is also consistent and more efficient, meaning that the sampling
variation in the estimated parameters is lower.

Standard Errors
The formula for the standard error of the estimate,

var(b̂ 2) = 1
T
(d ′S−1d)−1, (10.7)

can be understood most simply as an instance of the ‘‘delta method’’ that
the asymptotic variance of f (x) is f ′(x)2 var(x). Suppose there is only one



“chap10” — 2004/9/13 — page 196 — #12

196 10. GMM in Explicit Discount Factor Models

parameter and one moment. S/T is the variance matrix of the moment gT .
d−1 is

[
∂gT /∂b

]−1 = ∂b/∂gT . Then the delta method formula gives

var(b̂ 2) = ∂b
∂gT

var(gT )
∂b
∂gT

.

The actual formula (10.7) just generalizes this idea to vectors.

JT Test

Once you have estimated the parameters that make a model ‘‘fit best,’’ the
natural question is, how well does it fit? It is natural to look at the pricing
errors and see if they are ‘‘big.’’ The JT test asks whether they are ‘‘big’’
by statistical standards—if the model is true, how often should we see a
(weighted) sum of squared pricing errors this big? If not often, the model
is ‘‘rejected.’’ The test is

TJT = T
[
gT (b̂)

′S−1gT (b̂)
] ∼ χ 2(#moments − #parameters).

Since S is the variance-covariance matrix of gT , this statistic is the minimized
pricing errors divided by their variance-covariance matrix. Sample means
converge to a normal distribution, so sample means squared divided by
variance converges to the square of a standard normal, or χ 2.

The reduction in degrees of freedom corrects for the fact that S is really
the covariance matrix of gT for fixed b. We set a linear combination of the
gT to zero in each sample, so the actual covariance matrix of gT is singular,
with rank #moments − #parameters.

10.3 Applying GMM

Notation.
Forecast errors and instruments.
Stationarity and choice of units.

Notation; Instruments and Returns
Most of the effort involved with GMM is simply mapping a given problem
into the very general notation. The equation

E
[
mt+1(b)xt+1 − pt

] = 0
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can capture a lot. We often test asset pricing models using returns, in which
case the moment conditions are

E
[
mt+1(b)Rt+1 − 1

] = 0.

It is common to add instruments as well. Mechanically, you can multiply both
sides of

1 = Et

[
mt+1(b)Rt+1

]
by any variable zt observed at time t before taking unconditional expecta-
tions, resulting in

E (zt ) = E
[
mt+1(b)Rt+1zt

]
.

Expressing the result in E (·) = 0 form,

0 = E
{[

mt+1(b)Rt+1 − 1
]
zt

}
. (10.8)

We can do this for a whole vector of returns and instruments, multiplying
each return by each instrument. For example, if we start with two returns
R = [R aR b]′ and one instrument z, equation (10.8) looks like

E

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

mt+1(b) R a
t+1

mt+1(b) R b
t+1

mt+1(b) R a
t+1zt

mt+1(b) R b
t+1zt

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1
1
zt

zt

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

Using the Kronecker product ⊗ meaning ‘‘multiply every element by every
other element’’ and including the constant 1 as the first element of the
instrument vector zt , we can denote the same relation compactly by

E
{[

mt+1(b) Rt+1 − 1
]⊗ zt

} = 0, (10.9)

or, emphasizing the managed-portfolio interpretation and p = E (mx)
notation,

E
[
mt+1(b)(Rt+1 ⊗ zt )− (1 ⊗ zt )

] = 0.

Forecast Errors and Instruments
The asset pricing model says that, although expected returns can vary
across time and assets, expected discounted returns should always be the
same, 1. The error ut+1 = mt+1Rt+1 − 1 is the ex-post discounted return.
ut+1 = mt+1Rt+1 − 1 represents a forecast error. Like any forecast error, ut+1

should be conditionally and unconditionally mean zero.
In an econometric context, z is an instrument because it should be

uncorrelated with the error ut+1. E (zt ut+1) is the numerator of a regres-
sion coefficient of ut+1 on zt ; thus adding instruments basically checks that
the ex-post discounted return is unforecastable by linear regressions.
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If an asset’s return is higher than predicted when zt is unusually high,
but not on average, scaling by zt will pick up this feature of the data. Then,
the moment condition checks that the discount rate is unusually low at
such times, or that the conditional covariance of the discount rate and asset
return moves sufficiently to justify the high conditionally expected return.
As in Section 8.1, the addition of instruments is equivalent to adding the
returns of managed portfolios to the analysis, and is in principle able to
capture all of the model’s predictions.

Stationarity and Distributions
The GMM distribution theory does require some statistical assumptions.
Hansen (1982) and Ogaki (1993) cover them in depth. The most impor-
tant assumption is that m, p, and x must be stationary random variables.
(‘‘Stationary’’ is often misused to mean constant, or i.i.d. The statistical def-
inition of stationarity is that the joint distribution of xt , xt−j depends only on
j and not on t .) Sample averages must converge to population means as the
sample size grows, and stationarity is necessary for this result.

Assuring stationarity usually amounts to a choice of sensible units. For
example, though we could express the pricing of a stock as

pt = Et

[
mt+1(dt+1 + pt+1)

]
,

it would not be wise to do so. For stocks, p and d rise over time and so
are typically not stationary; their unconditional means are not defined. It is
better to divide by pt and express the model as

1 = Et

[
mt+1

dt+1 + pt+1

pt

]
= Et

(
mt+1Rt+1

)
.

The stock return is plausibly stationary.
Dividing by dividends is an alternative and, I think, underutilized way

to achieve stationarity (at least for portfolios, since many individual stocks
do not pay regular dividends):

pt

dt
= Et

[
mt+1

(
1 + pt+1

dt+1

)
dt+1

dt

]
.

Now we map
(
1 + (pt+1/dt+1)

)
(dt+1/dt ) into xt+1 and pt/dt into pt . This

formulation allows us to focus on prices rather than one-period returns.
Bonds are a claim to a dollar, so bond prices and yields do not grow over

time. Hence, it might be all right to examine

pb
t = E (mt+1 1)

with no transformations.
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Stationarity is not always a clear-cut question in practice. As variables
become ‘‘less stationary,’’ as they experience longer swings in a sample, the
asymptotic distribution can become a less reliable guide to a finite-sample
distribution. For example, the level of nominal interest rates is surely a
stationary variable in a fundamental sense: we have observations near 6%
as far back as ancient Babylon, and it is about 6% again today. Yet it takes
very long swings away from this unconditional mean, moving slowly up or
down for even 20 years at a time. Therefore, in an estimate and test that
uses the level of interest rates, the asymptotic distribution theory might
be a bad approximation to the correct finite-sample distribution theory.
This is true even if the number of data points is large. Ten thousand data
points measured every minute are a ‘‘smaller’’ data set than 100 data points
measured every year. In such a case, it is particularly important to develop
a finite-sample distribution by simulation or bootstrap, which is easy to do
given today’s computing power.

It is also important to choose test assets in a way that is stationary.
For example, individual stocks change character over time, increasing or
decreasing size, exposure to risk factors, leverage, and even nature of the
business. For this reason, it is common to sort stocks into portfolios based on
characteristics such as betas, size, book/market ratios, industry, and so forth.
The statistical characteristics of the portfolio returns may be much more con-
stant than the characteristics of individual securities, which float in and out
of the various portfolios. (One can alternatively include the characteristics
as instruments.)

Many econometric techniques require assumptions about distributions.
As you can see, the variance formulas used in GMM do not include the usual
assumptions that variables are i.i.d., normally distributed, homoskedastic,
etc. You can put such assumptions in if you want to—we will see how below,
and adding such assumptions simplifies the formulas and can improve the
small-sample performance when the assumptions are justified—but you do
not have to add these assumptions.
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GMM: General Formulas

and Applications

Lots of calculations beyond parameter estimation and model testing
are useful in the process of evaluating a model and comparing it to other
models. You still want to understand sampling variation in such calculations,
and mapping the questions into the GMM framework allows you to do this
easily. In addition, alternative estimation and evaluation procedures may be
more intuitive or robust to model misspecification than the two- (or multi-)
stage procedure described in the last chapter.

In this chapter I lay out the general GMM framework, and I discuss
five applications and variations on the basic GMM method. (1) I show
how to derive standard errors of nonlinear functions of sample moments,
such as correlation coefficients. (2) I apply GMM to OLS regressions, eas-
ily deriving standard error formulas that correct for autocorrelation and
conditional heteroskedasticity. (3) I show how to use prespecified weight-
ing matrices W in asset pricing tests in order to overcome the tendency
of efficient GMM to focus on spuriously low-variance portfolios. (4) As a
good parable for prespecified linear combination of moments a, I show
how to mimic ‘‘calibration’’ and ‘‘evaluation’’ phases of real business cycle
models. (5) I show how to use the distribution theory for the gT beyond
just forming the JT test in order to evaluate the importance of individual
pricing errors. The next chapter continues, and collects GMM variations
useful for evaluating linear factor models and related mean-variance frontier
questions.

Many of these calculations amount to creative choices of the aT matrix
that selects which linear combination of moments are set to zero, and
reading off the resulting formulas for variance-covariance matrix of the esti-
mated coefficients, equation (11.4) and variance-covariance matrix of the
moments gT , equation (11.5).

201
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11.1 General GMM Formulas

The general GMM estimate:

aT gT (b̂) = 0.

Distribution of b̂:

T cov(b̂) = (ad)−1aSa ′(ad)−1′.

Distribution of gT (b̂):

T cov
[
gT (b̂)

] = (I − d(ad)−1a)S(I − d(ad)−1a)′.

The ‘‘optimal’’ estimate uses a = d ′S−1. In this case,

T cov(b̂) = (d ′S−1d)−1,

T cov
[
gT (b̂)

] = S − d(d ′S−1d)−1d ′,

and

TJT = TgT (b̂)
′S−1gT (b̂) → χ 2(#moments − #parameters).

An analogue to the likelihood ratio test,

TJT (restricted)− TJT (unrestricted) ∼ χ 2
Number of restrictions.

GMM procedures can be used to implement a host of estimation and
testing exercises. Just about anything you might want to estimate can be
written as a special case of GMM. To do so, you just have to remem-
ber (or look up) a few very general formulas, and then map them into
your case.

Express a model as

E
[
f (x t , b)

] = 0.

Everything is a vector: f can represent a vector of L sample moments, x t

can be M data series, b can be N parameters. f (x t , b) generalizes the errors
ut (b) in the last chapter.

Definition of the GMM Estimate
We estimate parameters b̂ to set some linear combination of sample means
of f to zero,

b̂ : set aT gT (b̂) = 0, (11.1)
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where

gT (b) ≡ 1
T

T∑
t=1

f (x t , b),

and aT is a matrix that defines which linear combination of gT (b) will be set
to zero. This defines the GMM estimate.

If there are as many moments as parameters, you will set each moment
to zero; when there are fewer parameters than moments, (11.1) captures the
natural idea that you will set some moments, or some linear combination of
moments, to zero in order to estimate the parameters.

The minimization of the last chapter is a special case. If you estimate b
by min gT (b)

′WgT (b), the first-order conditions are

∂g ′
T

∂b
WgT (b) = 0,

which is of the form (11.1) with aT = ∂g ′
T
/∂bW . The general GMM proce-

dure allows you to pick arbitrary linear combinations of the moments to set
to zero in parameter estimation.

Standard Errors of the Estimate
Hansen (1982, Theorem 3.1) tells us that the asymptotic distribution of the
GMM estimate is

√
T (b̂ − b) → N [

0, (ad)−1aSa ′(ad)−1′], (11.2)

where

d ≡ E
[
∂f
∂b ′ (x t , b)

]
= ∂gT (b)

∂b ′

(precisely, d is defined as the population moment in the first equality, which
we estimate in sample by the second equality), where

a ≡ plim aT ,

and where

S ≡
∞∑

j=−∞
E
[
f (x t , b), f (xt−j , b)′

]
. (11.3)

In practical terms, this means to use

var(b̂) = 1
T
(ad)−1aSa ′(ad)−1′ (11.4)

as the covariance matrix for standard errors and tests. As in the last chapter,
you can understand this formula as an application of the delta method.



“chap11” — 2004/9/14 — page 204 — #4

204 11. GMM: General Formulas and Applications

Distribution of the Moments
Hansen’s Lemma 4.1 gives the sampling distribution of the moments gT (b):

√
T gT (b̂) → N

[
0, (I − d(ad)−1a)S(I − d(ad)−1a)′

]
. (11.5)

As we have seen, S would be the asymptotic variance-covariance matrix of
sample means, if we did not estimate any parameters. The I −d(ad)−1a terms
account for the fact that in each sample some linear combinations of gT are
set to zero in order to estimate parameters. Thus, this variance-covariance
matrix is singular.

χ 2 Tests
It is natural to use the distribution theory for gT to see if the gT are jointly
‘‘too big.’’ Equation (11.5) suggests that we form the statistic

TgT (b̂)
′
[(

I − d(ad)−1a
)
S
(
I − d(ad)−1a

)′]−1
gT (b̂) (11.6)

A sum of squared standard normals is distributed χ 2. So this statistic should
have a χ 2 distribution. It does, but with a hitch: The variance-covariance
matrix is singular, so you have to pseudo-invert it. For example, you can
perform an eigenvalue decomposition

∑ = Q�Q ′ and then invert only
the nonzero eigenvalues. Also, the χ 2 distribution has degrees of freedom
given by the number of nonzero linear combinations of gT , the number of
moments less the number of estimated parameters.

Efficient Estimates
The theory so far allows us to estimate parameters by setting any linear
combination of moments to zero. Hansen shows that one particular choice
is statistically optimal,

a = d ′S−1. (11.7)

This choice is the first-order condition to min{b} gT (b)
′S−1gT (b) that we stud-

ied in the last chapter. With this weighting matrix, the standard error
formula (11.4) reduces to

√
T (b̂ − b) → N [

0, (d ′S−1d)−1
]
. (11.8)

This is Hansen’s Theorem 3.2. The sense in which (11.7) is ‘‘efficient’’ is
that the sampling variation of the parameters for arbitrary a matrix, (11.4),
equals the sampling variation of the ‘‘efficient’’ estimate in (11.8) plus a
positive semidefinite matrix. Thus, it is ‘‘efficient’’ in the class of estimates
that set different linear combinations of the moments gT to zero. Estimators
based on other moments may be more efficient still.
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With the optimal weights (11.7), the variance of the moments (11.5)
simplifies to

cov(gT ) = 1
T

(
S − d(d ′S−1d)−1d ′). (11.9)

We can use this matrix in a test of the form (11.6). However, Hansen’s
Lemma 4.2 tells us that there is an equivalent and simpler way to construct
this test,

TgT (b̂)
′S−1gT (b̂) → χ 2(#moments − #parameters). (11.10)

This result is nice since we get to use the already-calculated and
nonsingular S−1.

To derive (11.10), factor S = CC ′ and then find the asymptotic
covariance matrix of C −1gT (b̂) using (11.5). The result is

var
[√

T C −1gT (b̂)
]

= I − C −1d(d ′S−1d)−1d ′C −1′.

This is an idempotent matrix of rank #moments − #parameters, so (11.10)
follows.

Alternatively, note that S−1 is a pseudo-inverse of the second stage
cov(gT ) (a pseudo-inverse times cov(gT ) should result in an idempotent
matrix of the same rank as cov(gT )),

S−1cov(gT ) = S−1
(
S − d(d ′S−1d)−1d ′) = I − S−1d(d ′S−1d)−1d ′.

Then, check that the result is idempotent,
(
I − S−1d(d ′S−1d)−1d ′)(I − S−1d(d ′S−1d)−1d ′) = I − S−1d(d ′S−1d)−1d ′.

This derivation not only verifies that JT has the same distribution as
g ′

T
cov(gT )

−1gT , but that they are numerically the same in every sample.
I emphasize that (11.8) and (11.10) only apply to the ‘‘optimal’’ choice

of weights, (11.7). If you use another set of weights, as in a first-stage estimate,
you must use the general formulas (11.4) and (11.5).

Model Comparisons
You often want to compare one model to another. If one model can be
expressed as a special or ‘‘restricted’’ case of the other or ‘‘unrestricted’’
model, we can perform a statistical comparison that looks very much like
a likelihood ratio test. If we use the same S matrix—usually that of the
unrestricted model—the restricted JT must rise. But if the restricted model
is really true, it should not rise ‘‘much.’’ How much?

TJT (restricted)− TJT (unrestricted) ∼ χ 2(# of restrictions).
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This is a ‘‘χ 2 difference’’ test, due to Newey and West (1987a), who call it
the ‘‘D-test.’’

11.2 Testing Moments

How to test one or a group of pricing errors. (1) Use the formula for
var(gT ). (2) A χ 2 difference test.

You may want to see how well a model does on particular moments or
particular pricing errors. For example, the celebrated ‘‘small firm effect’’
states that an unconditional CAPM (m = a + bR W , no scaled factors) does
badly in pricing the returns on a portfolio that always holds the smallest
1/10th or 1/20th of firms in the NYSE. You might want to see whether a
new model prices the small firm returns well. The standard error of pricing
errors also allows you to add error bars to a plot of predicted versus actual
mean returns such as Figure 2.4, or to compute standard errors for other
diagnostics based on pricing errors.

We have already seen that individual elements of gT measure the pricing
errors. Thus, the sampling variation of gT given by (11.5) provides exactly
the standard error we are looking for. You can use the sampling distribution
of gT to evaluate the significance of individual pricing errors, to construct
a t -test (for a single gT , such as small firms) or a χ 2 test (for groups of gT ,
such as small firms ⊗ instruments).

Alternatively, you can use the χ 2 difference approach. Start with a gen-
eral model that includes all the moments, and form an estimate of the
spectral density matrix S . Now set to zero the moments you want to test, and
denote gsT (b) the vector of moments, including the zeros (s for ‘‘smaller’’).
Choose bs to minimize gsT (bs)

′S−1gsT (bs) using the same weighting matrix S .
The criterion will be lower than the original criterion gT (b)

′S−1gT (b), since
there are the same number of parameters and fewer moments. But, if the
moments we want to test truly are zero, the criterion should not be that
much lower. The χ 2 difference test applies,

TgT (b̂)
′S−1gT (b̂)− TgsT (b̂s)S−1gsT (b̂s) ∼ χ 2(#eliminated moments).

Of course, do not fall into the obvious trap of picking the largest of 10
pricing errors and noting it is more than two standard deviations from zero.
The distribution of the largest of 10 pricing errors is much wider than the
distribution of a single one. To use this distribution, you have to pick which
pricing error you are going to test before you look at the data.
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11.3 Standard Errors of Anything by Delta Method

One quick application illustrates the usefulness of the GMM formulas.
Often, we want to estimate a quantity that is a nonlinear function of sample
means,

b = φ[E (x t )] = φ(µ).

In this case, the formula (11.2) reduces to

var(bT ) = 1
T

[
dφ
dµ

]′ ∞∑
j=−∞

cov(x t , x ′
t−j )

[
dφ
dµ

]
. (11.11)

The formula is very intuitive. The variance of the sample mean is the covari-
ance term inside. The derivatives just linearize the function φ near the
true b.

For example, a correlation coefficient can be written as a function of
sample means as

corr(x t , yt ) = E (x t yt )− E (x t )E (yt )√
E (x2

t )− E (x t )2
√

E (y2
t )− E (yt )2

.

Thus, take
µ = [

E (x t ) E (x2
t ) E (yt ) E (y2

t ) E (x t yt )
]′

.

A problem at the end of the chapter asks you to take derivatives and derive
the standard error of the correlation coefficient. One can derive standard
errors for impulse-response functions, variance decompositions, and many
other statistics in this way.

11.4 Using GMM for Regressions

By mapping OLS regressions in to the GMM framework, we derive formu-
las for OLS standard errors that correct for autocorrelation and conditional
heteroskedasticity of the errors. The general formula is

var(β̂) = 1
T

E (x t x ′
t )

−1

⎡
⎣ ∞∑

j=−∞
E (εt x t x ′

t−jεt−j )

⎤
⎦E (x t x ′

t )
−1,

and it simplifies in special cases.

Mapping any statistical procedure into GMM makes it easy to develop an
asymptotic distribution that corrects for statistical problems such as serial
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correlation, and conditional heteroskedasticity. To illustrate, as well as to
develop the very useful formulas, I map OLS regressions into GMM.

Correcting OLS standard errors for econometric problems is not the
same thing as GLS. When errors do not obey the OLS assumptions, OLS is
consistent, and often more robust than GLS, but its standard errors need to
be corrected.

OLS picks parameters β to minimize the variance of the residual:

min
{β}

ET

[
(yt − β ′x t )

2
]
.

We find β̂ from the first-order condition, which states that the residual is
orthogonal to the right-hand variable:

gT (β) = ET

[
x t (yt − x ′

tβ)
]

= 0. (11.12)

This condition is exactly identified—the number of moments equals the
number of parameters. Thus, we set the sample moments exactly to zero
and there is no weighting matrix (a = I ). We can solve for the estimate
analytically,

β̂ = [
ET (x t x ′

t )
]−1

ET (x t yt ).

This is the familiar OLS formula. The rest of the ingredients to
equation (11.2) are

d = −E (x t x ′
t ),

f (x t ,β) = x t (yt − x ′
tβ) = x tεt .

Equation (11.2) gives a formula for OLS standard errors,

var(β̂) = 1
T

E (x t x ′
t )

−1

⎡
⎣ ∞∑

j=−∞
E (εt x t x ′

t−jεt−j )

⎤
⎦E (x t x ′

t )
−1. (11.13)

(As we estimate σ 2
ε by the sample variance of the residuals, we can estimate

the quantity in brackets in (11.13) by its sample counterpart.) This formula
reduces to some interesting special cases.

Serially Uncorrelated, Homoskedastic Errors

These are the usual OLS assumptions, and it is good the usual formulas
emerge. Formally, the OLS assumptions are

E (εt | x t , xt−1 . . . εt−1, εt−2 . . .) = 0, (11.14)

E (ε2
t | x t , xt−1 . . . εt−1 . . .) = constant = σ 2

ε . (11.15)
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To use these assumptions, I use the fact that

E (ab) = E (E (a|b)b).
The first assumption means that only the j = 0 term enters the sum

∞∑
j=−∞

E (εt x t x ′
t−jεt−j ) = E (ε2

t x t x ′
t ).

The second assumption means that

E (ε2
t x t x ′

t ) = E (ε2
t )E (x t x ′

t ) = σ 2
ε E (x t x ′

t ).

Hence equation (11.13) reduces to our old friend,

var(β̂) = 1
T
σ 2
ε E (x t x ′

t )
−1 = σ 2

ε

(
X ′X

)−1
.

The last notation is typical of econometrics texts, in which X =
[x 1 x 2 . . . x t ]′ represents the data matrix.

Heteroskedastic Errors

If we delete the conditional homoskedasticity assumption (11.15), we cannot
pull the ε out of the expectation, so the standard errors are

var(β̂) = 1
T

E (x t x ′
t )

−1E (ε2
t x t x ′

t )E (x t x ′
t )

−1.

These are known as ‘‘heteroskedasticity consistent standard errors’’ or
‘‘White standard errors’’ after White (1980).

Hansen--Hodrick Errors

Hansen and Hodrick (1982) run forecasting regressions of (say) six-month
returns, using monthly data. We can write this situation in regression
notation as

yt+k = β ′
kx t + εt+k , t = 1, 2, . . . , T .

Fama and French (1988b) also use regressions of overlapping long-horizon
returns on variables such as dividend/price ratio and term premium. Such
regressions are an important part of the evidence for predictability in asset
returns.
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Under the null that one-period returns are unforecastable, we will still
see correlation in the εt due to overlapping data. Unforecastable returns
imply

E (εtεt−j ) = 0 for |j | ≥ k

but not for |j | < k. Therefore, we can only rule out terms in S lower than k.
Since we might as well correct for potential heteroskedasticity while we are
at it, the standard errors are

var(βk) = 1
T

E (x t x ′
t )

−1

⎡
⎣ k−1∑

j=k+1

E (εt x t x ′
t−jεt−j )

⎤
⎦E (x t x ′

t )
−1.

11.5 Prespecified Weighting Matrices and Moment Conditions

Prespecified rather than ‘‘optimal’’ weighting matrices can emphasize
economically interesting results, they can avoid the trap of blowing up stan-
dard errors rather than improving pricing errors, they can lead to estimates
that are more robust to small model misspecifications. This is analogous to
the fact that OLS is often preferable to GLS in a regression context. The GMM
formulas for a fixed weighting matrix W are

var(b̂) = 1
T
(d ′Wd)−1d ′WSWd(d ′Wd)−1,

var(gT ) = 1
T
(I − d(d ′Wd)−1d ′W )S(I − Wd(d ′Wd)−1d ′).

In the basic approach outlined in Chapter 10, our final estimates
were based on the ‘‘efficient’’ S−1 weighting matrix. This objective maxi-
mizes the asymptotic statistical information in the sample about a model,
given the choice of moments gT . However, you may want to use a pre-
specified weighting matrix W 	= S−1 instead, or at least as a diagnostic
accompanying more formal statistical tests. A prespecified weighting matrix
lets you, rather than the S matrix, specify which moments or linear combi-
nation of moments GMM will value in the minimization min{b} gT (b)

′WgT (b).
A higher value of Wii forces GMM to pay more attention to getting the ith
moment right in the parameter estimation. For example, you might feel
that some assets suffer from measurement error, are small and illiquid, and
hence should be deemphasized, or you may want to keep GMM from look-
ing at portfolios with strong long and short position. I give some additional
motivations below.
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You can also go one step further and impose which linear combinations
aT of moment conditions will be set to zero in estimation rather than use the
choice resulting from a minimization, aT = d ′S−1 or aT = d ′W . The fixed
W estimate still trades off the accuracy of individual moments according to
the sensitivity of each moment with respect to the parameter. For example,
if gT = [

g 1
T

g 2
T

]′
, W = I , but ∂gT /∂b = [1 10], so that the second moment is

10 times more sensitive to the parameter value than the first moment, then
GMM with fixed weighting matrix sets

1 × g 1
T

+ 10 × g 2
T

= 0.

The second moment condition will be 10 times closer to zero than the first.
If you really want GMM to pay equal attention to the two moments, then you
can fix the aT matrix directly, for example aT = [1 1] or aT = [1 − 1].

Using a prespecified weighting matrix or using a prespecified set of
moments is not the same thing as ignoring correlation of the errors ut in the
distribution theory. The S matrix will still show up in all the standard errors
and test statistics.

How to Use Prespecified Weighting Matrices

Once you have decided to use a prespecified weighting matrix W or a
prespecified set of moments aT gT (b) = 0, the general distribution theory
outlined in Section 11.1 quickly gives standard errors of the estimates and
moments, and therefore a χ 2 statistic that can be used to test whether all the
moments are jointly zero. Section 11.1 gives the formulas for the case that
aT is prespecified. If we use weighting matrix W , the first-order conditions
to min{b} g ′

T
(b)WgT (b) are

∂gT (b)
′

∂b
WgT (b) = d ′WgT (b) = 0,

so we map into the general case with aT = d ′W . Plugging this value
into (11.4), the variance-covariance matrix of the estimated coefficients is

var(b̂) = 1
T
(d ′Wd)−1d ′WSWd(d ′Wd)−1. (11.16)

(You can check that this formula reduces to 1/T (d ′S−1d)−1 with W = S−1.)
Plugging a = d ′W into equation (11.5), we find the variance-covariance

matrix of the moments gT ,

var(gT ) = 1
T
(I − d(d ′Wd)−1d ′W )S(I − Wd(d ′Wd)−1d ′). (11.17)
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As in the general formula, the terms to the left and right of S account for
the fact that some linear combinations of moments are set to zero in each
sample.

Equation (11.17) can be the basis of χ 2 tests for the overidentifying
restrictions. If we interpret ()−1 to be a generalized inverse, then

g ′
T

var(gT )
−1gT ∼ χ 2(#moments − #parameters).

As in the general case, you have to pseudo-invert the singular var(gT ), for
example by inverting only the nonzero eigenvalues.

The major danger in using prespecified weighting matrices or moments
aT is that the choice of moments, units, and (of course) the prespecified
aT or W must be made carefully. For example, if you multiply the second
moment by 10 times its original value, the optimal S−1 weighting matrix will
undo this transformation and weight them in their original proportions. The
identity weighting matrix will not undo such transformations, so the units
should be picked right initially.

Motivations for Prespecified Weighting Matrices
Robustness, as with OLS vs. GLS
When errors are autocorrelated or heteroskedastic, every econometrics text-
book shows you how to ‘‘improve’’ on OLS by making appropriate GLS
corrections. If you correctly model the error covariance matrix and if the
regression is perfectly specified, the GLS procedure can improve efficiency,
i.e., give estimates with lower asymptotic standard errors. However, GLS is
less robust. If you model the error covariance matrix incorrectly, the GLS
estimates can be much worse than OLS. Also, the GLS transformations can
zero in on slightly misspecified areas of the model. This may be good to
show that the glass is half-empty, but keeps you from seeing that it is half-
full, or tasting what’s inside. GLS is ‘‘best,’’ but OLS is ‘‘pretty darn good.’’
You often have enough data that wringing every last ounce of statistical pre-
cision (low standard errors) from the data is less important than producing
estimates that do not depend on questionable statistical assumptions, and
that transparently focus on the interesting features of the data. In these
cases, it is often a good idea to use OLS estimates. The OLS standard error
formulas are wrong, though, so you must correct the standard errors of the
OLS estimates for these features of the error covariance matrices, using the
formulas we developed in Section 11.4.

GMM works the same way. First-stage or otherwise fixed weighting
matrix estimates may give up something in asymptotic efficiency, but they
are still consistent, and they can be more robust to statistical and economic
problems. You still want to use the S matrix in computing standard errors,
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though, as you want to correct OLS standard errors, and the GMM formulas
show you how to do this.

Even if in the end you want to produce ‘‘efficient’’ estimates and tests, it
is a good idea to calculate first-stage estimates, standard errors and model fit
tests. Ideally, the parameter estimates should not change by much, and the
second-stage standard errors should be tighter. If the ‘‘efficient’’ parameter
estimates do change a great deal, it is a good idea to diagnose why this is so.
It must come down to the ‘‘efficient’’ parameter estimates strongly weighting
moments or linear combinations of moments that were not important in the
first stage, and that the former linear combination of moments disagrees
strongly with the latter about which parameters fit well. Then, you can decide
whether the difference in results is truly due to efficiency gain, or whether
it signals a model misspecification.

Near-Singular S
The spectral density matrix is often nearly singular, since asset returns are
highly correlated with each other, and since we often include many assets
relative to the number of data points. As a result, second-stage GMM (and,
as we will see below, maximum likelihood or any other efficient technique)
tries to minimize differences (and differences of differences) of moments in
order to extract statistically orthogonal components with lowest variance.
One may feel that this feature leads GMM to place a lot of weight on poorly
estimated, economically uninteresting, or otherwise nonrobust aspects of
the data. In particular, portfolios of the form 100R1 − 99R2 assume that
investors can in fact purchase such heavily leveraged portfolios. Short-sale
costs often rule out such portfolios or significantly alter their returns, so
one may not want to emphasize pricing them correctly in the estimation
and evaluation.

For example, suppose that S is given by

S =
[

1 ρ

ρ 1

]
,

so

S−1 = 1
1 − ρ2

[
1 −ρ

−ρ 1

]
.

We can factor S−1 into a ‘‘square root’’ by the Choleski decomposition. This
produces a triangular matrix C such that C ′C = S−1. You can check that
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the matrix

C =
⎡
⎣

1√
1−ρ2

−ρ√
1−ρ2

0 1

⎤
⎦ (11.18)

works. Then, the GMM criterion

min g ′
T

S−1gT

is equivalent to
min(g ′

T
C ′)(CgT ).

CgT gives the linear combination of moments that efficient GMM is
trying to minimize. Looking at (11.18), as ρ → 1, the (2, 2) element stays at
1, but the (1, 1) and (1, 2) elements get very large and of opposite signs. For
example, if ρ = 0.95, then

C =
[

3.20 −3.04

0 1

]
.

In this example, GMM pays a little attention to the second moment, but
places three times as much weight on the difference between the first and
second moments. Larger matrices produce even more extreme weights. At
a minimum, it is a good idea to look at S−1 and its Choleski decomposition
to see what moments GMM is prizing.

The same point has a classic interpretation, and is a well-known danger
with classic regression-based tests. Efficient GMM wants to focus on well-
measured moments. In asset pricing applications, the errors are typically
close to uncorrelated over time, so GMM is looking for portfolios with small
values of var(m t+1R e

t+1). Roughly speaking, those will be assets with small
return variance. Thus, GMM will pay most attention to correctly pricing the sample
minimum-variance portfolio, and GMM’s evaluation of the model by the JT test
will focus on its ability to price this portfolio.

Now, consider what happens in a sample, as illustrated in Figure 11.1.
The sample mean-variance frontier is typically a good deal wider than the
true, or ex ante mean-variance frontier. In particular, the sample minimum-
variance portfolio may have little to do with the true minimum-variance
portfolio. Like any portfolio on the sample frontier, its composition largely
reflects luck—that is why we have asset pricing models in the first place
rather than just price assets with portfolios on the sample frontier. The
sample minimum variance return is also likely to be composed of strong
long-short positions.

In sum, you may want to force GMM not to pay quite so much attention
to correctly pricing the sample minimum-variance portfolio, and you may
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Figure 11.1. True or ex ante and sample or ex post mean-variance frontier. The sample often
shows a spurious minimum-variance portfolio.

want to give less importance to a statistical measure of model evaluation that
focuses on the model’s ability to price that portfolio.

Economically Interesting Moments
The optimal weighting matrix makes GMM pay close attention to linear
combinations of moments with small sampling error in both estimation and
evaluation. You may want to force the estimation and evaluation to pay
attention to economically interesting moments instead. The initial portfolios
are usually formed on an economically interesting characteristic such as
size, beta, book/market, or industry. You typically want in the end to see
how well the model prices these initial portfolios, not how well the model
prices potentially strange portfolios of those portfolios. If a model fails,
you may want to characterize that failure as ‘‘the model does not price small
stocks,’’ not ‘‘the model does not price a portfolio of 900×small firm returns
−600 × large firm returns −299 × medium firm returns.’’

Level Playing Field
The S matrix changes as the model and as its parameters change. (See the
definition, (10.5) or (11.3).) As the S matrix changes, which assets the GMM
estimate tries hard to price well changes as well. For example, the S matrix
from one model may put a lot of weight on the T bill return, while that of
another model may put a lot of weight on a stock excess return. Comparing
the results of such estimations is like comparing apples and oranges. By
fixing the weighting matrix, you can force GMM to pay attention to the
various assets in the same proportion while you vary the model.

The fact that S matrices change with the model leads to another sub-
tle trap. One model may ‘‘improve’’ a JT = g ′

T
S−1gT statistic because it



“chap11” — 2004/9/14 — page 216 — #16

216 11. GMM: General Formulas and Applications

blows up the estimates of S , rather than by making any progress on lower-
ing the pricing errors gT . No one would formally use a comparison of JT

tests across models to compare them, of course. But it has proved nearly
irresistible for authors to claim success for a new model over previous ones
by noting improved JT statistics, despite different weighting matrices, differ-
ent moments, and sometimes much larger pricing errors. For example, if
you take a model mt and create a new model by simply adding noise, unre-
lated to asset returns (in sample), m ′

t = m t +εt , then the moment condition
gT = ET (m ′

t R
e
t ) = ET ((m t + εt )R e

t ) is unchanged. However, the spectral den-
sity matrix S = E

[
(mt + εt )

2R e
t R

e ′
t

]
can rise dramatically. This can reduce

the JT , leading to a false sense of ‘‘improvement.’’
Conversely, if the sample contains a nearly risk-free portfolio of the

test assets, or a portfolio with apparently small variance of m t+1R e
t+1, then

the JT test essentially evaluates the model by how well it can price this
one portfolio. This can lead to a statistical rejection of a much-improved
model—even a very small gT will produce a large g ′

T
S−1gT if there is a small

eigenvalue of S .
If you use a common weighting matrix W for all models, and evaluate

the models by g ′
T

WgT , then you can avoid this trap. The question ‘‘are the
pricing errors small?’’ is as interesting as the question ‘‘if we drew artificial
data over and over again from a null statistical model, how often would we
estimate a ratio of pricing errors to their estimated variance g ′

T
S−1gT this

big or larger?’’

Some Prespecified Weighting Matrices

Two examples of economically interesting weighting matrices are the
second-moment matrix of returns, advocated by Hansen and Jagannathan
(1997), and the simple identity matrix, which is used implicitly in much
empirical asset pricing.

Second-Moment Matrix
Hansen and Jagannathan (1997) advocate the use of the second-moment
matrix of payoffs W = E (xx ′)−1 in place of S . They motivate this weighting
matrix as an interesting distance measure between a model for m, say y, and
the space of true m’s. Precisely, the minimum distance (second moment)
between a candidate discount factor y and the space of true discount factors
is the same as the minimum value of the GMM criterion with W = E (xx ′)−1

as weighting matrix.
To see why this is true, refer to Figure 11.2. The distance between y and

the nearest valid m is the same as the distance between proj(y | X ) and x∗.
As usual, consider the case that X is generated from a vector of payoffs x
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Figure 11.2. Distance between y and nearest m = distance between proj(y|X ) and x∗.

with price p. From the OLS formula,

proj(y | X ) = E (yx ′)E (xx ′)−1x .

x∗ is the portfolio of x that prices x by construction,

x∗ = p ′E (xx ′)−1x .

Then, the distance between y and the nearest valid m is∥∥y − nearest m
∥∥ = ∥∥proj(y|X )− x∗∥∥

= ∥∥E (yx ′)E (xx ′)−1x − p ′E (xx ′)−1x
∥∥

= ∥∥(E (yx ′)− p ′)E (xx ′)−1x
∥∥

= [E (yx)− p]′E (xx ′)−1[E (yx)− p]
= g ′

T
E (xx ′)−1gT .

You might want to choose parameters of the model to minimize this
‘‘economic’’ measure of model fit, or this economically motivated linear
combination of pricing errors, rather than the statistical measure of fit S−1.
You might also use the minimized value of this criterion to compare two mod-
els. In that way, you are sure the better model is better because it improves
on the pricing errors rather than just blowing up the weighting matrix.

Identity Matrix
Using the identity matrix weights the initial choice of assets or portfolios
equally in estimation and evaluation. This choice has a particular advantage
with large systems in which S is nearly singular, as it avoids most of the
problems associated with inverting a near-singular S matrix. Many empirical
asset pricing studies use OLS cross-sectional regressions, which are the same
thing as a first-stage GMM estimate with an identity weighting matrix.
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Comparing the Second-Moment and Identity Matrices
The second-moment matrix gives an objective that is invariant to the initial
choice of assets or portfolios. If we form a portfolio Ax of the initial pay-
offs x , with nonsingular A (i.e., a transformation that does not throw away
information), then

[
E (yAx)− Ap

]′
E (Axx ′A′)−1

[
E (yAx)− Ap

]
= [

E (yx)− p
]′

E (xx ′)−1
[
E (yx)− p

]
.

The optimal weighting matrix S shares this property. It is not true of the
identity or other fixed matrices. In those cases, the results will depend on
the initial choice of portfolios.

Kandel and Stambaugh (1995) have suggested that the results of sev-
eral important asset pricing model tests are highly sensitive to the choice
of portfolio, i.e., that authors inadvertently selected a set of portfolios on
which the CAPM does unusually badly in a particular sample. Insisting that
weighting matrices have this kind of invariance to portfolio selection might
be a good device to guard against this problem.

On the other hand, if you want to focus on the model’s predictions for
economically interesting portfolios, then it would not make much sense for
the weighting matrix to undo the specification of economically interesting
portfolios! For example, many studies want to focus on the ability of a model
to describe expected returns that seem to depend on a characteristic such
as size, book/market, industry, momentum, etc. Also, the second-moment
matrix is often even more nearly singular than the spectral density matrix,
since E (xx ′) = cov(x) + E (x)E (x)′. Therefore, it often emphasizes portfo-
lios with even more extreme short and long positions, and is no help on
overcoming the near singularity of the S matrix.

11.6 Estimating on One Group of Moments, Testing on Another

You may want to force the system to use one set of moments for estimation
and another for testing. The real business cycle literature in macroeco-
nomics does this extensively, typically using ‘‘first moments’’ for estimation
(‘‘calibration’’) and ‘‘second moments’’ (i.e., first moments of squares)
for evaluation. A statistically minded macroeconomist might like to know
whether the departures of model from data ‘‘second moments’’ are large
compared to sampling variation, and would like to include sampling
uncertainty about the parameter estimates in this evaluation.

You might want to choose parameters using one set of asset returns
(stocks, domestic assets, size portfolios, first nine size deciles, well-measured
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assets) and then see how the model does ‘‘out of sample’’ on another set of
assets (bonds, foreign assets, book/market portfolios, small firm portfolio,
questionably measured assets, mutual funds). However, you want the distri-
bution theory for evaluation on the second set of moments to incorporate
sampling uncertainty about the parameters from their estimation on the
first set of moments, and correlation between the ‘‘estimation’’ moments
and the ‘‘evaluation’’ moments.

You can do all this very simply by using an appropriate weighting matrix
or a prespecified moment matrix aT . For example, if the first N moments will
be used to estimate N parameters, and the remaining M moments will be
used to test the model ‘‘out of sample,’’ use aT = [

IN 0N +M

]
. If there are more

moments N than parameters in the ‘‘estimation’’ block, you can construct
a weighting matrix W which is an identity matrix in the N × N estimation
block and zero elsewhere. Then aT = ∂g ′

T
/∂bW will simply contain the first

N columns of ∂g ′
T
/∂b followed by zeros. The test moments will not be used

in estimation. You could even use the inverse of the upper N × N block of
S (not the upper block of the inverse of S !) to make the estimation a bit
more efficient.

11.7 Estimating the Spectral Density Matrix

Hints on estimating the spectral density or long-run covariance matrix.
(1) Use a sensible first-stage estimate. (2) Remove means. (3) Downweight
higher-order correlations. (4) Consider parametric structures for autocor-
relation and heteroskedasticity. (5) Use the null to limit the number of
correlations or to impose other structure on S . (6) Size problems; consider
a factor or other parametric cross-sectional structure for S . (7) Iteration and
simultaneous b, S estimation.

The optimal weighting matrix S depends on population moments, and
depends on the parameters b. Work back through the definitions,

S =
∞∑

j=−∞
E (ut u ′

t−j ),

ut ≡ (
m t (b)x t − pt−1

)
.

How do we estimate this matrix? The big picture is simple: following the
usual philosophy, estimate population moments by their sample counter-
parts. Thus, use the first-stage b estimates and the data to construct sample
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versions of the definition of S . This procedure can produce a consistent
estimate of the true spectral density matrix, which is all the asymptotic
distribution theory requires.

The details are important, however, and this section gives some hints.
Also, you may want a different, and less restrictive, estimate of S for use in
standard errors than you do when you are estimating S for use in a weighting
matrix.

1) Use a sensible first-stage W , or transform the data.
In the asymptotic theory, you can use consistent first-stage b estimates

formed by any nontrivial weighting matrix. In practice, of course, you
should use a sensible weighting matrix so that the first-stage estimates
are not ridiculously inefficient. W = I is often a good choice.

Sometimes, some moments will have different units than other
moments. For example, the dividend/price ratio is a number like 0.04.
Therefore, the moment formed by Rt+1 ×d/pt will be about 0.04 as large
as the moment formed by R t+1 × 1. If you use W = I , GMM will pay
much less attention to the Rt+1 × d/pt moment. It is wise, then, to either
use an initial weighting matrix that overweights the R t+1 ×d/pt moment,
or to transform the data so the two moments are about the same mean
and variance. For example, you could use Rt+1 × (1 + d/pt ). It is also
useful to start with moments that are not horrendously correlated with
each other, or to remove such correlation with a clever W . For example,
you might consider R a and R b − R a rather than R a and R b . You can
accomplish this directly, or by starting with

W =
[

1 −1

0 1

][
1 0

−1 1

]
=
[

2 −1

−1 1

]
.

2) Remove means.
Under the null, E (ut ) = 0, so it does not matter to the asymptotic dis-

tribution theory whether you estimate the covariance matrix by removing
means, using

1
T

T∑
t=1

[
(ut − ū)(ut − ū)′

]
, ū ≡ 1

T

T∑
t=1

ut ,

or whether you estimate the second-moment matrix by not removing
means. However, Hansen and Singleton (1982) advocate removing the
means in sample, and this is generally a good idea.

It is already an obstacle to second-stage estimation that estimated S
matrices (and even simple variance-covariance matrices) are often nearly
singular, providing an unreliable weighting matrix when inverted. Since
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second-moment matrices E (uu ′) = cov(u, u ′)+E (u)E (u ′) add a singular
matrix E (u)E (u ′), they are often even worse.

3) Downweight higher-order correlations.
You obviously cannot use a direct sample counterpart to the spec-

tral density matrix. In a sample of size 100, there is no way to estimate
E (ut u ′

t+101). Your estimate of E (ut u ′
t+99) is based on one data point, u1u ′

100.
Hence, it will be a pretty unreliable estimate. For this reason, the esti-
mator using all possible autocorrelations in a given sample is inconsistent.
(Consistency means that as the sample grows, the probability distribu-
tion of the estimator converges to the true value. Inconsistent estimates
typically have very large sample variation.)

Furthermore, even S estimates that use few autocorrelations are not
always positive definite in sample. This is embarrassing when one tries
to invert the estimated spectral density matrix, which you have to do if
you use it as a weighting matrix. Therefore, it is a good idea to con-
struct consistent estimates that are automatically positive definite in
every sample. One such estimate is the Bartlett estimate, used in this
application by Newey and West (1987b). It is

Ŝ =
k∑

j=−k

(
k − |j |

k

)
1
T

T∑
t=1

(ut u ′
t−j ). (11.19)

As you can see, only autocorrelations up to kth (k < T ) order are
included, and higher-order autocorrelations are downweighted. (It is
important to use 1/T , not 1/(T − k); this is a further downweighting.)
The Newey--West estimator is basically the variance of kth sums, which is
why it is positive definite in sample:

Var

⎛
⎝ k∑

j=1

ut−j

⎞
⎠ = kE (ut u ′

t )+ (k − 1)
[
E (ut u ′

t−1)+ E (ut−1u ′
t )
]

+ · · · + [
E (ut u ′

t−k)+ E (ut−ku ′
t )
]

= k
k∑

j=−k

k − |j |
k

E (ut u ′
t−k).

Andrews (1991) gives some additional weighting schemes for spectral
density estimates.

This calculation also gives some intuition for the S matrix. We are look-
ing for the variance across samples of the sample mean var

(
1
T

∑T
t=1 ut

)
. We

only have one sample mean to look at, so we estimate the variance of the
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sample mean by looking at the variance in a single sample of shorter sums,
var
(

1
k

∑k
j=1 uj

)
. The S matrix is sometimes called the long-run covariance

matrix for this reason. In fact, one could estimate S directly as a variance
of kth sums and obtain almost the same estimator, that would also be
positive definite in any sample,

vt =
k∑

j=1

ut−j , v̄ = 1
T − k

T∑
t=k+1

vt ,

Ŝ = 1
k

1
T − k

T∑
t=k+1

(vt − v̄)(vt − v̄)′.

This estimator has been used when measurement of S is directly inter-
esting (Cochrane [1988], Lo and MacKinlay [1988]). A variety of other
weighting schemes have been advocated.

What value of k, or how wide a window if of another shape, should you
use? Here again, you have to use some judgment. Too short values of
k, together with a ut that is significantly autocorrelated, and you do not
correct for correlation that might be there in the errors. Too long a value
of k, together with a series that does not have much autocorrelation, and
the performance of the estimate and test deteriorates. If k = T /2, for
example, you are really using only two data points to estimate the variance
of the mean. The optimum value then depends on how much persistence
or low-frequency movement there is in a particular application, versus
accuracy of the estimate.

There is an extensive statistical literature about optimal window width,
or size of k. Alas, this literature mostly characterizes the rate at which
k should increase with sample size. You must promise to increase
k as sample size increases, but not as quickly as the sample size
increases—limT →∞ k = ∞, limT →∞ k/T = 0—in order to obtain
consistent estimates. In practice, promises about what you would do
with more data are pretty meaningless, and usually broken once more
data arrives.

4) Consider parametric structures for autocorrelation and heteroskedasticity.
‘‘Nonparametric’’ corrections such as (11.19) often do not perform

very well in typical samples. The problem is that ‘‘nonparametric’’ tech-
niques are really very highly parametric; you have to estimate many
correlations in the data. Therefore, the nonparametric estimate varies a
good deal from sample to sample. This variation may make S−1 weighted
estimates much less efficient, and sometimes worse than estimates
formed on a fixed weighting matrix. Also, the asymptotic distribution
theory ignores sampling variation in covariance matrix estimates. The
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asymptotic distribution can therefore be a poor approximation to the
finite-sample distribution of statistics like the JT .

You can get more accurate standard errors with a Monte Carlo or
bootstrap rather than relying on asymptotic theory. Alternatively, you
can impose a parametric structure on the S matrix which can address
both problems. Just because the formulas are expressed in terms of a sum
of covariances does not mean you have to estimate them that way; GMM
is not inherently tied to ‘‘nonparametric’’ covariance matrix estimates.
For example, if you model a scalar u as an AR(1) with parameter ρ,
then you can estimate two numbers ρ and σ 2

u rather than a whole list of
autocorrelations, and calculate

S =
∞∑

j=−∞
E (ut ut−j ) = σ 2

u

∞∑
j=−∞

ρ |j | = σ 2
u

1 + ρ

1 − ρ
.

If this structure is not a bad approximation, imposing it can result in
more reliable estimates and test statistics since you have to estimate many
fewer coefficients. You could transform the data in such a way that there
is less correlation to correct for in the first place.

(This is a very useful formula, by the way. You are probably used to
calculating the standard error of the mean as

σ(x̄) = σ(x)√
T

.

This formula assumes that the x are uncorrelated over time. If an AR(1)
is not a bad model for their correlation, you can quickly adjust for
correlation by using

σ(x̄) = σ(x)√
T

√
1 + ρ

1 − ρ

instead.)
This sort of parametric correction is very familiar from OLS regres-

sion analysis. The textbooks commonly advocate the AR(1) model for
serial correlation as well as parametric models for heteroskedasticity cor-
rections. There is no reason not to follow a similar approach for GMM
statistics.

5) Use the null to limit correlations?
In the typical asset pricing setup, the null hypothesis specifies that

Et (ut+1) = Et (m t+1R t+1 − 1) = 0, as well as E (ut+1) = 0. This implies
that all the autocorrelation terms of S drop out; E (ut u ′

t−j ) = 0 for j 	= 0.
The lagged u could be an instrument z; the discounted return should



“chap11” — 2004/9/14 — page 224 — #24

224 11. GMM: General Formulas and Applications

be unforecastable, using past discounted returns as well as any other
variable. In this situation, you could exploit the null to only include one
term, and estimate

Ŝ = 1
T

T∑
t=1

ut u ′
t .

Similarly, if you run a regression forecasting returns from some
variable zt ,

R t+1 = a + bzt + εt+1,

the null hypothesis that returns are not forecastable by any variable at
time t means that the errors should not be autocorrelated. You can then
simplify the standard errors in the OLS regression formulas given in
Section 11.4, eliminating all the leads and lags.

In other situations, the null hypothesis can suggest a functional form
for E (ut u ′

t−j ) or that some but not all are zero. For example, as we saw
in Section 11.4, regressions of long-horizon returns on overlapping data
lead to a correlated error term, even under the null hypothesis of no
return forecastability. We can impose this null, ruling out terms past the
overlap, as suggested by Hansen and Hodrick,

var(bT ) = 1
T

E (x t x ′
t )

−1

⎡
⎣ k∑

j=−k

E (εt x t x ′
t−jεt−j )

⎤
⎦E (x t x ′

t )
−1. (11.20)

However, the null might not be correct, and the errors might be corre-
lated. If so, you might make a mistake by leaving them out. If the null is
correct, the extra terms will converge to zero and you will only have lost
a few (finite-sample) degrees of freedom needlessly estimating them. If
the null is not correct, you have an inconsistent estimate. With this in
mind, you might want to include at least a few extra autocorrelations,
even when the null says they do not belong.

Furthermore, there is no guarantee that the unweighted sum
in (11.20) is positive definite in sample. If the sum in the middle is
not positive definite, you could add a weighting to the sum, possibly
increasing the number of lags so that the lags near k are not unusually
underweighted. Again, estimating extra lags that should be zero under
the null only loses a little bit of power.

Monte Carlo evidence (Hodrick [1992]) suggests that imposing the
null hypothesis to simplify the spectral density matrix helps to get the
finite-sample size of test statistics right—the probability of rejection given
the null is true. One should not be surprised that if the null is true,
imposing as much of it as possible makes estimates and tests work better.



“chap11” — 2004/9/14 — page 225 — #25

11.7. Estimating the Spectral Density Matrix 225

On the other hand, adding extra correlations can help with the power
of test statistics—the probability of rejection given that an alternative is
true—since they converge to the correct spectral density matrix.

This trade-off requires some thought. For measurement rather than pure
testing, using a spectral density matrix that can accommodate alternatives
may be the right choice. For example, in the return-forecasting regres-
sions, one is really focused on measuring return forecastability rather
than just formally testing the hypothesis that it is zero.

If you are testing an asset pricing model that predicts u should not be
autocorrelated, and there is a lot of correlation—if this issue makes a big
difference—then this is an indication that something is wrong with the
model: that including u as one of your instruments z would result in a
rejection or at least substantially change the results. If the u are close to
uncorrelated, then it really does not matter if you add a few extra terms
or not.

6) Size problems; consider a factor or other parametric cross-sectional structure.
If you try to estimate a covariance matrix that is larger than the num-

ber of data points (say 2000 NYSE stocks and 800 monthly observations),
the estimate of S , like any other covariance matrix, is singular by con-
struction. This fact leads to obvious problems when you try to invert
S ! More generally, when the number of moments is more than around
1/10 the number of data points, S estimates tend to become unstable
and near singular. Used as a weighting matrix, such an S matrix tells you
to pay lots of attention to strange and probably spurious linear combina-
tions of the moments, as I emphasized in Section 11.5. For this reason,
most second-stage GMM estimations are limited to a few assets and a few
instruments.

A good, but as yet untried alternative might be to impose a factor
structure or other well-behaved structure on the covariance matrix. The
near-universal practice of grouping assets into portfolios before analysis
already implies an assumption that the true S of the underlying assets has
a factor structure. Grouping in portfolios means that the individual assets
have no information not contained in the portfolio, so that a weighting
matrix S−1 would treat all assets in the portfolio identically. It might be
better to estimate an S imposing a factor structure on all the primitive
assets.

Another response to the difficulty of estimating S is to stop at first-
stage estimates, and only use S for standard errors. One might also use
a highly structured estimate of S as weighting matrix, while using a less
constrained estimate for the standard errors.

This problem is of course not unique to GMM. Any estimation tech-
nique requires us to calculate a covariance matrix. Many traditional
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estimates simply assume that ut errors are cross-sectionally independent.
This false assumption leads to understatements of the standard errors
far worse than the small-sample performance of any GMM estimate.

Our econometric techniques all are designed for large time series
and small cross sections. Our data has a large cross section and short
time series. A large unsolved problem in finance is the development of
appropriate large-N small-T tools for evaluating asset pricing models.

7) Alternatives to the two-stage procedure: iteration and one-step.
Hansen and Singleton (1982) describe the above two-step procedure,

and it has become popular for that reason. Two alternative procedures
may perform better in practice, i.e., may result in asymptotically equiv-
alent estimates with better small-sample properties. They can also be
simpler to implement, and require less manual adjustment or care in
specifying the setup (moments, weighting matrices) which is often just
as important.
(a) Iterate. The second-stage estimate b̂ 2 will not imply the same spectral

density as the first stage. It might seem appropriate that the estimate
of b and of the spectral density should be consistent, i.e., to find a
fixed point of b̂ = min{b}

[
gT (b)

′S(b̂)−1gT (b)
]
. One way to search for

such a fixed point is to iterate: find b2 from

b̂ 2 = min
{b}

gT (b)
′S−1(b 1)gT (b), (11.21)

where b1 is a first-stage estimate, held fixed in the minimization over
b 2. Then use b̂ 2 to find S(b̂ 2), find

b̂ 3 = min
{b}

[
gT (b)

′S(b̂ 2)
−1gT (b)

]
,

and so on. There is no fixed-point theorem that such iterations
will converge, but they often do, especially with a little massaging.
(I once used S [(bj + bj−1)/2] in the beginning part of an iteration to
keep it from oscillating between two values of b.) Ferson and Foerster
(1994) find that iteration gives better small-sample performance
than two-stage GMM in Monte Carlo experiments. This procedure
is also likely to produce estimates that do not depend on the initial
weighting matrix.

(b) Pick b and S simultaneously. It is not true that S must be held fixed as
one searches for b. Instead, one can use a new S(b) for each value
of b. Explicitly, one can estimate b by

min
{b}

[
gT (b)

′S−1(b)gT (b)
]
. (11.22)
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The estimates produced by this simultaneous search will not be
numerically the same in a finite sample as the two-step or iterated
estimates. The first-order conditions to (11.21) are

(
∂gT (b)
∂b

)′
S−1(b 1)gT (b) = 0, (11.23)

while the first-order conditions in (11.22) add a term involving
the derivatives of S(b) with respect to b. However, the latter terms
vanish asymptotically, so the asymptotic distribution theory is not
affected. Hansen, Heaton, and Yaron (1996) conduct some Monte
Carlo experiments and find that this estimate may have small-sample
advantages in certain problems. However, one-step minimization
may find regions of the parameter space that blow up the spectral
density matrix S(b) rather than lower the pricing errors gT .

Often, one choice will be much more convenient than another. For
linear models, you can find the minimizing value of b from the first-order
conditions (11.23) analytically. This fact eliminates the need to search so
an iterated estimate is much faster than a one-step estimator. For nonlinear
models, each step involves a numerical search over gT (b)

′SgT (b). Rather than
perform this search many times, it may be much quicker to minimize once
over gT (b)

′S(b)gT (b). On the other hand, the latter is not a locally quadratic
form, so the search may run into greater numerical difficulties.

Problems—Chapter 11

1. Use the delta method version of the GMM formulas to derive the
sampling variance of an autocorrelation coefficient.

2. (a) Write a formula for the standard error of OLS regression coeffi-
cients that corrects for autocorrelation but not heteroskedasticity.

(b) Show in this case that conventional standard errors are OK if the
x’s are uncorrelated over time, even if the errors ε are correlated over
time.

3. If the GMM errors come from an asset pricing model, ut = m t R t −1, can
you ignore lags in the spectral density matrix? What if you know that returns
are predictable? What if the error is formed from an instrument/managed
portfolio ut z t−1?
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12
Regression-Based Tests of

Linear Factor Models

The next four chapters study the question, how should we estimate and
evaluate linear factor models: models of the form p = E (mx), m = b ′f or
equivalently E (R e ) = β ′λ? These models are by far the most common in
empirical asset pricing, and there is a large literature on econometric tech-
niques to estimate and evaluate them. Each technique focuses on the same
questions: how to estimate parameters, how to calculate standard errors of
the estimated parameters, how to calculate standard errors of the pricing
errors, and how to test the model, usually with a test statistic of the form
α̂′V −1α̂.

I start in this chapter with simple and long-standing time-series and
cross-sectional regression tests. In Chapter 13, I pursue the GMM approach
to the model expressed in p = E (mx), m = b ′f form. Chapter 14 summa-
rizes the principle of maximum likelihood estimation and derives maximum
likelihood estimates and tests. Finally, Chapter 15 compares the different
approaches.

As always, the theme is the underlying unity. All of the techniques come
down to one of two basic ideas: time-series regression or cross-sectional
regression. Time-series regression turns out to be a limiting case of cross-
sectional regression. The GMM, p = E (mx) approach turns out to be almost
identical to cross-sectional regressions. Maximum likelihood (with appro-
priate statistical assumptions) justifies the time-series and cross-sectional
regression approaches. The formulas for parameter estimates, standard
errors, and test statistics are all strikingly similar.

229
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12.1 Time-Series Regressions

When the factor is also a return, we can evaluate the model

E (R ei) = βi E ( f )

by running OLS time-series regressions

R ei
t = αi + βi ft + εi

t , t = 1, 2, . . . , T ,

for each asset. The OLS distribution formulas (with corrected standard errors)
provide standard errors of α and β.

With errors that are i.i.d. over time, homoskedastic, and independent of
the factors, the asymptotic joint distribution of the intercepts gives the model
test statistic,

T
[

1 +
(

ET ( f )
σ̂ ( f )

)2]−1

α̂′�̂−1α̂ ∼ χ 2
N .

The Gibbons--Ross--Shanken test is a multivariate, finite-sample counterpart
to this statistic, when the errors are also normally distributed,

T − N − K
N

(
1 + ET ( f )′�̂−1ET ( f )

)−1
α̂′�̂−1α̂ ∼FN , T −N −K .

I show how to construct the same test statistics with heteroskedastic and
autocorrelated errors via GMM.

I start with the simplest case. We have a factor pricing model with a
single factor. The factor is an excess return (for example, the CAPM, with
R em = R m − R f ), and the test assets are all excess returns. We express the
model in expected return-beta form. The betas are defined by regression
coefficients

R ei
t = αi + βi ft + εi

t (12.1)

and the model states that expected returns are linear in the betas:

E (R ei) = βiE ( f ). (12.2)

Since the factor is also an excess return, the model applies to the factor as
well, so E ( f ) = 1 × λ.

Comparing the model (12.2) and the expectation of the time-series
regression (12.1), we see that the model has one and only one implication for
the data: all the regression intercepts αi should be zero. The regression intercepts
are equal to the pricing errors.

Given this fact, Black, Jensen, and Scholes (1972) suggested a natural
strategy for estimation and evaluation: Run time-series regressions (12.1) for
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each test asset. The estimate of the factor risk premium is just the sample
mean of the factor,

λ̂ = ET ( f ).

Then, use standard OLS formulas for a distribution theory of the para-
meters. In particular, you can use t -tests to check whether the pricing errors
α are in fact zero. These distributions are usually presented for the case that
the regression errors in (12.1) are uncorrelated and homoskedastic, but
the formulas in Section 11.4 show easily how to calculate standard errors for
arbitrary error covariance structures.

We also want to know whether all the pricing errors are jointly equal
to zero. This requires us to go beyond standard formulas for the regres-
sion (12.1) taken alone, as we want to know the joint distribution of α
estimates from separate regressions running side by side but with errors
correlated across assets (E (εi

tε
j
t ) �= 0). (We can think of (12.1) as a panel

regression, and then it is a test whether the firm dummies are jointly zero.)
The classic form of these tests assume no autocorrelation or heteroskedas-
ticity. Dividing the α̂ regression coefficients by their variance-covariance
matrix leads to a χ 2 test,

T

[
1 +

(
ET ( f )
σ̂ ( f )

)2
]−1

α̂′�̂−1α̂ ∼ χ 2
N , (12.3)

where ET ( f ) denotes sample mean, σ̂ 2( f ) denotes sample variance, α̂ is a
vector of the estimated intercepts,

α̂ = [
α̂1 α̂2 · · · α̂N

]′
.

�̂ is the residual covariance matrix, i.e., the sample estimate of E (εtε
′
t ) = �,

where
εt = [

ε1
t ε

2
t · · · εN

t

]′
.

As usual when testing hypotheses about regression coefficients, this
test is valid asymptotically. The asymptotic distribution theory assumes that
σ 2( f ) (i.e., X ′X ) and � have converged to their probability limits; there-
fore, it is asymptotically valid even though the factor is stochastic and � is
estimated, but it ignores those sources of variation in a finite sample. It does
not require that the errors are normal, relying on the central limit theorem
so that α̂ is normal. I derive (12.3) below.

Also as usual in a regression context, we can derive a finite-sample F
distribution for the hypothesis that a set of parameters are jointly zero,

T − N − 1
N

[
1 +

(
ET ( f )
σ̂ ( f )

)2]−1

α̂′�̂−1α̂ ∼ FN , T −N −1. (12.4)
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This is the Gibbons, Ross, and Shanken (1989) or ‘‘GRS’’ test statistic. The
F distribution recognizes sampling variation in �̂, which is not included
in (12.3). This distribution requires that the errors ε are normal as well as
uncorrelated and homoskedastic. With normal errors, the α̂ are normal and
�̂ is an independent Wishart (the multivariate version of a χ 2), so the ratio
is F . This distribution is exact in a finite sample.

Tests (12.3) and (12.4) have a very intuitive form. The basic part of the
test is a quadratic form in the pricing errors, α̂′�̂−1α̂. If there were no βf in
the model, then the α̂ would simply be the sample mean of the regression
errors εt . Assuming i.i.d. εt , the variance of their sample mean is just 1/T�.
Thus, if we knew�, then T α̂′�−1α̂ would be a sum of squared sample means
divided by their variance-covariance matrix, which would have an asymptotic
χ 2

N distribution, or a finite-sample χ 2
N distribution if the εt are normal. But

we have to estimate�, which is why the finite-sample distribution is F rather
than χ 2. We also estimate the β, and the second term in (12.3) and (12.4)
accounts for that fact.

Recall that a single-beta representation exists if and only if the reference
return is on the mean-variance frontier. Thus, the test can also be inter-
preted as a test whether f is ex ante mean-variance efficient—whether it is
on the mean-variance frontier using population moments—after accounting
for sampling error. Even if f is on the true or ex ante mean-variance fron-
tier, other returns will outperform it in sample due to luck, so the return f
will usually be inside the ex post mean-variance frontier—i.e., the frontier
drawn using sample moments. Still, it should not be too far inside the sam-
ple frontier. Gibbons, Ross, and Shanken show that the test statistic can be
expressed in terms of how far inside the ex post frontier the return f is,

T − N − 1
N

(
µq/σq

)2 − (
ET ( f )/σ̂ ( f )

)2

1 + (
ET ( f )/σ̂ ( f )

)2 . (12.5)

(
µq/σq

)2
is the Sharpe ratio of the ex post tangency portfolio (maximum

ex post Sharpe ratio) formed from the test assets plus the factor f . The last
term in the numerator is the Sharpe ratio of the factor, so the numerator
expresses how for the factor is inside the ex-post frontier.

If there are many factors that are excess returns, the same ideas work,
with some cost of algebraic complexity. The regression equation is

R ei = αi + β ′
i ft + εi

t .

The asset pricing model
E (R ei) = β ′

i E ( f )

again predicts that the intercepts should be zero. We can estimate α

and β with OLS time-series regressions. Assuming normal i.i.d. errors,
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the quadratic form α̂′�̂−1α̂ has the distribution

T − N − K
N

(
1 + ET ( f )′�̂−1ET ( f )

)−1
α̂′�̂−1α̂ ∼ FN , T −N −K , (12.6)

where

N = number of assets,

K = number of factors,

�̂ = 1
T

T∑
t=1

[
ft − ET ( f )

][
ft − ET ( f )

]′
,

�̂ = 1
T

T∑
t=1

ε̂t ε̂
′
t .

The main difference is that the Sharpe ratio of the single factor is
replaced by the natural generalization ET ( f )′�̂−1ET ( f ).

Derivation of The χ2 Statistic, and Distributions with General Errors

I derive (12.3) as an instance of GMM. This approach allows us to gen-
erate straightforwardly the required corrections for autocorrelated and
heteroskedastic disturbances. (MacKinlay and Richardson [1991] advocate
GMM approaches to regression tests in this way.) It also serves to remind us
that GMM and p = E (mx) are not necessarily paired; one can do a GMM
estimate of an expected return-beta model, too. The mechanics are only
slightly different than what we did to generate distributions for OLS regres-
sion coefficients in Section 11.4, since we keep track of N OLS regressions
simultaneously.

Write the equations for all N assets together in vector form,

R e
t = α + βft + εt .

We use the usual OLS moments to estimate the coefficients,

gT (b) =
[

ET (R e
t − α − βft )

ET

[
(R e

t − α − βft )ft

]
]

= ET

([
εt

ftεt

])
= 0.

These moments exactly identify the parameters α,β, so the a matrix in
agT (b̂) = 0 is the identity matrix. Solving, the GMM estimates are of course
the OLS estimates,

α̂ = ET (R e
t )− β̂ET ( ft ),

β̂ = ET [(R e
t − ET (R e

t ))ft ]
ET [( ft − ET ( ft ))ft ] = covT (R e

t , ft )

varT ( ft )
.



“chap12” — 2004/9/14 — page 234 — #6

234 12. Regression-Based Tests of Linear Factor Models

The d matrix in the general GMM formula is

d ≡ ∂gT (b)
∂b ′ = −

[
IN IN E ( ft )

IN E ( ft ) IN E ( f 2
t )

]
= −

[
1 E ( ft )

E ( ft ) E ( f 2
t )

]
⊗ IN ,

where IN is an N × N identity matrix. The S matrix is

S =
∞∑

j=−∞

[ E (εtε
′
t−j ) E (εtε

′
t−j ft−j )

E ( ftεtε
′
t−j ) E ( ftεtε

′
t−j ft−j )

]
.

Using the GMM variance formula (11.4) with a = I , we have

var
([
α̂

β̂

])
= 1

T
d−1Sd−1′. (12.7)

At this point, we are done. The upper left-hand corner of var(α̂ β̂) gives us
var(α̂) and the test we are looking for is α̂′var(α̂)−1

α̂ ∼ χ
2
N .

The standard formulas make this expression prettier by assuming that
the errors are uncorrelated over time and not heteroskedastic. These
assumptions simplify the S matrix, as for the standard OLS formulas in
Section 11.4. If we assume that f and ε are independent as well as orthog-
onal, E ( f εε′) = E ( f )E (εε′) and E ( f 2εε′) = E ( f 2)E (εε′). If we assume that
the errors are independent over time as well, we lose all the lead and lag
terms. Then, the S matrix simplifies to

S =
[

E (εtε
′
t ) E (εtε

′
t )E ( ft )

E ( ft )E (εtε
′
t ) E (εtε

′
t )E ( f 2

t )

]
=
[

1 E ( ft )

E ( ft ) E ( f 2
t )

]
⊗�. (12.8)

Now we can plug into (12.7). Using (A ⊗ B)−1 = A−1 ⊗ B−1 and
(A ⊗ B)(C ⊗ D) = AC ⊗ BD, we obtain

var
([
α̂

β̂

])
= 1

T

([
1 E ( ft )

E ( ft ) E ( f 2
t )

]−1

⊗�

)
.

Evaluating the inverse,

var
([
α̂

β̂

])
= 1

T
1

var( f )

[
E ( f 2

t ) −E ( ft )

−E ( ft ) 1

]
⊗�.

We are interested in the top left corner. Using E ( f 2) = E ( f )2 + var( f ),

var(α̂) = 1
T

(
1 + E ( f )2

var( f )

)
�.
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This is the traditional formula (12.3). Though this formula is pretty, there
is now no real reason to assume that the errors are i.i.d. or independent of
the factors. By simply calculating (12.7), we can easily construct standard
errors and test statistics that do not require these assumptions.

12.2 Cross-Sectional Regressions

We can fit
E (R ei) = β ′

iλ+ αi

by running a cross-sectional regression of average returns on the betas. This
technique can be used whether the factor is a return or not.

I discuss OLS and GLS cross-sectional regressions, I find formulas for the
standard errors of λ, and a χ 2 test whether the α are jointly zero. I derive the
distributions as an instance of GMM, and I show how to implement the same
approach for autocorrelated and heteroskedastic errors. I show that the GLS
cross-sectional regression is the same as the time-series regression when the
factor is also an excess return, and is included in the set of test assets.

Start again with the K factor model, written as

E (R ei) = β ′
iλ, i = 1, 2, . . . , N .

The central economic question is why average returns vary across assets;
expected returns of an asset should be high if that asset has high betas or a
large risk exposure to factors that carry high risk premia.

Figure 12.1 graphs the case of a single factor such as the CAPM. Each
dot represents one asset i . The model says that average returns should be
proportional to betas, so plot the sample average returns against the betas.
Even if the model is true, this plot will not work out perfectly in each sample,
so there will be some spread as shown.

Given these facts, a natural idea is to run a cross-sectional regression to fit a
line through the scatterplot of Figure 12.1. First find estimates of the betas
from time-series regressions,

R ei
t = ai + β ′

i ft + εi
t , t = 1, 2, . . . , T for each i . (12.9)

Then estimate the factor risk premia λ from a regression across assets of
average returns on the betas,

ET (R ei) = β ′
iλ+ αi , i = 1, 2, . . . , N . (12.10)

As in the figure, β are the right-hand variables, λ are the regression coeffi-
cients, and the cross-sectional regression residuals αi are the pricing errors.
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Figure 12.1. Cross-sectional regression.

This is also known as a two-pass regression estimate, because one estimates
first time-series and then cross-sectional regressions.

You can run the cross-sectional regression with or without a constant.
The theory says that the constant or zero-beta excess return should be zero.
You can impose this restriction or estimate a constant and see if it turns out
to be small. The usual trade-off between efficiency (impose the null as much
as possible to get efficient estimates) and robustness applies.

OLS Cross-Sectional Regression

It will simplify notation to consider a single factor; the case of multiple
factors looks the same with vectors in place of scalars. I denote vectors
from 1 to N with missing sub or superscripts, i.e., εt = [

ε1
t ε

2
t · · · εN

t

]′
,

β = [β1 β2 · · · βN
]′

, and similarly for R e
t and α. For simplicity take the case

of no intercept in the cross-sectional regression. With this notation OLS
cross-sectional estimates are

λ̂ = (
β ′β

)−1
β ′ET (R e ),

α̂ = ET (R e )− λ̂β.
(12.11)

Next, we need a distribution theory for the estimated parameters. The
most natural place to start is with the standard OLS distribution formulas.
I start with the traditional assumption that the true errors are i.i.d. over
time, and independent of the factors. This will give us some easily inter-
pretable formulas, and we will see most of these terms remain when we do
the distribution theory right later on.
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In an OLS regression Y = Xβ + u and E (uu ′) = �, the variance of
the β estimate is (X ′X )−1X ′�X (X ′X )−1. The residual covariance matrix is
(I − X (X ′X )−1X ′)�(I − X (X ′X )−1X ′)′.

To apply these formulas we need cov(α,α′), the error covariance in the
cross-sectional regression. With the traditional assumption that the factors
and errors are i.i.d. over time, the answer is cov(α,α′) = 1

T

(
β�f β

′ +�
)
,

where �f ≡ cov( ft , f ′
t ) and � = cov(εtε

′
t ). To see this, start with α =

ET (R e )− βλ. With R e
t = a +βft +εt , we have ET

(
R e

t

) = a +βET

(
ft

)+ET (εt ).
Under the null that the model is correct, so E (R e ) = a + βE ( f ) = βλ,
then, we have cov(α,α′) = cov [ET (R e ), ET (R e )′] = 1

T

(
β�f β

′ +�
)
. (Don’t

confuse this covariance with the covariance of the estimated α in the cross-
sectional regression. Like a residual covariance vs. an error covariance, there
are additional terms in the covariance of the estimated α, which I develop
below. Yes, we want the covariance of ET (R e ), not of E (R e ), which is a
number and has no covariance, or of R e

t . ET (R e ) is the y variable in the
cross-sectional regression.)

Then, the conventional OLS formulas for the covariance matrices of
OLS estimates and residuals, accounting for correlated errors, give

σ 2(λ̂) = 1
T

[(
β ′β

)−1
β ′�β(β ′β)−1 +�f

]
(12.12)

cov(α̂) = 1
T

[
I − β(β ′β)−1β ′]� [I − β(β ′β)−1β ′]′ (12.13)

The correct formulas, (12.19) and (12.20), which account for the fact that
β are estimated, are straightforward generalizations. (The �f term cancels
in (12.13).)

We could test whether all pricing errors are zero with the statistic

α̂′ cov(α̂)−1
α̂ ∼ χ 2

N −1. (12.14)

The distribution is χ 2
N −1, not χ 2

N , because the covariance matrix is sin-
gular. The singularity and the extra terms in (12.13) result from the fact
that the λ coefficient was estimated along the way, and means that we have
to use a generalized inverse. (If there are K factors, we obviously end up
with χ 2

N −K .)
A test of the residuals is unusual in OLS regressions. We do not usually

test whether the residuals are ‘‘too large,’’ since we have no information
other than the residuals themselves about how large they should be. In this
case, however, the first-stage time-series regression gives us some indepen-
dent information about the size of cov(αα′), information that we could not
get from looking at the cross-sectional residual α itself.
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GLS Cross-Sectional Regression

Since the residuals in the cross-sectional regression (12.10) are correlated
with each other, standard textbook advice is to run a GLS cross-sectional
regression rather than OLS, using E (αα′) = 1

T (� + β�f β
′) as the error

covariance matrix:

λ̂ = (
β ′�−1β

)−1
β ′�−1ET (R e ),

α̂ = ET (R e )− λ̂β.
(12.15)

(The GLS formula is

λ̂ =
[
β ′
(
β�−1

f β ′ +�
)−1

β

]−1

β ′(β�−1
f β ′ +�)−1ET (R e ).

However, it turns out that we can drop the β�−1
f β ′ term.1)

The standard regression formulas give the variance of these estimates
as

σ 2
(
λ̂
) = 1

T

[(
β ′�−1β

)−1 +�f

]
, (12.16)

cov(α̂) = 1
T

[
� − β

(
β ′�−1β

)−1
β ′
]

. (12.17)

1 Here’s the algebra. Let
A = I + β ′�−1β�−1

f .

Then,

λ̂ =
[
β ′
(
β�−1

f β ′ +�
)−1

β

]−1

A−1Aβ ′
(
β�−1

f β ′ +�
)−1

ET (R e )

=
[

Aβ ′
(
β�−1

f β ′ +�
)−1

β

]−1

Aβ ′
(
β�−1

f β ′ +�
)−1

ET (R e ).

Now,

Aβ ′ =
(

I + β ′�−1β�−1
f

)
β ′

= β ′
(

I +�−1β�−1
f β ′

)

= β ′�−1
(
� + β�−1

f β ′
)

.

Thus,
λ̂ = (

β ′�−1β
)−1
β ′�−1ET (R e ).
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The comments of Section 11.5 warning that OLS is sometimes much
more robust than GLS apply in this case. The GLS regression should improve
efficiency, i.e., give more precise estimates. However, � may be hard to
estimate and to invert, especially if the cross section N is large. One may
well choose the robustness of OLS over the asymptotic statistical advantages
of GLS.

A GLS regression can be understood as a transformation of the space
of returns, to focus attention on the statistically most informative portfolios.
Finding (say, by Choleski decomposition) a matrix C such that CC ′ = �−1,
the GLS regression is the same as an OLS regression of CET (R e ) on Cβ, i.e.,
of testing the model on the portfolios CR e . The statistically most informative
portfolios are those with the lowest residual variance �. But this asymptotic
statistical theory assumes that the covariance matrix has converged to its true
value. In most samples, the ex post or sample mean-variance frontier still
seems to indicate lots of luck, and this is especially true if the cross section
is large, anything more than 1/10 of the time series. The portfolios CR e are
likely to contain many extreme long-short positions.

Again, we could test the hypothesis that all the α are equal to zero
with (12.14). Though the appearance of the statistic is the same, the covari-
ance matrix is smaller, reflecting the greater power of the GLS test. As with
the JT test, (11.10), we can develop an equivalent test that does not require
a generalized inverse:

T α̂′�−1α̂ ∼ χ 2
N −1. (12.18)

To derive (12.18), I proceed exactly as in the derivation of the JT test (11.10).
Define, say by Choleski decomposition, a matrix C such that CC ′ = �−1.
Now, find the covariance matrix of

√
T C ′α̂:

cov
(√

T C ′α
) = C ′((CC ′)−1 − β(β ′CC ′β)−1β ′)C = I − δ

(
δ′δ
)−1
δ′,

where
δ = C ′β.

In sum, α̂ is asymptotically normal so
√

T C ′α̂ is asymptotically normal,
cov(

√
T C ′α̂) is an idempotent matrix with rank N −1; therefore T α̂′CC ′α̂ =

T α̂′�−1α̂ is χ 2
N −1.

Correction for the Fact that β Are Estimated, and
GMM Formulas that Do Not Need i.i.d. Errors

In applying standard OLS formulas to a cross-sectional regression, we
assume that the right-hand variables β are fixed. The β in the cross-sectional
regression are not fixed, of course, but are estimated in the time-series
regression. This turns out to matter, even asymptotically.
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In this section, I derive the correct asymptotic standard errors. With the
simplifying assumption that the errors ε are i.i.d. over time and independent
of the factors, the result is

σ 2(λ̂OLS) = 1
T

[
(β ′β)−1β ′�β

(
β ′β

)−1(
1 + λ′�−1

f λ
)+�f

]
,

σ 2(λ̂GLS) = 1
T

[(
β ′�−1β

)−1(
1 + λ′�−1

f λ
)+�f

]
,

(12.19)

where �f is the variance-covariance matrix of the factors. This correction
is due to Shanken (1992b). Comparing these standard errors to (12.12)
and (12.16), we see that there is a multiplicative correction

(
1 + λ′�−1

f λ
)
.

The asymptotic variance-covariance matrix of the pricing errors is

cov(α̂OLS) = 1
T

(
IN − β

(
β ′β

)−1
β ′)�(IN − β(β ′β)−1β ′)

× (
1 + λ′�−1

f λ
)

(12.20)

cov(α̂GLS) = 1
T

(
� − β

(
β ′�−1β

)−1
β ′)(1 + λ′�−1

f λ
)
. (12.21)

Comparing these results to (12.13) and (12.17), we see the same multiplica-
tive correction.

We can form the asymptotic χ 2 test of the pricing errors by dividing
pricing errors by their variance-covariance matrix, α̂ cov(α̂)−1

α̂. Following
(12.18), we can simplify this result for the GLS pricing errors resulting in

T
(
1 + λ′�−1

f λ
)
α̂′

GLS�
−1α̂GLS ∼ χ 2

N −K . (12.22)

Is the correction important relative to the simple-to-derive regression
formulas (12.12), (12.13), (12.16), (12.17)? In the CAPM, λ = E (R em) so
λ2/σ 2(R em) ≈ (0.08/0.16)2 = 0.25 in annual data. In annual data, then,
the multiplicative term is too large to ignore. However, the mean and vari-
ance both scale with horizon, so the Sharpe ratio scales with the square
root of horizon. Therefore, for a monthly interval λ2/σ 2(R em) ≈ 0.25/12 ≈
0.02, which is quite small, so ignoring the multiplicative term makes little
difference.

Suppose the factor is in fact a return. Then the factor risk premium
is λ = E ( f ), and we use �f /T , the standard error of the factor mean, as
the standard error of λ. The terms in β correct for the small differences
between cross-sectional and time-series estimates. They are therefore likely
to be small, and the �f /T term is likely to be the most important term.

Comparing (12.22) to the GRS tests for a time-series regression,
(12.3), (12.4), (12.6), we see the same statistic. The only difference is that
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by estimating λ from the cross section rather than imposing λ = E ( f ), the
cross-sectional regression loses degrees of freedom equal to the number of
factors.

Though these formulas are standard classics, I emphasize that we do
not have to make the severe assumptions on the error terms that are used
to derive them. As with the time-series case, I derive a general formula for
the distribution of λ̂ and α̂, and only at the last moment make classic error
term assumptions to make the spectral density matrix pretty.

Derivation and Formulas that Do Not Require i.i.d. Errors

The easy and elegant way to account for the effects of ‘‘generated regressors’’
such as the β in the cross-sectional regression is to map the whole thing
into GMM. Then, we treat the moments that generate the regressors β at
the same time as the moments that generate the cross-sectional regression
coefficient λ, and the covariance matrix S between the two sets of moments
captures the effects of generating the regressors on the standard error of
the cross-sectional regression coefficients. Comparing this straightforward
derivation with the difficulty of Shanken’s (1992b) paper that originally
derived the corrections for λ̂, and noting that Shanken did not go on to
find the formulas (12.20) that allow a test of the pricing errors is a nice
argument for the simplicity and power of the GMM framework.

To keep the algebra manageable, I treat the case of a single factor. The
moments are

gT (b) =
⎡
⎢⎣

E (R e
t − a − βft )

E [(R e
t − a − βft )ft ]

E (R e − βλ)

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ . (12.23)

The top two moment conditions exactly identify a and β as the time-series
OLS estimates. (Note a not α. The time-series intercept is not necessar-
ily equal to the pricing error in a cross-sectional regression.) The bottom
moment condition is the asset pricing model. It is in general overiden-
tified in a sample, since there is only one extra parameter (λ) and N
extra moment conditions. If we use a weighting vector β ′ on this condi-
tion, we obtain the OLS cross-sectional estimate of λ. If we use a weighting
vector β ′�−1, we obtain the GLS cross-sectional estimate of λ. To accommo-
date both cases, use a weighting vector γ ′, and then substitute γ ′ = β ′ or
γ ′ = β ′�−1 at the end. However, once we abandon i.i.d. errors, the GLS
cross-sectional regression weighted by �−1 is no longer the optimal esti-
mate. Once we recognize that the errors do not obey classical assumptions,
and if we want efficient estimates, we might as well calculate the correct and



“chap12” — 2004/9/14 — page 242 — #14

242 12. Regression-Based Tests of Linear Factor Models

fully efficient estimates. Having decided on a cross-sectional regression, the
efficient estimates of the moments (12.23) are d ′S−1gT (a,β, λ) = 0.

The standard errors for λ̂ come straight from the general GMM standard
error formula (11.4). The α̂ are not parameters, but are the last N moments.
Their covariance matrix is thus given by the GMM formula (11.5) for the
sample variation of the gT . All we have to do is map the problem into the
GMM notation.

The parameter vector is

b ′ = [
a ′ β ′ λ

]
.

The a matrix chooses which moment conditions are set to zero in estimation,

a =
[

I2N 0

0 γ ′

]
.

The d matrix is the sensitivity of the moment conditions to the parameters,

d = ∂gT

∂b ′ =
⎡
⎢⎣

−IN −IN E ( f ) 0

−IN E ( f ) −IN E ( f 2) 0

0 −λIN −β

⎤
⎥⎦ .

The S matrix is the long-run covariance matrix of the moments,

S =
∞∑

j=−∞
E

⎛
⎜⎜⎝
⎡
⎢⎣

R e
t − a − βft(

R e
t − a − βft

)
ft

R e
t − βλ

⎤
⎥⎦
⎡
⎢⎣

R e
t−j − a − βft−j(

R e
t−j − a − βft−j

)
ft−j

R e
t−j − βλ

⎤
⎥⎦

′⎞
⎟⎟⎠

=
∞∑

j=−∞
E

⎛
⎜⎝
⎡
⎢⎣

εt

εt ft

β
(

ft − Ef
)+ εt

⎤
⎥⎦
⎡
⎢⎣

εt−j

εt−j ft−j

β
(

ft−j − Ef
)+ εt−j

⎤
⎥⎦

′⎞
⎟⎠ .

In the second expression, I have used the regression model and the restric-
tion under the null that E (R e

t ) = βλ. In calculations, of course, you could
simply estimate the first expression.

We are done. We have the ingredients to calculate the GMM standard
error formula (11.4) and formula for the covariance of moments (11.5).

With a vector f , the moments are

[
IN ⊗ IK +1

γ ′

]⎡⎣ ET

(
R e − a − βf

)
ET

[(
R e − a − βf

)⊗ f
]

ET (R e − βλ)

⎤
⎦ = 0,

where βi = N × 1, and γ ′ = β ′ for OLS and γ ′ = β ′(�−1) for GLS.
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Note that the GLS estimate is not the ‘‘efficient GMM’’ estimate when
returns are not i.i.d. The efficient GMM estimate is d ′S−1gT = 0. The d
matrix is

d = ∂gT

∂
[
α′ β ′

1 β
′
2 λ

′] = −
⎡
⎣
⎡
⎣ 1 E ( f ′)

E ( f ) E ( ff ′)
0 λ′

⎤
⎦⊗ IN

⎡
⎣0

0
β

⎤
⎦
⎤
⎦ .

We can recover the classic formulas (12.19), (12.20), (12.21) by adding
the assumption that the errors are i.i.d. and independent of the factors, and
that the factors are uncorrelated over time as well. The assumption that the
errors and factors are uncorrelated over time means we can ignore the lead
and lag terms. Thus, the top left corner of S is E (εtε

′
t ) = �. The assumption

that the errors are independent from the factors ft simplifies the terms in
which εt and ft are multiplied: E (εt (ε

′
t ft )) = E ( f )� for example. The result is

S =
⎡
⎢⎣

� E ( f )� �

E ( f )� E ( f 2)� E ( f )�

� E ( f )� ββ ′σ 2( f )+�

⎤
⎥⎦ .

Multiplying a, d , S together as specified by the GMM formula for the
covariance matrix of parameters (11.4), we obtain the covariance matrix of
all the parameters, and its (3, 3) element gives the variance of λ̂. Multiplying
the terms together as specified by (11.5), we obtain the sampling distribution
of the α̂, (12.20). The formulas (12.19) reported above are derived the same
way with a vector of factors ft rather than a scalar; the second-moment condi-
tion in (12.23) then reads E

[
(R e

t − a − βf t )⊗ f t

]
. The matrix multiplication

is not particularly enlightening.
Once again, there is really no need to make the assumption

that the errors are i.i.d. and especially that they are conditionally
homoskedastic—that the factor f and errors ε are independent. It is quite
easy to estimate an S matrix that does not impose these conditions and
calculate standard errors. They will not have the pretty analytic form given
above, but they will more closely report the true sampling uncertainty of
the estimate. Furthermore, if one is really interested in efficiency, the GLS
cross-sectional estimate should use the spectral density matrix as weight-
ing matrix applied to all the moments rather than �−1 applied only to the
pricing errors.

Time Series vs. Cross Section

How are the time-series and cross-sectional approaches different?
Most importantly, you can run the cross-sectional regression when the

factor is not a return. The time-series test requires factors that are also
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returns, so that you can estimate factor risk premia by λ̂ = ET ( f ). The asset
pricing model does predict a restriction on the intercepts in the time-series
regression. Why not just test these? If you impose the restriction E (R ei) =
β ′

iλ, you can write the time-series regression (12.9) as

R ei
t = β ′

iλ+ β ′
i

(
ft − E ( f )

)+ εi
t , t = 1, 2, . . . , T for each i .

Thus, the intercept restriction is

ai = β ′
i (λ− E ( f )). (12.24)

This restriction makes sense. The model says that mean returns should
be proportional to betas, and the intercept in the time-series regression
controls the mean return. You can also see how λ = E ( f ) results in a zero
intercept. Finally, however, you see that without an estimate of λ, you cannot
check this intercept restriction. If the factor is not a return, you will be forced
to do something like a cross-sectional regression.

When the factor is a return, so that we can compare the two methods,
time-series and cross-sectional regressions are not necessarily the same. The
time-series regression estimates the factor risk premium as the sample mean
of the factor. Hence, the factor receives a zero pricing error in each sample.
Also, the predicted zero-beta excess return is also zero. Thus, the time-series
regression describes the cross section of expected returns by drawing a line as
in Figure 12.1 that runs through the origin and through the factor, ignoring
all of the other points. The OLS cross-sectional regression picks the slope
and intercept, if you include one, to best fit all the points: to minimize the
sum of squares of all the pricing errors.

If the factor is a return, the GLS cross-sectional regression, including the factor
as a test asset, is identical to the time-series regression. The time-series regression
for the factor is, of course,

ft = 0 + 1ft + 0,

so it has a zero intercept, beta equal to one, and zero residual in every
sample. The residual variance-covariance matrix of the returns, including
the factor, is

E
([

R e − a − βf

f − 0 − 1f

][·]′
)

=
[
� 0

0 0

]
.

Since the factor has zero residual variance, a GLS regression puts all its weight
on that asset. Therefore, λ̂ = ET ( f ) just as for the time-series regression.
The pricing errors are the same, as is their distribution and the χ 2 test.
(You gain a degree of freedom by adding the factor to the cross-sectional
regression, so the test is a χ 2

N .)
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Why does the ‘‘efficient’’ technique ignore the pricing errors of all of
the other assets in estimating the factor risk premium, and focus only on the
mean return? The answer is simple, though subtle. In the regression model

R e
t = a + βft + εt ,

the average return of each asset in a sample is equal to beta times the average
return of the factor in the sample, plus the average residual in the sample.
An average return carries no information about the mean of the factor that
is not already observed in the sample mean of the factor. A signal plus noise
carries no additional information beyond that in the same signal. Thus, an
‘‘efficient’’ cross-sectional regression wisely ignores all the information in
the other asset returns and uses only the information in the factor return to
estimate the factor risk premium.

12.3 Fama--MacBeth Procedure

I introduce the Fama--MacBeth procedure for running cross-sectional
regression and calculating standard errors that correct for cross-sectional cor-
relation in a panel. I show that, when the right-hand variables do not vary
over time, Fama--MacBeth is numerically equivalent to pooled time-series,
cross-section OLS with standard errors corrected for cross-sectional correla-
tion, and also to a single cross-sectional regression on time-series averages
with standard errors corrected for cross-sectional correlation. Fama--MacBeth
standard errors do not include corrections for the fact that the betas are also
estimated.

Fama and MacBeth (1973) suggest an alternative procedure for running
cross-sectional regressions, and for producing standard errors and test statis-
tics. This is a historically important procedure, it is computationally simple
to implement, and is still widely used, so it is important to understand it and
relate it to other procedures.

First, you find beta estimates with a time-series regression. Fama and
MacBeth use rolling 5-year regressions, but one can also use the technique
with full-sample betas, and I will consider that simpler case. Second, instead
of estimating a single cross-sectional regression with the sample averages,
we now run a cross-sectional regression at each time period, i.e.,

R ei
t = β ′

iλt + αit , i = 1, 2, . . . , N for each t .

I write the case of a single factor for simplicity, but it is easy to extend
the model to multiple factors. Then, Fama and MacBeth suggest that
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we estimate λ and αi as the average of the cross-sectional regression
estimates,

λ̂ = 1
T

T∑
t=1

λ̂t , α̂i = 1
T

T∑
t=1

α̂it .

Most importantly, they suggest that we use the standard deviations of the
cross-sectional regression estimates to generate the sampling errors for these
estimates,

σ 2(λ̂) = 1
T 2

T∑
t=1

(
λ̂t − λ̂

)2
, σ 2(α̂i) = 1

T 2

T∑
t=1

(
α̂it − α̂i

)2
.

It is 1/T 2 because we are finding standard errors of sample means, σ 2/T .
This is an intuitively appealing procedure once you stop to think about

it. Sampling error is, after all, about how a statistic would vary from one
sample to the next if we repeated the observations. We cannot do that with
only one sample, but why not cut the sample in half, and deduce how a
statistic would vary from one full sample to the next from how it varies
from the first half of the sample to the next half? Proceeding, why not cut
the sample in fourths, eighths, and so on? The Fama--MacBeth procedure
carries this idea to its logical conclusion, using the variation in the statistic
λ̂t over time to deduce its variation across samples.

We are used to deducing the sampling variance of the sample mean
of a series x t by looking at the variation of x t through time in the sample,
using σ 2(x̄) = σ 2(x)/T = 1

T 2

∑
t (x t − x̄)2. The Fama--MacBeth technique

just applies this idea to the slope and pricing error estimates. The formula
assumes that the time series is not autocorrelated, but one could easily
extend the idea to estimates λ̂t that are correlated over time by using a
long-run variance matrix, i.e., estimate

σ 2(λ̂) = 1
T

∞∑
j=−∞

covT (λ̂t , λ̂t−j ).

One should of course use some sort of weighting matrix or a parametric
description of the autocorrelations of λ̂, as explained in Section 11.7. Asset
return data are usually not highly correlated, but accounting for such cor-
relation could have a big effect on the application of the Fama--MacBeth
technique to corporate finance data or other regressions in which the
cross-sectional estimates are highly correlated over time.

It is natural to use this sampling theory to test whether all the pric-
ing errors are jointly zero as we have before. Denote by α the vector of
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pricing errors across assets. We could estimate the covariance matrix of the
sample pricing errors by

α̂ = 1
T

T∑
t=1

α̂t ,

cov(α̂) = 1
T 2

T∑
t=1

(
α̂t − α̂

) (
α̂t − α̂

)′
,

(or a general version that accounts for correlation over time) and then use
the test

α̂′ cov(α̂)−1
α̂ ∼ χ 2

N −1.

Fama--MacBeth in Depth

The GRS procedure and the analysis of a single cross-sectional regression
are familiar from any course in regression. We will see them justified by
maximum likelihood below. The Fama--MacBeth procedure seems unlike
anything you have seen in any econometrics course, and it is obviously a use-
ful and simple technique that can be widely used in panel data in economics
and corporate finance as well as asset pricing. Is it truly different? Is there
something different about asset pricing data that requires a fundamentally
new technique not taught in standard regression courses? Or is it similar to
standard techniques? To answer these questions it is worth looking in a little
more detail at what it accomplishes and why.

It is easier to do this in a more standard setup, with left-hand variable y
and right-hand variable x . Consider a regression

yit = β ′xit + εit , i = 1, 2, . . . , N , t = 1, 2, . . . , T .

The data in this regression have a cross-sectional element as well as a time-
series element. In corporate finance, for example, you might be interested
in the relationship between investment and financial variables, and the data
set has many firms (N ) as well as time-series observations for each firm (T ).
In an expected return-beta asset pricing model, the xit stands for the βi and
β stands for λ.

An obvious thing to do in this context is simply to stack the i and t
observations together and estimate β by OLS. I will call this the pooled
time-series cross-section estimate. However, the error terms are not likely to
be uncorrelated with each other. In particular, the error terms are likely
to be cross-sectionally correlated at a given time. If one stock’s return is
unusually high this month, another stock’s return is also likely to be high;
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if one firm invests an unusually great amount this year, another firm is also
likely to do so. When errors are correlated, OLS is still consistent, but the
OLS distribution theory is wrong, and typically suggests standard errors that
are much too small. In the extreme case that the N errors are perfectly cor-
related at each time period, there is really only one observation for each
time period, so one really has T rather than NT observations. Therefore,
a pooled time-series cross-section estimate must include corrected standard
errors. People often ignore this fact and report OLS standard errors.

Another thing we could do is first take time-series averages and then
run a pure cross-sectional regression of

ET (yit ) = β ′ET

(
xit

)+ ui , i = 1, 2, . . . , N .

This procedure would lose any information due to variation of the xit over
time, but at least it might be easier to figure out a variance-covariance matrix
for ui and correct the standard errors for residual correlation. ( You could
also average cross-sectionally and then run a single time-series regression. We
will get to that option later.) In either case, the standard error corrections are
just applications of the standard formula for OLS regressions with correlated
error terms.

Finally, we could run the Fama--MacBeth procedure: run a cross-
sectional regression at each point in time, average the cross-sectional β̂t

estimates to get an estimate β̂, and use the time-series standard deviation of
β̂t to estimate the standard error of β̂.

It turns out that the Fama--MacBeth procedure is another way of
calculating the standard errors, corrected for cross-sectional correlation.

Proposition: If the xit variables do not vary over time, and if the errors are cross-
sectionally correlated but not correlated over time, then the Fama--MacBeth estimate,
the pure cross-sectional OLS estimate, and the pooled time-series cross-sectional OLS
estimates are identical. Also, the Fama--MacBeth standard errors are identical to
the cross-sectional regression or stacked OLS standard errors, corrected for residual
correlation. None of these relations hold if the xit vary through time.

Since they are identical procedures, whether one calculates estimates
and standard errors in one way or the other is a matter of taste.

I emphasize one procedure that is incorrect: pooled time-series and
cross-section OLS with no correction of the standard errors. The errors are
so highly cross-sectionally correlated in most finance applications that the
standard errors so computed are often off by a factor of 10.

The assumption that the errors are not correlated over time is probably
not so bad for asset pricing applications, since returns are close to indepen-
dent. However, when pooled time-series cross-section regressions are used
in corporate finance applications, errors are likely to be as severely corre-
lated over time as across firms, if not more so. The ‘‘other factors’’ (ε) that
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cause, say, company i to invest more at time t than predicted by a set of right-
hand variables is surely correlated with the other factors that cause company
j to invest more. But such factors are especially likely to cause company i
to invest more at time t + 1 as well. In this case, any standard errors must
also correct for serial correlation in the errors; the GMM-based formulas in
Section 11.4 can do this easily.

The Fama--MacBeth standard errors also do not correct for the fact that
β̂ are generated regressors. If one is going to use them, it is a good idea to
at least calculate the Shanken correction factors outlined above, and check
that the corrections are not large.

Proof: We just have to write out the three approaches and compare them.
Having assumed that the x variables do not vary over time, the regression is

yit = x ′
iβ + εit .

We can stack up the cross sections i = 1, . . . , N and write the regression as

yt = xβ + εt .

x is now a matrix with the x ′
i as rows. The error assumptions mean

E (εtε
′
t ) = �.

Pooled OLS: To run pooled OLS, we stack the time series and cross
sections by writing

Y =

⎡
⎢⎢⎢⎣

y1

y2
...

yT

⎤
⎥⎥⎥⎦ , X =

⎡
⎢⎢⎢⎣

x
x
...
x

⎤
⎥⎥⎥⎦ , ε =

⎡
⎢⎢⎢⎣
ε1

ε2
...
εT

⎤
⎥⎥⎥⎦

and then
Y = Xβ + ε,

with

E (εε ′) = � =

⎡
⎢⎢⎣
�

. . .

�

⎤
⎥⎥⎦ .

The estimate and its standard error are then

β̂OLS = (X ′X )−1X ′Y ,

cov(β̂OLS) = (X ′X )−1X ′�X (X ′X )−1.
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Writing this out from the definitions of the stacked matrices, with
X ′X =Tx ′x ,

β̂OLS = (x ′x)−1x ′ET (yt ),

cov(β̂OLS) = 1
T
(x ′x)−1(x ′�x)(x ′x)−1.

We can estimate this sampling variance with

�̂ = ET (ε̂t ε̂
′
t ), ε̂t ≡ yt − x β̂OLS.

Pure cross-section: The pure cross-sectional estimator runs one cross-
sectional regression of the time-series averages. So, take those averages,

ET

(
yt

) = xβ + ET (εt ) ,

where x = ET (x) since x is constant. Having assumed i.i.d. errors over time,
the error covariance matrix is

E
[
ET (εt )ET

(
ε′

t

)] = 1
T
�.

The cross-sectional estimate and corrected standard errors are then

β̂XS = (x ′x)−1x ′ET (yt ),

σ 2(β̂XS ) = 1
T
(x ′x)−1x ′�x(x ′x)−1.

Thus, the cross-sectional and pooled OLS estimates and standard errors are
exactly the same, in each sample.

Fama--MacBeth: The Fama--MacBeth estimator is formed by first run-
ning the cross-sectional regression at each moment in time,

β̂t = (
x ′x
)−1

x ′yt .

Then the estimate is the average of the cross-sectional regression estimates,

β̂FM = ET

(
β̂t

) = (
x ′x
)−1

x ′ET

(
yt

)
.

Thus, the Fama--MacBeth estimator is also the same as the OLS estimator, in
each sample. The Fama--MacBeth standard error is based on the time-series
standard deviation of the β̂t . Using covT to denote sample covariance,

cov
(
β̂FM

) = 1
T

covT

(
β̂t

) = 1
T
(x ′x)−1x ′ covT (yt )x(x ′x)−1,
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with
yt = xβFM + ε̂t ,

we have
covT (yt ) = ET (ε̂t ε̂

′
t ) = �̂,

and finally

cov
(
β̂FM

) = 1
T

(
x ′x
)−1

x ′�̂x
(
x ′x
)−1

.

Thus, the FM estimator of the standard error is also numerically equivalent
to the OLS corrected standard error.

Varying x : If the xit vary through time, none of the three procedures
are equal anymore, since the cross-sectional regressions ignore time-series
variation in the xit . As an extreme example, suppose a scalar xit varies over
time but not cross-sectionally,

yit = α + x tβ + εit , i = 1, 2, . . . , N , t = 1, 2, . . . , T .

The grand OLS regression is

β̂OLS =
∑

it x̃ t yit∑
it x̃2

t
=
∑

t x̃ t (1/N )
∑

i yit∑
t x̃2

t
,

where x̃ = x − ET (x) denotes the de-meaned variables. The estimate is
driven by the covariance over time of x t with the cross-sectional average
of the yit , which is sensible because all of the information in the sample
lies in time variation. It is identical to a regression over time of cross-sectional
averages. However, you cannot even run a cross-sectional estimate, since the
right-hand variable is constant across i .

As a practical example, you might be interested in a CAPM specification
in which the betas vary over time (βt ) but not across test assets. This sam-
ple still contains information about the CAPM: the time-variation in betas
should be matched by time variation in expected returns. But any method
based on cross-sectional regressions will completely miss it. �

In historical context, the Fama--MacBeth procedure was also impor-
tant because it allowed changing betas, which a single unconditional
cross-sectional regression or a time-series regression test cannot easily
handle.

Problems—Chapter 12

1. When we express the CAPM in excess return form, can the test assets be
differences between risky assets, R i − R j ? Can the market excess return on
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the right-hand side also use a risky asset, or must it be relative to a risk-free
rate? (Hint: start with E (R i) − R f = βi , m

(
E (R m)− R f

)
and see if you can

get to the other forms. Betas must be regression coefficients.)

2. Can you run the GRS test on a model that uses industrial production
growth as a factor, E (R ei) = βi ,ipλip?

3. Fama and French (1997) report that pricing errors are correlated with
betas in a test of a factor pricing model on industry portfolios. How is this
possible?

4. We saw that a GLS cross-sectional regression of the CAPM passes through
the market and risk-free rate by construction, though the OLS regression
does not do so. Show that if the market return is an equally weighted portfolio
of the test assets, then an OLS cross-sectional regression with an estimated
intercept passes through the market return by construction. What if you
force the intercept to zero? Does either regression also pass through the
risk-free rate or origin?

5. Factor models with factors that are not returns are usually estimated
and tested by cross-sectional regressions. There is a way to use a time-
series regression to estimate and test the model, however. The time-series
regression is

R ei
t = ai + βi ft + εi

t ; t = 1, 2 . . .T for each i .

Recall from (12.24) that the asset pricing model does not leave ai free;
instead they must satisfy a = β

[
λ− E ( f )

]
. Write down a set of moment con-

ditions that you can use to estimate this model and test the restriction on the
ai . Describe how you would estimate the parameters, and what formula you
would look up to compute a test—how you would use σ(b̂), cov(gT ), JT , etc.
(Hint: start with the moments for unrestricted OLS time-series regressions,
then impose the constraint between a and λ. You will estimate the restricted
model.)
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GMM for Linear Factor Models

in Discount Factor Form

In this chapter, I study estimation and testing of linear discount factor
models expressed as p = E (mx), m = b ′f . This form naturally suggests
a GMM approach using the pricing errors as moments. The resulting
estimates look a lot like the regression estimates of Chapter 12.

13.1 GMM on the Pricing Errors Gives a
Cross-Sectional Regression

The first-stage GMM estimate is an OLS cross-sectional regression, and
the second stage is a GLS regression,

First stage : b̂ 1 = (d ′d)−1d ′ET (p),

Second stage : b̂ 2 = (d ′S−1d)−1d ′S−1E (p).

Standard errors are the corresponding regression formulas, and the variance
of the pricing errors are the standard regression formula for variance of a
residual.

Treating the constant a × 1 as a constant factor, the model is

m = b ′f ,

E (p) = E (mx),

or simply
E (p) = E (xf ′)b. (13.1)

Keep in mind that p and x are N × 1 vectors of asset prices and pay-
offs respectively; f is a K × 1 vector of factors, and b is a K × 1 vector of

253
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parameters. I suppress the time indices m t+1, f t+1, x t+1, pt . The payoffs are
typically returns or excess returns, including returns scaled by instruments.
The prices are typically one (returns), zero (excess returns), or instruments.

To implement GMM, we need to choose a set of moments. The obvious
set of moments to use are the pricing errors,

gT (b) = ET (xf ′b − p).

This choice is natural but not necessary. You do not have to use p = E (mx)
with GMM, and you do not have to use GMM with p = E (mx). You can use
GMM on expected return-beta models, and you can use maximum likeli-
hood on p = E (mx). It is a choice, and the results will depend on this choice
of moments as well as the specification of the model.

The GMM estimate is formed from

min
b

gT (b)
′WgT (b)

with first-order condition

d ′WgT (b) = d ′W ET (xf ′b − p) = 0,

where

d ′ = ∂g ′
T
(b)

∂b
= ET ( fx ′).

This is the second-moment matrix of payoffs and factors. The first stage has
W = I , the second stage has W = S−1. Since this is a linear model, we can
solve analytically for the GMM estimate, and it is

First stage : b̂ 1 = (d ′d)−1d ′ET (p),

Second stage : b̂ 2 = (d ′S−1d)−1d ′S−1ET (p).

The first-stage estimate is an OLS cross-sectional regression of average prices on
the second moment of payoff with factors, and the second-stage estimate is a GLS cross-
sectional regression. What could be more sensible? The model (13.1) says that
average prices should be a linear function of the second moment of payoff
with factors, so the estimate runs a linear regression. These are cross-sectional
regressions since they operate across assets on sample averages. The ‘‘data
points’’ in the regression are sample average prices (y) and second moments
of payoffs with factors (x) across test assets. We are picking the parameter b
to make the model fit explain the cross section of asset prices as well as
possible.
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We find the distribution theory from the usual GMM standard error
formulas (11.2) and (11.8). In the first stage, a = d ′:

First stage : cov(b̂ 1) = 1
T
(d ′d)−1d ′Sd(d ′d)−1,

Second stage : cov(b̂ 2) = 1
T
(d ′S−1d)−1.

(13.2)

Unsurprisingly, these are exactly the formulas for OLS and GLS regres-
sion errors with error covariance S . The pricing errors are correlated
across assets, since the payoffs are correlated. Therefore the OLS cross-
sectional regression standard errors need to be corrected for correlation,
as they are in (13.2), and one can pursue an efficient estimate as in
GLS. The analogy in GLS is close, since S is the covariance matrix of
E (p)−E (xf ′)b; S is the covariance matrix of the ‘‘errors’’ in the cross-sectional
regression.

The covariance matrix of the pricing errors is, from (11.5), (11.9),
and (11.10),

First stage : T cov
[
gT (b̂)

] = (
I − d(d ′d)−1d ′)S(I − d(d ′d)−1d ′),

Second stage : T cov
[
gT (b̂)

] = S − d
(
d ′S−1d

)−1
d ′.

(13.3)

These are obvious analogues to the standard regression formulas for the
covariance matrix of regression residuals.

The model test is

gT (b̂)
′cov(gT )

−1gT (b̂) ∼ χ 2(#moments − #parameters),

which specializes for the second-stage estimate as

TgT (b̂)
′S−1gT (b̂) ∼ χ 2(#moments − #parameters).

There is not much point in writing these out, other than to point out that
the test is a quadratic form in the vector of pricing errors.
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13.2 The Case of Excess Returns

When m t+1 = a − b ′f t+1 and the test assets are excess returns, the GMM
estimate is a GLS cross-sectional regression of average returns on the second
moments of returns with factors,

First stage : b̂ 1 = (d ′d)−1d ′ET (R e ),

Second stage : b̂ 2 = (d ′S−1d)−1d ′S−1ET (R e ),

where d is the covariance matrix between returns and factors. The other
formulas are the same.

The analysis of the last section requires that at least one asset has a
nonzero price. If all assets are excess returns, then b̂1 = (d ′d)−1d ′ET (p) = 0.
Linear factor models are most often applied to excess returns, so this case
is important. The trouble is that in this case the mean discount factor is not
identified. If E (mR e ) = 0, then E ((2 × m)R e ) = 0. Analogously in expected
return-beta models, if all test assets are excess returns, then we have no
information on the level of the zero-beta rate.

Writing out the model as m = a − b ′f , we cannot separately identify
a and b so we have to choose some normalization. The choice is entirely
one of convenience; lack of identification means precisely that the pricing
errors do not depend on the choice of normalization.

The easiest choice is a = 1. Then

gT (b) = −ET (mR e ) = −ET (R e )+ E (R e f ′)b.

(The − sign makes the resulting formulas prettier.) We have

d = −∂gT (b)
∂b ′ = E (R e f ′),

the second-moment matrix of returns and factors. The first-order condition
to min g ′

T
WgT is

−d ′W [ET (R e )− db] = 0.

Then, the GMM estimates of b are

First stage : b̂ 1 = (d ′d)−1d ′ET (R e ),

Second stage : b̂ 2 = (d ′S−1d)−1d ′S−1ET (R e ).
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The GMM estimate is a cross-sectional regression of mean excess returns on the second
moments of returns with factors. From here on in, the distribution theory is
unchanged from the last section.

Mean Returns on Covariances
We can obtain a cross-sectional regression of mean excess returns on
covariances, which are just a heartbeat away from betas, by choosing the
normalization a = 1 + b ′E ( f ) rather than a = 1. Then, the model is
m = 1 − b ′[ f − E ( f )] with mean E (m) = 1. The pricing errors are

gT (b) = ET (mR e ) = ET (R e )− ET

(
R e f̃ ′)b,

where I denote f̃ ≡ f − E ( f ). We have

d = ∂gT (b)
∂b ′ = E (R e f̃ ′),

which now denotes the covariance matrix of returns and factors. The first-
order condition to min g ′

T
WgT is now

−d ′W [ET (R e )− db] = 0.

Then, the GMM estimates of b are

First stage : b̂1 = (d ′d)−1d ′ET (R e ),

Second stage : b̂ 2 = (d ′S−1d)−1d ′S−1ET (R e ).

The GMM estimate is a cross-sectional regression of expected excess returns on the
covariance between returns and factors. Naturally, the model says that expected
excess returns should be proportional to the covariance between returns and
factors, and we estimate that relation by a linear regression. The standard
errors and variance of the pricing errors are the same as in (13.2) and (13.3),
with d now representing the covariance matrix. The formulas are almost
exactly identical to those of the cross-sectional regressions in Section 12.2.
The p = E (mx) formulation of the model for excess returns is equivalent to
E (R e ) = −cov(R e , f ′)b; thus covariances enter in place of betas.

There is one fly in the ointment: The mean of the factor E ( f ) is esti-
mated, and the distribution theory should recognize sampling variation
induced by this fact, as we did for the fact that betas are generated regres-
sors in the cross-sectional regressions of Section 12.2. The moments are
in fact

gT =
[

ET

[
R e − R e ( f ′ − Ef ′)b

]
ET ( f − Ef )

]
,
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where Ef is the mean of the factors, a parameter to be estimated just like
b. We can capture the first- and second-stage regressions above with the
weighting matrix

aT =
[

ET

(
f̃ R e ′

)
W 0

0 IK

]

with W = I or W = S−1
11 . (I use the notation S11 to denote the first block of

the spectral density matrix, corresponding to the ET

[
R e − R e f̃ ′b

]
moments

only.) The first block of estimates delivers the OLS and GLS cross-sectional
regression estimates of b, while the identity matrix in the second block
delivers the sample mean estimate Ef = ET ( f ). Now the GMM standard
error and cov(gT ) formulas will correct for the fact that Ef is estimated. A
problem at the end of the chapter leads you through the algebra to verify
that the resulting standard errors resemble those of the Shanken correction
in Chapter 12.

This correction only affects the standard errors of the b estimates. The
distribution of the pricing errors and the χ 2 statistics are not affected. In
my experience so far with this method, the correction for the fact that Ef is
estimated is very small in practice, so that little damage is done in ignoring
it (as is the case with the Shanken correction). On the other hand, once the
issue is understood it is easy to do it right.

As was the case with the Shanken corrections, the “second stage” regres-
sion here is not in fact the efficient GMM estimate. The efficient estimate
does not use this aT with W = S−1

11 . Instead it uses aT = d ′S−1, where

d = ∂gT

∂
[
b ′ Ef ′] =

[
−E

(
R e f̃ ′

)
E (R e )b ′

0 −IK

]
,

and where S , the spectral density matrix of both sets of moments, is

S =
∞∑

j=−∞
E

[
u t u ′

t−j u t f̃ ′
t−j

f̃ t u ′
t−j f̃ t f̃ ′

t−j

]
,

ut ≡ R e
t (1 − f̃ ′

t b).

Therefore, the optimal weighting matrix aT = d ′S−1 does not have the
block-diagonal form of aT given above. Efficient GMM lets some moments
deviate from their sample values if by doing so it can make other moments
closer to zero, trading off these errors by the S−1 matrix. If an estimate
Ef �= ET ( f ) will make the pricing errors smaller, then efficient GMM will
choose such an estimate. Thus, if one really wants efficiency, this is the
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way to do it, rather than the second-stage cross-sectional regression given
above.

13.3 Horse Races

How to test whether one set of factors drives out another. Test b2 = 0 in
m = b ′

1 f 1 + b ′
2 f 2 using the standard error of b̂ 2, or the χ 2 difference test.

It is often interesting to test whether one set of factors drives out another.
For example, Chen, Roll, and Ross (1986) test whether their five macro-
economic factors price assets so well that one can ignore even the market
return. Given the large number of factors that have been proposed, a sta-
tistical procedure for testing which factors survive in the presence of the
others is desirable.

In this framework, such a test is very easy. Start by estimating a general
model

m = b ′
1 f 1 + b ′

2 f 2. (13.4)

We want to know, given factors f 1, do we need the f 2 to price assets—i.e., is
b 2 = 0? There are two ways to do this.

First and most obviously, we have an asymptotic covariance matrix for
[b 1b 2], so we can form a t test (if b 2 is scalar) or χ 2 test for b 2 = 0 by forming
the statistic

b̂ ′
2 var(b̂ 2)

−1b̂ 2 ∼ χ 2
#b 2

,

where #b 2 is the number of elements in the b 2 vector. This is a Wald test.
Second, we can estimate a restricted system m = b ′

1f 1. Since there are
fewer free parameters than in (13.4), and the same number of moments, we
expect the criterion JT to rise. If we use the same weighting matrix (usually
the one estimated from the unrestricted model (13.4)), then the JT cannot
in fact decline. But if b 2 really is zero, it should not rise ‘‘much.’’ How much?
The χ 2 difference test answers that question;

TJT (restricted)− TJT (unrestricted) ∼ χ 2(# of restrictions).

This is very much like a likelihood ratio test.
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13.4 Testing for Priced Factors: Lambdas or b’s?

bj asks whether factor j helps to price assets given the other factors. bj gives
the multiple regression coefficient of m on fj given the other factors.

λj asks whether factor j is priced, or whether its factor-mimicking portfolio
carries a positive risk premium. λj gives the single regression coefficient of m
on fj .

Therefore, when factors are correlated, one should test bj = 0 to see
whether to include factor j given the other factors rather than test λj = 0.

In the context of expected return-beta models, it has been more tradi-
tional to evaluate the relative strengths of models by testing the factor risk
premia λ of additional factors, rather than test whether their b is zero. (The
b’s are not the same as the β’s. b are the regression coefficients of m on f ,
β are the regression coefficients of R i on f .)

To keep the equations simple, I will use mean-zero factors, excess
returns, and normalize to E (m) = 1, since the mean of m is not identified
with excess returns.

The parameters b and λ are related by

λ = E ( ff ′)b.

See Section 6.3. Briefly,

0 = E (mR e ) = E [R e (1 − f ′b)],
E (R e ) = cov(R e , f ′)b = cov(R e , f ′)E ( ff ′)−1E ( ff ′)b = β ′λ.

When the factors are orthogonal, E ( ff ′) is diagonal, and each λj = 0 if
and only if the corresponding bj = 0. The distinction between b and λ

only matters when the factors are correlated. Factors are often correlated,
however.

λj captures whether factor fj is priced. We can write λ = E [f ( f ′b)] =
−E (mf ) to see that λ is (the negative of) the price that the discount factor
m assigns to f . b captures whether factor fj is marginally useful in pricing
assets, given the presence of other factors. If bj = 0, we can price assets just
as well without factor fj as with it.

λj is proportional to the single regression coefficient of m on f . λj =
cov(m, fj ). λj = 0 asks the corresponding single regression coefficient
question—‘‘is factor j correlated with the true discount factor?’’

bj is the multiple regression coefficient of m on fj given all the other
factors. This just follows from m = b ′f . (Regressions do not have to have
error terms!) A multiple regression coefficient βj in y = xβ + ε is the way
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to answer ‘‘does xj help to explain variation in y given the presence of the
other x’s?’’ When you want to ask the question, ‘‘should I include factor j
given the other factors?’’ you want to ask the multiple regression question.

For example, suppose the CAPM is true, which is the single-factor model

m = a − bR em ,

where R em is the market excess return. Consider any other excess return R ex

(x for extra), positively correlated with R em . If we try a factor model with the
spurious factor R ex , the answer is

m = a − bR em + 0 × R ex .

bx is obviously zero, indicating that adding this factor does not help to price
assets.

However, since the correlation of R ex with R em is positive, the CAPM
beta of R ex on R em is positive, R ex earns a positive expected excess return,
and λx = E (R ex) > 0. In the expected return-beta model

E (R ei) = βimλm + βixλx

λm = E (R em) is unchanged by the addition of the spurious factor. However,
since the factors R em , R ex are correlated, the multiple regression betas of R ei

on the factors change when we add the extra factor R ex . If βix is positive, βim

will decline from its single-regression value, so the new model explains the
same expected return E (R ei). The expected return-beta model will indicate a
risk premium for βx exposure, and many assets will have βx exposure (R x for
example!) even though factor R x is spurious. In particular, R ex will of course
have multiple regression coefficients βx ,m = 0 and βx ,x = 1, and its expected
return will be entirely explained by the new factor x .

So, as usual, the answer depends on the question. If you want to know
whether factor i is priced, look at λ (or E (mf i)). If you want to know whether
factor i helps to price other assets, look at bi . This is not an issue about sampling
error or testing. All moments above are population values.

Of course, testing b = 0 is particularly easy in the GMM, p = E (mx)
setup. But you can always test the same ideas in any expression of the
model. In an expected return-beta model, estimate b by E ( ff ′)−1λ and test
the elements of that vector rather than λ itself.

You can write an asset pricing model as ER e = β ′λ and use the λ to test
whether each factor can be dropped in the presence of the others, if you
use single regression betas rather than multiple regression betas. In this case
each λ is proportional to the corresponding b. Problem 2 at the end of this
chapter helps you to work out this case. You can also make sure that your
factors are orthogonal, in which case testing λ is the same thing as testing b.
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13.5 Mean-Variance Frontier and Performance Evaluation

A GMM, p = E (mx) approach to testing whether a return expands the
mean-variance frontier. Just test whether m = a + bR prices all returns. If
there is no risk-free rate, use two values of a.

We often summarize asset return data by mean-variance frontiers.
For example, a large literature has examined the desirability of interna-
tional diversification in a mean-variance context. Stock returns from many
countries are not perfectly correlated, so it looks like one can reduce
portfolio variance a great deal for the same mean return by holding an
internationally diversified portfolio. But is this phenomenon real or just
sampling error? Even if the value-weighted portfolio were ex ante mean-
variance efficient, an ex post mean-variance frontier constructed from
historical returns on the roughly 6000 NYSE stocks would leave the value-
weighted portfolio well inside the ex post frontier. So is ‘‘I should have
bought Japanese stocks in 1960’’ (and sold them in 1990!) a signal that
broad-based international diversification is a good idea now, or is it sim-
ply 20/20 hindsight regret like ‘‘I should have bought Microsoft in 1982?’’
Similarly, when evaluating fund managers, we want to know whether the
manager is truly able to form a portfolio that beats mean-variance effi-
cient passive portfolios, or whether better performance in sample is just
due to luck.

Since a factor model is true if and only if a linear combination of the
factors (or factor-mimicking portfolios if the factors are not returns) is mean-
variance efficient, one can interpret a test of any factor pricing model as a
test whether a given return is on the mean-variance frontier. Section 12.1
showed how the Gibbons, Ross, and Shanken pricing error statistic can
be interpreted as a test whether a given portfolio is on the mean-variance
frontier, when returns and factors are i.i.d., and the GMM distribution the-
ory of that test statistic allows us to extend the test to non-i.i.d. errors. A
GMM, p = E (mx), m = a − bR p test analogously tests whether R p is on the
mean-variance frontier of the test assets.

We may want to go one step further, and not just test whether a com-
bination of a set of assets R d (say, domestic assets) is on the mean-variance
frontier, but whether the R d assets span the mean-variance frontier of R d

and R i (say, foreign or international) assets. The trouble is that if there is
no risk-free rate, the frontier generated by R d might just intersect the fron-
tier generated by R d and R i together, rather than span or coincide with the
latter frontier, as shown in Figure 13.1. Testing that m = a − b ′R d prices
both R d and R i only checks for intersection.
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Figure 13.1. Mean-variance frontiers might intersect rather than coincide.

De Santis (1993) and Chen and Knez (1995, 1996) show how to test for
spanning as opposed to intersection. For intersection, m = a −b ′

d R d will price
both R d and R f only for one value of a, or equivalently E (m) or choice of
the intercept, as shown. If the frontiers coincide or span, then m = a + b ′

d
R d prices both R d and R f for any value of a. Thus, we can test for coincident
frontiers by testing whether m = a + b ′

d R d prices both R d and R f for two
prespecified values of a simultaneously.

To see how this works, start by noting that there must be at least two
assets in R d . If not, there is no mean-variance frontier of R d assets; it is simply
a point. If there are two assets in R d , R d1 and R d2, then the mean-variance
frontier of domestic assets connects them; they are each on the frontier. If
they are both on the frontier, then there must be discount factors

m1 = a1 − b̃1R d1

and

m2 = a2 − b̃2R d2

and, of course, any linear combination,

m = [
λa1 + (1 − λ)a2

]− [
λb̃1R d1 + (1 − λ)b̃2R d2

]
.

Equivalently, for any value of a, there is a discount factor of the form

m = a − (
b1R d1 + b2R d2

)
.
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Thus, you can test for spanning with a JT test on the moments

E
[
(a1 − b1′R d )R d

] = 0,

E
[
(a1 − b1′R d )R i

] = 0,

E
[
(a2 − b2′R d )R d

] = 0,

E
[
(a2 − b2′R d )R i

] = 0,

for any two fixed values of a1, a2.

13.6 Testing for Characteristics

How to check whether an asset pricing model drives out a characteristic
such as size, book/market, or volatility. Run cross-sectional regressions of
pricing errors on characteristics; use the formulas for covariance matrix of
the pricing errors to create standard errors.

It is often interesting to characterize a model by checking whether the
model drives out a characteristic. For example, portfolios organized by size
or market capitalization show a wide dispersion in average returns (at least
up to 1979). Small stocks gave higher average returns than large stocks. A
good asset pricing model should account for average returns by betas. It is
ok if a characteristic is associated with average returns, but in the end betas
should drive out the characteristic; the alphas or pricing errors should not
be associated with the characteristic. The original tests of the CAPM similarly
checked whether the variance of the individual portfolio had anything to
do with average returns once betas were included.

Denote the characteristic of portfolio i by yi . An obvious idea is to
include both betas and the characteristic in a multiple, cross-sectional regres-
sion. In addition, the characteristic is sometimes estimated rather than being
a fixed number such as the size rank of a size portfolio, and you would like
to include the sampling uncertainty of its estimation in the standard errors
of the characteristic’s effect. Let yi

t denote the time series whose mean E (yi
t )

determines the characteristic. Now, write the moment condition for the ith
asset as

g i
T = ET (m t+1(b)xi

t+1 − pi
t − γ yi

t ),

and let y denote the vector of yi across assets. The estimate of γ tells
you how the characteristic E (yi) is associated with model pricing errors
E (m t+1(b)x ′

t+1 −p ′
t ). The standard GMM formulas for the standard deviation
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of γ or the χ 2 difference test for γ = 0 tell you whether the γ estimate is
statistically significant, including the fact that E (y) must be estimated.

Problems—Chapter 13

1. Work out the GMM distribution theory for the first-stage estimate of the
model m = 1 − b ′[ f − E ( f )] using excess returns. The distribution should
recognize the fact that Ef is estimated in the sample. To do this, set up

gT =
[

ET (R e − R e ( f ′ − Ef ′)b)

ET ( f − Ef )

]
,

aT =
[

ET

(
f̃ R e ′) 0

0 IK

]
.

The estimated parameters are b, Ef . You should end up with a formula for
the standard error of b that resembles the Shanken correction (12.19), and
an unchanged JT test. (You can use the null E (R e ) = cov(R e , f ′)b to simplify
the formulas.)

2. Show that if you use single regression betas, then the corresponding λ
can be used to test for the marginal importance of factors. However, the λ
are no longer the expected return of factor-mimicking portfolios.

3. Obtain the Fama--French factors and 25 portfolios formed on size and
book to market from Ken French’s website, http://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/data_library.html. Fama and French advo-
cate a factor pricing model using the three factors RMRF, HML, and SMB
to price the 25 portfolios. Evaluate the Fama--French three-factor model
using the following techniques. In each case, present the coefficient esti-
mates (β, λ or b), standard errors, and the α′V −1α test. Also compute the
root mean square pricing errors, plot actual vs. predicted mean returns,
and compute the R 2 of actual vs. predicted mean returns. Compare the
results—the point of this problem is both to make you really understand
how to do each procedure, but also to see if there are important differences
between the procedures.

(a) Time-series regression

(i) OLS standard errors. Calculate both the asymptotic χ 2 test and
the GRS F test.

(ii) GMM standard errors using 0 lags.
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(b) Cross-sectional OLS and GLS regression.

(i) Standard errors and cov(α̂) with no Shanken correction.

(ii) Shanken standard errors.

(iii) GMM standard errors with 0 lags.

(c) Fama--MacBeth. (Plain vanilla: OLS cross-sectional regressions, no
Shanken corrections to standard errors. Do compute the α̂′cov(α̂)−1α̂ test
however.)

(d) Express the model in discount factor form m = 1 − b ′f and use

(i) First-stage GMM (0 lags in standard errors). (Don’t forget that
the first-stage JT test is g ′

T
cov(gT )

+gT ∼ χ 2 not Tg ′
T

S−1gT ∼ χ 2.)

(ii) Second-stage GMM (0 lags again).

(e) Express the model in discount factor form m = 1 − ( f − Ef )′b so
your cross-sectional regressions are returns on covariances. Do first- and
second-stage GMM.

(f) Can we drop the market factor in favor of a Fama--French two-factor
model? Can we drop the SMB factor?

(g) Optional: Use 1 year of Newey--West lags in the GMM estimates
as well.

Hints and tips: avoid the missing observations (−99) by starting later
than the first data point in the sample. It’s a good idea to start with simple
characterizations—make tables of mean returns and betas to make sure
things are lining up well. It is also important in any test to check that
there is a spread of average returns to explain and that the betas do vary
across stocks. The portfolio returns are not yet excess—use the risk-free
rate in the factor data set. (Or, estimate the model in levels with no risk-
free assumption. As you saw in a previous problem, it is not really right to
subtract a risky return from the market for the CAPM.)
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Maximum likelihood is, like GMM, a general organizing principle that is
a useful place to start when thinking about how to choose parameters and
evaluate a model. It comes with an asymptotic distribution theory, which, like
GMM, is a good place to start when you are unsure about how to treat various
problems such as the fact that betas must be estimated in a cross-sectional
regression.

As we will see, maximum likelihood is a special case of GMM. Given a
statistical description of the data, it prescribes which moments are statisti-
cally most informative. Given those moments, ML and GMM are the same.
Thus, ML can be used to defend why one picks a certain set of moments,
or for advice on which moments to pick if one is unsure. In this sense, max-
imum likelihood (paired with carefully chosen statistical models) justifies
the regression tests above, as it justifies standard regressions. On the other
hand, ML does not easily allow you to use other non-‘‘efficient’’ moments,
if you suspect that ML’s choices are not robust to misspecifications of the
economic or statistical model. For example, ML will tell you how to do GLS,
but it will not tell you how to adjust OLS standard errors for nonstandard
error terms.

Hamilton (1994, pp. 142--148) and the appendix in Campbell,
Lo, and MacKinlay (1997) give nice summaries of maximum like-
lihood theory. Campbell, Lo, and MacKinlay’s Chapters 5 and 6
treat many more variations of regression-based tests and maximum
likelihood.

267
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14.1 Maximum Likelihood

The maximum likelihood principle says to pick the parameters that make
the observed data most likely. Maximum likelihood estimates are asymptoti-
cally efficient. The information matrix gives the asymptotic standard errors of
ML estimates.

The maximum likelihood principle says to pick that set of parameters
that makes the observed data most likely. This is not ‘‘the set of parameters
that are most likely given the data’’—in classical (as opposed to Bayesian)
statistics, parameters are numbers, not random variables.

To implement this idea, you first have to figure out what the probability
of seeing a data set {x t } is, given the free parameters θ of a model. This
probability distribution is called the likelihood function f ({x t }; θ). Then, the
maximum likelihood principle says to pick

θ̂ = arg max
{θ}

f ({x t }; θ).

For reasons that will soon be obvious, it is much easier to work with the log
of this probability distribution

L({x t }; θ) = ln f ({x t }; θ).
Maximizing the log likelihood is the same thing as maximizing the
likelihood.

Finding the likelihood function is not always easy. In a time-series con-
text, the best way to do it is often to first find the log conditional likelihood
function f (x t |x t−1, x t−2, . . . , x 0; θ), the chance of seeing x t+1 given x t , x t−1, . . .
and given values for the parameters. Since joint probability is the product
of conditional probabilities, the log likelihood function is just the sum of
the conditional log likelihood functions,

L({x t }; θ) =
T∑

t=1

ln f (x t |x t−1, x t−2, . . . , x 0; θ). (14.1)

More concretely, we usually assume normal errors, so the likelihood
function is

L = −T
2

ln(2π |�|)− 1
2

T∑
t=1

ε′
t�

−1εt , (14.2)

where εt denotes a vector of shocks; εt = x t − E (x t |x t−1, x t−2, . . . , x 0; θ) and
� = E (εtε

′
t ).
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This expression gives a simple recipe for constructing a likelihood func-
tion. You usually start with a model that generates x t from errors, e.g.,
x t = ρx t−1 + εt . Invert that model to express the errors εt in terms of the
data {x t } and plug in to (14.2).

There is a small issue about how to start off a model such as (14.1).
Ideally, the first observation should be the unconditional density, i.e.,

L({x t }; θ) = ln f (x 1; θ)+ ln f (x 2|x 1; θ)+ ln f (x 3|x 2, x 1; θ) . . . .

However, it is usually hard to evaluate the unconditional density or the first
terms with only a few lagged x’s. Therefore, if, as usual, the conditional
density can be expressed in terms of a finite number k of lags of x t , one
often maximizes the conditional likelihood function (conditional on the first
k observations), treating the first k observations as fixed rather than random
variables. Alternatively, one can treat k presample values {x 0, x−1, . . . , x−k+1}
as additional parameters over which to maximize the likelihood function.

Maximum likelihood estimators come with a useful asymptotic (i.e.,
approximate) distribution theory. First, the distribution of the estimates is

θ̂ ∼ N
(
θ ,
[
− ∂2L
∂θ ∂θ ′

]−1)
. (14.3)

If the likelihood L has a sharp peak at θ̂ , then we know a lot about the
parameters, while if the peak is flat, other parameters are just as plausible.
The maximum likelihood estimator is asymptotically efficient, meaning that
no other estimator can produce a smaller covariance matrix.

The second derivative in (14.3) is known as the information matrix,

I = − 1
T

∂2L
∂θ ∂θ ′ = − 1

T

T∑
t=1

∂2 ln f (x t |x t−1, x t−2, . . . ; θ)
∂θ ∂θ ′ . (14.4)

(More precisely, the information matrix is defined as the expected value of
the second partial, which is estimated with the sample value.) The infor-
mation matrix can also be estimated as a product of first derivatives. The
expression

I = 1
T

T∑
t=1

(
∂ ln f (x t |x t−1, x t−2, . . . ; θ)

∂θ

)

×
(
∂ ln f (x t |x t−1, x t−2, . . . ; θ)

∂θ

)′

converges to the same value as (14.4). (Hamilton [1994, p. 429] gives a
proof.)
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If we estimate a model restricting the parameters, the maximum value of
the likelihood function will necessarily be lower. However, if the restriction
is true, it should not be that much lower. This intuition is captured in the
likelihood ratio test

2
(Lunrestricted − Lrestricted

) ∼ χ 2
number of restrictions. (14.5)

The form and idea of this test are much like the χ 2 difference test for GMM
objectives that we met in Section 11.1.

14.2 ML is GMM on the Scores

ML is a special case of GMM. ML uses the information in the auxiliary statis-
tical model to derive statistically most informative moment conditions. To
see this fact, start with the first-order conditions for maximizing a likelihood
function

∂L({x t }; θ)
∂θ

=
T∑

t=1

∂ ln f (x t |x t−1, x t−2 . . . ; θ)
∂θ

= 0. (14.6)

This is a GMM estimate. It is the sample counterpart to a population moment
condition

g (θ) = E
(
∂ ln f (x t |x t−1, x t−2 . . . ; θ)

∂θ

)
= 0. (14.7)

The term ∂ ln f (x t |x t−1, x t−2 . . . ; θ)/∂θ is known as the ‘‘score.’’ It is a random
variable, formed as a combination of current and past data (x t , x t−1, . . .).
Thus, maximum likelihood is a special case of GMM, a special choice of
which moments to examine.

For example, suppose that x follows an AR(1) with known variance,

x t = ρx t−1 + εt ,

and suppose the error terms are i.i.d. normal random variables. Then,

ln f (x t |x t−1, x t−2, . . . ; ρ) = const. − ε2
t

2σ 2
= const. −

(
x t − ρx t−1

)2

2σ 2

and the score is

∂ ln f (x t |x t−1, x t−2 . . . ; ρ)
∂ρ

=
(
x t − ρx t−1

)
x t−1

σ 2
.
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The first-order condition for maximizing likelihood is

1
T

T∑
t=1

(
x t − ρx t−1

)
x t−1 = 0.

This expression is a moment condition, and you will recognize it as the OLS
estimator of ρ, which we have already regarded as a case of GMM.

The example shows another property of scores: The scores should be
unforecastable. In the example,

Et−1

[(
x t − ρx t−1

)
x t−1

σ 2

]
= Et−1

[
εt x t−1

σ 2

]
= 0. (14.8)

Intuitively, if we used a combination of the x variables E (h(x t , x t−1, . . .)) = 0
that was predictable, we could form another moment—an instrument—that
described the predictability of the h variable and use that moment to get
more information about the parameters. To prove this property more gen-
erally, start with the fact that f (x t |x t−1, x t−2, . . . ; θ) is a conditional density
and therefore must integrate to one,

1 =
∫

f (x t |x t−1, x t−2, . . . ; θ) dxt ,

0 =
∫
∂f (x t |x t−1, x t−2, . . . ; θ)

∂θ
dxt ,

0 =
∫
∂ ln f (x t |x t−1, x t−2, . . . ; θ)

∂θ
f (x t |x t−1, x t−2, . . . ; θ) dxt ,

0 = Et−1

[
∂ ln f (x t |x t−1, x t−2, . . . ; θ)

∂θ

]
.

Furthermore, as you might expect, the GMM distribution theory formulas
give the same result as the ML distribution, i.e., the information matrix is the
asymptotic variance-covariance matrix. To show this fact, apply the GMM
distribution theory (11.2) to (14.6). The derivative matrix is

d = ∂gT (θ)

∂θ ′ = 1
T

T∑
t=1

∂2 ln f (x t |x t−1, x t−2, . . . ; θ)
∂θ ∂θ

′ = −I.

This is the second derivative expression of the information matrix. The
S matrix is

E
[
∂ ln f (x t |x t−1, x t−2, . . . ; θ)

∂θ

∂ ln f (x t |x t−1, x t−2, . . . ; θ)
∂θ

′]
= I.
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The lead and lag terms in S are all zero since we showed above that scores
should be unforecastable. This is the outer product definition of the infor-
mation matrix. There is no a matrix, since the moments themselves are set
to zero. The GMM asymptotic distribution of θ̂ is therefore

√
T (θ̂ − θ) → N [

0, d−1Sd−1′] = N [
0, I−1

]
.

We recover the inverse information matrix, as specified by the ML asymptotic
distribution theory.

14.3 When Factors Are Returns, ML Prescribes
a Time-Series Regression

I add to the economic model E
(
R e
) = βE (f ) a statistical assumption

that the regression errors are independent over time and independent of the
factors. ML then prescribes a time-series regression with no constant. To pre-
scribe a time-series regression with a constant, we drop the model prediction
α = 0. I show how the information matrix gives the same result as the OLS
standard errors.

Given a linear factor model whose factors are also returns, as with the
CAPM, ML prescribes a time-series regression test. To keep notation simple,
I again treat a single factor f . The economic model is

E
(
R e
) = βE ( f ). (14.9)

R e is an N × 1 vector of test assets, and β is an N × 1 vector of regression
coefficients of these assets on the factor (the market return R em in the case
of the CAPM).

To apply maximum likelihood, we need to add an explicit statistical
model that fully describes the joint distribution of the data. I assume that
the market return and regression errors are i.i.d. normal, i.e.,

R e
t = α + βft + εt , (14.10)

ft = E ( f )+ ut ,[
εt

ut

]
∼ N

([
0
0

]
,
[
� 0
0 σ 2

u

])
.

(We can get by with nonnormal factors, but the notation will be messier.)
Equation (14.10) has no content other than normality. The zero correlation
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between ut and εt identifies β as a regression coefficient. You can just write
R e , R em as a general bivariate normal, and you will get the same results.

The economic model (14.9) implies restrictions on this statistical model.
Taking expectations of (14.10), the CAPM implies that the intercepts α
should all be zero. Again, this is also the only restriction that the CAPM
places on the statistical model (14.10).

The most principled way to apply maximum likelihood is to impose
the null hypothesis throughout. Thus, we write the likelihood function
imposing α = 0. To construct the likelihood function, we reduce the statis-
tical model to independent error terms, and then add their log probability
densities to get the likelihood function:

L = (const.) − 1
2

T∑
t=1

(R e
t − βft )

′�−1(R e
t − βft )− 1

2

T∑
t=1

( ft − E ( f ))2

σ 2
u

.

The estimates follow from the first-order conditions,

∂L
∂β

= �−1
T∑

t=1

(R e
t − βft )ft = 0 ⇒ β̂ =

(
T∑

t=1

f 2
t

)−1 T∑
t=1

R e
t ft ,

∂L
∂E (f )

= 1
σ 2

u

T∑
t=1

(
ft − E ( f )

) = 0 ⇒ Ê ( f ) = λ̂ = 1
T

T∑
t=1

ft .

(∂L/∂� and ∂L/∂σ 2 also produce ML estimates of the covariance matrices,
which turn out to be the standard averages of squared residuals.)

The ML estimate of β is the OLS regression without a constant. The null
hypothesis says the constant is zero, and the ML estimator uses that fact to
avoid estimating a constant. Since the factor risk premium is equal to the
expected value of the factor, it is not too surprising that the λ estimate is
equal to the sample average of the factor.

We know that the ML distribution theory must give the same result as
the GMM distribution theory which we already derived in Section 12.1, but
it is worth seeing it explicitly. The asymptotic standard errors follow from
either estimate of the information matrix, for example,

∂2L
∂β ∂β ′ = −�−1

T∑
t=1

f 2
t .

Thus,

cov(β̂) = 1
T

1
E ( f 2)

� = 1
T

1
E ( f )2 + σ 2( f )

�. (14.11)

This is the standard OLS formula.
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We also want pricing error measurements, standard errors, and tests.
We can apply maximum likelihood to estimate an unconstrained model,
containing intercepts, and then use Wald tests (estimate/standard error)
to test the restriction that the intercepts are zero. We can also use the
unconstrained model to run the likelihood ratio test. The unconstrained
likelihood function is

L = (const.) − 1
2

T∑
t=1

(R e
t − α − βft )

′�−1(R e
t − α − βft )+ · · · .

(I ignore the term in the factor, since it will again just tell us to use the
sample mean to estimate the factor risk premium.)

The estimates are now

∂L
∂α

= �−1
T∑

t=1

(
R e

t − α − βft

) = 0 ⇒ α̂ = ET (R e
t )− β̂ET ( ft ) ,

∂L
∂β

= �−1
T∑

t=1

(
R e

t − α − βft

)
ft = 0 ⇒ β̂ = covT

(
R e

t , ft

)
σ 2

T

(
ft

) .

Unsurprisingly, the unconstrained maximum likelihood estimates of α and
β are the OLS estimates, with a constant.

The inverse of the information matrix gives the asymptotic distribution
of these estimates. Since they are just OLS estimates, we are going to get the
OLS standard errors, but it is worth seeing it come out of ML:

−

⎡
⎢⎢⎣ ∂2L
∂
[
α

β

]
∂
[
α β

]

⎤
⎥⎥⎦

−1

=
[

�−1 �−1E ( f )

�−1E ( f ) �−1E ( f 2)

]−1

= 1
σ 2( f )

[
E ( f 2) E ( f )

E ( f ) 1

]
⊗�.

The covariance matrices of α̂ and β̂ are thus

cov(α̂) = 1
T

[
1 +

(
E ( f )
σ ( f )

)2]
�,

cov(β̂) = 1
T

1
σ 2( f )

�.

(14.12)

These are just the usual OLS standard errors, which we derived in
Section 12.1 as a special case of GMM standard errors for the OLS time-series
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regressions when errors are uncorrelated over time and independent of the
factors, or by specializing σ 2(X ′X )−1.

You cannot just invert ∂2L/∂α ∂α′ to find the covariance of α̂. That
attempt would give just � as the covariance matrix of α̂, which would be
wrong. You have to invert the entire information matrix to get the standard
error of any parameter. Otherwise, you are ignoring the effect that estimat-
ing β has on the distribution of α̂. In fact, what I presented is really wrong,
since we also must estimate �. However, it turns out that �̂ is indepen-
dent of α̂ and β̂—the information matrix is block-diagonal—so the top left
two elements of the true inverse information matrix are the same as I have
written here.

The variance of β̂ in (14.12) is larger than it was in (14.11) when we
imposed the null of no constant. True, constrained ML uses all the infor-
mation it can to produce efficient estimates—estimates with the smallest
possible covariance matrix. The ratio of the two formulas is equal to the
familiar term 1+E ( f )2/σ 2( f ). In annual data for the CAPM, σ(R em) = 16%,
E (R em) = 8%, means that unrestricted estimate (14.12) has a variance 25%
larger than the restricted estimate (14.11), so the gain in efficiency can be
important. In monthly data, however, the gain is smaller since variance and
mean both scale with the horizon.

We can also view this fact as a warning: ML will ruthlessly exploit the
null hypothesis and do things like running regressions without a constant
in order to get any small improvement in efficiency.

We can use these covariance matrices to construct a Wald (estimate/
standard error) test of the restriction of the model that the alphas are
all zero,

T
(

1 +
(

E ( f )
σ ( f )

)2)−1

α̂′�−1α̂ ∼ χ 2
N . (14.13)

Again, we already derived this χ 2 test in (12.3), and its finite sample F
counterpart, the GRS F test (12.4).

The other test of the restrictions is the likelihood ratio test (14.5). Quite
generally, likelihood ratio tests are asymptotically equivalent to Wald tests,
and so give the same result.

14.4 When Factors Are Not Excess Returns, ML Prescribes
a Cross-Sectional Regression

If the factors are not returns, we do not have a choice between time-series
and cross-sectional regression, since the intercepts are not zero. As you
might suspect, ML prescribes a cross-sectional regression in this case.
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The factor model, expressed in expected return-beta form, is

E (R ei) = αi + β ′
iλ, i = 1, 2, . . . , N . (14.14)

The betas are defined from time-series regressions

R ei
t = ai + β ′

i ft + εi
t . (14.15)

The intercepts ai in the time-series regressions need not be zero, since the
model does not apply to the factors. They are not unrestricted, however.
Taking expectations of the time-series regression (14.15) and comparing
it to (14.14) (as we did to derive the restriction α = 0 for the time-series
regression), the restriction α = 0 implies

ai = β ′
i

(
λ− E ( ft )

)
. (14.16)

Plugging into (14.15), the time-series regressions must be of the restricted
form

R ei
t = β ′

iλ+ β ′
i

[
ft − E ( ft )

]+ εi
t . (14.17)

In this form, you can see that β ′
iλ determines the mean return. Since there

are fewer factors than returns, this is a restriction on the regression (14.17).
Stack assets i = 1, 2, . . . , N to a vector, and introduce the auxiliary sta-

tistical model that the errors and factors are i.i.d. normal and uncorrelated
with each other. Then, the restricted model is

R e
t = Bλ+ B[ ft − E ( ft )] + εt ,

ft = E ( f )+ ut ,[
εt

ut

]
∼ N

(
0,

[
� 0
0 V

])
,

where B denotes a N × K matrix of regression coefficients of the N assets
on the K factors. The likelihood function is

L = (const.) − 1
2

T∑
t=1

ε′
t�

−1εt − 1
2

T∑
t=1

u ′
t V

−1ut ,

εt = R e
t − B[λ+ ft − E ( f )], ut = ft − E ( f ).

Maximizing the likelihood function,

∂L
∂E ( f )

: 0 =
T∑

t=1

B ′�−1
(
R e

t −B
[
λ+ ft − E ( f )

])+
T∑

t=1

V −1( ft − E ( f )),

∂L
∂λ

: 0 = B ′
T∑

t=1

�−1
(
R e

t − B
[
λ+ ft − E ( f )

])
.
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The solution to this pair of equations is

Ê ( f ) = ET ( ft ), (14.18)

λ̂ = (
B ′�−1B

)−1
B ′�−1ET

(
R e

t

)
. (14.19)

The maximum likelihood estimate of the factor risk premium is a GLS cross-sectional
regression of average returns on betas.

The maximum likelihood estimates of the regression coefficients B are
again not the same as the standard OLS formulas. Again, ML imposes the
null to improve efficiency:

∂L
∂B

:
T∑

t=1

�−1
(
R e

t −B
[
λ+ ft − E (f )

])[
λ+ ft − E ( f )

]′ = 0,

B̂ =
T∑

t=1

R e
t

[
ft + λ− E ( f )

]′ ( T∑
t=1

[
ft + λ− E ( f )

][
ft + λ− E ( f )

]′)−1

.

(14.20)

This is true, even though the B are defined in the theory as population
regression coefficients. (The matrix notation hides a lot here! If you want to
rederive these formulas, it is helpful to start with scalar parameters, e.g., Bij ,
and to think of it as ∂L/∂θ = ∑T

t=1(∂L/∂εt )
′∂εt/∂θ .) Therefore, to really

implement ML, you have to solve (14.19) and (14.20) simultaneously for λ̂,
B̂, along with �̂ whose ML estimate is the usual second-moment matrix of
the residuals. This can usually be done iteratively: Start with OLS B̂, run an
OLS cross-sectional regression for λ̂, form �̂, and iterate.

Problems—Chapter 14

1. Why do we use restricted ML when the factor is a return, but unrestricted
ML when the factor is not a return? To see why, try to formulate a ML
estimator based on an unrestricted regression when factors are not returns,
equation (12.1). Add pricing errors αi to the regression as we did for the
unrestricted regression in the case that factors are returns, and then find ML
estimators for B, λ, α, E (f ). (Treat V and � as known to make the problem
easier.)

2. Instead of writing a regression, build up the ML for the CAPM a
little more formally. Write the statistical model as just the assumption that
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individual returns and the market return are jointly normal,

[ R e

R em

]
∼ N

([
E (R e )

E (R em)

]
,
[

� cov(R em , R e ′)
cov(R em , R e ) σ 2

m

])
.

The model’s restriction is

E (R e ) = γ cov(R em , R e ).

Estimate γ and show that this is the same time-series estimator as we derived
by presupposing a regression.
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15
Time-Series, Cross-Section, and

GMM/DF Tests of Linear Factor Models

The GMM/discount factor, time-series, and cross-sectional regression pro-
cedures and distribution theory are similar, but not identical. Cross-sectional
regressions on betas are not the same thing as cross-sectional regressions
on second moments. Cross-sectional regressions weighted by the residual
covariance matrix are not the same thing as cross-sectional regressions
weighted by the spectral density matrix.

GLS cross-sectional regressions and second-stage GMM have a theoreti-
cal efficiency advantage over OLS cross-sectional regressions and first-stage
GMM, but how important is this advantage, and is it outweighed by worse
finite-sample performance?

Finally, and perhaps most importantly, the GMM/discount factor
approach is still a ‘‘new’’ procedure. Many authors still do not trust it. It
is important to verify that it produces similar results and well-behaved test
statistics in the setups of the classic regression tests.

To address these questions, I first apply the various methods to a classic
empirical question. How do time-series regression, cross-sectional regres-
sion, and GMM/stochastic discount factor compare when applied to a test
of the CAPM on CRSP size portfolios? I find that three methods produce
almost exactly the same results for this classic exercise. They produce almost
exactly the same estimates, standard errors, t-statistics, and χ 2 statistics that
the pricing errors are jointly zero.

Then I conduct a Monte Carlo and bootstrap evaluation. Again, I find
little difference between the methods. The estimates, standard errors, and
size and power of tests are almost identical across methods.

The bootstrap does reveal that the traditional i.i.d. assumption gener-
ates χ 2 statistics with about 1/2 the correct size—they reject half as often
as they should under the null. Simple GMM corrections to the distribution
theory repair this size defect. Also, you can ruin any estimate and test with
a bad spectral density matrix estimate. I try an estimate with 24 lags and

279
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no Newey--West weights. It is singular in the data sample and many Monte
Carlo replications. Interestingly, this singularity has minor effects on stan-
dard errors, but causes disasters when you use the spectral density matrix to
weight a second-stage GMM.

I also find that second-stage ‘‘efficient’’ GMM is only very slightly more
efficient than first-stage GMM, but is somewhat less robust; it is more sensi-
tive to the poor spectral density matrix and its asymptotic standard errors can
be misleading. As OLS is often better than GLS, despite the theoretical effi-
ciency advantage of GLS, first-stage GMM may be better than second-stage
GMM in many applications.

This section should give comfort that the apparently ‘‘new’’
GMM/discount factor formulation is almost exactly the same as traditional
methods in the traditional setup. There is a widespread impression that
GMM has difficulty in small samples. The literature on the small-sample
properties of GMM (for example, Ferson and Foerster [1994], Fuhrer,
Moore, and Schuh [1995]) naturally tries hard setups, with highly nonlinear
models, highly persistent and heteroskedastic errors, important condition-
ing information, potentially weak instruments, and so forth. Nobody would
write a paper trying GMM in a simple situation such as this one, correctly
foreseeing that the answer would not be very interesting. Unfortunately,
many readers take from this literature a mistaken impression that GMM
always has difficulty in finite samples, even in very standard setups. This is
not the case.

Jagannathan and Wang (2000) also compare the GMM/discount factor
approach to classic regression tests. They show analytically that the parame-
ter estimates, standard errors, and χ 2 statistics are asymptotically identical to
those of an expected return-beta cross-sectional regression when the factor
is not a return.

15.1 Three Approaches to the CAPM in Size Portfolios

The time-series approach sends the expected return-beta line through
the market return, ignoring other assets. The OLS cross-sectional regression
minimizes the sum of squared pricing errors, so allows some market pricing
error to fit other assets better. The GLS cross-sectional regression weights
pricing errors by the residual covariance matrix, so reduces to the time-series
regression when the factor is a return and is included in the test assets.

The GMM/discount factor estimates, standard errors, and χ 2 statistics
are very close to time-series and cross-sectional regression estimates in this
classic setup.
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Figure 15.1. Average excess returns vs. betas on CRSP size portfolios, 1926--1998. The line
gives the predicted average return from the time-series regression, E (R e ) = βE (R em).

Time Series and Cross Section
Figures 15.1 and 15.2 illustrate the difference between time-series and
cross-sectional regressions, in an evaluation of the CAPM on monthly size
portfolios.

Figure 15.1 presents the time-series regression. The time-series regres-
sion estimates the factor risk premium from the average of the factor,
ignoring any information in the other assets, λ̂ = ET (R em). Thus, a

Figure 15.2. Average excess returns vs. betas of CRSP size portfolios, 1926--1998, and the
fit of cross-sectional regressions.
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time-series regression draws the expected return-beta line across assets by
making it fit precisely on two points, the market return and the risk-free
rate—the market and risk-free rate have zero estimated pricing error in
every sample. (The far right portfolios are the smallest firm portfolios, and
their positive pricing errors are the small firm anomaly—this data set is the
first serious failure of the CAPM. I come back to the substantive issue in
Chapter 20.)

The time-series regression is the ML estimator in this case, since the
factor is a return. As we saw in Section 12.2, when we write R e = a +βft + εt

and ε independent of f , we tell ML that a sample of returns already includes
the same sample of the factor, plus extra noise. Thus, the sample of test asset
returns cannot possibly tell ML anything more than the sample of the factor
alone about the mean of the factor. Second, we tell ML that the factor risk
premium equals the mean of the factor, so it may not consider the possibility
that the two quantities are different in trying to match the data.

The OLS cross-sectional quantities regression in Figure 15.2 draws the
expected return-beta line by minimizing the squared pricing error across all
assets. Therefore, it allows some pricing error for the market return, if by
doing so the pricing errors on other assets can be reduced. Thus, the OLS
cross-sectional regression gives some pricing error to the market return in
order to lower the pricing errors of the other portfolios.

When the factor is not also a return, ML prescribes a cross-sectional
regression. ML still ignores anything but the factor data in estimating
the mean of the factor—Ê ( f ) = ET ( ft ). However, ML is now allowed to
use a different parameter for the factor risk premium that fits average
returns to betas, which it does by cross-sectional regression. However, ML
is a GLS cross-sectional regression, not an OLS cross-sectional regression.
The GLS cross-sectional regression in Figure 15.2 is almost exactly identical
to the time-series regression result—it passes right through the origin and
the market return, ignoring all the other pricing errors.

The GLS cross-sectional regression

λ̂ = (
β ′�−1β

)−1
β ′�−1ET (R e )

weights the various portfolios by the inverse of the residual covariance
matrix �. As we saw in Section 12.2, if we include the market return as
a test asset, it obviously has no residual variance—R em

t = 0+1×R em
t +0—so

the GLS estimate pays exclusive attention to it in fitting the market line.
The same thing happens if the test assets span the factors—if a linear com-
bination of the test assets is equal to the factor and hence has no residual
variance. The size portfolios nearly span the market return, so the GLS
cross-sectional regression is visually indistinguishable from the time-series
regression in this case.
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If we allow a free constant in the OLS cross-sectional regression, thus
allowing a pricing error for the risk-free rate, you can see from Figure 15.2
that the OLS cross-sectional regression line will fit the size portfolios even
better, though allowing a pricing error in the risk-free rate as well as the
market return. However, a free intercept in an OLS regression on excess
returns puts no weight at all on the intercept pricing error. It is a better idea
to include the risk-free rate as a test asset, either directly by doing the whole
thing in levels of returns rather than excess returns or by adding E (R e ) = 0,
β = 0 to the cross-sectional regression. The GLS cross-sectional regression
will notice that the T-bill rate has no residual variance and so will send the
line right through the origin, as it does for the market return.

GMM/Discount Factor First and Second Stage
Figure 15.3 illustrates the GMM/discount factor estimate with the same data.
The horizontal axis is the second moment of returns and factors rather than
beta, but you would not know it from the placement of the dots. (The esti-
mates are calculated using the formulas from Section 13.2.) The first-stage
estimate is an OLS cross-sectional regression of average returns on second
moments. It minimizes the sum of squared pricing errors, and so produces
pricing errors almost exactly equal to those of the OLS cross-sectional regres-
sion of returns on betas. The second-stage estimate minimizes pricing errors
weighted by the spectral density matrix. The spectral density matrix is not the
same as the residual covariance matrix, so the second-stage GMM does not

Figure 15.3. Average excess return vs. predicted value of 10 CRSP size portfolios, 1926--1998,
based on GMM/SDF estimate. The model predicts E (R e ) = bE (R e R em). The second-stage
estimate of b uses a spectral density estimate with zero lags.
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go through the market portfolio as does the GLS cross-sectional regression.
In fact, the slope of the line is slightly higher for the second-stage estimate.

(The spectral density matrix of the discount factor formulation does not
reduce to the residual covariance matrix even if we assume the regression
model, the asset pricing model, is true, and factors and residuals are i.i.d.
normal. In particular, when the market is a test asset, the GLS cross-sectional
regression focuses all attention on the market portfolio but the second-stage
GMM/DF does not do so. The parameter b is related to λ by b = λ/E (R em2).
The other assets still are useful in determining the parameter b, even though,
given the market return and the regression model R ei

t = βiR em
t + εi

t , seeing
the other assets does not help to determine the mean of the market return.)

Overall, the figures do not suggest any strong reason to prefer first- and
second-stage GMM/discount factor, time-series, OLS, or GLS cross-sectional
regression in this standard model and data set. The results are affected by
the choice of method. In particular, the size of the small-firm anomaly is
substantially affected by how one draws the market line. But the graphs and
analysis do not strongly suggest that any method is better than any other for
purposes other than fishing for the answer one wants.

Parameter Estimates, Standard Errors, and Tests
Table 15.1 presents the parameter estimates and standard errors from time-
series, cross-section, and GMM/discount factor approach in the CAPM size
portfolio test illustrated by Figures 15.1 and 15.2. The main parameter to be
estimated is the slope of the lines in the above figures, the market price of risk
λ in the expected return-beta model and the relation between mean returns
and second moments b in the stochastic discount factor model. The big point

Table 15.1. Parameter estimates and standard errors

Beta model λ GMM/DF b

Time- Cross-section 1st 2nd stage
Series OLS GLS stage Estimate Standard Error

Estimate 0.66 0.71 0.66 2.35
i.i.d. 0.18 (3.67) 0.20 (3.55) 0.18 (3.67)

0 lags 0.18 (3.67) 0.19 (3.74) 0.18 (3.67) 0.63 (3.73) 2.46 0.61 (4.03)
3 lags, NW 0.20 (3.30) 0.21 (3.38) 0.20 (3.30) 0.69 (3.41) 2.39 0.64 (3.73)

24 lags 0.16 (4.13) 0.16 (4.44) 0.16 (4.13) 1.00 (2.35) 2.15 0.69 (3.12)

Estimates are shown in italic, standard errors in roman type, and t-statistics in parentheses. The time-series
estimate is the mean market return in percent per month. The cross-sectional estimate is the slope coefficient
λ in E (Re ) = βλ. The GMM estimate is the parameter b in E (Re ) = E (Re f )b. CRSP monthly data 1926--1998.
‘‘Lags’’ gives the number of lags in the spectral density matrix. ‘‘NW’’ uses Newey--West weighting in the
spectral density matrix.
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of Table 15.1 is that the GMM/discount factor estimate and standard errors
behave very similarly to the traditional estimates and standard errors.

The rows compare results with various methods of calculating the
spectral density matrix. The row marked ‘‘Independent and identical dis-
tribution’’ imposes no serial correlation and regression errors independent
of right-hand variables, and is identical to the maximum likelihood based
formulas. The 0 lag estimate allows conditional heteroskedasticity, but no
times-series correlation of residuals. The 3 lag, Newey--West estimate is a
sensible correction for short-order autocorrelation. I include the 24 lag spec-
tral density matrix to show how things can go wrong if you use a ridiculous
spectral density matrix.

The OLS cross-sectional estimate of the beta model 0.71 is a little higher
than the mean market return 0.66, in order to better fit all of the assets, as
seen in Figure 15.2. The GLS cross-sectional estimate is almost exactly the
same as the mean market return, and the GLS standard errors are almost
exactly the same as the time-series standard errors.

The b estimates are not directly comparable to the risk premium esti-
mates, but it is easy to translate their units. Applying the discount factor
model with normalization a = 1 to the market return itself,

b = E
(
R em

)
E
(
R em2

) .

With E (R em) = 0.66% and σ(R em) = 5.47%, we have 100 × b =
100(0.66)/(0.662 + 5.472) = 2.17. The entries in Table 15.1 are close to
this magnitude. Most are slightly larger, as is the OLS cross-sectional regres-
sion, in order to better fit the size portfolios. The t-statistics are quite close
across methods.

The second-stage GMM/DF estimates (as well as standard errors)
depend on which spectral density weighting matrix is used as a weighting
matrix. The results are quite similar for all the sensible spectral density esti-
mates. The 24 lag spectral density matrix starts to produce unusual estimates.
This spectral density estimate will cause lots of problems below.

Table 15.2 presents the χ 2 and F statistics that test whether the pricing
errors are jointly significant. The OLS and GLS cross-sectional regression,
and the first- and second-stage GMM/discount factor tests give exactly the
same χ 2 statistic, though the individual pricing errors and covariance matrix
are not the same, so I do not present them separately. The big point of
Table 15.2 is that the GMM/discount factor method gives almost exactly the
same result as the cross-sectional regression.

For the time-series regression, the GRS F test gives almost exactly the
same rejection probability as does the asymptotic χ 2 test. Apparently, the
advantages of a statistic that is valid in finite samples is not that important in
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Table 15.2. χ 2 tests that all pricing errors are jointly equal to zero

Time series Cross section GMM/DF

χ 2
(10) % p-value χ 2

(9) % p-value χ 2
(9) % p-value

i.i.d. 8.5 58 8.5 49
GRS F 0.8 59
0 lags 10.5 40 10.6 31 10.5 31

3 lags NW 11.0 36 11.1 27 11.1 27
24 lags −432 −100 7.6 57 7.7 57

this data set. The χ 2 tests for the time-series case without the i.i.d. assump-
tion are a bit more conservative, with 30--40% p value rather than almost
60%. However, this difference is not large. The one exception is the χ 2 test
using 24 lags and no weights in the spectral density matrix. That matrix
turns out not to be positive definite in this sample, with disastrous results
for the χ 2 statistic.

(Somewhat surprisingly, the CAPM is not rejected. This is because the
small-firm effect vanishes in the latter part of the sample. I discuss this fact
further in Chapter 20. See in particular Figure 20.14.)

Looking across the rows, the χ 2 statistic is almost exactly the same
for each method. The cross-sectional regression and GMM/DF estimate
have one lower degree of freedom (the market premium is estimated
from the cross section rather than from the market return), and so
show slightly greater rejection probabilities. For a given spectral density
estimation technique, the cross-sectional regression and the GMM/DF
approach give almost exactly the same χ 2 values and rejection probabil-
ities. The 24 lag spectral density matrix is a disaster as usual. In this
case, it is a greater disaster for the time-series test than for the cross
section or GMM/discount factor test. It turns out not to be positive defi-
nite, so the sample pricing errors produce a nonsensical negative value of
α̂′cov(α̂)−1α̂.

15.2 Monte Carlo and Bootstrap

The parameter distribution for the time-series regression estimate is quite
similar to that from the GMM/discount factor estimate.

The size and power of χ 2 test statistics are nearly identical for the time-
series regression test and the GMM/discount factor test.
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A bad spectral density matrix can ruin either time-series or
GMM/discount factor estimates and tests.

There is enough serial correlation and heteroskedasticity in the data that
conventional i.i.d. formulas produce test statistics with about 1/2 the cor-
rect size. If you want to do classic regression tests, you should correct the
distribution theory rather than use the ML i.i.d. distributions.

Econometrics is not just about sensible point estimates, it is about sam-
pling variability of those estimates, and whether standard error formulas
correctly capture that sampling variability. How well do the various stan-
dard error and test statistic formulas capture the true sampling distribution
of the estimates? To answer this question I conduct two Monte Carlos and
two bootstraps. I conduct one each under the null that the CAPM is correct,
to study size, and one each under the alternative that the CAPM is false, to
study power.

The Monte Carlo experiments follow the standard ML assumption that
returns and factors are i.i.d. normally distributed, and the factors and resid-
uals are independent as well as uncorrelated. I generate artificial samples
of the market return from an i.i.d. normal, using the sample mean and
variance of the value-weighted return. I then generate artificial size decile
returns under the null by R ei

t = 0 + βiR em
t + εit , using the sample resid-

ual covariance matrix � to draw i.i.d. normal residuals εit and the sample
regression coefficients βi . To generate data under the alternative, I add the
sample αi . I draw 5000 artificial samples. I try a long sample of 876 months,
matching the CRSP sample analyzed above. I also draw a short sample of
240 months or 20 years, which is about as short as one should dare try to
test a factor model.

The bootstraps check whether nonnormalities, autocorrelation, het-
eroskedasticity, and nonindependence of factors and residuals matter to
the sampling distribution in this data set. I do a block-bootstrap, resam-
pling the data in groups of three months with replacement, to preserve the
short-order autocorrelation and persistent heteroskedasticity in the data. To
impose the CAPM, I draw the market return and residuals in the time-series
regression, and then compute artificial data on decile portfolio returns by
R ei

t = 0 +βiR em
t + εit . To study the alternative, I simply redraw all the data in

groups of three. Of course, the actual data may display conditioning infor-
mation not displayed by this bootstrap, such as predictability and conditional
heteroskedasticity based on additional variables such as the dividend/price
ratio, lagged squared returns, or implied volatilities.

The first-stage GMM/discount factor and OLS cross-sectional regres-
sion are nearly identical in every artificial sample, as the GLS cross-
sectional regression is nearly identical to the time-series regression in every
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sample. Therefore, the important question is to compare the time-series
regression—which is ML with i.i.d. normal returns and factors—to the first-
and second-stage GMM/DF procedure. For this reason and to save space,
I do not include the cross-sectional regressions in the Monte Carlo and
bootstrap.

χ 2 Tests
Table 15.3 presents the χ 2 tests of the hypothesis that all pricing errors are
zero under the null that the CAPM is true, and Table 15.4 presents the χ 2

tests under the null that the CAPM is false. Each table presents the percent-
age of the 5000 artificial data sets in which the χ 2 tests rejected the null at the
indicated level. The central point of these tables is that the GMM/discount
factor test performs almost exactly the same way as the time-series test. Com-
pare the GMM/DF entry to its corresponding time-series entry; they are all
nearly identical. Neither the small efficiency advantage of time series versus
cross section, nor the difference between betas and second moments seems
to make any difference to the sampling distribution.

Table 15.3. Size. Probability of rejection for χ 2 statistics under the null that all pricing errors are zero

Monte Carlo Block-Bootstrap

Time-series GMM/DF Time-series GMM/DF

Sample size: 240 876 240 876 240 876 240 876
level (%): 5 5 1 5 5 1 5 5 1 5 5 1

i.i.d. 7.5 6.0 1.1 6.0 2.8 0.6
0 lags 7.7 6.1 1.1 7.5 6.3 1.0 7.7 4.3 1.0 6.6 3.7 0.9

3 lags, NW 10.7 6.5 1.4 9.7 6.6 1.3 10.5 5.4 1.3 9.5 5.3 1.3
24 lags 25 39 32 25 41 31 23 38 31 24 41 32

Table 15.4. Power. Probability of rejection for χ 2 statistics under the null that the CAPM is false,
and the true means of the decile portfolio returns are equal to their sample means

Monte Carlo Block-Bootstrap

Time-series GMM/DF Time-series GMM/DF

Sample size: 240 876 240 876 240 876 240 876
level (%): 5 5 1 5 5 1 5 5 1 5 5 1

i.i.d. 17 48 26 11 40 18
0 lags 17 48 26 17 50 27 15 54 28 14 55 29

3 lags, NW 22 49 27 21 51 29 18 57 31 17 59 33
24 lags 29 60 53 29 66 57 27 63 56 29 68 60
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Start with the Monte Carlo evaluation of the time-series test in
Table 15.3. The i.i.d. and 0 lag distributions produce nearly exact rejection
probabilities in the long sample and slightly too many (7.5%) rejections in
the short sample. Moving down, GMM distributions here correct for things
that are not there. This has a small but noticeable effect on the sensible
3 lag test, which rejects slightly too often under this null. Naturally, this
is worse for the short sample, but looking across the rows, the time-series
and discount factor tests are nearly identical in every case. The variation
across technique is almost zero, given the spectral density estimate. The 24 lag
unweighted spectral density is the usual disaster, rejecting far too often. It is
singular in many samples. In the long sample, the 1% tail of this distribution
occurs at a χ 2 value of 440 rather than the 23.2 of the χ 2

(10) distribution!
The long-sample block-bootstrap in the right half of the tables shows

even in this simple setup how i.i.d. normal assumptions can be misleading.
The traditional i.i.d. χ 2 test has almost half the correct size—it rejects a 5% test
2.8% of the time, and a 1% test 0.6% of the time. Removing the assumption
that returns and factors are independent, going from i.i.d. to 0 lags, brings
about half of the size distortion back, while adding one of the sensible
autocorrelation corrections does the rest. In each row, the time-series and
GMM/DF methods produce almost exactly the same results again. The 24
lag spectral density matrices are a disaster as usual.

Table 15.4 shows the rejection probabilities under the alternative. The
most striking feature of the table is that the GMM/discount factor test gives
almost exactly the same rejection probability as the time-series test, for each
choice of spectral density estimation technique. When there is a difference,
the GMM/discount factor test rejects slightly more often. The 24 lag tests
reject most often, but this is not surprising given that they reject almost as
often under the null.

Parameter Estimates and Standard Errors
Table 15.5 presents the sampling variation of the λ and b estimates. The
rows and columns marked σ(λ̂), σ(b̂), and in italic font, give the variation
of the estimated λ or b across the 5000 artificial samples. The remaining
rows and columns give the average across samples of the standard errors.
The presence of pricing errors has little effect on the estimated b or λ
and their standard errors, so I only present results under the null that the
CAPM is true. The parameters are not directly comparable—the b param-
eter includes the variance as well as the mean of the factor, and ET (R em)

is the natural GMM estimate of the mean market return as it is the time-
series estimate of the factor risk premium. Still, it is interesting to know
and to compare how well the two methods do at estimating their central
parameter.
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Table 15.5. Monte Carlo and block-bootstrap evaluation of the sampling variability of parameter
estimates b and λ

Monte Carlo Block-Bootstrap

Time-series GMM/DF Time-series GMM/DF

1st- 2nd-stage 1st- 2nd-stage
stage σ(b̂) E(s.e.) stage σ(b̂) E(s.e.)

T = 876:
σ(λ̂), σ(b̂) 0.19 0.64 0.20 0.69

i.i.d. 0.18 0.18
0 lags 0.18 0.65 0.61 0.60 0.18 0.63 0.67 0.60

3 lags NW 0.18 0.65 0.62 0.59 0.19 0.67 0.67 0.62
24 lags 0.18 0.62 130 0.27 0.19 0.66 1724 0.24

T = 240:
σ(λ̂), σ(b̂) 0.35 1.25 0.37 1.40

i.i.d. 0.35 0.35
0 lags 0.35 1.23 1.24 1.14 0.35 1.24 1.45 1.15

3 lags NW 0.35 1.22 1.26 1.11 0.36 1.31 1.48 1.14
24 lags 0.29 1.04 191 0.69 0.31 1.15 893 0.75

The Monte Carlo redraws 5000 artificial data sets of length T = 876 from a random normal assuming that
the CAPM is true. The block-bootstrap redraws the data in groups of 3 with replacement. The row and
columns marked σ(λ̂) and σ(b̂) and using italic font give the variation across samples of the estimated λ

and b. The remaining entries of ‘‘time-series’’ ‘‘1st-stage’’ and ‘‘E(s.e.)’’ columns in roman font give the
average value of the computed standard error of the parameter estimate, where the average is taken over
the 5000 samples.

The central message of this table is that the GMM/DF estimates behave
almost exactly as the time-series beta model estimate, and the asymptotic
standard error formulas almost exactly capture the sampling variation of the
estimates. The second-stage GMM/DF estimate is a little bit more efficient
at the cost of slightly misleading standard errors.

Start with the long sample and the first column. All of the standard
error formulas give essentially identical and correct results for the time-series
estimate. Estimating the sample mean is not rocket science. The first-stage
GMM/DF estimator in the second column behaves the same way, except the
usually troublesome 24 lag unweighted estimate.

The second-stage GMM/DF estimate in the third and fourth columns
uses the inverse spectral density matrix to weight, and so the estimator
depends on the choice of spectral density estimate. The sensible spectral
density estimates (not 24 lags) produce second-stage estimates that vary less
than the first-stage estimates, 0.61--0.62 rather than 0.64. Second-stage GMM
is more efficient, meaning that it produces estimates with smaller sampling
variation. However, the table shows that the efficiency gain is quite small,
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so not much is lost if one prefers first-stage OLS estimates. The sensible
spectral density estimates produce second-stage standard errors that again
almost exactly capture the sampling variation of the estimated parameters.

The 24 lag unweighted estimate produces hugely variable estimates and
artificially small standard errors. Using bad or even singular spectral density
estimates seems to have a secondary effect on standard error calculations,
but using its inverse as a weighting matrix can have a dramatic effect on
estimation.

With the block-bootstrap in the right-hand side of Table 15.5, the time-
series estimate is slightly more volatile as a result of the slight autocorrelation
in the market return. The i.i.d. and zero-lag formulas do not capture this
effect, but the GMM standard errors that allow autocorrelation do pick it up.
However, this is a very minor effect as there is very little autocorrelation in the
market return. The effect is more pronounced in the first-stage GMM/DF
estimate, since the smaller firm portfolios depart more from the normal
i.i.d. assumption. The true variation is 0.69, but standard errors that ignore
autocorrelation only produce 0.63. The standard errors that correct for
autocorrelation are nearly exact. In the second-stage GMM/DF, the sensible
spectral density estimates again produce slightly more efficient estimates
than the first stage, with variation of 0.67 rather than 0.69. This comes at a
cost, though, that the asymptotic standard errors are a bit less reliable.

In the shorter sample, we see that standard errors for the mean market
return in the time-series column are all quite accurate, except the usual 24
lag case. In the GMM/DF case, we see that the actual sampling variability
of the b estimate is no longer smaller for the second-stage. The second-
stage estimate is not more efficient in this ‘‘small’’ sample. Furthermore,
while the first-stage standard errors are still decently accurate, the second-
stage standard errors substantially understate the true sampling variability
of the parameter estimate. They represent a hoped-for efficiency that is not
present in the small sample. Even in this simple setup, first-stage GMM is
clearly a better choice for estimating the central parameter, and hence for
examining individual pricing errors and their pattern across assets.



“chap15” — 2004/9/13 — page 292 — #14



“chap16” — 2004/10/7 — page 293 — #1

16
Which Method?

The point of GMM/discount factor methods is not a gain in efficiency
or simplicity in a traditional setup—linear factor model, i.i.d. normally
distributed returns, etc. It is hard to beat the efficiency or simplicity of
regression methods in those setups. The promise of the GMM/discount
factor approach is its ability to transparently handle nonlinear or otherwise
complex models, especially including conditioning information, and that
it allows you to circumvent inevitable model misspecifications or simplifica-
tions and data problems by keeping the econometrics focused on interesting
issues.

The alternative is usually some form of maximum likelihood. This is
much harder in most circumstances, since you have to write down a complete
statistical model for the joint distribution of your data. Just evaluating, let
alone maximizing, the likelihood function is often challenging. Whole series
of papers are written on the econometric issues of particular cases, for exam-
ple how to maximize the likelihood functions of univariate continuous-time
models for the short interest rate.

Empirical asset pricing faces an enduring tension between these two
philosophies. The choice essentially involves trade-offs between statistical
efficiency, the effects of misspecification of both the economic and statistical
models, and the clarity and economic interpretability of the results. There
are situations in which it is better to trade some small efficiency gains for
the robustness of simpler procedures or more easily interpretable moments;
OLS can be better than GLS. The central reason is specification errors: the
fact that our statistical and economic models are at best quantitative para-
bles. There are other situations in which you may really need to squeeze every
last drop out of the data, intuitive moments are statistically very inefficient,
and more intensive maximum likelihood approaches are more appropriate.

Unfortunately, the environments are complex, and differ from case to
case. We do not have universal theorems from statistical theory or generally
applicable Monte Carlo evidence. Specification errors by their nature resist

293
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quantitative modeling—if you knew how to model them, they would not be
there. We can only think about the lessons of past experiences.

The rest of this chapter collects some thoughts on the choice between
ML and a less formal GMM approach, that focuses on economically inter-
esting rather than statistically informative moments, in the context of
empirically evaluating asset pricing models.

‘‘ML’’ vs. ‘‘GMM’’
The debate is often stated as a choice between ‘‘maximum likelihood’’ and
‘‘GMM.’’ This is a bad way to put the issue. ML is a special case of GMM:
it suggests a particular choice of moments that are statistically optimal in a
well-defined sense. It is all GMM; the issue is the choice of moments. The
choice is between moments selected by an auxiliary statistical model, even if
completely economically uninterpretable, and moments selected for their
economic or data summary interpretation, even if not statistically efficient.

Also, there is no such thing as ‘‘the’’ GMM estimate. GMM is a flexible
tool; you can use any aT matrix and gT moments that you want to use. Both
ML and GMM are tools that a thoughtful researcher can use in learning
what the data says about a given asset pricing model, rather than as stone
tablets giving precise directions that lead to truth if followed literally. If fol-
lowed literally and thoughtlessly, both ML and GMM can lead to horrendous
results.

Of course, we do not have to pair GMM with the discount factor expres-
sion of a model, and ML with the expected return-beta formulation. Many
studies pair discount factor expressions of the model with ML, and many
others evaluate expected return-beta model by GMM, as I did in Chapter 12
to adjust regression standard errors for non-i.i.d. residuals.

ML Is Often Ignored
As we have seen, ML plus the assumption of normal i.i.d. disturbances leads
to easily interpretable time-series or cross-sectional regressions, empirical
procedures that are close to the economic content of the model. However,
asset returns are not normally distributed or i.i.d. They have fatter tails than
a normal, they are heteroskedastic (times of high and times of low volatil-
ity), they are autocorrelated, and predictable from a variety of variables. If
one were to take seriously the ML philosophy and its quest for efficiency,
one should model these features of returns. The result would be a differ-
ent likelihood function, and its scores would prescribe different moment
conditions than the familiar and intuitive time-series or cross-sectional
regressions.

Interestingly, few empirical workers do this. (The exceptions tend to
be papers whose primary point is illustration of econometric technique
rather than empirical findings.) ML seems to be fine when it suggests easily
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interpretable regressions; when it suggests something else, people use the
regressions anyway.

For example, ML prescribes that one estimate β’s without a constant.
β’s are almost universally estimated with a constant. Researchers often run
cross-sectional regressions rather than time-series regressions, even when
the factors are returns. ML specifies a GLS cross-sectional regression, but
many empirical workers use OLS cross-sectional regressions instead, dis-
trusting the GLS weighting matrix. The true ML formulas require one to
iterate between betas, covariance matrix, and the cross-sectional regression.
Empirical applications usually use the unconstrained estimates of all these
quantities. And of course, any of the regression tests continue to be run
at all, with ML justifications, despite the fact that returns are not i.i.d. nor-
mal. The regressions came first, and the maximum likelihood formalization
came later. If we had to assume that returns had a gamma distribution to
justify the regressions, it is a sure bet that we would make that ‘‘assumption’’
behind ML instead of the normal i.i.d. assumption!

Researchers must not really believe that their null hypotheses, statisti-
cal and economic, are exactly correct. They want estimates and tests that
are robust to reasonable model misspecifications. They also want estimates
and tests that are easily interpretable, that capture intuitively clear stylized
facts in the data, and that relate directly to the economic concepts of the
model. Such estimates are persuasive because the reader can see that they
are robust.1 In pursuit of these goals, researchers seem willing to sacrifice
some of the efficiency that would obtain if the null economic and statistical
models were exactly correct.

ML does not necessarily produce robust or easily interpretable esti-
mates. It was not designed to do so. The point and advertisement of ML
is that it provides efficient estimates; it uses every scrap of information in
the statistical and economic model in the quest for efficiency. It does the
‘‘right’’ efficient thing if the model is true. It does not necessarily do the
‘‘reasonable’’ thing for ‘‘approximate’’ models.

OLS vs. GLS Cross-Sectional Regressions
One place in which this argument crystallizes is in the choice between
OLS and GLS cross-sectional regressions, or equivalently between first- and
second-stage GMM.

Chapter 15 can lead to a mistaken impression that the choice does
not matter that much. This is true to some extent in that simple environ-
ment, but not in more complex environments. For example, Fama and

1 Following this train of thought, one might want to pursue estimation strategies that are
even more robust than OLS, since OLS places a lot of weight on outliers. For example, Knez
and Ready (1997) claim that size and value effects depend crucially on a few outliers.



“chap16” — 2004/10/7 — page 296 — #4

296 16. Which Method?

French (1997) report important correlations between betas and pricing
errors in a time-series test of a three-factor model on industry portfo-
lios. This correlation cannot happen with an OLS cross-sectional estimate,
as the cross-sectional estimate sets the cross-sectional correlation between
right-hand variables (betas) and error terms (pricing errors) to zero by con-
struction. As another example, first-stage estimates seem to work better in
factor pricing models based on macroeconomic data. Figure 2.4 presents the
first-stage estimate of the consumption-based model. The second-stage esti-
mate produced much larger individual pricing errors, because by so doing
it could lower pricing errors of portfolios with strong long-short positions
required by the spectral density matrix. The same thing happened in the
investment-based factor pricing model of Cochrane (1996), and the scaled
consumption-based model of Lettau and Ludvigson (2001a). Authors as
far back as Fama and MacBeth (1973) have preferred OLS cross-sectional
regressions, distrusting the GLS weights.

GLS and second-stage GMM gain their asymptotic efficiency when the
covariance and spectral density matrices have converged to their population
values. GLS and second-stage GMM use these matrices to find well-measured
portfolios: portfolios with small residual variance for GLS, and small vari-
ance of discounted return for GMM. The danger is that these quantities are
poorly estimated in a finite sample, that sample minimum-variance portfo-
lios bear little relation to population minimum-variance portfolios. This by
itself should not create too much of a problem for a perfect model, one
that prices all portfolios. But an imperfect model that does a very good job
of pricing a basic set of portfolios may do a poor job of pricing strange lin-
ear combinations of those portfolios, especially combinations that involve
strong long and short positions, positions that really are outside the pay-
off space given transactions, margin, and short sales constraints. Thus,
the danger is the interaction between spurious sample minimum-variance
portfolios and the specification errors of the model.

Interestingly, Kandel and Stambaugh (1995) and Roll and Ross (1995)
argue for GLS cross-sectional regressions also as a result of model misspeci-
fication. They start by observing that so long as there is any misspecification
at all—so long as the pricing errors are not exactly zero; so long as the
market proxy is not exactly on the mean-variance frontier—then there are
portfolios that produce arbitrarily good and arbitrarily bad fits in plots of
expected returns versus betas. Since even a perfect model leaves pricing
errors in sample, this is always true in samples.

It is easy to see the basic argument. Take a portfolio long the positive
alpha securities and short the negative alpha securities; it will have a really
big alpha! More precisely, if the original securities follow

E (R e ) = α + λβ,
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then consider portfolios of the original securities formed from a nonsingular
matrix A. They follow

E (AR e ) = Aα + λAβ.

You can make all these portfolios have the same β by choosing A so that
Aβ = constant, and then they will have a spread in alphas. You will see a
plot in which all the portfolios have the same beta but the average returns
are spread up and down. Conversely, you can pick A to make the expected
return-beta plot look as good as you want.

GLS has an important feature in this situation: the GLS cross-sectional
regression is independent of such repackaging of portfolios. If you trans-
form a set of returns R e to AR e , then the OLS cross-sectional regression is
transformed from

λ̂ = (
β ′β

)−1
β ′E (R e )

to

λ̂ = (
β ′A′Aβ

)−1
β ′A′AE (R e ) .

This does depend on the repackaging A. However, the residual covariance
matrix of AR e is A�A′, so the GLS regression

λ̂ = (
β ′�−1β

)−1
β ′�−1E (R e )

is not affected so long as A is full rank and therefore does not throw away
information

λ̂ = (
β ′A′(A�A′)−1Aβ

)−1
β ′A′(A′�A)−1AE (R e )

= (
β ′�−1β

)−1
β ′�−1E (R e ) .

(The spectral density matrix and second-stage estimate share this prop-
erty in GMM estimates. These are not the only weighting matrix choices that
are invariant to portfolios. For example, Hansen and Jagannathan’s [1997]
suggestion of the return second-moment matrix has the same property.)

This is a fact, but it does not show that OLS chooses a particularly
good or bad set of portfolios. Perhaps you do not think that GLS’ choice of
portfolios is particularly informative. In this case, you use OLS precisely to
focus attention on a particular set of economically interesting portfolios.

The choice depends subtly on what you want your test to accomplish. If
you want to prove the model wrong, then GLS helps you to focus on the most
informative portfolios for proving the model wrong. That is exactly what an
efficient test is supposed to do. However, many models are wrong, but still
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pretty darn good. It is a shame to throw out the information that the model
does a good job of pricing an interesting set of portfolios. The sensible
compromise would seem to be to report the OLS estimate on ‘‘interesting’’
portfolios, and also to report the GLS test statistic that shows the model to
be rejected. That is, in fact, the typical collection of facts.

Additional Examples of Trading Off Efficiency for Robustness
Here are some additional examples of situations in which it has turned out
to be wise to trade off some apparent efficiency for robustness to model
misspecifications.

Low-frequency time-series models. In estimating time-series models such as
the AR(1) yt = ρyt−1 + εt , maximum likelihood minimizes one-step-
ahead forecast error variance, E (ε2

t ). But any time-series model is only an
approximation, and the researcher’s objective may not be one-step-ahead
forecasting. For example, in making sense of the yield on long-term bonds,
we are interested in the long-run behavior of the short rate of interest.
In estimating the magnitude of long-horizon univariate mean reversion in
stock returns, we want to know only the sum of autocorrelations or mov-
ing average coefficients. Writing pt = a(1)εt , we want to know a(1). (We
will study this application in Section 19.1.) The approximate model that
generates the smallest one-step-ahead forecast error variance may be quite
different from the model that best matches the long-run behavior of the
series. (Cochrane [1988] contains a more detailed analysis of this point in
the context of long-horizon GDP forecasting.)

Lucas’ money demand estimate. Lucas (1988) is a gem of an example. Lucas
was interested in estimating the income elasticity of money demand. Money
and income trend upwards over time and over business cycles, but also have
some high-frequency movement that looks like noise. If you run a regression
in log-levels,

m t = a + byt + εt ,

you get a sensible coefficient of about b = 1, but you find that the error term
is strongly serially correlated. Following standard advice, most researchers
run GLS, which amounts pretty much to first-differencing the data,

mt − m t−1 = b(yt − yt−1)+ ηt .

This error term passes its Durbin--Watson statistic, but the b estimate is much
lower, which does not make much economic sense, and, worse, is unstable,
depending a lot on time period and data definitions. Lucas realized that
the regression in differences threw out most of the information in the data,
which was in the trend, and focused on the high-frequency noise. Therefore,
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the ‘‘inefficient’’ regression in levels, with standard errors corrected for cor-
relation of the error term, is the right one to look at. Of course, GLS and
ML did not know there was any ‘‘noise’’ in the data, which is why they threw
out the baby and kept the bathwater. Again, ML ruthlessly exploits the null
for efficiency, and has no way of knowing what is ‘‘reasonable’’ or ‘‘intuitive.’’

Stochastic singularities and calibration. Models of the term structure of inter-
est rates (we will study these models in Chapter 18) and real business cycle
models in macroeconomics give stark examples. These models are stochas-
tically singular. They generate predictions for many time series from a few
shocks, so the models predict that there are combinations of the time series
that leave no error term. Even though the models have rich and interesting
implications, ML will seize on this economically uninteresting singularity,
refuse to estimate parameters, and reject any model of this form.

The simplest example of the situation is the linear-quadratic permanent-
income model paired with an AR(1) specification for income. The model is

yt = ρyt−1 + εt ,

ct − ct−1 = (Et − Et−1) (1 − β)

∞∑
j=0

β j yt+j = (1 − β)

(1 − βρ)
εt .

This model generates all sorts of important and economically interest-
ing predictions for the joint process of consumption and income (and
asset prices). Consumption should be roughly a random walk, and should
respond only to permanent income changes; investment should be more
volatile than income and income more volatile than consumption. Since
there is only one shock and two series, however, the model taken liter-
ally predicts a deterministic relation between consumption and income; it
predicts

ct − ct−1 = rβ
1 − βρ

(
yt − ρyt−1

)
.

ML will notice that this is the statistically most informative prediction of the
model. There is no error term! In any real data set there is no configuration
of the parameters r ,β, ρ that makes this restriction hold, data point for data
point. The probability of observing a data set {ct , yt } is exactly zero, and the
log likelihood function is −∞ for any set of parameters. ML says to throw
the model out.

Popular models of the term structure of interest rates act the same way.
They specify that all yields at any moment in time are deterministic functions
of a few state variables. Such models can capture much of the important qual-
itative behavior of the term structure, including rising, falling, and humped
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shapes, and the information in the term structure for future movements in
yields and the volatility of yields. They are very useful for derivative pricing.
But it is never the case in actual yield data that yields of all maturities are
exact functions of K yields. Actual data on N yields always require N shocks.
Again, a ML approach reports a −∞ log likelihood function for any set of
parameters.

Addressing Model Misspecification
The ML philosophy offers an answer to model misspecification: specify the
right model, and then do ML. If regression errors are correlated, model
and estimate the covariance matrix and do GLS. If you are worried about
proxy errors in the pricing factor, short sales costs or other transactions costs
so that model predictions for extreme long-short positions should not be
relied on, if you are worried about time-aggregation or mismeasurement of
consumption data, nonnormal or non-i.i.d. returns, time-varying betas and
factor risk premia, additional pricing factors and so on—do not chat about
them, write them down, and then do ML.

Following this lead, researchers have added ‘‘measurement errors’’ to
real business cycle models (Sargent [1989] is a classic example) and affine
yield models in order to break the stochastic singularity (I discuss this case
a bit more in Section 19.6). The trouble is, of course, that the assumed
structure of the measurement errors now drives what moments ML pays
attention to. And seriously modeling and estimating the measurement
errors takes us further away from the economically interesting parts of the
model. (Measurement error augmented models will often wind up specify-
ing sensible moments, but by assuming ad hoc processes for measurement
error, such as i.i.d. errors. Why not just specify the sensible moments in the
first place?)

More generally, authors tend not to follow this advice, in part because it
is ultimately infeasible. Economics necessarily studies quantitative parables
rather than completely specified models. It would be nice if we could write
down completely specified models, if we could quantitatively describe all
the possible economic and statistical model and specification errors, but we
cannot.

The GMM framework, used judiciously, allows us to evaluate misspec-
ified models. It allows us to direct that the statistical effort focus on the
‘‘interesting’’ predictions while ignoring the fact that the world does not
match the ‘‘uninteresting’’ simplifications. For example, ML only gives you
a choice of OLS, whose standard errors are wrong, or GLS, which you may
not trust in small samples or which may focus on uninteresting parts of the
data. GMM allows you to keep an OLS estimate, but to correct the stan-
dard errors for non-i.i.d. distributions. More generally, GMM allows you to
specify an economically interesting set of moments, or a set of moments
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that you feel will be robust to misspecifications of the economic or statisti-
cal model, without having to spell out exactly what is the source of model
misspecification that makes those moments ‘‘optimal’’ or even ‘‘interest-
ing’’ and ‘‘robust.’’ It allows you to accept the lower ‘‘efficiency’’ of the
estimates under some sets of statistical assumptions, in return for such
robustness.

At the same time, the GMM framework allows you to flexibly incor-
porate statistical model misspecifications in the distribution theory. For
example, knowing that returns are not i.i.d. normal, you may want to use
the time-series regression technique anyway. This estimate is not incon-
sistent, but the standard errors that ML formulas pump out under this
assumption are inconsistent. GMM gives a flexible way to derive at least
an asymptotic set of corrections for statistical model misspecifications of
the time-series regression coefficient. Similarly, a pooled time-series cross-
sectional OLS regression is not inconsistent, but standard errors that ignore
cross correlation of error terms are far too small.

The ‘‘calibration’’ of real business cycle models is often really noth-
ing more than a GMM parameter estimate, using economically sensible
moments such as average output growth, consumption/output ratios,
etc. to avoid the stochastic singularity that would doom a ML approach.
(Kydland and Prescott’s [1982] idea that empirical microeconomics would
provide accurate parameter estimates for macroeconomic and financial
models has pretty much vanished.) Calibration exercises usually do not com-
pute standard errors, nor do they report any distribution theory associated
with the ‘‘evaluation’’ stage when one compares the model’s predicted sec-
ond moments with those in the data. Following Burnside, Eichenbaum,
and Rebelo (1993), however, it is easy enough to calculate such a dis-
tribution theory—to evaluate whether the difference between predicted
‘‘second moments’’ and actual moments is large compared to sampling vari-
ation, including the variation induced by parameter estimation in the same
sample—by listing the first and second moments together in the gT vector.

‘‘Used judiciously’’ is an important qualification. Many GMM estima-
tions and tests suffer from lack of thought in the choice of moments, test
assets, and instruments. For example, early GMM papers tended to pick
assets and especially instruments pretty much at random. Industry portfo-
lios have almost no variation in average returns to explain. Authors often
included many lags of returns and consumption growth as instruments
to test a consumption-based model. However, the seventh lag of returns
really does not predict much about future returns given lags 1--6, and the
first-order serial correlation in seasonally adjusted, ex post revised consump-
tion growth may be economically uninteresting. More recent work tends to
emphasize a few well-chosen assets and instruments that capture important
and economically interesting features of the data.
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Auxiliary Model
ML requires an auxiliary statistical model. For example, in the classic ML
formalization of regression tests, we had to stop to assume that returns
and factors are jointly i.i.d. normal. As the auxiliary statistical model
becomes more and more complex and hence realistic, more and more
effort is devoted to estimating the auxiliary statistical model. ML has no
way of knowing that some parameters—a, b; β, λ, risk aversion γ—are
more ‘‘important’’ than others—�, and parameters describing time-varying
conditional moments of returns.

A very convenient feature of GMM is that it does not require such an
auxiliary statistical model. For example, in studying GMM we went straight
from p = E (mx) to moment conditions, estimates, and distribution theory.
This is an important saving of the researcher’s and the reader’s time, effort,
and attention.

Finite-Sample Distributions
Many authors say they prefer regression tests and the GRS statistic in partic-
ular because it has a finite-sample distribution theory, and they distrust the
finite-sample performance of the GMM asymptotic distribution theory.

This argument does not have much force. The finite-sample distribu-
tion only holds if returns really are normal and i.i.d., and if the factor is
perfectly measured. Since these assumptions do not hold, it is not obvious
that a finite-sample distribution that ignores non-i.i.d. returns will be a better
approximation than an asymptotic distribution that corrects for them.

All approaches give essentially the same answers in the classic setup
of i.i.d. returns. The issue is how the various techniques perform in more
complex setups, especially with conditioning information, and here there
are no analytic finite-sample distributions.

In addition, once you have picked the estimation method—how you will
generate a number from the data; or which moments you will use—finding
its finite-sample distribution, given an auxiliary statistical model, is simple.
Just run a Monte Carlo or bootstrap. Thus, picking an estimation method
because it delivers analytic formulas for a finite-sample distribution (under
false assumptions) should be a thing of the past. Analytic formulas for
finite-sample distributions are useful for comparing estimation methods and
arguing about statistical properties of estimators, but they are not necessary
for the empiricists’ main task.

Finite-Sample Quality of Asymptotic Distributions,
and ‘‘Nonparametric’’ Estimates
Several investigations (Ferson and Foerster [1994], Hansen, Heaton, and
Yaron [1996]) have found cases in which the GMM asymptotic distribution
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theory is a poor approximation to a finite-sample distribution theory. This is
especially true when one asks ‘‘nonparametric’’ corrections for autocorrela-
tion or heteroskedasticity to provide large corrections and when the number
of moments is large compared to the sample size, or if the moments one uses
for GMM turn out to be very inefficient (Fuhrer, Moore, and Schuh [1995]),
which can happen if you put in a lot of instruments with low forecast
power.

The ML distribution is the same as GMM, conditional on the choice of
moments, but typical implementations of ML also use the parametric time-
series model to simplify estimates of the terms in the distribution theory as
well as to derive the likelihood function.

If this is the case—if the ‘‘nonparametric’’ estimates of the GMM distri-
bution theory perform poorly in a finite sample, while the ‘‘parametric’’ ML
distribution works well—there is no reason not to use a parametric time-
series model to estimate the terms in the GMM distribution as well. For
example, rather than calculate

∑∞
j=−∞ E (ut ut−j ) from a large sum of auto-

correlations, you can model ut = ρut−1 + εt , estimate ρ, and then calculate
σ 2(u)

∑∞
j=−∞ ρ

j = σ 2(u)(1 + ρ)/(1 − ρ). Section 11.7 discussed this idea in
more detail.

The Case for ML
In the classic setup, the efficiency gain of ML over GMM on the pricing errors
is tiny. However, several studies have found cases in which the statistically
motivated choice of moments suggested by ML has important efficiency
advantages.

For example, Jacquier, Polson, and Rossi (1994) study the estimation of
a time-series model with stochastic volatility. This is a model of the form

dSt/St = µ dt + Vt dZ1t ,

dVt = µV (Vt ) dt + σ(Vt ) dZ 2t ,
(16.1)

and S is observed but V is not. The obvious and easily interpretable moments
include the autocorrelation of squared returns, or the autocorrelation of the
absolute value of returns. However, Jacquier, Polson, and Rossi find that the
resulting estimates are far less efficient than those resulting from the ML
scores.

Of course, this study presumes that the model (16.1) really is exactly
true. Whether the uninterpretable scores or the interpretable moments
really perform better to give an approximate model of the form (16.1),
given some other data-generating mechanism, is open to discussion.

Even in the canonical OLS versus GLS case, a wildly heteroskedastic
error covariance matrix can mean that OLS spends all its effort fitting unim-
portant data points. A ‘‘judicious’’ application of GMM (OLS) in this case
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would require at least some transformation of units so that OLS is not wildly
inefficient.

Statistical Philosophy
The history of empirical work that has been persuasive—that has changed
people’s understanding of the facts in the data and which economic mod-
els understand those facts—looks a lot different than the statistical theory
preached in econometrics textbooks.

The CAPM was taught, believed in, and used for years despite formal
statistical rejections. It only fell by the wayside when other, coherent views
of the world were offered in the multifactor models. And the multifactor
models are also rejected! It seems that ‘‘it takes a model to beat a model,’’
not a rejection.

Even when evaluating a specific model, most of the interesting cal-
culations come from examining specific alternatives rather than overall
pricing error tests. The original CAPM tests focused on whether the inter-
cept in a cross-sectional regression was higher or lower than the risk-free
rate, and whether individual variance entered into cross-sectional regres-
sions. The CAPM fell when it was found that characteristics such as size and
book/market do enter cross-sectional regressions, not when generic pricing
error tests rejected.

Influential empirical work tells a story. The most efficient procedure
does not seem to convince people if they cannot transparently see what styl-
ized facts in the data drive the result. A test of a model that focuses on its
ability to account for the cross section of average returns of interesting port-
folios will in the end be much more persuasive than one that (say) focuses
on the model’s ability to explain the fifth moment of the second portfolio,
even if ML finds the latter moment much more statistically informative.

Most recently, Fama and French (1988b) and (1993) are good examples
of empirical work that changed many people’s minds, in this case that long-
horizon returns really are predictable, and that we need a multifactor model
rather than the CAPM to understand the cross section of average returns.
These papers are not stunning statistically: long-horizon predictability is on
the edge of statistical significance, and the multifactor model is rejected by
the GRS test. But these papers made clear what stylized and robust facts
in the data drive the results, and why those facts are economically sensi-
ble. For example, the 1993 paper focused on tables of average returns and
betas. Those tables showed strong variation in average returns that was not
matched by variation in market betas, yet was matched by variation in betas
on new factors. There is no place in statistical theory for such a table, but
it is much more persuasive than a table of χ 2 values for pricing error tests.
On the other hand, I can think of no case in which the application of a
clever statistical model to wring the last ounce of efficiency out of a data set,
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changing t-statistics from 1.5 to 2.5, substantially changed the way people
think about an issue.

Statistical testing is one of many questions we ask in evaluating theories,
and usually not the most important one. This is not a philosophical or nor-
mative statement; it is a positive or empirical description of the process by
which the profession has moved from theory to theory. Think of the kind
of questions people ask when presented with a theory and accompanying
empirical work. They usually start by thinking hard about the theory itself.
What is the central part of the economic model or explanation? Is it inter-
nally consistent? Do the assumptions make sense? Then, when we get to the
empirical work, how were the numbers produced? Are the data definitions
sensible? Are the concepts in the data decent proxies for the concepts in
the model? (There is not much room in statistical theory for that question!)
Are the model predictions robust to the inevitable simplifications? Does the
result hinge on power utility versus another functional form? What hap-
pens if you add a little measurement error, or if agents have an information
advantage, etc.? What are the identification assumptions, and do they make
any sense—why is y on the left and x on the right rather than the other way
around? How much fishing around for functional forms, data definitions,
proxies, and innumerable other specification issues, did the authors do in
order to produce good results? Finally, someone in the back of the room
might raise his hand and ask, ‘‘if the data were generated by a draw of i.i.d.
normal random variables over and over again, how often would you come
up with a number this big or bigger?’’ That is an interesting and important
check on the overall believability of the results. But it is not necessarily the
first check, and certainly not the last and decisive check. Many models are
kept that have economically interesting but statistically rejectable results,
and many more models are quickly forgotten that have strong statistics but
just do not tell as clean a story.

The classical theory of hypothesis testing, its Bayesian alternative, or the
underlying hypothesis-testing view of the philosophy of science are miser-
able descriptions of the way science in general and economics in particular
proceed from theory to theory. And this is probably a good thing too.
Given the nonexperimental nature of our data, the inevitable fishing biases
of many researchers examining the same data, and the unavoidable fact
that our theories are really quantitative parables more than literal descrip-
tions of the way the data are generated, the way the profession settles on
new theories makes a good deal of sense. Classical statistics requires that
nobody ever looked at the data before specifying the model. Yet more
regressions have been run than there are data points in the CRSP database.
Bayesian econometrics can in principle incorporate the information of pre-
vious researchers, yet it never applied in this way—each study starts anew
with an ‘‘uninformative’’ prior. Statistical theory draws a sharp distinction
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between the model—which we know is right; utility is exactly power—and the
parameters which we estimate. But this distinction is not true; we are just as
uncertain about functional forms as we are about parameters. A distribution
theory at bottom tries to ask an unknowable question: If we turned the clock
back to 1947 and reran the postwar period 1000 times, in how many of those
alternative histories would (say) the average S&P 500 return be greater than
9%? It is pretty amazing in fact that a statistician can purport to give any
answer at all to such a question, having observed only one history.

These paragraphs do not contain original ideas, and they mirror
changes in the philosophy of science more broadly. Fifty years ago, the
reigning philosophy of science focused on the idea that scientists provide
rejectable hypotheses. This idea runs through philosophical writings exem-
plified by Popper (1959), classical statistical decision theory, and mirrored
in economics by Friedman (1953). However, this methodology contains an
important inconsistency. Though researchers are supposed to let the data
decide, writers on methodology do not look at how actual theories evolved.
It was, as in Friedman’s title, a ‘‘Methodology of positive economics,’’ not a
‘‘positive methodology of economics.’’ Why should methodology be norma-
tive, a result of philosophical speculation, and not an empirical discipline
like everything else? In a very famous book, Kuhn (1970) looked at the his-
tory of scientific revolutions, and found that the actual process had very little
to do with the formal methodology. McCloskey (1983, 1998) has gone even
further, examining the ‘‘rhetoric’’ of economics: the kinds of arguments that
persuaded people to change their minds about economic theories. Needless
to say, the largest t -statistic did not win!

Kuhn’s and especially McCloskey’s ideas are not popular in the finance
and economics professions. Precisely, they are not popular in how people
talk about their work, though they describe well how people actually do their
work. Most people in the fields cling to the normative, rejectable-hypothesis
view of methodology. But we need not suppose that they would be popular.
The ideas of economics and finance are not popular among the agents in
the models. How many stock market investors even know what a random
walk or the CAPM is, let alone believe those models have even a grain of
truth? Why should the agents in the models of how scientific ideas evolve
have an intuitive understanding of the models? ‘‘As if’’ rationality can apply
to us as well!

Philosophical debates aside, a researcher who wants his ideas to be
convincing, as well as right, would do well to study how ideas have in
the past convinced people, rather than just study a statistical decision
theorist’s ideas about how ideas should convince people. Kuhn, and, in eco-
nomics, McCloskey have done that, and their histories are worth reading.
In the end, statistical properties may be a poor way to choose statistical
methods.
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Summary
The bottom line is simple: It is ok to do a first-stage or simple GMM estimate
rather than an explicit maximum likelihood estimate and test. Many people (and,
unfortunately, many journal referees) seem to think that nothing less than
a full maximum likelihood estimate and test is acceptable. This section is
long in order to counter that impression; to argue that at least in many
cases of practical importance, a simple first-stage GMM approach, focusing
on economically interpretable moments, can be adequately efficient, robust
to model misspecifications, and ultimately more persuasive.
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PART III
Bonds and Options
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We value bonds and options with closely related techniques. As you
might expect, I present both applications in a discount factor context. Bonds
and options are priced with surprisingly simple discount factors.

So far, we have focused on returns, which reduce the pricing problem
to a one-period problem. Bonds and options force us to start thinking about
chaining together the one-period or instantaneous representations to get a
prediction for prices of long-lived securities. Taking this step is very impor-
tant, and I forecast that we will see much more multiperiod analysis in stocks
as well, studying prices and streams of payoffs rather than returns. This step
rather than the discount factor accounts for the mathematical complexity
of some bond and option pricing models.

There are two standard ways to go from instantaneous or return rep-
resentations to prices. First, we can chain the discount factors together.
Starting with a one-period discount factor m t , t+1, we can find a long-term
discount factor m t , t+j = m t , t+1m t+1, t+2 . . .m t+j−1,t+j that can price a j -period
payoff. Starting with the discount factor increment d� that satisfies the
instantaneous pricing equation 0 = Et [d(�P )], we can solve its stochas-
tic differential equation to find the level �t+j that prices a j -period payoff
by Pt = Et

[
�t+j/�t x t+j

]
. Second, we can chain the prices together. Start-

ing with pT −1 = ET −1(m T −1, T x T ) we can find pT −2 = ET −2(m T −2, T −1pT −1)

and so forth. Conceptually, this is the same as chaining returns R t , t+j =
Rt , t+1Rt+1, t+2 . . .Rt+j−1, t+j . Starting with 0 = Et

[
d
(
�P

)]
, we can find a differ-

ential equation for the prices, and solve that back. We will use both methods
to solve interest rate and option pricing models.

311
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17
Option Pricing

Options are a very interesting and useful set of instruments. In thinking
about their value, we will adopt an extremely relative pricing approach. Our
objective will be to find out a value for the option, taking as given the values
of other securities, and in particular the price of the stock on which the
option is written and an interest rate.

17.1 Background

Definitions and Payoffs

A call option gives you the right to buy a stock for a specified strike price
on a specified expiration date.

The call option payoff is CT = max(ST − X , 0).
Portfolios of options are called strategies. A straddle—a put and a call at

the same strike price—is a bet on volatility.
Options allow you to buy and sell pieces of the return distribution.

Before studying option prices, we need to understand option payoffs.
A call option gives you the right, but not the obligation, to buy a

stock (or other ‘‘underlying’’ asset) for a specified strike price (X ) on (or
before) the expiration date (T ). European options can only be exercised on
the expiration date. American options can be exercised anytime before as
well as on the expiration date. A put option gives the right to sell a stock
at a specified strike price on (or before) the expiration date. I will use the

313
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standard notation,

C = Ct = call price today,

CT = call payoff = value at expiration (T ),

S = St = stock price today,

ST = stock price at expiration,

X = strike price.

Our objective is to find the price C . The general framework is (of course)
C = E (mx), where x denotes the option’s payoff. The option’s payoff is the
same thing as its value at expiration. If the stock has risen above the strike
price, then the option is worth the difference between stock and strike. If
the stock has fallen below the strike price, it expires worthless. Thus, the
option payoff is

Call payoff =
{

ST − X if ST ≥ X ,
0 if ST ≤ X ,

CT = max(ST − X , 0).

A put works the opposite way: It gains value as the stock falls below the strike
price, since the right to sell it at a high price is more and more valuable,

Put payoff = PT = max(X − ST , 0).

It is easiest to keep track of options by a graph of their value as a function
of stock price. Figure 17.1 graphs the payoffs from buying calls and puts.
Figure 17.1 also graphs the payoffs of the corresponding short positions,
which are called writing call and put options. One of the easiest mistakes to
make is to confuse the payoff with the profit, which is the value at expiration
less the cost of buying the option. I drew in profit lines, payoff -- cost, to
emphasize this difference.

Some Interesting Features of Options
Right away, you can see some of the interesting features of options. A call
option allows you a huge positive beta. Typical at-the-money options (strike
price = current stock price) give a beta of about 10, meaning that the option
is equivalent to borrowing $10 to invest $11 in the stock. However, your losses
are limited to the cost of the option, which is paid up front. Options are
obviously very useful for trading. Imagine how difficult it would be to buy
stock on such huge margin, and how difficult it would be to make sure
people paid if the bet went bad. Options solve this problem. No wonder
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Figure 17.1. Payoff diagrams for simple option strategies.

that active options trading started only a year or two after the first stocks
started trading.

The huge beta also means that options are very useful for hedging. If
you have a large illiquid portfolio, you can offset the risks very cheaply with
options.

Finally, options allow you to shape the distribution of returns in inter-
esting and sometimes dangerous ways. For example, if you buy a 40%
out-of-the-money put option as well as a stock, you have bought ‘‘catastro-
phe insurance’’ for your stock portfolio. You cut off the left tail of the return
distribution, at a small cost to the mean of the overall distribution.

On the other side, by writing out-of-the-money put options, you can earn
a small fee year in and year out, only once in a while experiencing a huge
loss. You have a large probability of a small gain and a small probability of
a large loss. You are providing catastrophe insurance to the market, and it
works much like, say, writing earthquake insurance.

The distribution of returns from this strategy is extremely nonnormal,
and thus statistical evaluation of its properties will be difficult. This strategy is
tempting to a portfolio manager who is being evaluated only by the statistics
of his achieved return. If he writes far out-of-the-money options in addition
to investing in an index, the chance of beating the index for one or even
five years is extremely high. If the catastrophe does happen and he loses
a billion dollars or so, the worst you can do is fire him. (His employment
contract is a call option.) This is why portfolio management contracts are
not purely statistical, but also write down what kind of investments can and
cannot be made.
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Figure 17.2. Payoff diagram for a straddle.

Strategies
Portfolios of put and call options are called strategies, and have additional
interesting properties. Figure 17.2 graphs the payoff of a straddle, which
combines a put and call at the same strike price. This strategy pays off if
the stock goes up or goes down. It loses money if the stock does not move.
Thus the straddle is a bet on volatility. Of course, everyone else understands
this, and will bid the put and call prices up until the straddle earns only an
equilibrium rate of return. Thus, you invest in a straddle if you think that
stock volatility is higher than everyone else thinks it will be. Options allow
efficient markets and random walks to operate on the second and higher
moments of stocks as well as their overall direction! You can also see quickly
that volatility will be a central parameter in option prices. The higher the
volatility, the higher both put and call prices.

More generally, by combining options of various strikes, you can buy
and sell any piece of the return distribution. A complete set of options—call
options on every strike price—is equivalent to complete markets, i.e., it
allows you to form payoffs that depend on the terminal stock price in any
way; you can form any payoff of the form f (ST ).

Prices: One-Period Analysis

I use the law of one price—existence of a discount factor—and no
arbitrage—existence of a positive discount factor—to characterize option
prices. The results are: (1) Put-call parity: P = C − S + X /R f . (2) Arbi-
trage bounds, best summarized by Figure 17.4. (3) The proposition that you
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should never exercise an American call option early on a stock that pays no
dividends. The arbitrage bounds are a linear program, and this procedure can
be used to find them in more complex situations where clever identification
of arbitrage portfolios may fail.

We have a set of interesting payoffs. Now what can we say about their
prices—their values at dates before expiration? Obviously, p = E (mx) as
always. We have learned about x ; now we have to think about m.

We can start by imposing little structure—the law of one price and the
absence of arbitrage, or, equivalently, the existence of some discount factor
or a positive discount factor. In the case of options, these two principles tell
you a good deal about the option price.

Put-Call Parity
The law of one price, or the existence of some discount factor that prices
stock, bond, and a call option, allows us to deduce the value of a put in
terms of the price of the stock, bond, and call. Consider the following two
strategies: (1) Hold a call, write a put, same strike price. (2) Hold stock,
promise to pay the strike price X . The payoffs of these two strategies are the
same, as shown in Figure 17.3.

Equivalently, the payoffs are related by

PT = CT − ST + X .

Thus, so long as the law of one price holds, the prices of left- and right-hand
sides must be equal. Applying E (m·) to both sides for any m,

P = C − S + X /R f .

(The price of ST is S . The price of the payoff X is X /R f .)

Figure 17.3. Put-call parity.
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Arbitrage Bounds
If we add the absence of arbitrage, or equivalently the restriction that
the discount factor must be positive, we can deduce bounds on the call
option price without needing to know the put price. In this case, it is eas-
iest to cleverly notice arbitrage portfolios—situations in which portfolio
A dominates portfolio B. Then, either directly from the definition of no
arbitrage or from A > B, m > 0 ⇒ E (mA) > E (mB), you can deduce
that the price of A must be greater than the price of B. The arbitrage
portfolios are

1. CT > 0 ⇒ C > 0. The call payoff is positive so the call price must be
positive.

2. CT ≥ ST − X ⇒ C ≥ S − X /R f . The call payoff is better than the stock
payoff -- the strike price, so the call price is greater than the stock price
less the present value of the strike price.

3. CT ≤ ST ⇒ C ≤ S . The call payoff is worse than stock payoff (because
you have to pay the strike price). Thus, the call price is less than stock
price.

Figure 17.4 summarizes these arbitrage bounds on the call option value.
We have gotten somewhere—we have restricted the range of the option
prices. However, the arbitrage bounds are too large to be of much practical
use. Obviously, we need to learn more about the discount factor than pure
arbitrage or m > 0 will allow. We could retreat to economic models, e.g.,
use the CAPM or other explicit discount factor model. Option pricing is
famous because we do not have to do that. Instead, if we open up dynamic
trading—the requirement that the discount factor price the stock and bond
at every date to expiration—it turns out that we can sometimes determine
the discount factor and hence the option value precisely.

Figure 17.4. Arbitrage bounds for a call option.
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Discount Factors and Arbitrage Bounds
This presentation of arbitrage bounds is unsettling for two reasons. First,
you may worry that you will not be clever enough to dream up dominating
portfolios in more complex circumstances. Second, you may worry that we
have not dreamed up all of the arbitrage portfolios in this circumstance.
Perhaps there is another one lurking out there, which would reduce the
unsettlingly large size of the bounds. This presentation leaves us hungry
for a constructive technique for finding arbitrage bounds that would be
guaranteed to work in general situations, and to find the tightest arbitrage
bound.

We want to know Ct = E (m t , T xc
T ), where xc

T = max(ST − X , 0) denotes
the call payoff, we want to use information in the observed stock and bond
prices to learn about the option price, and we want to impose the absence
of arbitrage. We can capture this search with the following problem:

max
m

Ct = Et

(
mxc

T

)
s.t. m > 0,

St = Et (mST ), (17.1)

1 = Et (mR f ),

and the corresponding minimization. The first constraint implements
absence of arbitrage. The second and third use the information in the stock
and bond price to learn what we can about the option price.

Write 17.1 out in state notation,

max
{m(s)}

Ct =
∑

s

π(s)m(s)xc
T (s) s.t. m(s) > 0,

St =
∑

s

π(s)m(s)ST (s),

1 =
∑

s

π(s)m(s)R f .

This is a linear program—a linear objective and linear constraints. In sit-
uations where you do not know the answer, you can calculate arbitrage
bounds—and know you have them all—by solving this linear program
(Ritchken [1985]). I do not know how you would begin to check that for
every portfolio A whose payoff dominates B, the price of A is greater than
the price of B. The discount factor method lets you construct the arbitrage
bounds.

Early Exercise
By applying the absence of arbitrage, we can show quickly that you should
never exercise an American call option on a stock that pays no dividends
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before the expiration date. This is a lovely illustration because such a simple
principle leads to a result that is not initially obvious. Follow the table:

Payoffs CT = max(ST − X , 0) ≥ ST − X
Price C ≥ S − X /R f

R f > 1 C ≥ S − X

S −X is what you get if you exercise now. The value of the call is greater
than this value, because you can delay paying the strike, and because exer-
cising early loses the option value. Put-call parity lets us concentrate on call
options; this fact lets us concentrate on European call options.

17.2 Black--Scholes Formula

Write a process for stock and bond, then use �∗ to price the option.
The Black--Scholes formula (17.7) results. You can either solve for the finite-
horizon discount factor �T /�0 and find the call option price by taking the
expectation C 0 = E 0(�T /�0xC

T ), or you can find a differential equation for
the call option price and solve it backward.

Our objective, again, is to learn as much as we can about the value of an
option, given the value of the underlying stock and bond. The one-period
analysis led only to arbitrage bounds, at which point we had to start thinking
about discount factor models. Now, we allow intermediate trading, which
means we really are thinking about dynamic multiperiod asset pricing.

The standard approach to the Black--Scholes formula rests on explicitly
constructing portfolios: at each date we cleverly construct a portfolio of
stock and bond that replicates the instantaneous payoff of the option; we
reason that the price of the option must equal the price of the replicating
portfolio. Instead, I follow the discount factor approach. The law of one
price is the same thing as the existence of a discount factor. Thus, rather
than construct law-of-one-price replicating portfolios, construct at each date
a discount factor that prices the stock and bond, and use that discount factor
to price the option. The discount factor approach shows how thinking of
the world in terms of a discount factor is equivalent in the result and as easy
in the calculation as other approaches.

This case shows some of the interest and engineering complexity of
continuous-time models. Though at each instant the analysis is trivial law of
one price, chaining that analysis together over time is not trivial.



“chap17” — 2004/9/14 — page 321 — #13

17.2. Black--Scholes Formula 321

The call option payoff is

CT = max(ST − X , 0),

where X denotes the strike price X and ST denotes the stock price on the
expiration date T . The underlying stock follows

dS
S

= µ dt + σ dz.

There is also a money market security that pays the real interest rate r dt .
We want a discount factor that prices the stock and bond. All such

discount factors are of the form m = x∗ +w, E (xw) = 0. In continuous time,
all such discount factors are of the form

d�
�

= −r dt − (µ− r )
σ

dz − σw dw; E (dw dz) = 0.

(You can check that this set of discount factors does in fact price the stock
and interest rate, or take a quick look back at Section 4.3.)

Now we price the call option with this discount factor, and show that the
Black--Scholes equation results. Importantly, the choice of discount factor
via choice of σw dw turns out to have no effect on the resulting option price.
Every discount factor that prices the stock and interest rate gives the same
value for the option price. The option is therefore priced using the law of
one price alone.

There are two paths to follow. Either we solve the discount factor for-
ward, and then find the call value by C = E (mxC ), or we characterize the
price path and solve it backwards from expiration.

Method 1: Price Using Discount Factor

Let us use the discount factor to price the option directly:

C 0 = E 0

{
�T

�0
max

(
ST − X , 0

)} =
∫
�T

�0
max

(
ST − X , 0

)
df
(
�T , ST

)
,

where �T and ST are solutions to

dS
S

= µ dt + σ dz,

d�
�

= −r dt − µ− r
σ

dz − σw dw.
(17.2)

I simplify the algebra by setting σw dw to zero, anticipating that it does not
matter. You can reason that since S does not depend on dw, CT depends
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only on ST , so C will only depend on S , and dw will have no effect on the
answer. If this is not good enough, a problem asks you to include the dw,
trace through the remaining steps, and verify that the answer does not in
fact depend on dw.

‘‘Solving’’ a stochastic differential equation such as (17.2) means finding
the distribution of the random variables ST and �T , using information as
of date 0. This is just what we do with difference equations. For example, if
we solve x t+1 = ρx t +εt+1 with ε normal forward to x T = ρTx 0 +∑T

j=1 ρ
T −jεj ,

we have expressed xT as a normally distributed random variable with mean
ρT x 0 and variance

∑T
j=1 ρ

2(T −j). In the continuous-time case, it turns out that
we can solve some nonlinear specifications as well. Integrals of dz give us
shocks, as integrals of dt give us deterministic functions of time.

We can find analytical expressions for the solutions of equations of the
form (17.2). Start with the stochastic differential equation

dY
Y

= µY dt + σY dz. (17.3)

Write

d ln Y = dY
Y

− 1
2

1
Y 2

dY 2 =
(
µY − 1

2
σ 2

Y

)
dt + σY dZ .

Integrating from 0 to T , (17.3) has solution

∫ T

0
d ln Y =

(
µY − 1

2
σ 2

Y

)∫ T

0
dt + σY

∫ T

0
dZt

ln YT = ln Y0 +
(
µY − σ 2

Y

2

)
T + σY

(
zT − z0

)
.

(17.4)

zT − z 0 is a normally distributed random variable with mean zero and
variance T . Thus, ln Y is conditionally normal with mean ln Y0 +(
µY − σ 2

Y /2
)
T and variance σ 2

Y T .
Applying the solution (17.4) to (17.2), we have

ln ST = ln S 0 +
(
µ− σ 2

2

)
T + σ

√
T ε,

ln�T = ln�0 −
(

r + 1
2

(
µ− r
σ

)2)
T − µ− r

σ

√
T ε,

(17.5)

where the random variable ε is a standard normal,

ε = zT − z 0√
T

∼ N (0, 1).
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Having found the joint distribution of stock and discount factor, we
evaluate the call option value by doing the integral corresponding to the
expectation,

C0 =
∫ ∞

ST =X

�T

�0

(
ST − X

)
df (�T , ST )

=
∫ ∞

ST =X

�T (ε)

�0

(
ST (ε)− X

)
df (ε).

(17.6)

We know the joint distribution of the terminal stock price ST and dis-
count factor �T on the right-hand side, so we have all the information we
need to calculate this integral. This example has enough structure that
we can find an analytical formula. In more general circumstances, you may
have to resort to numerical methods. At the most basic level, you can sim-
ulate the �, S process forward and then take the integral by summing over
many such simulations.

Doing the Integral
Start by breaking up the integral (17.6) into two terms,

C 0 =
∫ ∞

ST =X

�T (ε)

�0
ST (ε) df (ε)−

∫ ∞

ST =X

�T (ε)

�0
X df (ε).

ST and �T are both exponential functions of ε. The normal distribution
is also an exponential function of ε. Thus, we can approach this integral
exactly as we approach the expectation of a lognormal; we can merge the
two exponentials in ε into one term, and express the result as integrals
against a normal distribution. Here we go. Plug in (17.5) for ST ,�T , and
simplify the exponentials in terms of ε,

C 0 =
∫ ∞

ST =X
e−
(

r+ 1
2

(
µ−r
σ

)2)
T − µ−r

σ

√
T εS 0e

(
µ− 1

2 σ
2
)

T +σ√
T εf (ε) dε

− X
∫ ∞

ST =X
e−
(

r+ 1
2

(
µ−r
σ

)2)
T − µ−r

σ

√
T εf

(
ε
)

dε

= S 0

∫ ∞

ST =X
e
[
µ−r− 1

2

(
σ2+
(
µ−r
σ

)2)]
T +
(
σ− µ−r

σ

)√
T εf (ε) dε

− X
∫ ∞

ST =X
e−
(

r+ 1
2

(
µ−r
σ

)2)
T − µ−r

σ

√
T εf (ε) dε.

Now add the normal distribution formula for f (ε),

f (ε) = 1√
2π

e−(1/2)ε2
.
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The result is

C0 = 1√
2π

S0

∫ ∞

ST =X
e
[
µ−r− 1

2

(
σ2+
(
µ−r
σ

)2)]
T +
(
σ− µ−r

σ

)√
T ε− 1

2 ε
2

dε

− 1√
2π

X
∫ ∞

ST =X
e−
[

r+ 1
2

(
µ−r
σ

)2]
T − µ−r

σ

√
T ε− 1

2 ε
2

dε

= 1√
2π

S0

∫ ∞

ST =X
e− 1

2

[
ε−
(
σ− µ−r

σ

)√
T
]2

dε

− 1√
2π

Xe−rT

∫ ∞

ST =X
e− 1

2

(
ε+ µ−r

σ

√
T
)2

dε.

Notice that the integrals have the form of a normal distribution with nonzero
mean. The lower bound ST = X is, in terms of ε,

ln X = ln ST = ln S0 +
(
µ− σ 2

2

)
T + σ

√
T ε,

ε = ln X − ln S0 − (
µ− σ 2/2

)
T

σ
√

T
.

Finally, we can express definite integrals against a normal distribution by
the cumulative normal,

1√
2π

∫ ∞

a
e−(1/2)(ε−µ)2 dε = �(µ− a),

i.e., �( ) is the area under the left tail of the normal distribution:

C 0 = S 0�

[
− ln X − ln S 0 − (

µ− σ 2/2
)
T

σ
√

T
+
(
σ − µ− r

σ

)√
T
]

− Xe−rT�

[
− ln X − ln S 0 − (

µ− σ 2/2
)
T

σ
√

T
− µ− r

σ

√
T
]

.

Simplifying, we get the Black--Scholes formula

C 0 = S 0�

[
ln
(
S 0/X

)+ (
r + σ 2/2

)
T

σ
√

T

]

− Xe−rT�

[
ln
(
S0/X

)+ (
r − σ 2/2

)
T

σ
√

T

]
.

(17.7)
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Method 2: Derive Black--Scholes Differential Equation

Rather than solve the discount factor forward and then integrate, we can
solve the price backwards from expiration. The instantaneous or expected
return formulation of a pricing model amounts to a differential equation
for prices.

Guess that the solution for the call price is a function of stock price and
time to expiration, C (S , t). Use Ito’s lemma to find derivatives of C (S , t),

dC = Ct dt + CS dS + 1
2

CSS dS 2

=
(

Ct + CS Sµ+ 1
2

CSS S 2σ 2

)
dt + CS Sσ dz.

Plugging into the basic asset pricing equation

0 = Et

(
d�C

) = CEt d�+�Et dC + Et d� dC ,

using Et (d�/�) = −r dt and canceling � dt , we get

0 = −rC + Ct + CS Sµ+ 1
2

CSS S 2σ 2 − S
(
µ− r

)
CS

or,

0 = −rC + Ct + SrCS + 1
2

CSS S 2σ 2. (17.8)

This is the Black--Scholes differential equation for the option price.
We now know a differential equation for the price function C (S , t). We

know the value of this function at expiration, C (ST , T ) = max(ST − X , 0).
The remaining task is to solve this differential equation backwards through
time. Conceptually, and numerically, this is easy. Express the differential
equation as

−∂C (S , t)
∂t

= −rC (S , t)+ Sr
∂C (S , t)
∂S

+ 1
2
∂2C (S , t)
∂S 2

S 2σ 2.

At any point in time, you know the values of C (S , t) for all S—for example,
you can store them on a grid for S . Then, you can take the first and second
derivatives with respect to S and form the quantity on the right-hand side at
each value of S . Now, you can find the option price at any value of S , one
instant earlier in time.
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This differential equation, solved with boundary condition

C = max
{
ST − X , 0

}
,

has an analytic solution—the familiar formula (17.7). One standard way to
solve differential equations is to guess and check; and by taking derivatives
you can check that (17.7) does satisfy (17.8). Black and Scholes solved the
differential equation with a fairly complicated Fourier transform method.
The more elegant Feynman--Kac solution amounts to showing that solu-
tions of the partial differential equation (17.8) can be represented as
integrals of the form that we already derived independently as in (17.6).
(See Duffie [1992, p. 87].)

Problems—Chapter 17

1. We showed that you should never exercise an American call early if
there are no dividends. Is the same true for American puts, or are there
circumstances in which it is optimal to exercise American puts early?

2. Retrace the steps in the integral derivation of the Black--Scholes formula
and show that the dw does not affect the final result.
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18
Option Pricing without

Perfect Replication

18.1 On the Edges of Arbitrage

The beautiful Black–Scholes formula launched a thousand techniques
for option pricing. The principle of no-arbitrage pricing is obvious, but its
application leads to many subtle and unanticipated pricing relationships.

However, in many practical situations, the law-of-one-price arguments
that we used in the Black--Scholes formula break down. If options really
were redundant, it is unlikely that they would be traded as separate assets.
It really is easy to synthesize forward rates from zero-coupon bonds, and
forward rates are not separately traded or quoted.

We really cannot trade continuously, and trying to do so would drown a
strategy in transactions costs. As a practical example, at the time of the 1987
stock market crash, several prominent funds were trying to follow ‘‘portfolio
insurance’’ strategies, essentially synthesizing put options by systematically
selling stocks as prices declined. During the time of the crash, however, they
found that the markets just dried up—they were unable to sell as prices
plummeted. We can model this situation mathematically as a Poisson jump,
a discontinuous movement in prices. In the face of such jumps the option
payoff is not perfectly hedged by a portfolio of stock and bond, and cannot
be priced as such.

Generalizations of the stochastic setup lead to the same result. If the
interest rate or stock volatility are stochastic, we do not have securities that
allow us to perfectly hedge the corresponding shocks, so the law of one price
again breaks down.

In addition, many options are written on underlying securities that
are not traded, or not traded continually and with sufficient liquidity.
Real options in particular—the option to build a factory in a particular

327
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location—are not based on a tradeable underlying security, so the logic
behind Black--Scholes pricing does not apply. Executives are often forbid-
den to short stock in order to hedge executive options.

Furthermore, trading applications of option pricing formulas seem to
suffer a strange inconsistency. We imagine that the stock and bond are per-
fectly priced and perfectly liquid—available for perfect hedging. Then, we
search for options that are priced incorrectly as trading opportunities. If the
options can be priced incorrectly, why cannot the stock and bond be priced
incorrectly? Trading opportunities involve risk, and a theory that pretends
they are arbitrage opportunities does not help to quantify that risk.

In all of these situations, an unavoidable ‘‘basis risk’’ creeps in between
the option payoff and the best possible hedge portfolio. Holding the option
entails some risk, and the value of the option depends on the ‘‘market
price’’ of that risk—the covariance of the risk with an appropriate discount
factor.

Nonetheless, we would like not to give up and go back to the
consumption-based model, factor models, or other ‘‘absolute’’ methods that
try to price all assets. We are still willing to take as given the prices of lots
of assets in determining the price of an option, and in particular assets that
will be used to hedge the option. We can form an ‘‘approximate hedge’’
or portfolio of basis assets ‘‘closest to’’ the focus payoff, and we can hedge
most of the option’s risk with that approximate hedge. Then, the uncer-
tainty about the option value is reduced only to figuring out the price of
the residual. In addition, since the residuals are small, we might be able to
say a lot about option prices with much weaker restrictions on the discount
factor than those suggested by absolute models.

Many authors simply add market price of risk assumptions. This
leaves the questions, how sensitive are the results to market price
of risk assumptions? What are reasonable values for market prices of
risk?

In this chapter, I survey ‘‘good-deal’’ option price bounds, a tech-
nique that Jesus Saá-Requejo and I (2000) advocated for this situation.
The good-deal bounds amount to systematically searching over all possi-
ble assignments of the ‘‘market price of risk’’ of the residual, constraining
the total market price of risk to a reasonable value, and imposing no
arbitrage opportunities, to find upper and lower bounds on the option
price. It is not equivalent to pricing options with pure Sharpe ratio
arguments.

Good deal bonds are just the beginning. Finding ways to merge
no-arbitrage and absolute pricing is one of the most exciting new areas
of research. The concluding section of this chapter surveys some alternative
and additional techniques.
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18.2 One-Period Good-Deal Bounds

We want to price the payoff xc , for example, xc = max(ST − K , 0) for a
call option. We have in hand an N -dimensional vector of basis payoffs x ,
whose prices p we can observe, for example the stock and bond. The good-
deal bound finds the minimum and maximum value of xc by searching
over all positive discount factors that price the basis assets and have limited
volatility:

�C = max
{m}

E (mxc) s.t . p = E (mx), m ≥ 0, σ 2(m) ≤ h/R f . (18.1)

The corresponding minimization yields the lower bound C . This is a one-
period discrete-time problem. The Black--Scholes formula does not apply
because you cannot trade between the price and payoff periods.

The first constraint on the discount factor imposes the price of the basis
assets. We want to do as much relative pricing as possible; we want to extend
what we know about the prices of x to price xc , without worrying about
where the prices of x come from. The second constraint imposes the absence
of arbitrage. This problem without the last constraint yields the arbitrage
bounds that we studied in Section 17.1. In most situations, the arbitrage
bounds are too wide to be of much use.

The last is an additional constraint on discount factors, and the extra
content of good-deal versus arbitrage bounds. It is a relatively weak restric-
tion. We could obtain closer bounds on prices with more information about
the discount factor. In particular, if we knew the correlation of the discount
factor with the payoff xc we could price the option a lot better!

Discount factor restrictions often have portfolio implications. As m > 0
means that no portfolios priced by m may display an arbitrage opportunity,
σ 2(m) ≤ h/R f means that no portfolio priced by m may have a Sharpe ratio
greater than h. Recall E (mR e ) = 0 implies E (m)E (R e ) = −ρσ(m)σ (R e ) and
|ρ| ≤ 1.

It is a central advantage of a discount factor approach that we can easily
impose both the discount factor volatility constraint and positivity, merging
the lessons of factor models and option pricing models. The prices and
payoffs generated by discount factors that satisfy both m ≥ 0 and σ(m) ≤
h/R f do more than rule out arbitrage opportunities and high Sharpe ratios.

I will treat the case that there is a risk-free rate, so we can write E (m) =
1/R f . In this case, it is more convenient to express the volatility constraint
as a second moment, so the bound (18.1) becomes

C = min
{m}

E (m xc) s.t . p = E (mx), E (m2) ≤ A2, m ≥ 0, (18.2)

where A2 ≡ (1 + h2)/R f 2. The problem is a standard minimization with
two inequality constraints. Hence we find a solution by trying all the



“chap18” — 2004/10/7 — page 330 — #4

330 18. Option Pricing without Perfect Replication

combinations of binding and nonbinding constraints, in order of their ease
of calculation. (1) Assume the volatility constraint binds and the positivity
constraint is slack. This one is very easy to calculate, since we will find analytic
formulas for the solution. If the resulting discount factor m is nonnegative,
this is the solution. If not, (2) assume that the volatility constraint is slack
and the positivity constraint binds. This is the classic arbitrage bound. Find
the minimum-variance discount factor that generates the arbitrage bound.
If this discount factor satisfies the volatility constraint, this is the solution. If
not, (3) solve the problem with both constraints binding.

Volatility Constraint Binds, Positivity Constraint Is Slack

If the positivity constraint is slack, the problem reduces to

C = min
{m}

E (m xc) s.t . p = E (mx), E (m2) ≤ A2. (18.3)

We could solve this problem directly, choosing m in each state with Lagrange
multipliers on the constraints. But as with the mean-variance frontier, it is
much more elegant to set up orthogonal decompositions and then let the
solution pop out.

Figure 18.1 describes the idea. X denotes the space of payoffs of port-
folios of the basis assets x , a stock and a bond in the classic Black--Scholes
setup. Though graphed as a line, X is typically a larger space. We know all
prices in X , but the payoff xc that we wish to value does not lie in X .

Start by decomposing the focus payoff xc into an approximate hedge x̂ c

and a residual w,

xc = x̂ c + w,

x̂ c ≡ proj(xc |X ) = E (xc x ′)E (xx ′)−1x ,

w ≡ xc − x̂ c .

(18.4)

We know the price of x̂ c . We want to bound the price of the residual w to
learn as much as we can about the price of xc .

All discount factors that price x—that satisfy p = E (mx)—lie in the
plane through x∗. As we sweep through these discount factors, we gen-
erate any price from −∞ to ∞ for the residual w and hence payoff xc .
All positive discount factors m > 0 lie in the intersection of the m plane
and the positive orthant—the triangular region. Discount factors m in this
range generate a limited range of prices for the focus payoff—the arbi-
trage bounds. Since second moment defines distance in Figure 18.1, the
set of discount factors that satisfies the volatility constraint E (m2) ≤ A2 lies
inside a sphere around the origin. The circle in Figure 18.1 shows the inter-
section of this sphere with the set of discount factors. This restricted range of
discount factors will produce a restricted range of values for the residual w
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Figure 18.1. Construction of a discount factor to solve the one-period good-deal bound when
the positivity constraint is slack.

and hence a restricted range of values for the focus payoff xc . In the situation
I have drawn, the positivity constraint is slack, since the E (m2) ≤ A2 circle
lies entirely in the positive orthant.

We want to find the discount factors in the circle that minimize or max-
imize the price of the residual w. The more a discount factor m points in
the w direction, the larger a price E (mw) it assigns to the residual. Obvi-
ously, the discount factors that maximize or minimize the price of w point
as much as possible towards and away from w. If you add any movement ε
orthogonal to w, this increases discount factor volatility without changing
the price of w.

Hence, the discount factor that generates the lower bound is

m = x∗ − vw, (18.5)

where

v =
√

A2 − E (x∗2)

E (w2)
(18.6)



“chap18” — 2004/10/7 — page 332 — #6

332 18. Option Pricing without Perfect Replication

is picked to just satisfy the volatility constraint. The bound is

C = E (mxc) = E (x∗xc)− vE (w2). (18.7)

The upper bound is given by v̄ = −v.
The first term in equation (18.7) is the value of the approximate hedge

portfolio, and can be written several ways, including

E (x∗xc) = E (x∗x̂ c) = E (mx̂c) (18.8)

for any discount factor m that prices basis assets. (To derive (18.8), remem-
ber that E (xy) = E [x proj(y|X )].) The second term in equation (18.7) is the
lowest possible price of the residual w consistent with the discount factor
volatility bound:

vE (w2) = E (vw w) = E [(x∗ + vw)w] = E (mw).

For calculations, you can substitute the definitions of x∗ and w in
equation (18.7) to obtain an explicit, if not very pretty, formula:

C = p ′E (xx ′)−1E (xxc)

−
√

A2 − p ′E (xx ′)−1p
√

E (xc2)− E (xc x ′)E (xx ′)−1E (xxc). (18.9)

The upper bound �C is the same formula with a + sign in front of the
square root.

Using (18.5), check whether the discount factor is positive in every state
of nature. If so, this is the good-deal bound, and the positivity constraint is
slack. If not, proceed to the next step.

If you prefer an algebraic and slightly more formal argument, start
by noticing that any discount factor that satisfies p = E (mx) can be
decomposed as

m = x∗ + vw + ε,

where E (x∗w) = E (x∗ε) = E (wε). Check these properties from the defi-
nition of w and ε; this is just like R = R ∗ + wR e∗ + n. Our minimization
problem is then

min
{v, ε}

E (mxc) s.t . E (m2) ≤ A2,

min
{v, ε}

E [(x∗ + vw + ε)(x̂ c + w)] s.t . E (x∗2)+ v2E (w2)+ E (ε2) ≤ A2,

min
{v, ε}

E (x∗x̂ c)+ vE (w2) s.t . E (x∗2)+ vE (w2)+ E (ε2) ≤ A2.

The solution is ε = 0 and v = ±√(A2 − E (x∗2))/E (w2).
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Both Constraints Bind

Next, I find the bounds when both constraints bind. Though this is the third
step in the procedure, it is easiest to describe this case next. Introducing
Lagrange multipliers, the problem is

C = min
{m>0}

max
{λ, δ>0}

E (m xc)+ λ′[E (mx)− p] + δ

2
[E (m2)− A2].

The first-order conditions yield a discount factor that is a truncated linear
combination of the payoffs,

m = max
(

−xc + λ′x
δ

, 0
)

=
[
−xc + λ′x

δ

]+
. (18.10)

The last equality defines the [ ]+ notation for truncation. In finance terms,
this is a call option with zero strike price.

You can derive (18.10) by introducing a Kuhn--Tucker multiplier
π(s)ν(s) on m(s) > 0 and taking partial derivatives with respect to m in
each state,

C = min
{m}

∑
s

π(s)m(s)xc(s)+ λ′
[∑

s

π(s)m(s)x(s)− p
]

+ δ

2

[∑
s

π(s)m(s)2 − A2

]
+
∑

s

π(s)ν(s)m(s).

1
π(s)

∂

∂s
: xc(s)+ λ′x(s)+ δm(s)+ ν(s) = 0. (18.11)

If the positivity constraint is slack, the Kuhn--Tucker multiplier ν(s) is zero,

m(s) = −xc(s)+ λ′x(s)
δ

.

If the positivity constraint binds, then m(s) = 0, and ν(s) is just enough to
make (18.11) hold. In sum, we have (18.10).

We could plug expression (18.10) into the constraints, and solve numer-
ically for Lagrange multipliers λ and δ that enforce the constraints. Alas,
this procedure requires the solution of a system of nonlinear equations in
(λ, δ), which is often a numerically difficult or unstable problem.

Hansen, Heaton, and Luttmer (1995) show how to recast the problem
as a maximization, which is numerically much easier. Interchanging min
and max,

C = max
{λ, δ>0}

min
{m>0}

E (mxc)+ λ′[E (mx)− p] + δ

2
[E (m2)− A2]. (18.12)
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The inner minimization yields the same first-order conditions (18.10). Plug-
ging those first-order conditions into the outer maximization of (18.12) and
simplifying, we obtain

C = max
{λ, δ>0}

E
{
− δ

2

[
−xc + λ′x

δ

]+2}
− λ′p − δ

2
A2. (18.13)

You can search numerically over (λ, δ) to find the solution to this problem.
The upper bound is found by replacing max with min and replacing δ > 0
with δ < 0.

Positivity Binds, Volatility Is Slack

If the volatility constraint is slack and the positivity constraint binds, the
problem reduces to

C = min
{m}

E (mxc) s.t . p = E (mx), m > 0. (18.14)

These are the arbitrage bounds. We found these bounds in Chapter 17 for
a call option by being clever. If you cannot be clever, (18.14) is a linear
program.

We still have to check that the discount factor volatility constraint can
be satisfied at the arbitrage bound. Denote the lower arbitrage bound by Cl .
The minimum-variance (second-moment) discount factor that generates
the arbitrage bound Cl solves

E (m2)min = min
{m}

E (m2) s.t
[

p
Cl

]
= E

(
m
[

x
xc

])
, m > 0.

Using the same conjugate method, this problem is equivalent to

E (m2)min = max
{v,µ}

{
−E

{[−(µxc + v ′x)]+2
}− 2v ′p − 2µCl

}
.

Again, search numerically for (v, µ) to solve this problem. If E (m2)min ≤ A,
Cl is the solution to the good-deal bound; if not, we proceed with the case
that both constraints are binding described above.

Application to the Black--Scholes Environment with
No Dynamic Hedging

The natural first exercise with this technique is to see how it applies in
the Black--Scholes world. Keep in mind, this is the Black--Scholes world
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Figure 18.2. Good-deal option price bounds as a function of stock price. Options have three
months to expiration and strike price K = $100. The bounds assume no trading until expira-
tion, and a discount factor volatility bound h = 1.0 corresponding to twice the market Sharpe
ratio. The stock is lognormally distributed with parameters calibrated to an index option.

with no intermediate trading; compare the results to the arbitrage bounds,
not to the Black-Scholes formula. Figure 18.2, taken from Cochrane
and Saá-Requejo (2000), presents the upper and lower good-deal bounds
for a call option on the S&P500 index with strike price K = $100, and
three months to expiration. We used parameter values E (R) = 13%,
σ(R) = 16% for the stock index return and a risk-free rate R f = 5%.
The discount factor volatility constraint is twice the historical market
Sharpe ratio, h = 2 × E (R − R f )/σ (R) = 1.0. To take the expectations
required in the formula, we evaluated integrals against the lognormal stock
distribution.

The figure includes the lower arbitrage bounds C ≥ 0, C ≥ K /R f . The
upper arbitrage bound states that C ≤ S , but this 45◦ line is too far up
to fit on the vertical scale and still see anything else. As in many practical
situations, the arbitrage bounds are so wide that they are of little use. The
upper good-deal bound is much tighter than the upper arbitrage bound.
For example, if the stock price is $95, the entire range of option prices
between the upper bound of $2 and the upper arbitrage bound of $95 is
ruled out.

The lower good-deal bound is the same as the lower arbitrage bound
for stock prices less than about $90 and greater than about $110. In this
range, the positivity constraint binds and the volatility constraint is slack.
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This range shows that it is important to impose both volatility and positiv-
ity constraints. Good-deal bounds are not just the imposition of low Sharpe ratios
on options. (I emphasize it because this point causes a lot of confusion.)
The volatility bound alone admits negative prices. A free out-of-the-money
call option is like a lottery ticket: it is an arbitrage opportunity, but its
expected return/standard deviation ratio is terrible, because the stan-
dard deviation is so high. A Sharpe ratio criterion alone will not rule
it out.

In between $90 and $110, the good-deal bound improves on the
lower arbitrage bound. It also improves on a bound that imposes only
the volatility constraint. In this region, both positivity and volatility con-
straints bind. This fact has an interesting implication: Not all values outside
the good-deal bounds imply high Sharpe ratios or arbitrage opportunities.
Such values might be generated by a positive but highly volatile discount fac-
tor, and generated by another less volatile but sometimes negative discount
factor, but no discount factor generates these values that is simultaneously
nonnegative and respects the volatility constraint.

It makes sense to rule out these values. If we know that an investor will
invest in any arbitrage opportunity or take any Sharpe ratio greater than h,
then we know that his unique marginal utility satisfies both restrictions. He
would find a utility-improving trade for values outside the good-deal bounds,
even though those values may not imply a high Sharpe ratio, an arbitrage
opportunity, or any other simple portfolio interpretation.

The right thing to do is to intersect restrictions on the discount factor.
Simple portfolio interpretations, while historically important, are likely to
fall by the wayside as we add more discount factor restrictions or intersect
simple ones.

18.3 Multiple Periods and Continuous Time

Now, on to the interesting case. Option pricing is all about dynamic hedging,
even if imperfect dynamic hedging. Good-deal bounds would be of little use
if we could only apply them to one-period environments.

The Bounds Are Recursive

The central fact that makes good-deal bounds tractable in dynamic environ-
ments is that the bounds are recursive. Today’s bound can be calculated as
the minimum price of tomorrow’s bound, just as today’s option price can
be calculated as the value of tomorrow’s option price.
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To see that the bounds are recursive, consider a two-period version of
the problem,

C 0 = min
{m 1, m 2}

E0(m 1m 2 xc
2) s.t .

p t = Et (m t+1p t+1), Et (m2
t+1) ≤ A2

t , m t+1 > 0, t = 0, 1. (18.15)

This two-period problem is equivalent to a series of one-period problems,
in which the C0 problem finds the lowest price of the C1 lower bound,

C 1 = min
{m 2}

E1(m 2xc
2), C 0 = min

{m 1}
E0(m 1C 1),

subject to (18.15). Why? The solution to the two-period problem
min E0(m 1E1(m 2xc)) must minimize E1(m 2xc) in each state of nature at
time 1. If not, you could lower E1(m 2xc) without affecting the constraints,
and lower the objective. Note that this recursive property only holds if we
impose m > 0. If m 1 < 0 were possible, we might want to maximize E1(m 2xc)

in some states of nature.

Basis Risk and Real Options

The general case leads to some dense formulas, so a simple example will let
us understand the idea most simply. Let us value a European call option on
an event V that is not a traded asset, but is correlated with a traded asset
that can be used as an approximate hedge. This situation is common with
real options and nonfinancial options and describes some financial options
on illiquid assets.

The terminal payoff is

xc
T = max(VT − K , 0).

Model the joint evolution of the traded asset S and the event V on which
the option is written as

dS
S

= µS dt + σS dz,

dV
V

= µV dt + σVz dz + σVw dw.

The dw risk cannot be hedged by the S asset, so the market price of dw
risk—its correlation with the discount factor—will matter to the option
price.

We are looking for a discount factor that prices S and r f , has instanta-
neous volatility A, and generates the largest or smallest price for the option.
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Hence it will have the largest loading on dw possible. By analogy with the
one-period case (18.5), you can quickly see that the discount factor will have
the form

d	
	

= d	∗

	∗ ±
√

A2 − h2
S dw,

d	∗

	∗ = −r dt − hS dz,

hS = µS − r
σS

.

d	∗/	∗ is the familiar analogue to x∗ that prices stock and bond. We add a
loading on the orthogonal shock dw just sufficient to satisfy the constraint
Et (d	2/	2) = A2. One of ± will generate the upper bound, and one will
generate the lower bound.

Now that we have the discount factor, the good-deal bound is given by

C t = Et

[
	T

	t

max(VT − K )
]

.

St , Vt , and 	t are all diffusions with constant coefficients. Therefore,
ST , VT , and 	T are jointly lognormally distributed, so the double integral
defining the expectation is straightforward to perform, and works very sim-
ilarly to the integral we evaluated to solve the Black--Scholes formula in
Section 16.2.1. (If you get stuck, see Cochrane and Saá-Requejo [2000] for
the algebra.)

The result is

C or �C = V0eηTφ

(
d + 1

2
σV

√
T
)

− Ke−rTφ

(
d − 1

2
σV

√
T
)

, (18.16)

where φ(·) denotes the left tail of the normal distribution and

σ 2
V ≡ Et

dV 2

V 2
= σ 2

Vz + σ 2
Vw ,

d ≡ ln(V0/K )+ (η + r )T

σV

√
T

,

η ≡
[

hV − hS

(
ρ − a

√
A2

h2
S

− 1
√

1 − ρ2

)]
σV ,

hS ≡ µS − r
σS

, hV ≡ µV − r
σV

,
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ρ ≡ corr
(

dV
V

,
dS
S

)
= σVz

σV
,

a =
{

+1 upper bound,
−1 lower bound.

This expression is exactly the Black--Scholes formula with the addition
of the η term.µV enters the formula because the event V may not grow at the
same rate as the asset S . Obviously, the correlation ρ between V shocks and
asset shocks enters the formula, and as this correlation declines, the bounds
widen. The bounds also widen as the volatility constraint A becomes larger
relative to the asset Sharpe ratios hS .

Market Prices of Risk
Continuous-time pricing problems are often specified in terms of ‘‘market
prices of risk’’ rather than discount factors. This is the instantaneous Sharpe
ratio that an asset must earn if it loads on a specific shock. If an asset has
a price process P that loads on a shock σ dw, then its expected return
must be

Et
dP
P

− r f dt = −σEt

(
d	
	

dw
)

with Sharpe ratio

λ = Et (dP/P )− r f dt
σ

= −Et

(
d	
	

dw
)

.

I have introduced the common notation λ for the market price of risk.
Thus, problems are often attacked by making assumptions about λ directly
and then proceeding from

Et
dP
P

− r f dt = λσ .

In this language, the market price of stock risk is hS and can be measured
by observing the stock, and does not matter when you can price by arbitrage
(notice it is missing from the Black--Scholes formula). Our problem comes
down to choosing the market price of dw risk, which cannot be measured
by observing a traded asset, in such a way as to minimize or maximize the
option price, subject to a constraint that the total price of risk

√
h2

S + λ2 ≤ A.

Continuous Time

Now, I give a more systematic expression of the same ideas in continuous
time. As in the option pricing case in the last chapter and the term structure
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case in the next chapter, we will obtain a differential characterization. To
actually get prices, we have either to solve the discount factor forward, or to
find a differential equation for prices which we solve backward.

Basis Assets
In place of E (x), E (xx ′), etc., model the price processes of an nS -dimensional
vector of basis assets by a diffusion,

dS
S

= µS (S , V , t) dt + σS (S , V , t) dz, E (dz dz ′) = I . (18.17)

Rather than complicate the notation, understand division to operate ele-
ment by element on vectors, e.g., dS/S = [dS 1/S 1 dS 2/S 2 · · · ]. The basis
assets may pay dividends at rate D(S , V , t) dt .

V represents an nV -dimensional vector of additional state variables that
follow

dV =µV (S , V , t) dt + σVz(S , V , t) dz + σVw(S , V , t) dw,

E (dw dw ′) = I , E (dw dz ′) = 0.
(18.18)

This could include a stochastic stock volatility or stochastic interest rate—-
classic cases in which the Black--Scholes replication breaks down. Again, I
keep it simple by assuming there is a risk-free rate.

The Problem
We want to value an asset that pays continuous dividends at rate
xc(S , V , t) dt and has a terminal payment xc

T (S , V , T ). Now we must choose
a discount factor process to minimize the asset’s value

C t = min
{	s , t<s≤T }

Et

∫ T

s=t

	s

	t
x c

s ds + Et

(
	T

	t
x c

T

)
(18.19)

subject to the constraints that (1) the discount factor prices the basis assets
S , r at each moment in time, (2) the instantaneous volatility of the discount
factor process is less than a prespecified value A2, and (3) the discount factor
is positive 	s > 0, t ≤ s ≤ T .

One Period at a Time; Differential Statement
Since the problem is recursive, we can study how to move one step back
in time,

C t	t = min
{	s }

Et

∫ t+�t

s=t
	sx c

s ds + Et (	t+�t C t+�t )

or, for small time intervals,

C t	t = min
{�	}

Et {xc�t + (C t +�C )(	t +�	)}.



“chap18” — 2004/10/7 — page 341 — #15

18.3. Multiple Periods and Continuous Time 341

Letting �t → 0, we can write the objective in differential form,

0 = xc
t

C
dt + min

{d	}
Et [d(	C )]

	C
, (18.20)

subject to the constraints. We can also write (18.20) as

Et
dC
C

+ xc
t

C
dt − r f dt = − min

{d	}
Et

(
d	
	

dC
C

)
. (18.21)

This condition sensibly tells us to find the lowest value C by maximizing the
drift of the bound at each date. You should recognize the form of (18.20)
and (18.21) as the basic pricing equations in continuous time, relating
expected returns to covariance with discount factors.

Constraints
Now we express the constraints. As in the discrete-time case, we orthogonal-
ize the discount factor in m = x∗ + ε form, and then the solution pops out.
Any discount factor that prices the basis assets is of the form

d	
	

= d	∗

	∗ − v dw, (18.22)

where

d	∗

	∗ ≡ −r dt − µ̃′
S

−1
S σS dz,

µ̃S ≡ µS + D
S

− r , S = σSσ
′
S ,

and v is a 1 × nV matrix. We can add shocks orthogonal to dw if we like,
but they will have no effect on the answer; the minimization will set such
loadings to zero.

The volatility constraint is

1
dt

Et
d	2

	2
≤ A2,

and hence, using (18.22),

vv ′ ≤ A2 − 1
dt

Et
d	∗2

	∗2
= A2 − µ̃′

S
−1
S µ̃S . (18.23)

By expressing the constraints via (18.22) and (18.23), we have again
reduced the problem of choosing the stochastic process for	 to the choice
of loadings v on the noises dw with unknown values, subject to a quadratic
constraint on vv ′. Since we are picking differentials and have ruled out
jumps, the positivity constraint is slack so long as 	 > 0.
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Market Prices of Risk
Using equation (18.22), v is the vector of market prices of risks of the dw
shocks—the expected return that any asset must offer if its shocks are dw:

− 1
dt

E
(

d	
	

dw
)

= v.

Thus, the problem is equivalent to: find at each date the assignment of
market prices of risk to the dw shocks that minimizes (maximizes) the focus
payoff value, subject to the constraint that the total (sum of squared) market
price of risk is bounded by A2.

Now, we are ready to follow the usual steps. We can characterize a differ-
ential equation for the option price bound that must be solved back from
expiration, or we can try to solve the discount factor forward and take an
expectation.

Solutions: The Discount Factor and Bound Drift at Each Instant
We can start by characterizing the bound’s process, just as the basis assets
follow (18.17). This step is exactly the instantaneous analogue of the one-
period bound without a positivity constraint, so remember that logic if the
equations start to get a bit forbidding.

Guess that lower bound C follows a diffusion process, and figure out
what the coefficients must look like. Write

dC
C

= µC (S , V , t) dt + σCz(S , V , t) dz + σCw(S , V , t) dw. (18.24)

σCz and σCw capture the stochastic evolution of the bound over the next
instant—the analogues to E (xxc), etc. that were inputs to the one-period
problem. Therefore, a differential or moment-to-moment characterization
of the bound will tell us µC and d	 in terms of σCz and σCw .

Theorem: The lower bound discount factor 	t follows

d	
	

= d	∗

	∗ − v dw (18.25)

and µC , σCz , and σCw satisfy the restriction

µC + xc

C
− r = − 1

dt
Et

(
d	∗

	∗ σCz dz
)

+ vσ ′
Cw , (18.26)

where

v =
√

A2 − 1
dt

Et
d	∗2

	∗2

σCw√
σCwσ

′
Cw

. (18.27)
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The upper bound process �C t and discount factor	t have the same representation
with v = −v.

This theorem has the same geometric interpretation as shown in
Figure 18.1 d	∗/	∗ is the combination of basis asset shocks that prices the
basis assets by construction, in analogy to x∗. The term σCw dw corresponds
to the error w, and σCwσ

′
Cw corresponds to E (w2). The proposition looks

a little different because now we choose a vector v rather than a number.
We could define a residual σCw dw and then the problem would reduce to
choosing a number, the loading of d	 on this residual. It is not convenient
to do so in this case since σCw potentially changes over time. In the geometry
of Figure 18.1, the w direction may change over time. The algebraic proof
just follows this logic.

Proof: Substituting equation (18.22) into the problem (18.20) in order
to impose the pricing constraint, the problem is

0 = xc

C
dt + Et

[
d(	∗C )
	∗C

]
− min

{v}
vEt

(
dw

dC
C

)

s.t . vv ′ ≤ A2 − 1
dt

Et

(
d	∗2

	∗2

)
.

Using equation (18.24) for dC/C in the last term, the problem is

0 = xc

C
+ 1

dt
Et

[
d(	∗C )
	∗C

]
− min

{v}
vσ ′

Cw s.t.

vv ′ ≤ A2 − 1
dt

Et

(
d	∗2

	∗2

)
. (18.28)

This is a linear objective in v with a quadratic constraint. Therefore, as
long as σCw �= 0, the constraint binds and the optimal v is given by (18.27).
v = −v gives the maximum since σCwσ

′
Cw > 0. Plugging the optimal value

for v in (18.28) gives

0 = xc

C
+ 1

dt
Et

[
d(	∗C )
	∗C

]
− vσ ′

Cw .

For clarity, and exploiting the fact that d	∗ does not load on dw, write the
middle term as

1
dt

Et

[
d(	∗C )
	∗C

]
= µC − r + 1

dt
Et

(
d	∗

	∗ σCz dz
)

.

If σCw = 0, any v leads to the same price bound. In this case we can most
simply take v = 0. �
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As in the discrete-time case, we can plug in the definition of	∗ to obtain
explicit, if less intuitive, expressions for the optimal discount factor and the
resulting lower bound,

d	
	

= −r dt + µ̃′
S

−1
S σS dz −

√
A2 − µ̃′

S
−1
S µ̃S

σCw√
σCwσ

′
Cw

dw, (18.29)

µC + xc

C
− r = µ̃′

S
−1
S σSσCz +

√
A2 − µ̃′

S
−1
S µ̃S

√
σCwσ

′
Cw . (18.30)

A Partial Differential Equation
Now we are ready to apply the standard method; find a partial differen-
tial equation and solve it backwards to find the price at any date. The
method proceeds exactly as for the Black--Scholes formula: Guess a solu-
tion C (S , V , t). Use Ito’s lemma to derive expressions for µC and σCz , σCw

in terms of the partial derivatives of C (S , V , t). Substitute these expressions
into restriction (18.30). The result is ugly, but straightforward to evalu-
ate numerically. Just like the Black--Scholes partial differential equation, it
expresses the time derivative ∂C/∂t in terms of derivatives with respect to
state variables, and thus can be used to work back from a terminal period.

Theorem: The lower bound C (S , V , t) is the solution to the partial differential
equation

xc − r C + ∂C
∂t

+ 1
2

∑
i , j

∂2C
∂Si ∂Sj

SiSjσSiσ
′
Sj

+ 1
2

∑
i , j

∂2C
∂Vi∂Vj

(σVziσ
′
Vzj

+ σVwj σ
′
Vwj
)+

∑
i , j

∂2C
∂Si∂Vj

SiσSiσ
′
Vzj

=
(

D
S

− r
)′
(SC S )+ (

µ̃′
S

−1
S σSσ

′
Vz − µ′

V

)
C V

+
√

A2 − µ̃′
S

−1
S µ̃S

√
C ′

V σVwσ
′
VwC V ,

subject to the boundary conditions provided by the focus asset payoff xc
T . C V denotes

the vector with typical element ∂C/∂Vj and (SC S ) denotes the vector with typical
element Si∂C/∂Si . Replacing + with − before the square root gives the partial
differential equation satisfied by the upper bound.

The Discount Factor
In general, the 	 process (18.25) or (18.29) depends on the parameters
σCw . Hence, without solving the above partial differential equation we do
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not know how to spread the loading of d	 across the multiple sources of
risk dw whose risk prices we do not observe. Equivalently, we do not know
how to optimally spread the total market price of risk across the elements
of dw. Thus, in general we cannot use the integration approach—solve the
discount factor forward—to find the bound by

C t = Et

∫ T

s=t

	s

	t

x c
s ds + Et

(
	T

	t

x c
T

)
.

However, if there is only one shock dw, then we do not have to worry about
how the loading of d	 spreads across multiple sources of risk. v can be
determined simply by the volatility constraint. In this special case, dw and
σCw are scalars. Hence equation (18.25) simplifies as follows:

Theorem: In the special case that there is only one extra noise dw driving the
V process, we can find the lower bound discount factor 	 directly from

d	
	

= −r dt − µ̃′
S

−1
S σS dz −

√
A2 − µ̃′

S
−1
S µ̃S dw. (18.31)

I used this characterization to solve for the case of a nontraded underly-
ing in the last section. In some applications, the loading of d	 on multiple
shocks dw may be constant over time. In such cases, one can again construct
the discount factor and solve for bounds by (possibly numerical) integration,
avoiding the solution of a partial differential equation.

18.4 Extensions, Other Approaches, and Bibliography

The roots of the good-deal idea go a long way back. Ross (1976a) bounded
APT residuals by assuming that no portfolio can have more than twice the
market Sharpe ratio, and I used the corresponding idea that discount fac-
tor volatility should be bounded to generate a robust approximate APT
in Section 9.4. Good-deal bounds apply the same idea to option pay-
offs. However, the good-deal bounds also impose positive discount factors,
and this constraint is important in an option pricing context. We also
study dynamic models that chain discount factors together as in the option
pricing literature.

The one-period good-deal bound is the dual to the Hansen--
Jagannathan (1991) bound with positivity—Hansen and Jagannathan study
the minimum variance of positive discount factors that correctly price a
given set of assets. The good-deal bound interchanges the position of
the option pricing equation and the variance of the discount factor. The
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techniques for solving the bound, therefore, are exactly those of the
Hansen--Jagannathan bound in this one-period setup.

There is nothing magic about discount factor volatility. This kind of
problem needs weak but credible discount factor restrictions that lead to
tractable and usefully tight bounds. Several other similar restrictions have
been proposed in the literature.

1) Levy (1985) and Constantinides (1998) assume that the discount fac-
tor declines monotonically with a state variable; marginal utility should
decline with wealth.

2) The good-deal bounds allow the worst case that marginal utility growth
is perfectly correlated with a portfolio of basis and focus assets. In many
cases one could credibly impose a sharper limit than −1 ≤ ρ ≤ 1 on this
correlation to obtain tighter bounds.

3) Bernardo and Ledoit (2000) use the restriction a ≥ m ≥ b to sharpen the
no-arbitrage restriction ∞ ≥ m > 0. They show that this restriction has
a beautiful portfolio interpretation—a < m < b corresponds to limited
‘‘gain-loss ratios’’ just as σ(m)/E (m) corresponds to limited Sharpe ratios.
Define [R e ]+ = max(R e , 0) and [R e ]− = − min(−R e , 0) as the ‘‘gains and
losses’’ of an excess return R e . Then,

max
{Re ∈Re }

[R e ]+
[R e ]− = min

{m: 0=E (mRe )}
sup(m)
inf (m)

. (18.32)

(The sup and inf ignore measure-zero states.) This is exactly analogous to

max
{Re ∈Re }

|E (R e )|
σ(R e )

= min
{m: 0=E (mRe )}

σ(m)
E (m)

and hints at an interesting restatement of asset pricing theory in L1 with
sup norm rather than L2 with second-moment norm.

Since m ≥ a, the call option price generated by this restriction in
a one-period model is strictly greater than the lower arbitrage bound
generated by m = 0; as in this case, the gain-loss bound can improve on
the good-deal bound.

4) Bernardo and Ledoit also suggest a ≥ m/y ≥ b, where y is an explicit
discount factor model such as the consumption-based model or CAPM,
as a way of imposing a ‘‘weak implication’’ of that particular model.

These alternatives are really not competitors. Add all the discount factor
restrictions that are appropriate and useful for a given problem.

This exercise seems to me a strong case for discount factor methods
as opposed to portfolio methods. The combination of positivity and volatil-
ity constraints on the discount factor leads to a sharper bound than the
intersection of no arbitrage and limited Sharpe ratios. I do not know of a
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simple portfolio characterization of the set of prices that are ruled out by
the good-deal bound when both constraints bind. The same will be true as
we add, say, gain-loss restrictions, monotonicity restrictions, etc.

In continuous time, option pricing and term structure problems
increasingly feature assumptions about the ‘‘market price of risk’’ of the
non traded shocks. The good-deal bounds treat these rather formally; they
choose the market prices of risks at each instant to minimize or maximize
the option price subject to a constraint that the total market price of risk is
less than a reasonable value, compared to the Sharpe ratios of other trading
opportunities. One need not be this formal. Many empirical implementa-
tions of option pricing and term structure models feature unbelievable sizes
and time variation in market prices of risk. Just imposing sensible values for
the market prices of risk and trying on a range of sensible values may be
good enough for many practical situations.

The continuous-time treatment has not yet been extended to the impor-
tant case of jumps rather than diffusion processes. With jumps, both the
positivity and volatility constraints will bind.

Problems—Chapter 18

1. Prove (18.32),

max
{Re ∈Re }

[R e ]+
[R e ]− = min

{m:0=E (mRe )}
sup(m)
inf (m)

.

Start with a finite state space.

2. Binomial models are very popular in option pricing. This simple prob-
lem illustrates the technique. A stock currently selling at S will either rise
to ST = uS with probability πu or decline to ST = dS with probability πd ,
paying no dividends in the interim. There is a constant gross interest rate R f .

(a) Find a discount factor that prices stock and bond. This means, find
its value in each state of nature.

(b) Use the discount factor to price a call option one step before
expiration. Express your results as an expected value using risk-neutral
probabilities.

(c) Do the same thing two steps before expiration.

(d) Cox, Ross, and Rubinstein (1979) derive these formulas by setting
up a hedge portfolio of stocks and bonds, and finding portfolio weights
to exactly synthesize the option. Rederive your result with this method.
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Term structure models are particularly simple, since bond prices are just
the expected value of the discount factor. In equations, the price at time
t of a zero-coupon bond that comes due at time t + j is P ( j)

t = E t (m t , t+j ).
Thus, once you specify a time-series process for a one-period discount factor
m t , t+1, you can in principle find the price of any bond by chaining together
the discount factors and finding P ( j)

t = Et (m t , t+1m t+1, t+2 . . .m t+j−1, t+j ). As
with option pricing models, this chaining together can be hard to do, and
much of the analytical machinery in term structure models centers on this
technical question. As with option pricing models, there are two equivalent
ways to do the chaining together: Solve the discount factor forward and
take an integral, or find a partial differential equation for prices and solve
it backwards from the maturity date.

19.1 Definitions and Notation

A quick introduction to bonds, yields, holding period returns, forward
rates, and swaps.

p(N )t = log price of N period zero-coupon bond at time t .

y(N ) = − 1
N p(N ) = log yield.

hpr(N )t+1 = p(N −1)
t+1 − p(N )t = log holding period return.

hpr = dP (N , t)
P − 1

P
∂P (N , t)
∂N dt = instantaneous return.

f (N →N +1)
t = p(N )t − p(N +1)

t = forward rate.

f (N , t) = − 1
P
∂P (N , t)
∂N = instantaneous forward rate.

349
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Bonds

The simplest fixed-income instrument is a zero-coupon bond. A zero-coupon
bond is a promise to pay one dollar (a nominal bond) or one unit of the
consumption good (a real bond) on a specified date. I use a superscript in
parentheses to denote maturity: P (3)

t is the price of a three-year zero-coupon
bond. I will suppress the t subscript when it is not necessary.

I denote logs by lowercase symbols, p(N )t = ln P (N )
t . The log price has a

nice interpretation. If the price of a one-year zero-coupon bond is 0.95, i.e.,
95¢ per dollar face value, the log price is ln(0.95) = −0.051. This means that
the bond sells at a 5% discount. Logs also give the continuously compounded
rate. If we write e rN = 1/P (N ), then the continuously compounded rate is
rN = − ln P (N ).

Coupon bonds are common in practice. For example, a $100 face value
10-year coupon bond may pay $5 every year for 10 years and $100 at 10 years.
(Coupon bonds are often issued with semiannual or more frequent pay-
ments, $2.50 every six months for example.) We price coupon bonds by
considering them as a portfolio of zeros.

Yield

The yield of a bond is the fictional, constant, known, annual, interest rate
that justifies the quoted price of a bond, assuming that the bond does not
default. It is not the rate of return of the bond. From this definition, the
yield of a zero-coupon bond is the number Y (N ) that satisfies

P (N ) = 1[
Y (N )

]N .

Hence

Y (N ) = 1[
P (N )

]1/N , y(N ) = − 1
N

p(N ).

The latter expression nicely connects yields and prices. If the price of a
4-year bond is −0.20 or a 20% discount, that is 5% discount per year, or
a yield of 5%. The yield of any stream of cash flows is the number Y that
satisfies

P =
N∑

j=1

CFj

Y j
.

In general, you have to search for the value Y that solves this equation, given
the cash flows and the price. So long as all cash flows are positive, this is fairly
easy to do.
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As you can see, the yield is just a convenient way to quote the price. In using
yields we make no assumptions. We do not assume that actual interest rates
are known or constant; we do not assume the actual bond is default-free.
Bonds that may default trade at lower prices or higher yields than bonds
that are less likely to default. This only means a higher return if the bond
happens not to default.

Holding Period Returns

If you buy an N -period bond and then sell it—it has now become an (N −
1)-period bond—you achieve a return of

HPR (N )
t+1 = $back

$paid
= P (N −1)

t+1

P (N )
t

(19.1)

or, of course,

hpr(N )t+1 = p(N −1)
t+1 − p(N )t .

We date this return (from t to t + 1) as t + 1 because that is when you find
out its value. If this is confusing, take the time to write returns as HPRt→t+1

and then you will never get lost.
In continuous time, we can easily find the instantaneous holding period

return of bonds with fixed maturity date P (T , t)

hpr = P (T , t +�)− P (T , t)
P (T , t)

,

and, taking the limit,

hpr = dP (T , t)
P

.

However, it is nicer to look for a bond pricing function P (N , t) that fixes
the maturity rather than the date. As in (19.1), we then have to account for
the fact that you sell bonds that have shorter maturity than you buy:

hpr = P (N −�, t +�)− P (N , t)
P (N , t)

= P (N −�, t +�)− P (N , t +�)+ P (N , t +�)− P (N , t)
P (N , t)

,

and, taking the limit

hpr = dP (N , t)
P

− 1
P
∂P (N , t)
∂N

dt . (19.2)
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Forward Rate

The forward rate is defined as the rate at which you can contract today to
borrow or lend money starting at period N , to be paid back at period N +1.

You can synthesize a forward contract from a spectrum of zero-coupon
bonds, so the forward rate can be derived from the prices of zero-coupon
bonds. Here is how. Suppose you buy one N -period zero-coupon bond and
simultaneously sell x(N + 1)-period zero-coupon bonds. Let us track your
cash flow at every date:

Buy N -period Sell x (N + 1)-period
zero zeros Net cash flow

Today 0: −P (N ) + x P (N +1) x P (N +1) − P (N )

Time N : 1 1

Time N + 1: −x −x

Now, choose x so that today’s cash flow is zero:

x = P (N )

P (N +1)
.

You pay or get nothing today, you get $1.00 at N , and you pay P (N )/P (N +1)

at N + 1. You have synthesized a contract signed today for a loan from N to
N + 1—a forward rate! Thus,

F (N →N +1)
t = Forward rate at t for N → N + 1 = P (N )

t

P (N +1)
t

,

and of course

f (N →N +1)
t = p(N )t − p(N +1)

t . (19.3)

People sometimes identify forward rates by the initial date, f (N )t , and some-
times by the ending date, f (N +1)

t . I use the arrow notation when I want to be
really clear about dating a return.

Forward rates have the lovely property that you can always express a
bond price as its discounted present value using forward rates,

p(N )t = p(N )t − p(N −1)
t + p(N −1)

t − p(N −2)
t − · · · − p(2)t − p(1)t + p(1)t

= −f (N −1→N )
t − f (N −2→N −1)

t − · · · − f (1→2)
t − y(1)t
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y(1)t = f (0→1)
t of course), so

p(N )t = −
N −1∑
j=0

f (j→j+1)
t ;

P (N )
t =

( N −1∏
j=0

F (j→j+1)
t

)−1

.

Intuitively, the price today must be equal to the present value of the payoff
at rates you can lock in today.

In continuous time, we can define the instantaneous forward rate

f (N , t) = − 1
P
∂P (N , t)
∂N

= −∂p(Nt )

∂N
. (19.4)

Then, forward rates have the same property that you can express today’s
price as a discounted value using the forward rate,

p(N , t) = −
∫ N

x=0
f (x , t) dx

P (N , t) = e− ∫ N
x=0 f (x , t) dx .

Equations (19.3) and (19.4) express forward rates as derivatives of the
price versus maturity curve. Since yield is related to price, we can relate
forward rates to the yield curve directly. Differentiating the definition of
yield y(N , t) = −p(N , t)/N ,

∂y(N , t)
∂N

= 1
N 2

p(N , t)− 1
N
∂p(N , t)
∂N

= − 1
N

y(N , t)+ 1
N

f (N , t).

Thus,

f (N , t) = y(N , t)+ N
∂y(N , t)
∂N

.

In the discrete case, (19.3) implies

f (N →N +1)
t = −Ny(N )t + (N + 1)y(N +1)

t = y(N +1)
t + N

(
y(N +1)

t − y(N )t

)
.

Forward rates are above the yield curve if the yield curve is rising, and
vice versa.
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Swaps and Options

Swaps are an increasingly popular fixed-income instrument. The simplest
example is a fixed-for-floating swap. Party A may have issued a 10-year fixed
coupon bond. Party B may have issued a 10-year variable-rate bond—a bond
that promises to pay the current one-year rate. (For example, if the current
rate is 5%, the variable-rate issuer would pay $5 for every $100 of face value.
A long-term variable-rate bond is the same thing as rolling over one-period
debt.) They may be unhappy with these choices. For example, the fixed-
rate payer may not want to be exposed to interest rate risk that the present
value of his promised payments rises if interest rates decline. The variable-
rate issuer may want to take on this interest rate risk, betting that rates will
rise or to hedge other commitments. If they are unhappy with these choices,
they can swap the payments. The fixed-rate issuer pays off the variable-rate
coupons, and the variable-rate issuer pays off the fixed-rate coupons. Obvi-
ously, only the difference between fixed and variable rate actually changes
hands.

Swapping the payments is much safer than swapping the bonds. If one
party defaults, the other can drop out of the contract, losing the difference
in price resulting from intermediate interest rate changes, but not losing the
principal. For this reason, and because they match the patterns of cashflows
that companies usually want to hedge, swaps have become very popular tools
for managing interest rate risk. Foreign exchange swaps are also popular:
Party A may swap dollar payments for party B’s yen payments. Obviously,
you do not need to have issued the underlying bonds to enter into a swap
contract—you simply pay or receive the difference between the variable rate
and the fixed rate each period.

The value of a pure floating-rate bond is always exactly one. The value
of a fixed-rate bond varies. Swaps are set up so no money changes hands
initially, and the fixed rate is calibrated so that the present value of the fixed
payments is exactly one. Thus, the ‘‘swap rate’’ is the same thing as the yield
on a comparable coupon bond.

Many fixed-income securities contain options, and explicit options on
fixed-income securities are also popular. The simplest example is a call
option. The issuer may have the right to buy the bonds back at a speci-
fied price. Typically, he will do this if interest rates fall a great deal, making
a bond without this option more valuable. Home mortgages contain an
interesting prepayment option: if interest rates decline, the homeowner
can pay off the loan at face value, and refinance. Options on swaps also
exist; you can buy the right to enter into a swap contract at a future
date. Pricing all of these securities is one of the tasks of term structure
modeling.
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19.2 Yield Curve and Expectations Hypothesis

The expectations hypothesis is three equivalent statements about the pattern
of yields across maturity:
1. The N -period yield is the average of expected future one-period yields.
2. The forward rate equals the expected future spot rate.
3. The expected holding period returns are equal on bonds of all maturities.

The expectations hypothesis is not quite the same thing as risk neutrality,
since it ignores 1/2σ 2 terms that arise when you move from logs to levels.

The yield curve is a plot of yields of zero-coupon bonds as a function of
their maturity. Usually, long-term bond yields are higher than short-term
bond yields—a rising yield curve. Sometimes short yields are higher than
long yields—an inverted yield curve. The yield curve sometimes has humps
or other shapes as well. The expectations hypothesis is the classic theory for
understanding the shape of the yield curve.

More generally, we want to think about the evolution of yields—the
expected value and conditional variance of next period’s yields. This is obvi-
ously the central ingredient for portfolio theory, hedging, derivative pricing,
and economic explanation.

We can state the expectations hypothesis in three mathematically
equivalent forms:

1. The N -period yield is the average of expected future one-period yields

y(N )t = 1
N

Et

(
y(1)t + y(1)t+1 + y(1)t+2 + · · · + y(1)t+N −1

)
(+ risk premium). (19.5)

2. The forward rate equals the expected future spot rate

f (N →N +1)
t = Et

(
y(1)t+N

)
(+ risk premium). (19.6)

3. The expected holding period returns are equal on bonds of all maturities

Et (hpr(N )t+1) = y(1)t (+ risk premium). (19.7)

(The risk premia in (19.5--19.7) are related, but not identical.)

You can see how the expectations hypothesis explains the shape of the
yield curve. If the yield curve is upward sloping—long-term bond yields are
higher than short-term bond yields—the expectations hypothesis says this
is because short-term rates are expected to rise in the future.

You can view the expectations hypothesis as a response to a classic
misconception. If long-term yields are 10% but short-term yields are 5%,
an unsophisticated investor might think that long-term bonds are a better
investment. The expectations hypothesis shows how this may not be true.
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If short rates are expected to rise in the future, this means that you will
roll over the short-term bonds at a really high rate, say 20%, giving the
same long-term return as the high-yielding long term bond. Contrariwise,
when the short-term interest rates rise in the future, long-term bond prices
decline. Thus, the long-term bonds will only give a 5% rate of return for the
first year.

You can see from the third statement that the expectations hypothe-
sis is roughly the same as risk neutrality. If we had said that the expected
level of returns was equal across maturities, that would be the same as
risk neutrality. The expectations hypothesis specifies that the expected
log return is equal across maturities. This is typically a close approxima-
tion to risk neutrality, but not the same thing. If returns are lognormal,
then E (R) = eE (r )+(1/2)σ2(r ). If mean returns are about 10% or 0.1 and the
standard deviation of returns is about 0.1, then 1

2σ
2 is about 0.005, which is

very small but not zero. We could easily specify risk neutrality in the third
expression of the expectations hypothesis, but then it would not imply the
other two; 1

2σ
2 terms would crop up.

The intuition of the third form is clear: risk-neutral investors will adjust
positions until the expected one-period returns are equal on all securities.
Any two ways of getting money from t to t + 1 must offer the same expected
return. The second form adapts the same idea to the choice of locking in a
forward contract versus waiting and borrowing and lending at the spot rate.
Risk-neutral investors will load up on one or the other contract until the
expected returns are the same. Any two ways of getting money from t + N
to t + N + 1 must give the same expected return.

The first form reflects a choice between two ways of getting money from
t to N . You can buy an N -period bond, or roll over N one-period bonds. Risk-
neutral investors will choose one over the other strategy until the expected
N -period return is the same.

The three forms are mathematically equivalent. If every way of getting
money from t to t + 1 gives the same expected return, then so must every
way of getting money from t +1 to t +2, and, chaining these together, every
way of getting money from t to t + 2.

For example, let us show that forward rate = expected future spot rate
implies the yield curve. Start by writing

f (N −1→N )
t = Et

(
y(1)t+N −1

)
.

Add these up over N ,

f (0→1)
t + f (1→2)

t + · · · + f (N −2→N −1)
t + f (N −1→N )

t

= Et

(
y(1)t + y(1)t+1 + y(1)t+2 + · · · + y(1)t+N −1

)
.

The right-hand side is already what we are looking for. Write the left-hand
side in terms of the definition of forward rates, remembering P (0) = 1
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so p(0) = 0,

f (0→1)
t + f (1→2)

t + · · · + f (N −2→N −1)
t + f (N −1→N )

t

= (
p(0)t − p(1)t

)+ (
p(1)t − p(2)t

)+ · · · + (
p(N −1)

t − p(N )t

)
= −p(N )t = Ny(N )t .

You can show all three forms (19.5)--(19.7) are equivalent by following
similar arguments.

It is common to add a constant risk premium and still refer to the result-
ing model as the expectations hypothesis, and I include a risk premium in
parentheses to remind you of this idea. One end of each of the three state-
ments does imply more risk than the other. A forward rate is known while the
future spot rate is not. Long-term bond returns are more volatile than short-
term bond returns. Rolling over short-term real bonds is a riskier long-term
investment than buying a long-term real bond. If real rates are constant,
and the bonds are nominal, then the converse can hold: short-term real
rates can adapt to inflation, so rolling over short nominal bonds can be a
safer long-term real investment than long-term nominal bonds. These risks
will generate expected return premia if they covary with the discount factor,
and our theory should reflect this fact.

If you allow an arbitrary, time-varying risk premium, the model is a tau-
tology, of course. Thus, the entire content of the ‘‘expectations hypothesis’’
augmented with risk premia is in the restrictions on the risk premium. We
will see that the constant risk premium model does not do that well empiri-
cally. One of the main points of term structure models is to quantify the size
and movement over time in the risk premium.

19.3 Term Structure Models—A Discrete-Time Introduction

Term structure models specify the evolution of the short rate and poten-
tially other state variables, and the prices of bonds of various maturities at any
given time as a function of the short rate and other state variables. I examine a
very simple example based on an AR(1) for the short rate and the expectations
hypothesis, which gives a geometric pattern for the yield curve. A good way to
generate term structure models is to write down a process for the discount fac-
tor, and then price bonds as the conditional mean of the discount factor. This
procedure guarantees the absence of arbitrage. I give a very simple example
of an AR(1) model for the log discount factor, which also results in geometric
yield curves.
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A natural place to start in modeling the term structure is to model
yields statistically. You might run regressions of changes in yields on the lev-
els of lagged yields, and derive a model of the mean and volatility of yield
changes. You would likely start with a factor analysis of yield changes and
express the covariance matrix of yields in terms of a few large factors that
describe their common movement. The trouble with this approach is that
you can quite easily reach a statistical representation of yields that implies an
arbitrage opportunity, and you would not want to use such a statistical char-
acterization for economic understanding of yields, for portfolio formation,
or for derivative pricing. For example, a statistical analysis usually suggests
that a first factor should be a ‘‘level’’ factor, in which all yields move up
and down together. It turns out that this assumption violates arbitrage: the
long-maturity yield must converge to a constant.1

How do you model yields without arbitrage? An obvious solution is to use
the discount factor existence theorem: Write a statistical model for a positive
discount factor, and find bond prices as the expectation of this discount
factor. Such a model will be, by construction, arbitrage-free. Conversely,
any arbitrage-free distribution of yields can be captured by some positive
discount factor, so you do not lose any generality with this approach.

A Term Structure Model Based on the Expectations Hypothesis

We can use the expectations hypothesis to give the easiest example of a term
structure model. This one does not start from a discount factor and so may
not be arbitrage-free. It does quickly illustrate what we mean by a ‘‘term
structure model.’’

Suppose the one-period yield follows an AR(1),

y(1)t+1 − δ = ρ(y(1)t − δ)+ εt+1.

Now, we can use the expectations hypothesis (19.5) to calculate yields on
bonds of all maturities as a function of today’s one-period yield,

y(2)t = 1
2

Et

[
y(1)t + y(1)t+1

]

= 1
2

[
y(1)t + δ + ρ(y(1)t − δ)

]

= δ + 1 + ρ

2
(y(1)t − δ).

1 More precisely, the long-term forward rate, if it exists, must never fall. Problem 7 guides
you through a simple calculation. Dybvig, Ingersoll, and Ross (1996) derive the more general
statement.
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Continuing in this way,

(
y(N )t − δ

) = 1
N

1 − ρN

1 − ρ
(y(1)t − δ). (19.8)

You can see some issues that will recur throughout the term structure
models. First, the model (19.8) can describe different yield curve shapes at
different times. If the short rate is below its mean, then there is a smoothly
upward sloping yield curve. Long-term bond yields are higher, as short rates
are expected to increase in the future. If the short rate is above its mean, we
get a smoothly inverted yield curve. This particular model cannot produce
humps or other interesting shapes that we sometimes see in the term struc-
ture. Second, this model predicts no average slope of the term structure:
E (y(N )t ) = E (y(1)t ) = δ. In fact, the average term structure seems to slope up
slightly and more complex models will reproduce this feature. Third, all
bond yields move together in the model. If we were to stack the yields up in
a VAR representation, it would be

y(1)t+1 − δ = ρ
(
y(1)t − δ

)+ εt+1,

y(2)t+1 − δ = ρ
(
y(2)t − δ

)+ 1 + ρ

2
εt+1,

...

y(N )t+1 − δ = ρ
(
y(N )t − δ

)+ 1
N

1 − ρN

1 − ρ
εt+1.

(You can write the right-hand variable in terms of y(1)t if you want—any
one yield carries the same information as any other.) The error terms are
all the same. We can add more factors to the short-rate process, to improve
on this prediction, but most tractable term structure models maintain less
factors than there are bonds, so some perfect factor structure is a common
prediction of term structure models. Fourth, this model has a problem in
that the short rate, following an AR(1), can be negative. Since people can
always hold cash, nominal short rates are never negative, so we want to start
with a short-rate process that does not have this feature. Fifth, this model
shows no conditional heteroskedasticity—the conditional variance of yield
changes is always the same. The term structure data show times of high
and low volatility, and times of high yields and high yield spreads seem to
track these changes in volatility. Modeling conditional volatility is crucially
important for valuing term structure options.

With this simple model in hand, you can see some obvious directions
for generalization. First, we will want more complex driving processes than
an AR(1). For example, a hump shape in the conditionally expected short
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rate will result in a hump-shaped yield curve. If there are multiple state
variables driving the short rate, then we will have multiple factors driving
the yield curve which will also result in more interesting shapes. We also want
processes that keep the short rate positive in all states of nature. Second,
we will want to add some ‘‘market prices of risk’’—some risk premia. This
will allow us to get average yield curves to not be flat, and time-varying risk
premia seem to be part of the yield data. We will also want to check that the
market prices are reasonable, and in particular that there are no arbitrage
opportunities.

The yield curve literature proceeds in exactly this way: specify a short-
rate process and the risk premia, and find the prices of long-term bonds.
The trick is to specify sufficiently complex assumptions to be interesting,
but preserve our ability to solve the models.

The Simplest Discrete-Time Model

The simplest nontrivial model I can think of is to let the log of the discount
factor follow an AR(1) with normally distributed shocks. I write the AR(1)
for the log rather than the level in order to make sure the discount factor
is positive, precluding arbitrage. Log discount factors are typically slightly
negative, so I denote the unconditional mean E (ln m) = −δ

(ln m t+1 + δ) = ρ(ln m t + δ)+ εt+1.

In turn, you can think of this discount factor model as arising from a
consumption-based power utility model with normal errors,

m t+1 = e−δ
(

Ct+1

Ct

)γ
,

ct+1 − ct = ρ(ct − ct−1)+ εt+1.

The term structure literature has only started to explore whether the empiri-
cally successful discount factor processes can be connected empirically back
to macroeconomic events in this way.

From this discount factor, we can find bond prices and yields. This is easy
because the conditional mean and variance of an AR(1) are easy to find.
(I am following the strategy of solving the discount factor forward rather
than solving the price backward.) We need

y(1)t = −p(1)t = − ln Et (e ln m t+1),

y(2)t = −1
2

p(2)t = −1
2

ln Et (e ln m t+1+ln m t+2),
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and so on. Iterating the AR(1) forward,

(ln m t+2 + δ) = ρ2(ln m t + δ)+ ρεt+1 + εt+2,

(ln mt+3 + δ) = ρ3(ln m t + δ)+ ρ2εt+1 + ρεt+2 + εt+3,

so

(ln mt+1 + δ)+ (ln m t+2 + δ)

= (ρ + ρ2)(ln m t + δ)+ (1 + ρ)εt+1 + εt+2.

Similarly,

(ln mt+1 + δ)+ (ln m t+2 + δ)+ (ln m t+3 + δ)

= (ρ + ρ2 + ρ3)(ln m t + δ)+ (1 + ρ + ρ2)εt+1 + (1 + ρ)εt+2 + εt+3.

Using the rule for a lognormal E (e x) = eE (x)+ 1
2 σ

2
x , we have finally

y(1)t = δ − ρ(ln m t + δ)− 1
2
σ 2
ε ,

y(2)t = δ − (ρ + ρ2)

2
(ln m t + δ)− 1 + (1 + ρ)2

4
σ 2
ε ,

y(3)t = δ − (ρ + ρ2 + ρ3)

3
(ln m t + δ)− 1 + (1 + ρ)2 + (1 + ρ + ρ2)2

6
σ 2
ε .

Notice all yields move as linear functions of a single state variable,
ln mt + δ. Therefore, we can substitute out the discount factor and express
the yields on bonds of any maturity as functions of the yields on bonds of
one maturity. Which one we choose is arbitrary, but it is conventional to use
the shortest interest rate as the state variable. With E (y(1)) = δ − 1

2σ
2
ε , we

can write our term structure model as

y(1)t − E
(
y(1)
) = ρ

[
y(1)t−1 − E

(
y(1)
)]− ρεt ,

y(2)t = δ + 1 + ρ

2

[
y(1)t − E

(
y(1)
)]− 1 + (1 + ρ)2

4
σ 2
ε ,

y(3)t = δ + 1 + ρ + ρ2

3

[
y(1)t − E

(
y(1)
)]

(19.9)

− 1 + (1 + ρ)2 + (1 + ρ + ρ2)2

6
σ 2
ε ,

y(N )t = δ + 1 − ρN

N (1 − ρ)

[
y(1)t − E

(
y(1)
)]− σ 2

ε

2N

N∑
j=1

( j∑
k=1

ρk−1

)2

.
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This is the form in which term structure models are usually written—an
evolution equation for the short-rate process (together, in general,
with other factors or other yields used to identify those factors), and
then longer rates written as functions of the short rate, or the other
factors.

This is still not a very realistic term structure model. In the data, the aver-
age yield curve—the plot of {E [y(N )t ]} versus N —is slightly upward sloping.
The average yield curve from this model is slightly downward sloping as the
σ 2
ε terms pile up. The effect is not large; with ρ = 0.9 and σε = 0.02, I

find E (y(2)t ) = E (y(1)t ) − 0.02% and E (y(3)t ) = E (y(1)t ) − 0.06%. Still, it does
not slope up. More importantly, this model only produces smoothly upward
sloping or downward sloping term structures. For example, with ρ = 0.9,
the first three terms multiplying the one-period rate in (19.9) are 0.86, 0.81,
0.78. Two-, three-, and four-period bonds move exactly with one-period
bonds using these coefficients.

The solution, of course, is to specify more complex discount rate
processes that give rise to more interesting term structures.

19.4 Continuous-Time Term Structure Models

The basic steps:

1. Write a time-series model for the discount factor, typically in the form

d�
�

= −r dt − σ�(·) dz,

dr = µr (·) dt + σr (·) dz.

2. Solve the discount factor model forward and take expectations, to find
bond prices

P (N )
t = Et

(
�t+N

�t

)
.

3. Alternatively, from the basic pricing equation 0 = E [d(�P )] we can find a
differential equation that the price must follow,

∂P
∂r
µr + 1

2
∂2P
∂r 2

σ 2
r − ∂P

∂N
− rP = ∂P

∂r
σrσ�.

You can solve this back from P (0)
N = 1.

I contrast the discount factor approach to the market price of risk and
arbitrage pricing approaches.
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Term structure models are usually more convenient in continuous time.
As always, I specify a discount factor process and then find bond prices. A
wide and popular class of term structure models are based on a discount
factor process of the form

d�
�

= −r dt − σ ′
�(·) dz,

dr = µr (·) dt + σ ′
r (·) dz. (19.10)

This specification is analogous to a discrete-time model of the form

m t+1 = x t + δεt+1,

x t+1 = ρx t + δt+1.

This is a convenient representation rather than a generalized autoregres-
sive process, since the state variable x carries the mean discount factor
information.

The r variable starts out as a state variable for the drift of the discount
factor. However, you can see quickly that it will become the short-rate pro-
cess since Et (d�/�) = −r f

t dt . The dots (·) remind you that these terms
can be functions of state variables whose evolution must also be modeled.
We can also write σ�t ,µrt , σrt to remind ourselves that these quantities vary
over time.

Term structure models differ in the specification of the functional forms
for µr , σr , σ�. We will study three famous examples, the Vasicek model, the
Cox--Ingersoll--Ross model, and the general affine specification. The first
two are

Vasicek:
d�
�

= −r dt − σ� dz,

dr = φ(r̄ − r ) dt + σr dz.
(19.11)

CIR:
d�
�

= −r dt − σ�
√

r dz,

dr = φ(r̄ − r ) dt + σr
√

r dz.
(19.12)

The Vasicek model is quite similar to the AR(1) we studied in the last section.
The CIR model adds the square root terms in the volatility. This specification
captures the fact that higher interest rates seem to be more volatile. In the
other direction, it keeps the level of the interest rate from falling below zero.
(We need σr ≤ 2φr̄ to guarantee that the square root process does not get
stuck at zero.)

Having specified a discount factor process, it is a simple matter to find
bond prices. Once again,

P (N )
t = Et

(
�t+N

�t

)
.
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We can solve the discount factor forward and take the expectation. We can
also use the instantaneous pricing condition 0 = E (d(�P )) to find a partial
differential equation for prices, and solve that backward.

Both methods naturally adapt to pricing term structure derivatives—call
options on bonds, interest rate floors or caps, ‘‘swaptions’’ that give you the
right to enter a swap, and so forth. We simply put any payoff xC that depends
on interest rates or interest rate state variables inside the expectation

P (N )
t = Et

∫ ∞

s=t

�s

�t
xC (s) ds.

Alternatively, the price of such options will also be a function of the state
variables that drive the term structure, so we can solve the bond pricing
differential equation backwards using the option payoff rather than one as
the boundary condition.

Expectation Approach

As with the Black--Scholes option pricing model, we can solve the discount
factor forward, and then take the expectation. We can write the solution2

to (19.10) as
�T

�0
= e− ∫ T

s=0

(
rs + 1

2 σ
2
�s

)
ds−∫ T

s=0 σ�s dzs

and thus,

P (T )
0 = E0

(
e− ∫ T

s=0

(
rs + 1

2 σ
2
�s

)
ds−∫ T

s=0 σ�s dzs
)

. (19.13)

For example, in a riskless economy σ� = 0, we obtain the continuous-
time present-value formula,

P (T )
0 = e− ∫ T

s=0 rs ds .

With a constant interest rate r ,

P (T )
0 = e−rT .

In more interesting situations, solving the � equation forward and tak-
ing the expectation analytically is not so easy. Conceptually and numerically,
it is easy, of course. Just simulate the system (19.10) forward a few thousand
times, and take the average.

2 If this is mysterious, write first

d ln� = d�
�

− 1
2

d�2

�2
= −

(
r + 1

2
σ 2
�

)
dt − σ� dz

and then integrate both sides from zero to T .
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Differential Equation Approach

Recall the basic pricing equation for a security with price S and no
dividends is

Et

(
dS
S

)
− r dt = −Et

(
dS
S

d�
�

)
. (19.14)

The left-hand side is the expected excess return. As we guessed an option
price C (S , t) and used (19.14) to derive a differential equation for the call
option price, so we will guess a bond price P (N , t) and use this equation to
derive a differential equation for the bond price.

If we specified bonds by their maturity date T , P (t , T ), we could
apply (19.14) directly. However, it is nicer to look for a bond pricing func-
tion P (N , t) that fixes the maturity rather than the date. Equation (19.2) gives
the holding period return for this case, which adds an extra term to correct
for the fact that you sell younger bonds than you buy,

return = dP (N , t)
P

− 1
P
∂P (N , t)
∂N

dt .

Thus, the fundamental pricing equation, applied to the price of bonds of
given maturity P (N , t), is

Et

(
dP
P

)
−
(

1
P
∂P (N , t)
∂N

+ r
)

dt = −Et

(
dP
P

d�
�

)
. (19.15)

Now, we are ready to find a differential equation for the bond price, just
as we did for the option price to derive the Black--Scholes formula. Guess
that all the time dependence comes through the state variable r , so P (N , r ).
Using Ito’s lemma,

dP =
(
∂P
∂r
µr + 1

2
∂2P
∂r 2

σ 2
r

)
dt + ∂P

∂r
σr dz.

Plugging in to (19.15) and canceling dt , we obtain the fundamental
differential equation for bonds,

∂P
∂r
µr + 1

2
∂2P
∂r 2

σ 2
r − ∂P

∂N
− rP = ∂P

∂r
σrσ�. (19.16)

All you have to do is specify the functions µr (·), σr (·), σ�(·) and solve the
differential equation.
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Market Price of Risk and Risk-Neutral Dynamic Approaches

The bond pricing differential equation (19.16) is conventionally derived
without discount factors.

One conventional approach is to write the short-rate process dr =
µr (·) dt + σr (·) dz, and then specify that any asset whose payoffs have shocks
σr dz must offer a Sharpe ratio of λ(·). We would then write

∂P
∂r
µr + 1

2
∂2P
∂r 2

σ 2
r − ∂P

∂N
− r P = ∂P

∂r
σrλ.

With λ = σ�, this is just (19.16) of course. (If the discount factor and shock
are imperfectly correlated, then λ = σ�ρ.) Different authors use the words
‘‘market price of risk’’ in different ways. Cox, Ingersoll, and Ross (1985,
p. 398) warn against modeling the right-hand side as ∂P/∂rψ(·) directly;
this specification could lead to a positive expected return when σr = 0
and hence an infinite Sharpe ratio or arbitrage opportunity. By generating
expected returns as the covariance of payoff shocks and discount factor
shocks, we naturally avoid this mistake and other subtle ways of introducing
arbitrage opportunities without realizing that you have done so.

A second conventional approach is to use an alternative process for the
interest rate and discount factor,

d�
�

= −r dt ,

dr = (µr − σrλ) dt + σr dz.
(19.17)

If we use this alternative process, we obtain

∂P
∂r
(µr − σrλ)+ 1

2
∂P
∂r 2

σ 2
r − ∂P

∂N
− rP = 0,

which is of course the same thing. This is the ‘‘risk-neutral probability’’
approach, since the drift term in (19.17) is not the true drift that you
would estimate in the data, and since the discount factor is nonstochas-
tic. Since (19.17) gives the same prices, we can find and represent the bond
price via the integral

P (N )
t = E ∗

t

[
e− ∫ T

s=0 rs ds
]
,

where E ∗ represents expectation with respect to the risk-neutral pro-
cess defined in (19.17) rather than the true probabilities defined by the
process (19.10).

When we derive the model from a discount factor, the single discount
factor carries two pieces of information. The drift or conditional mean of
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the discount factor gives the short rate of interest, while the covariance
of the discount factor shocks with asset payoff shocks generates expected
returns or ‘‘market prices of risk.’’ I find it useful to write the discount
factor model to keep the term structure connected with the rest of asset
pricing, and to remind myself where ‘‘market prices of risk’’ come from,
and reasonable values for their magnitude. Of course, this beauty is in the
eye of the beholder, as the result is the same no matter which method you
follow.

The fact that there are fewer factors than bonds means that once you
have as many bond prices as you have factors, you can derive all the oth-
ers by ‘‘no-arbitrage’’ arguments and make this look like option pricing.
Some derivations of term structure models follow this approach, setting up
arbitrage portfolios.

Solving the Bond Price Differential Equation

Now we have to solve the partial differential equation (19.16) subject
to the boundary condition P (N = 0, r ) = 1. Solving this equation is
straightforward conceptually and numerically. Express (19.16) as

∂P
∂N

= ∂P
∂r

(
µr − σrσ�

)+ 1
2
∂2P
∂r 2

σ 2
r − rP .

We can start at N = 0 on a grid of r , and P (0, r ) = 1. For fixed N , we can
work to one step larger N by evaluating the derivatives on the right-hand
side. The first step is

P (�N , r ) = P (0, r )+ ∂P
∂N

�N = 1 − r�N .

At the second step, ∂P/∂r = �N , ∂2P/∂r 2 = 0, so

P (2�N , r ) = P (�N , r )+ ∂P (�N , r )
∂N

�N

= 1 − 2r�N + [
r 2 − (µr − σrσ�)

]
�N 2.

Now the derivatives of µr and σr with respect to r will start to enter, and we
let the computer take it from here. (In practice, it would be better to solve
in this way for the log price.) Analytic solutions only exist in special cases,
which we study next.
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19.5 Three Linear Term Structure Models

I solve the Vasicek, the Cox, Ingersoll, and Ross, and the Affine model.
Each model gives a linear function for log bond prices and yields, for example,

ln P (N , r ) = A(N )− B(N )r .

As we have seen, term structure models are easy in principle and numer-
ically: specify a discount factor process and find its conditional expectation
or solve the bond pricing partial differential equation back from maturity.
In practice, the computations are hard. I present next three famous spe-
cial cases of term structure models—specifications for the discount factor
process—that allow analytical or quickly calculable solutions.

Analytical or close-to-analytical solutions are still important, because
we have not yet found good techniques for reverse-engineering the term
structure. We know how to start with a discount factor process and find
bond prices. We do not know how to start with the characteristics of bond
prices that we want to model and construct an appropriate discount factor
process. Thus, in evaluating term structure models, we will have to do lots of
the ‘‘forward’’ calculations—from assumed discount factor model to bond
prices—and it is important that we should be able to do them quickly.

Vasicek Model via PDE

The Vasicek (1977) model is a special case that allows a fairly easy analytic
solution. The method is the same as the more complex analytic solution in
the CIR and affine classes, but the algebra is easier, so this is a good place
to start.

The Vasicek discount factor process is

d�
�

= −r dt − σ� dz,

dr = φ(r̄ − r ) dt + σr dz.

Using this process in the basic bond differential equation (19.16), we obtain

∂P
∂r
φ(r̄ − r )+ 1

2
∂2P
dr 2

σ 2
r − ∂P

∂N
− rP = ∂P

∂r
σrσ�. (19.18)

I will solve this equation with the usual unsatisfying nonconstructive
technique—guess the functional form of the answer and show it is right.
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I guess that log yields and hence log prices are a linear function of the short
rate,

P (N , r ) = eA(N )−B(N )r . (19.19)

I take the partial derivatives required in (19.18) and see if I can find A(N )
and B(N ) to make (19.18) work. The result is a set of ordinary differential
equations for A(N ) and B(N ), and these are of a particularly simple form
that can be solved by integration. I solve them, subject to the boundary
condition imposed by P (0, r ) = 1. The result is

B(N ) = 1
φ
(1 − e−φN ), (19.20)

A(N ) =
(

1
2
σ 2

r

φ2
+ σrσ�

φ
− r̄

)
(N − B(N ))− σ 2

r

4φ
B(N )2. (19.21)

The exponential form of (19.19) means that log prices and log yields
are linear functions of the interest rate,

p(N , r ) = A(N )− B(N )r ,

y(N , r ) = −A(N )
N

+ B(N )
N

r .

Solving the PDE: Details
The boundary condition P (0, r ) = 1 will be satisfied if

A(0)− B(0)r = 0.

Since this must hold for every r , we will need

A(0) = 0, B(0) = 0.

Given the guess (19.19), the derivatives that appear in (19.18) are

1
P
∂P
∂r

= −B(N ),

1
P
∂2P
∂r 2

= B(N )2,

1
P
∂P
∂N

= A′(N )− B ′(N )r .

Substituting these derivatives in (19.18),

−B(N )φ(r̄ − r )+ 1
2

B(N )2σ 2
r − A′(N )+ B ′(N )r − r = −B(N )σrσ�.
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This equation has to hold for every r , so the terms multiplying r and the
constant terms must separately be zero:

A′(N ) = 1
2

B(N )2σ 2
r − (φr̄ − σrσ�)B(N ),

B ′(N ) = 1 − B(N )φ.
(19.22)

We can solve this pair of ordinary differential equations by simple
integration. The second one is

dB
dN

= 1 − φB,
∫

dB
1 − φB

= dN ,

− 1
φ

ln (1 − φB) = N ,

and hence

B(N ) = 1
φ

(
1 − e−φN

)
. (19.23)

Note B(0) = 0 so we did not need a constant in the integration.
We solve the first equation in (19.22) by simply integrating it, and

choosing the constant to set A(0) = 0. Here we go:

A′(N ) = 1
2

B(N )2σ 2
r − (φr̄ − σr σ�)B(N ),

A(N ) = σ 2
r

2

∫
B(N )2 dN − (φr̄ − σr σ�)

∫
B(N ) dN + C ,

A(N ) = σ 2
r

2φ2

∫ (
1 − 2e−φN + e−2φN ) dN −

(
r̄ − σr σ�

φ

)∫ (
1 − e−φN

)
dN + C ,

A(N ) = σ 2
r

2φ2

(
N + 2e−φN

φ
− e−2φN

2φ

)
−
(

r̄ − σr σ�

φ

)(
N + e−φN

φ

)
+ C .

We pick the constant of integration to give A(0) = 0. You can do this explic-
itly, or figure out directly that the result is achieved by subtracting one from
the e−φN terms,

A(N ) = σ 2
r

2φ2

(
N + 2

(
e−φN − 1

)
φ

−
(
e−2φN − 1

)
2φ

)

−
(

r̄ − σrσ�

φ

)(
N +

(
e−φN − 1

)
φ

)
.
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Now, we just have to make it pretty. I am aiming for the form given in (19.21).
Note

B(N )2 = 1
φ2

(
1 − 2e−φN + e−2φN

)
,

φB(N )2 = 2
1 − e−φN

φ
+ e−2φN − 1

φ
,

φB(N )2 − 2B(N ) = e−2φN − 1
φ

.

Then

A(N ) = σ 2
r

2φ2

(
N − 2B(N )− φ

2
B(N )2 + B(N )

)
−
(

r̄ − σrσ�

φ

)(
N − B(N )

)
,

A(N ) = − σ
2
r

4φ
B(N )2 −

(
r̄ − σrσ�

φ
− σ 2

r

2φ2

)(
N − B(N )

)
.

We are done.

Vasicek Model by Expectation

What if we solve the discount rate forward and take an expectation instead?
The Vasicek model is simple enough that we can follow this approach as
well, and get the same analytic solution. The same methods work for the
other models, but the algebra gets steadily worse.

The model is

d�
�

= −r dt − σ� dz, (19.24)

dr = φ(r̄ − r ) dt + σr dz. (19.25)

The bond price is

P (N )
0 = E0

(
�N

�0

)
. (19.26)

I use 0 and N rather than t and t + N to save a little bit on notation.
To find the expectation in (19.26), we have to solve the system

(19.24)--(19.25) forward. The steps are simple, though the algebra is a
bit daunting. First, we solve r forward. Then, we solve � forward. ln�t

turns out to be conditionally normal, so the expectation in (19.26) is the
expectation of a lognormal. Collecting terms that depend on r0 as the B(N )
term, and the constant term as the A(N ) term, we find the same solution
as (19.20)--(19.21).
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The interest rate is just an AR(1). By analogy with a discrete-time AR(1),
you can guess that its solution is

rt =
∫ t

s=0
e−φ(t−s)σr dzs + e−φt r0 + (1 − e−φt )r̄ . (19.27)

To derive this solution, define r̃ by

r̃t = eφt (rt − r̄ ).

Then,

dr̃t = φr̃t dt + eφt drt ,

dr̃t = φr̃t dt + eφtφ(r̄ − r ) dt + eφtσr dzt ,

dr̃t = φr̃t dt − eφtφe−φt r̃t dt + eφtσr dzt ,

dr̃t = eφtσr dzt .

This equation is easy to solve,

r̃t − r̃0 = σr

∫ t

s=0
eφs dzs ,

eφt (rt − r̄ )− (r0 − r̄ ) = σr

∫ t

s=0
eφs dzs ,

rt − r̄ = e−φt (r0 − r̄ )+ σr

∫ t

s=0
e−φ(t−s) dzs .

And we have (19.27).
Now, we solve the discount factor process forward. It is not pretty, but

it is straightforward:

d ln�t = d�
�

− 1
2

d�2

�2
= −

(
rt + 1

2
σ 2
�

)
dt − σ� dzt ,

ln�t − ln�0 = −
∫ t

s=0

(
rs + 1

2
σ 2
�

)
ds − σ�

∫ t

s=0
dzs .

Plugging in the interest rate solution (19.27),

ln�t − ln�0 = −
∫ t

s=0

[(∫ s

u=0
e−φ(s−u)σr dzu

)

+ e−φs(r0 − r̄ )+ r̄ + 1
2
σ 2
�

]
ds − σ�

∫ t

s=0
dzs .
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Interchanging the order of the first integral, evaluating the easy ds integrals,
and rearranging,

= −σ�
∫ t

s=0
dzs − σr

∫ t

u=0

[ ∫ t

s=u
e−φ(s−u) ds

]
dzu

−
[(

r̄ + 1
2
σ 2
�

)
t + (r0 − r̄ )

∫ t

s=0
e−φs ds

]
,

and simplifying,

= −
∫ t

u=0

[
σ� + σr

φ

(
1 − e−φ(t−u)

)]
dzu

−
(

r̄ + 1
2
σ 2
�

)
t − (r0 − r̄ )

1 − e−φt

φ
.

(19.28)

The first integral includes a deterministic function of time u times dzu . This
gives rise to a normally distributed random variable—it is just a weighted
sum of independent normals dzu :

∫ t

u=0
f (u) dzu ∼ N

(
0,
∫ t

u=0
f 2(u) du

)
.

Thus, ln�t − ln�0 is normally distributed with mean given by the second
set of terms in (19.28) and variance

var0(ln�t − ln�0)

=
∫ t

u=0

[
σ� + σr

φ

(
1 − e−φ(t−u)

)]2

du (19.29)

=
∫ t

u=0

[(
σ� + σr

φ

)2

− 2
σr

φ

(
σ� + σr

φ

)
e−φ(t−u) + σ 2

r

φ2
e−2φ(t−u)

]
du

=
(
σ� + σr

φ

)2

t − 2
σr

φ2

(
σ� + σr

φ

)(
1 − e−φt

)+ σ 2
r

2φ3

(
1 − e−2φt

)
.

Since we have the distribution of �N we are ready to take the expectation:

ln P (N , 0) = ln E0

(
e ln�N −ln�0

) = E0

(
ln�N − ln�0

)

+ 1
2
σ 2

0

(
ln�N − ln�0

)
.
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Plugging in the mean from (19.28) and the variance from (19.29),

ln P (N )
0 = −

[(
r̄ + 1

2
σ 2
�

)
N + (r0 − r̄ )

1 − e−φN

φ

]
(19.30)

+ 1
2

(
σr

φ
+ σ�

)2

N − σr

φ2

(
σr

φ
+ σ�

)(
1 − e−φN

)

+ σ 2
r

4φ3

(
1 − e−2φN

)
(19.31)

All that remains is to make it pretty. To compare it with our previous
result, we want to express it in the form ln P (N , r0) = A(N ) − B(N )r0. The
coefficient on r0 (19.30) is

B(N ) = 1 − e−φN

φ
, (19.32)

the same expression we derived from the partial differential equation.
To simplify the constant term, recall that (19.32) implies

1 − e−2φN

φ
= −φB(N )2 + 2B(N ).

Thus, the constant term (the terms that do not multiply r0) in (19.30) is

A(N ) = −
[(

r̄ + 1
2
σ 2
�

)
N − r̄

1 − e−φN

φ

]
+ 1

2

(
σr

φ
+ σ�

)2

N

− σr

φ2

(
σr

φ
+ σ�

)(
1 − e−φN

)
+ σ 2

r

4φ3

(
1 − e−2φN

)

= −
[(

r̄ + 1
2
σ 2
�

)
N − r̄ B(N )

]
+ 1

2

(
σr

φ
+ σ�

)2

N

− σr

φ

(
σr

φ
+ σ�

)
B(N )− σ 2

r

4φ2

(
φB(N )2 − 2B(N )

)

=
(

1
2
σ 2

r

φ2
+ σ�

σr

φ
− r̄

)(
N − B(N )

)− σ 2
r

4φ2
φB(N )2.

Again, this is the same expression we derived from the partial differential
equation.

This integration is usually expressed under the risk-neutral measure. If
we write the risk-neutral process

d�
�

= −r dt ,

dr = [
φ(r̄ − r )− σrσ�

]
dt + σr dz.
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Then the bond price is

P (N )
0 = Ee− ∫ N

s=0 rs ds .

The result is the same, of course.

Cox--Ingersoll--Ross Model

For the Cox--Ingersoll--Ross (1985) model

d�
�

= −r dt − σ�
√

r dz,

dr = φ(r̄ − r ) dt + σr
√

r dz,

our differential equation (19.16) becomes

∂P
∂r
φ(r̄ − r )+ 1

2
∂2P
∂r 2

σ 2
r r − ∂P

∂N
− rP = ∂P

∂r
σrσ�r . (19.33)

Guess again that log prices are a linear function of the short rate,

P (N , r ) = eA(N )−B(N )r . (19.34)

Substituting the derivatives of (19.34) into (19.33),

−B(N )φ(r̄ − r )+ 1
2

B(N )2σ 2
r r − A′(N )+ B ′(N )r − r = −B(N )σrσ�r .

Again, the coefficients on the constant and on the terms in r must separately
be zero,

B ′(N ) = 1 − 1
2
σ 2

r B(N )2 − (σrσ� + φ)B(N ),

A′(N ) = −B(N )φr̄ .
(19.35)

The ordinary differential equations (19.35) are quite similar to the Vasicek
case, (19.22). However, now the variance terms multiply an r , so the B(N )
differential equation has the extra B(N )2 term. We can still solve both dif-
ferential equations, though the algebra is a little bit more complicated. The
result is

B(N ) = 2(e γN − 1)
(γ + φ + σrσ�)(e γN − 1)+ 2γ

,

A(N ) = φr̄
σ 2

r

(
2 ln

(
2γ

ψ(e γN − 1)+ 2γ

)
+ ψN

)
,
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where

γ = √
(φ + σrσ�)2 + 2σ 2

r ,

ψ = φ + σ�σr + γ .

The CIR model can also be solved by expectation. In fact, this is how Cox,
Ingersoll, and Ross (1985) actually solve it—their marginal value of wealth
JW is the same thing as the discount factor. However, where the interest rate
in the Vasicek model was a simple conditional normal, the interest rate now
has a noncentral χ 2 distribution, so taking the integral is a little messier.

Multifactor Affine Models

The Vasicek and CIR models are special cases of the affine class of term
structure models (Duffie and Kan [1996], Dai and Singleton [2000]). These
models allow multiple factors, meaning all bond yields are not just a function
of the short rate. Affine models maintain the convenient form that log bond
prices are linear functions of the state variables. This means that we can take
K bond yields themselves as the state variables, and the yields will reveal
anything of interest in the hidden state variables. The short rate and its
volatility will be forecast by lagged short rates but also by lagged long rates
or interest rate spreads. My presentation and notation are similar to Dai and
Singleton’s, but as usual I add the discount factor explicitly.

Here is the affine model setup:

dy = φ(ȳ − y) dt + dw, (19.36)

r = δ0 + δ′y, (19.37)

d�
�

= −r dt − b ′
� dw, (19.38)

dwi = √
αi + β ′

i y dzi , E (dzi dzj ) = 0. (19.39)

Equation (19.36) describes the evolution of the state variables. In the end,
yields will be linear functions of the state variables, so we can take the state
variables to be yields; thus I use the letter y. y denotes a K -dimensional vector
of state variables. φ is now a K × K matrix, ȳ is a K -dimensional vector,  is
a K ×K matrix. Equation (19.37) describes the mean of the discount factor
or short rate as a linear function of the state variables. Equation (19.38)
is the discount factor. b� is a K -dimensional vector that describes how the
discount factor responds to the K shocks. The more� responds to a shock,
the higher the market price of risk of that shock. Equation (19.39) describes
the shocks dw. The functional form nests the CIR square root type models
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if αi = 0 and the Vasicek type Gaussian process if βi = 0. You cannot pick αi

and βi arbitrarily, as you have to make sure that αi +β ′
i y > 0 for all values of

y that the process can attain. Duffie and Kan (1996) and Dai and Singleton
characterize this ‘‘admissibility’’ criterion.

We find bond prices in the affine setup following exactly the same steps
as for the Vasicek and CIR models. Again, we guess that prices are linear
functions of the state variables y:

P (N , y) = eA(N )−B(N )′y .

We apply Ito’s lemma to this guess, and substitute in the basic bond pricing
equation (19.15). We obtain ordinary differential equations that A(N ) and
B(N ) must satisfy,

∂B(N )
∂N

= −φ′B(N )−
∑

i

( [
′B(N )

]
i b�i + 1

2

[
′B(N )

]2
i

)
βi + δ, (19.40)

∂A(N )
∂N

=
∑

i

( [
′B(N )

]
i b�i + 1

2

[
′B(N )

]2
i

)
αi − B(N )′φȳ − δ0. (19.41)

I use the notation [x]i to denote the ith element of a vector x . As with the
CIR and Vasicek models, these are ordinary differential equations that can
be solved by integration starting with A(0) = 0, B(0) = 0. While they do not
always have analytical solutions, they are quick to solve numerically—much
quicker than solving a partial differential equation.

Derivation
To derive (19.41) and (19.40), we start with the basic bond pricing
equation (19.15), which I repeat here,

Et

(
dP
P

)
−
(

1
P
∂P
∂N

+ r
)

dt = −Et

(
dP
P

d�
�

)
. (19.42)

We need dP/P . Using Ito’s lemma,

dP
P

= 1
P
∂P
∂y

′
dy + 1

2
1
P

dy′ ∂
2P

∂y∂y′ dy.

The derivatives are

1
P
∂P
∂y

= −B(N ),

1
P
∂2P
∂y ∂y′ = B(N )B ′(N ),

1
P
∂P
∂N

= ∂A(N )
∂N

− ∂B(N )
∂N

′
y.
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Thus, the first term in (19.42) is

Et

(
dP
P

)
= −B(N )′φ(ȳ − y) dt + 1

2
Et (dw ′′B(N )B ′(N ) dw).

Et (dwi dwj ) = 0, which allows us to simplify the last term. If w1w2 = 0, then,

(w ′bb ′w) = [
w 1 w 2

] [b 1b 1 b 1b 2

b 2b 1 b 2b 2

][
w 1

w 2

]
= b2

1w2
1 + b2

2w2
2 =

∑
b2

i w2
i .

Applying the same algebra to our case,3

Et

(
dw ′′B(N )B ′(N ) dw

) =
∑

i

[
′B(N )

]2

i
dw2

i

=
∑

i

[
′B(N )

]2

i

(
αi + β ′

i y
)

dt .

I use the notation [x]i to denote the ith element of the K -dimensional vector
x . In sum, we have

Et

(
dP
P

)
= −B(N )′φ(ȳ − y) dt + 1

2

∑
i

[
′B(N )

]2

i

(
αi + β ′

i y
)

dt . (19.43)

The right-hand side term in (19.42) is

−Et

(
dP
P

d�
�

)
= −B(N )′dw dw ′b�.

dw dw ′ is a diagonal matrix with elements (αi + β ′
i y). Thus,

−Et

(
dP
P

d�
�

)
= −

∑
i

[
′B(N )

]
i
b�i

(
αi + β ′

i y
)
. (19.44)

3 More elegantly, but less directly, we can use the fact that Tr (AB) = Tr (BA) for square
matrices and the fact that the last term is a scalar to write

E (dw ′′B(N )B ′(N )dw) = Tr [E (dw ′′B(N )B ′(N )dw)]
= Tr [E (B ′(N )dwdw ′′B(N ))]
= Tr

(
B ′(N )E (dwdw ′)′B(N )

)
=
∑

i

[
′B(N )

]2

i
E
(
dw2

i

)
.
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Now, substituting (19.43) and (19.44) in (19.42), along with the easier
∂P ∂N central term, we get

− B(N )′φ(ȳ − y)+ 1
2

∑
i

[
′B(N )

]2

i

(
αi + β ′

i y
)

−
(
∂A(N )
∂N

− ∂B(N )
∂N

′
y + δ0 + δ′y

)
= −

∑
i

[
′B(N )

]
i
b�i

(
αi + β ′

i y
)
.

Once again, the terms on the constant and each yi must separately be zero.
The constant term:

−B(N )′φȳ + 1
2

∑
i

[
′B(N )

]2

i
αi − ∂A(N )

∂N
− δ0 = −

∑
i

[
′B(N )

]
i
b�iαi ,

∂A(N )
∂N

=
∑

i

( [
′B(N )

]
i
b�i + 1

2

[
′B(N )

]2

i

)
αi − B(N )′φȳ − δ0.

The terms multiplying y:

B(N )′φy + 1
2

∑
i

[
′B(N )

]2

i
β ′

i y + ∂B(N )
∂N

′
y − δ′y = −

∑
i

[
′B(N )

]
i
b�iβ

′
i y.

Taking the transpose and solving,

∂B(N )
∂N

= −φ′B(N )−
∑

i

( [
′B(N )

]
i
b�i + 1

2

[
′B(N )

]2

i

)
βi + δ.

19.6 Bibliography and Comments

The choice of discrete versus continuous time is really one of convenience.
Campbell, Lo, and MacKinlay (1997) give a discrete-time treatment, show-
ing that bond prices are linear functions of the state variables even in a
discrete-time two-parameter square root model. Backus, Foresi, and Telmer
(1998) is a good survey of bond pricing models in discrete time.

Models also do not have to be affine. Constantinides (1992) is a nice
discrete-time model; its discount factor is driven by the squared value of
AR(1) state variables. It gives closed-form solutions for bond prices. The
bond prices are not linear functions of the state variables, but it is the exis-
tence of closed forms rather than linearity of the bond price function that
makes affine models so attractive. Constantinides’ model allows for both
signs of the term premium, as we seem to see in the data.
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So far most of the term structure literature has emphasized the risk-
neutral probabilities, rarely making any reference to the separation between
drifts and market prices of risk. This is not a serious shortcoming for option
pricing uses, for which modeling the volatilities is much more important
than modeling the drifts. It is also not a serious shortcoming when the model
is used to draw smooth yield curves across maturities. However, it makes the
models unsuitable for bond portfolio analysis and other uses. Many mod-
els imply high and time-varying market prices of risk or conditional Sharpe
ratios. Recently, Backus, Foresi, Mozumdar, and Wu (1997), Duffee (1999),
Duarte (2000), and Dai and Singleton (2002) have started the important
task of specifying term structure models that fit the empirical facts about
expected returns in term structure models. In particular, they try to fit the
Fama--Bliss (1987) and Campbell and Shiller (1991) regressions that relate
expected returns to the slope of the term structure (see Chapter 2), while
maintaining the tractability of affine models. Cochrane and Piazzesi (2003)
extend the Fama--Bliss regressions, finding significantly greater predictabil-
ity in bond returns, and show how to reverse-engineer an affine model to
incorporate any pattern of predictability.

Term structure models used in finance amount to regressions of inter-
est rates on lagged interest rates. Macroeconomists also run regressions
of interest rates on a wide variety of variables, including lagged inter-
est rates, but also lagged inflation, output, unemployment, exchange
rates, and so forth. They often interpret these equations as the Federal
Reserve’s policy-making rule for setting short rates as a function of macro-
economic conditions. This interpretation is particularly clear in the Taylor
rule literature (Taylor 1999) and monetary VAR literature; see Christiano,
Eichenbaum, and Evans (1999) and Cochrane (1994b) for surveys. Some-
one, it seems, is missing important right-hand variables. Cochrane and
Piazzesi (2002) use long-maturity yields to isolate monetary policy shocks
in high-frequency data and find that this change has important effects on
the estimated responses.

The criticism of finance models is stinging when we use the short rate
as the only state variable. Multifactor models are more subtle. If any variable
forecasts future interest rates, then it becomes a state variable, and it should
be revealed by bond yields. Thus, bond yields should completely drive out
any other macroeconomic state variables as interest rate forecasters. They
do not, which is an interesting observation.

In addition, there is an extensive literature that studies yields from a
purely statistical point of view, Gallant and Tauchen (1997) for example,
and a literature that studies high-frequency behavior in the federal funds
market, for example Hamilton (1996).

Obviously, these three literatures need to become integrated. Balduzzi,
Bertola, and Foresi (1996) consider a model based on the federal



“chap19” — 2004/10/7 — page 381 — #33

19.6. Bibliography and Comments 381

funds target, and Piazzesi (forthcoming) integrated a careful specification
of high-frequency moves in the federal funds rate into a term structure
model. Cochrane and Piazzesi (2002) use interest rates in a monetary VAR.

The models studied here are all based on diffusions with rather slow-
moving state variables. These models generate one-day-ahead densities that
are almost exactly normal. In fact, as Das (2002) and Johannes (2000)
point out, one-day-ahead densities have much fatter tails than normal dis-
tributions predict. This behavior could be modeled by fast-moving state
variables. However, it is more natural to think of this behavior as generated
by a jump process, and Johannes nicely fits a combined jump-diffusion for
yields. This specification can change pricing and hedging characteristics of
term structure models significantly.

All of the term structure models in this chapter describe many bond
yields as a function of a few state variables. This is a reasonable approxi-
mation to the data. Almost all of the variance of yields can be described in
terms of a few factors, typically a ‘‘level’’, ‘‘slope’’, and ‘‘hump’’ factor. Knez,
Litterman, and Scheinkman (1994) and Litterman and Scheinkman (1991)
make the point with a formal maximum-likelihood factor analysis, but you
can see the point with a simple eigenvalue decomposition of log yields. See
Table 19.1.

Not only is the variance of yields well described by a factor model, but
the information in current yields about future yields—the expected changes
in yields and the conditional volatility of yields—is well captured by one level
and a few spreads as well.

It is a good approximation, but it is an approximation. Actual bond
prices do not exactly follow any smooth yield curve, and the covariance

Table 19.1

Maturity

σ 1 2 3 4 5

6.36 0.45 0.45 0.45 0.44 0.44 ‘‘Level’’
0.61 −0.75 −0.21 0.12 0.36 0.50 ‘‘Slope’’
0.10 0.47 −0.62 −0.41 0.11 0.46 ‘‘Curvature’’
0.08 0.10 −0.49 0.39 0.55 −0.55
0.07 0.07 −0.36 0.68 −0.60 0.21

Eigenvalue decomposition of the covariance matrix of zero-coupon bond yields, 1952--
1997. The first column gives the square root of the eigenvalues. The columns marked 1--5
give the eigenvectors corresponding to 1--5 year zero-coupon bond yields. I decomposed
the covariance matrix as  = Q�Q ′; σ2 gives the diagonal entries in � and the rest of
the table gives the entries of Q . With this decomposition, we can say that bond yields are
generated by y = Q�1/2ε, E (εε′) = I , thus Q give ‘‘loadings’’ on the shocks ε.
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matrix of actual bond yields does not have an exact K -factor structure—the
remaining eigenvalues are not zero. Hence you cannot estimate a term
structure model directly by maximum likelihood; you either have to estimate
the models by GMM, forcing the estimate to ignore the stochastic singularity,
or you have to add distasteful measurement errors.

As always, the importance of an approximation depends on how you use
the model. If you take the model literally, a bond whose price deviates by
one basis point is an arbitrage opportunity. In fact, it is at best a good Sharpe
ratio, but a K -factor model will not tell you how good—it will not quantify
the risk involved in using the model for trading purposes. Hedging strate-
gies calculated from K -factor models may be sensitive to small deviations
as well.

One solution has been to pick different parameters at each point in
time (Ho and Lee [1986]). This approach is useful for derivative pricing,
but is obviously not a satisfactory solution. Models in which the whole yield
curve is a state variable, Kennedy (1994), Santa Clara and Sornette (2001),
are another interesting response to the problem, and potentially provide a
realistic description of the data.

The market price of interest rate risk reflects the market price of real
interest rate changes and the market price of inflation—or whatever real
factors are correlated with inflation and explain investors’ fear of it. The
relative contributions of inflation and real rates in interest rate changes
are very important for the nature of the risks that bondholders face. For
example, if real rates are constant and nominal rates change on inflation
news, then short-term bonds are the safest real long-term investment. If
inflation is constant and nominal rates change on real rate news, then long-
term bonds are the safest long-term investment. The data seem to suggest
a change in regime between the 1970s and 1990s: in the 1970s, most inter-
est rate changes were due to inflation, while the opposite seems true now.
Despite all these provocative thoughts, though, little empirical work has
been done that usefully separates interest rate risk premia into real and
inflation premium components. Buraschi and Jiltsov (1999) is one recent
effort in this direction, but a lot more remains to be done.

Problems—Chapter 19

1. Complete the proof that each of the three statements of the expecta-
tions hypothesis implies the other. Is this also true if we add a constant risk
premium? Are the risk premia in each of the three statements of the yield
curve of the same sign?
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2. Under the expectations hypothesis, if long-term yields are higher than
short-term yields, does this mean that future long -term rates should go up,
down, or stay the same? (Hint: a plot of the expected log bond prices over
time will really help here.)

3. Start by assuming risk neutrality, E (HPR (N )
t+1 ) = Y (1)

t for all maturities N .
Try to derive the other representations of the expectations hypothesis. Now
you see why we specify that the expected log returns are equal.

4. Look at (19.13) and show that adding orthogonal dw to the discount
factor has no effect on bond pricing formulas.

5. Look at (19.13) and show that P = e−rT if interest rates are constant,
i.e., if d�/� = −r dt + σ� dz.

6. Show that if interest rates follow a Gaussian AR(1) process

dr = φ(r̄ − r ) dt + σ dz

and the market price of interest rate risk is zero,

d�
�

= −r dt ,

then the expectation hypothesis with constant risk premia holds.

7. Show that a flat yield curve that shifts up and down is impossible. Start
with (19.2). If yields follow y(N , t) = y(t); dy(t) = µ(y)dt + σ(y)dz find
holding period returns on N -year zeros. Show that the Sharpe ratio increases
to infinity as N grows.
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PART IV
Empirical Survey
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This part surveys some of the empirical issues that are changing our
theoretical understanding of the nature of risk and risk premia.

This part draws heavily on two previous review articles, Cochrane (1997)
and (1999a) and on Cochrane and Hansen (1992). Fama’s (1970) and
(1991) efficient market reviews are classic and detailed reviews of much of
the underlying empirical literature, focusing on cross-sectional questions.
Campbell (1999, 2000) and Kocherlakota (1996) are good surveys of the
equity premium literature.

387
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20
Expected Returns in the

Time Series and Cross Section

The first revolution in finance started the modern field. Peaking in the
early 1970s, this revolution established the CAPM, random walk, efficient
markets, portfolio-based view of the world. The pillars of this view are:

1. The CAPM is a good measure of risk and thus a good explanation why
some stocks, portfolios, strategies, or funds (assets, generically) earn
higher average returns than others.

2. Returns are unpredictable. In particular,
(a) Stock returns are close to unpredictable. Prices are close to random

walks; expected returns do not vary greatly through time. ‘‘Techni-
cal analysis’’ that tries to divine future returns from past price and
volume data is nearly useless. Any apparent predictability is either
a statistical artifact which will quickly vanish out of sample, or can-
not be exploited after transactions costs. The near unpredictability
of stock returns is simply stated, but its implications are many and
subtle. (Malkiel [1990] is a classic and easily readable introduction.)
It also remains widely ignored, and therefore is the source of lots of
wasted trading activity.

(b) Bond returns are nearly unpredictable. This is the expectations
model of the term structure. If long-term bond yields are higher
than short-term yields—if the yield curve is upward sloping—this
does not mean that expected long-term bond returns are any higher
than those on short-term bonds. Rather, it means that short-term
interest rates are expected to rise in the future, so you expect to
earn about the same amount on short-term or long-term bonds at
any horizon.

(c) Foreign exchange bets are not predictable. If a country has higher
interest rates than are available in the United States for bonds of a

389
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similar risk class, its exchange rate is expected to depreciate. After
you convert your investment back to dollars, you expect to make the
same amount of money holding foreign or domestic bonds.

(d) Stock market volatility does not change much through time. Not
only are returns close to unpredictable, they are nearly identically
distributed as well.

3. Professional managers do not reliably outperform simple indices and
passive portfolios once one corrects for risk (beta). While some do better
than the market in any given year, some do worse, and the outcomes
look very much like good and bad luck. Managers who do well in one
year are not more likely to do better than average the next year. The
average actively managed fund does about 1% worse than the market
index. The more actively a fund trades, the lower returns to investors.

Together, these views reflected a guiding principle that asset markets
are, to a good approximation, informationally efficient (Fama 1970, 1991).
This statement means that market prices already contain most information
about fundamental value. Informational efficiency in turn derives from
competition. The business of discovering information about the value of
traded assets is extremely competitive, so there are no easy quick profits
to be made, as there are not in every other well-established and competitive
industry. The only way to earn large returns is by taking on additional risk.

These statements are not doctrinaire beliefs. Rather, they summarize
the findings of a quarter-century of extensive and careful empirical work.
However, every single one of them has now been extensively revised by a
new generation of empirical research. Now, it seems that:

1. There are assets, portfolios, funds, and strategies whose average returns
cannot be explained by their market betas. Multifactor models dominate
the empirical description, performance attribution, and explanation of
average returns.

2. Returns are predictable. In particular,
(a) Variables including the dividend/price ratio and term premium can

in fact predict substantial amounts of stock return variation. This
phenomenon occurs over business cycle and longer horizons. Daily,
weekly, and monthly stock returns are still close to unpredictable,
and ‘‘technical’’ systems for predicting such movements are still close
to useless after transactions costs.

(b) Bond returns are predictable. Though the expectations model works
well in the long run, a steeply upward sloping yield curve means that
expected returns on long-term bonds are higher than on short-term
bonds for the next year.

(c) Foreign exchange returns are predictable. If you buy bonds in a
country whose interest rates are unusually higher than those in the
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United States, you expect a greater return, even after converting
back to dollars.

(d) Stock market volatility does in fact change through time. Conditional
second moments vary through time as well as first moments. Means
and variances do not seem to move in lockstep, so conditional Sharpe
ratios vary through time.

3. Some funds seem to outperform simple indices, even after controlling for
risk through market betas. Fund returns are also slightly predictable: past
winning funds seem to do better in the future, and past losing funds seem
to do worse than average in the future. For a while, this seemed to indicate
that there is some persistent skill in active management. However, we now
see that multifactor performance attribution models explain most fund
persistence: funds earn persistent returns by following fairly mechanical
‘‘styles,’’ not by persistent skill at stock selection (Carhart [1997]).

Again, these views summarize a large body of empirical work. The
strength and interpretation of many results are hotly debated.

This new view of the facts need not overturn the view that markets are
reasonably competitive and therefore reasonably efficient. It does substan-
tially enlarge our view of what activities provide rewards for holding risks,
and it challenges our economic understanding of those risk premia. As of the
early 1970s, asset pricing theory anticipated the possibility and even proba-
bility that expected returns should vary over time and that covariances past
market betas would be important for understanding cross-sectional varia-
tion in expected returns. What took another 15 to 20 years was to see how
important these long-anticipated theoretical possibilities are in the data.

20.1 Time-Series Predictability

I start by looking at patterns in expected returns over time in large
market indices, and then look at patterns in expected returns across
stocks.

Long-Horizon Stock Return Regressions

Dividend/price ratios forecast excess returns on stocks. Regression coef-
ficients and R 2 rise with the forecast horizon. This is a result of the fact that
the forecasting variable is persistent.
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Table 20.1. OLS regressions of percent excess returns (value weighted
NYSE − treasury bill rate) and real dividend growth on the percent VW

dividend/price ratio

R t→t+k = a + b(Dt/Pt ) Dt+k/Dt = a + b(Dt/Pt )
Horizon k
(years) b σ(b) R 2 b σ(b) R 2

1 5.3 (2.0) 0.15 2.0 (1.1) 0.06
2 10 (3.1) 0.23 2.5 (2.1) 0.06
3 15 (4.0) 0.37 2.4 (2.1) 0.06
5 33 (5.8) 0.60 4.7 (2.4) 0.12

R t→t+k indicates the k-year return. Standard errors in parentheses use GMM to correct
for heteroskedasticity and serial correlation. Sample 1947–1996.

The left-hand regression in Table 20.1 gives a simple example of mar-
ket return predictability, updating Fama and French (1988b). ‘‘Low’’ prices
relative to dividends forecast higher subsequent returns. The one-year hori-
zon 0.15 R 2 is not particularly remarkable. However, at longer and longer
horizons larger and larger fractions of return variation are forecastable. At a
five-year horizon 60% of the variation in stock returns is forecastable ahead
of time from the price/dividend ratio.

One can object to dividends as the divisor for prices. However, ratios
formed with just about any sensible divisor work about as well, including
earnings, book value, and moving averages of past prices.

Many other variables forecast excess returns, including the term spread
between long- and short-term bonds, the default spread, the T-bill rate
(Fama and French [1989]), and the earnings/dividend ratio (Lamont
[1998]). Macro variables forecast stock returns as well, including the invest-
ment/capital ratio (Cochrane [1991d]) and the consumption/wealth ratio
(Lettau and Ludvigson [2001b]).

Most of these variables are correlated with each other and correlated
with or forecast business cycles. This fact suggests a natural explanation,
emphasized by Fama and French (1989): Expected returns vary over busi-
ness cycles; it takes a higher risk premium to get people to hold stocks at the
bottom of a recession. When expected returns go up, prices go down. We
see the low prices, followed by the higher returns expected and required by
the market. (Regressions do not have to have causes on the right and effects
on the left. You run regressions with the variable orthogonal to the error
on the right, and that is the case here since the error is a forecasting error.
This is like a regression of actual weather on a weather forecast.)

Table 20.2, adapted from Lettau and Ludvigson (2001b), compares sev-
eral of these variables. At a one-year horizon, both the consumption/wealth
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Table 20.2. Long-horizon return forecasts

Horizon (years) cay d − p d − e rrel R 2

1 6.7 0.18
1 0.14 0.08 0.04
1 −4.5 0.10
1 5.4 0.07 −0.05 −3.8 0.23

6 12.4 0.16
6 0.95 0.68 0.39
6 −5.10 0.03
6 5.9 0.89 0.65 1.36 0.42

The return variable is log excess returns on the S&P composite index. cay is
Lettau and Ludvigson’s consumption to wealth ratio. d − p is the log dividend
yield and d − e is the log earnings yield. rrel is a detrended short-term interest
rate. Sample 1952:4–1998:3.
Source: Lettau and Ludvigson (2001b, Table 6).

ratio and the detrended T-bill rate forecast returns, with R 2 of 0.18 and 0.10,
respectively. At the one-year horizon, these variables are more important
than the dividend/price and dividend/earnings ratios, and their presence
cuts the dividend ratio coefficients in half. However, the d/p and d/e ratios
are slower moving than the T-bill rate and consumption/wealth ratio. They
track decade-to-decade movements as well as business cycle movements. This
means that their importance builds with horizon. By six years, the bulk of the
return forecastability again comes from the dividend ratios, and it is their
turn to cut down the cay and T-bill regression coefficients. The cay and d/e
variables have not been that affected by the late 1990s, while this time period
has substantially cut down our estimate of dividend yield forecastability.

I emphasize that excess returns are forecastable. We have to understand
this as time-variation in the reward for risk, not time-varying interest rates.
One naturally slips in to nonrisk explanations for price variation; for exam-
ple that the current stock market boom is due to life-cycle savings of the baby
boomers. A factor like this does not reference risks; it predicts that interest
rates should move just as much as stock returns.

Persistent d/p; Long Horizons Are Not A Separate Phenomenon
The results at different horizons are not separate facts, but reflections of
a single underlying phenomenon. If daily returns are very slightly pre-
dictable by a slow-moving variable, that predictability adds up over long
horizons. For example, you can predict that the temperature in Chicago
will rise about 1/3 degree per day in the springtime. This forecast explains
very little of the day-to-day variation in temperature, but tracks almost all
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Figure 20.1. Dividend/price ratio of value-weighted NYSE.

of the rise in temperature from January to July. Thus, the R 2 rises with
horizon.

Thus, a central fact driving the predictability of returns is that the
dividend/price ratio is very persistent. Figure 20.1 plots the d/p ratio and
you can see directly that it is extremely slow-moving. Below, I estimate an
AR(1) coefficient around 0.9 in annual data.

To see more precisely how the results at various horizons are linked,
and how they result from the persistence of the d/p ratio, suppose that we
forecast returns with a forecasting variable x , according to

rt+1 = bx t + εt+1, (20.1)

x t+1 = ρx t + δt+1. (20.2)

(Obviously, you de-mean the variables or put constants in the regressions.)
Small values of b and R 2 in (20.1) and a large coefficient ρ in (20.2)
imply mathematically that the long-horizon regression has a large regression
coefficient and large R 2. To see this, write

rt+1 + rt+2 = b(1 + ρ)x t + bδt+1 + εt+1 + εt+2,

rt+1 + rt+2 + rt+3 = b(1 + ρ + ρ2)x t + bρδt+1 + bδt+2 + εt+1 + εt+2 + εt+3.

You can see that with ρ near one, the coefficients increase with horizon,
almost linearly at first and then at a declining rate. The R 2 are a little messier
to work out, but also rise with horizon.
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The numerator in the long-horizon regression coefficient is

E [(rt+1 + rt+2 + · · · + rt+k)x t ], (20.3)

where the symbols represent deviations from their means. With stationary
r and x , E (rt+j x t ) = E (rt+1x t−j ), so this is the same moment as

E [rt+1(x t + x t−1 + x t−2 + · · · )], (20.4)

the numerator of a regression coefficient of one-year returns on many lags
of price/dividend ratios. Of course, if you run a multiple regression of
returns on lags of p/d, you quickly find that most lags past the first do
not help the forecast power. (That statement would be exact in the AR(1)
example.)

This observation shows once again that one-year and multiyear fore-
castability are two sides of the same coin. It also suggests that on a purely
statistical basis, there will not be a huge difference between one-year return
forecasts and multiyear return forecasts (correcting the latter for the serial
correlation of the error term due to overlap). Hodrick (1992) comes to
this conclusion in a careful Monte Carlo experiment, comparing moments
of the form (20.3), (20.4), and E (rt+1x t ). Also, Jegadeesh (1991) used the
equivalence between (20.3) and (20.4) to test for long-horizon predictability
using one-month returns and a moving average of instruments. The direct
or implied multiyear regressions are thus mostly useful for illustrating the
dramatic economic implications of forecastability, rather than as clever statis-
tical tools that enhance power and allow us to distinguish previously foggy
hypotheses.

The slow movement of the price/dividend ratio means that on a purely
statistical basis, return forecastability is an open question. What we really
know (see Figure 20.1) is that low prices relative to dividends and earnings
in the 1950s preceded the boom market of the early 1960s; that the high
price/dividend ratios of the mid-1960s preceded the poor returns of the
1970s; that the low price ratios of the mid-1970s preceded the current boom.
We really have three postwar data points: a once-per-generation change in
expected returns. In addition, the last half of the 1990s has seen a his-
torically unprecedented rise in stock prices and price/dividend ratios (or
any other ratio). This rise has cut the postwar return forecasting regression
coefficient in half. On the other hand, another crash or even just a decade
of poor returns will restore the regression. Data back to the 1600s show
the same pattern, but we are often uncomfortable making inferences from
centuries-old data.
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Volatility

Price/dividend ratios can only move at all if they forecast future returns,
if they forecast future dividend growth, or if there is a bubble—if the
price/dividend ratio is nonstationary and is expected to grow explosively. In
the data, most variation in price/dividend ratios results from varying expected
returns. ‘‘Excess volatility’’—relative to constant discount rate present-value
models—is thus exactly the same phenomenon as forecastable long-horizon
returns.

I also derive the very useful price/dividend and return linearizations.
Ignoring constants (means),

pt − d t = Et

∞∑
j=1

ρ j−1(�d t+j − rt+j ),

rt − Et−1rt = (Et − Et−1)

⎡
⎣ ∞∑

j=0

ρ j�d t+j −
∞∑

j=1

ρ j rt+j

⎤
⎦ ,

rt+1 = �d t+1 − ρ(d t+1 − pt+1)+ (d t − pt ).

The volatility test literature starting with Shiller (1981) and LeRoy and
Porter (1981) (see Cochrane [1991c] for a review) started out trying to
make a completely different point. Predictability seems like a sideshow. The
stunning fact about the stock market is its extraordinary volatility. On a
typical day, the value of the U.S. capital stock changes by a full percentage
point, and days of 2 or 3 percentage point changes are not uncommon. In
a typical year it changes by 16 percentage points, and 30 percentage point
changes are not uncommon. Worse, most of that volatility seems not to be
accompanied by any important news about future returns and discount rates.
Thirty percent of the capital stock of the United States vanished in a year and
nobody noticed? Surely, this observation shows directly that markets are ‘‘not
efficient’’—that prices do not correspond to the value of capital—without
worrying about predictability?

It turns out, however, that ‘‘excess volatility’’ is exactly the same thing as
return predictability. Any story you tell about prices that are ‘‘too high’’ or
‘‘too low’’ necessarily implies that subsequent returns will be too low or too
high as prices rebound to their correct levels.

When prices are high relative to dividends (or earnings, cashflow, book
value, or some other divisor), one of three things must be true: (1) Investors
expect dividends to rise in the future. (2) Investors expect returns to be
low in the future. Future cashflows are discounted at a lower than usual
rate, leading to higher prices. (3) Investors expect prices to rise forever,
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giving an adequate return even if there is no growth in dividends. This
statement is not a theory, it is an identity: If the price/dividend ratio is high,
either dividends must rise, prices must decline, or the price/dividend ratio
must grow explosively. The open question is, which option holds for our
stock market? Are prices high now because investors expect future earnings,
dividends, etc. to rise, because they expect low returns in the future, or
because they expect prices to go on rising forever?

Historically, we find that virtually all variation in price/dividend ratios has
reflected varying expected excess returns.

Exact Present-Value Identity
To document this statement, we need to relate current prices to future
dividends and returns. Start with the identity

1 = R−1
t+1R t+1 = R−1

t+1

Pt+1 + Dt+1

Pt
(20.5)

and hence
Pt

Dt
= R−1

t+1

(
1 + Pt+1

Dt+1

)
Dt+1

Dt
.

We can iterate this identity forward and take conditional expectations to
obtain the identity

Pt

Dt
= Et

∞∑
j=1

( j∏
k=1

R−1
t+k�Dt+k

)
, (20.6)

where �Dt ≡ Dt/Dt−1. (We could iterate (20.5) forward to

Pt =
∞∑

j=1

( j∏
k=1

R−1
t+k

)
Dt+j ,

but prices are not stationary, so we cannot find the variance of prices from a
time-series average. Much of the early volatility test controversy centered
on stationarity problems. Equation (20.6) also requires a limiting con-
dition that the price/dividend ratio cannot explode faster than returns,
limj→∞ Et

(∏j
k=1 R−1

t+k

)
Pt+j/Dt+j . I come back to this condition below.)

Equation (20.6) shows that high prices must, mechanically, come from
high future dividend growth or low future returns.

Approximate Identity
The nonlinearity of (20.6) makes it hard to handle, and means that we
cannot use simple time-series tools. You can linearize (20.6) directly with a
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Taylor expansion. (Cochrane [1991a] takes this approach.) Campbell and
Shiller (1988a) approximate the one-period return identity before iterating,
which is algebraically simpler. Start again from the obvious,

1 = R−1
t+1R t+1 = R−1

t+1

Pt+1 + Dt+1

Pt
.

Multiplying both sides by Pt/Dt and massaging the result,

Pt

Dt
= R−1

t+1

(
1 + Pt+1

Dt+1

)
Dt+1

Dt
.

Taking logs, and with lowercase letters denoting logs of uppercase letters,

pt − d t = −rt+1 +�d t+1 + ln
(
1 + e pt+1−d t+1

)
.

Taking a Taylor expansion of the last term about a point P/D = e p−d ,

pt − d t = −rt+1 +�d t+1 + ln
(

1 + P
D

)

+ P/D
1 + P/D

[pt+1 − d t+1 − (p − d)]
= −rt+1 +�d t+1 + k + ρ(pt+1 − d t+1) (20.7)

where

k = ln
(

1 + P
D

)
− ρ( p − d).

Since the average dividend yield is about 4% and average price/dividend
ratio is about 25, ρ is a number very near one. I will use ρ = 0.96 for
calculations,

ρ = P/D
1 + P/D

= 1
1 + D/P

≈ 1 − D/P = 0.96.

Without the constant k, the equation can also apply to deviations from means
or any other point.

Now, iterating forward is easy, and results in the approximate identity

pt − d t = const. +
∞∑

j=1

ρ j−1(�d t+j − rt+j ). (20.8)

(Again, we need a condition that pt − d t does not explode faster than ρ−t ,
limj→∞ ρ j ( pt+j − d t+j ) = 0. I return to this condition below.)
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Since (20.8) holds ex post, we can take conditional expectations and
relate price/dividend ratios to ex ante dividend growth and return forecasts,

pt − d t = const. + Et

∞∑
j=1

ρ j−1(�d t+j − rt+j ). (20.9)

Now it is really easy to see that a high price/dividend ratio must be followed
by high dividend growth �d , or low returns r . Which is it?

Decomposing The Variance of Price/Dividend Ratios
To address this issue, equation (20.8) implies

var(pt − d t ) = cov

⎛
⎝pt − d t ,

∞∑
j=1

ρ j−1�d t+j

⎞
⎠

− cov

⎛
⎝pt − d t ,

∞∑
j=1

ρ j−1rt+j

⎞
⎠ . (20.10)

In words, price/dividend ratios can only vary if they forecast changing divi-
dend growth or if they forecast changing returns. (To derive (20.10) from
(20.8), multiply both sides by (pt − d t )− E (pt − d t ) and take expectations.)
Notice that both terms on the right-hand side of (20.10) are the numerators
of exponentially weighted long-run regression coefficients.

This is a powerful equation. At first glance, it would seem a reasonable
approximation that returns are unforecastable (the ‘‘random walk’’ hypoth-
esis) and that dividend growth is not forecastable either. But if this were the
case, the price/dividend ratio would have to be a constant. Thus the fact that
the price/dividend ratio varies at all means that either dividend growth or
returns must be forecastable—that the world is not i.i.d.

At a simple level, Table 20.1 includes regressions of long-horizon divi-
dend growth on dividend/price ratios to match the return regressions. The
coefficients in the dividend growth case are much smaller, typically one
standard error from zero, and the R 2 are tiny. Worse, the signs are wrong
in Table 20.1. To the extent that a high price/dividend ratio forecasts any
change in dividends, it seems to forecast a small decline in dividends!

Having seen equation (20.10), one is hungry for estimates. Table 20.3
presents some, taken from Cochrane (1991a). As one might suspect
from Table 20.1, Table 20.3 shows that in the past almost all variation in
price/dividend ratios is due to changing return forecasts.

The elements of the decomposition in (20.10) do not have to be between
0 and 100%. For example, −34, 138 occurs because high prices seem to
forecast lower real dividend growth (though this number is not statistically
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Table 20.3. Variance decomposition of value-weighted
NYSE price/dividend ratio

Dividends Returns

Real −34 138
Std. error 10 32
Nominal 30 85
Std. error 41 19

Table entries are the percent of the variance of the
price/dividend ratio attributable to dividend and return
forecasts, 100 × cov(pt − d t ,

∑15
j=1 ρ

j−1�d t+j )/var(pt − d t )

and similarly for returns.

significant). Therefore they must and do forecast really low returns, and
returns must account for more than 100% of price/dividend variation.

This observation solidifies one’s belief in price/dividend ratio forecasts
of returns. Yes, the statistical evidence that price/dividend ratios forecast
returns is weak, and many return forecasting variables have been tried and
discarded, so selection bias is a big worry in forecasting regressions. But the
price/dividend ratio (or price/earning, market book, etc.) has a special
status since it must forecast something. To believe that the price/dividend
ratio is stationary and varies, but does not forecast returns, you have to
believe that the price/dividend ratio does forecast dividends. Given this
choice and Table 20.1, it seems a much firmer conclusion that it forecasts
returns.

It is nonetheless an uncomfortable fact that almost all variation in
price/dividend ratios is due to variation in expected excess returns. How
nice it would be if high prices reflected expectations of higher future cash-
flows. Alas, that seems not to be the case. If not, it would be nice if high
prices reflected lower interest rates. Again, that seems not to be the case.
High prices reflect low risk premia, lower expected excess returns.

Campbell’s Return Decomposition
Campbell (1991) provides a similar decomposition for unexpected returns,

rt − Et−1rt = (Et − Et−1)

⎡
⎣ ∞∑

j=0

ρ j�d t+j −
∞∑

j=1

ρ j rt+j

⎤
⎦ . (20.11)

A positive shock to returns must come from a positive shock to forecast
dividend growth, or from a negative shock to forecast returns.

Since a positive shock to time-t dividends is directly paid as a return (the
first sum starts at j = 0), Campbell finds some fraction of return variation
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is due to current dividends. However, once again, the bulk of index return
variation comes from shocks to future returns, i.e., discount rates.

To derive (20.11), start with the approximate identity (20.8), and move
it back one period,

pt−1 − d t−1 = const. +
∞∑

j=0

ρ j (�d t+j − rt+j ).

Now take innovations of both sides,

0 = (Et − Et−1)

∞∑
j=0

ρ j (�d t+j − rt+j ).

Pulling rt over to the left-hand side, you obtain (20.11). (Problem 3 at the
end of the chapter guides you through an alternative and more constructive
derivation.)

Cross Section
So far, we have concentrated on the index. One can apply the same anal-
ysis to firms. What causes the variation in price/dividend ratios, or, better
book/market ratios (since dividends can be zero) across firms, or over time
for a given firm? Vuolteenaho (1999) applies the same sort of analysis to indi-
vidual stock data. He finds that as much as half of the variation in individual
firm book/market ratios reflects expectations of future cashflows. Much of
the expected cashflow variation is idiosyncratic, while the expected return
variation is common, which is why variation in the index book/market ratio,
like variation in the index dividend/price ratio, is almost all due to varying
expected excess returns.

Bubbles
In deriving the exact and linearized present-value identities, I assumed an
extra condition that the price/dividend ratio does not explode. Without
that condition, and taking expectations of both sides, the exact identity
reads

Pt

Dt
= Et

∞∑
j=1

( j∏
k=1

R−1
t+k�Dt+k

)
+ lim

j→∞
Et

( j∏
k=1

R−1
t+k�Dt+k

)
Pt+j

Dt+j
, (20.12)

and the linearized identity reads

pt − d t = const. + Et

∞∑
j=1

ρ j−1(�d t+j − rt+j )

+ Et lim
j→∞

ρ j (pt+j − d t+j ). (20.13)
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As you can see, the limits in the right-hand sides of (20.12) and (20.13)
are zero if the price/dividend ratio is stationary, or even bounded. For
these terms not to be zero, the price/dividend ratio must be expected to
grow explosively, and faster than R or ρ−1. Especially in the linearized form
(20.13) you can see that stationary r , �d implies stationary p − d if the
last term is zero, and p − d is not stationary if the last term is not zero.
Thus, you might want to rule out these terms just based on the view that
price/dividend ratios do not and are not expected to explode in this way.
You can also invoke economic theory to rule them out. The last terms must
be zero in an equilibrium of infinitely lived agents or altruistically linked
generations. If wealth explodes, optimizing long-lived agents will consume
more. Technically, this limiting condition is a first-order condition for opti-
mality just like the period-to-period first-order condition. The presence of
the last term also presents an arbitrage opportunity in complete markets, as
you can short a security whose price contains the last term, buy the dividends
separately, and eat the difference right away.

On the other hand, there are economic theories that permit the limiting
terms—overlapping generations models, and they capture the interest-
ing possibility of ‘‘rational bubbles’’ that many observers think they see in
markets, and that have sparked a huge literature and a lot of controversy.

An investor holds a security with a rational bubble not for any divi-
dends, but on the expectation that someone else will pay even more for that
security in the future. This does seem to capture the psychology of some
investors from the (alleged, see Garber [2000]) tulip bubble of 17th century
Holland to the dot-com bubble of the millennial United States—why else
would anyone buy Cisco Systems at a price/earnings ratio of 217 and market
capitalization 10 times that of General Motors in early 2000?

A ‘‘rational bubble’’ imposes a little discipline on this centuries-old
description, however, by insisting that the person who is expected to buy
the security in the future also makes the same calculation. He must expect
the price to rise even further. Continuing recursively, the price in a rational
bubble must be expected to rise forever. A Ponzi scheme, in which everyone
knows the game will end at some time, cannot rationally get off the ground.

The expectation that prices will grow at more than a required rate of
return forever does not mean that sample paths do so. For example, consider
the bubble process

Pt+1 =
{
γRPt , prob = Pt R−1

γPt R−1 ,

1, prob = Pt R(γ−1)
γPt R−1 .

Figure 20.2 plots a realization of this process with γ = 1.2. This process
yields an expected return R , and the dashed line graphs this expectation
as of the first date. Its price is positive though it never pays dividends. It



“chap20” — 2004/9/14 — page 403 — #19

20.1. Time-Series Predictability 403

Figure 20.2. Sample path from a simple bubble process. The solid line gives a price realization.
The dashed line gives the expected value of prices as of time zero, i.e., p0R t .

repeatedly grows with a high return γR for a while and then bursts back to
one. The expected price always grows, though almost all sample paths do not
do so.

Infinity is a long time. It is really hard to believe that prices will rise
forever. The solar system will end at some point; any look at the geological
and evolutionary history of the earth suggests that our species will die out a
lot sooner than that. Thus, the infinity in the bubble must really be a parable
for ‘‘a really long time.’’ But then the ‘‘rational’’ part of the bubble pops—it
must hinge on the expectation that someone will be around to hold the
bag; to buy a security without the expectation of dividends or further price
increases. (The forever part of usual present-value formulas is not similarly
worrying because 99.99% of the value comes from the first few hundred
years of dividends.)

Empirically, bubbles do not appear to be the reason for historical
price/dividend ratio variation. First, price/dividend ratios do seem
stationary. (Craine [1993] runs a unit root test with this conclusion.) Even
if statistical tests are not decisive, as is expected for a slow-moving series
or a series such as that plotted in Figure 20.2, it is hard to believe that
price/dividend ratios can explode rather than revert back to their four-
century average level of about 20 to 25. Second, Table 20.3 shows that
return and dividend forecastability terms add up to 100% of the variance
of price/dividend ratios. In a bubble, we would expect price variation not
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matched by any variation in expected returns or dividends, as is the case in
Figure 20.2.

I close with a warning: The word ‘‘bubble’’ is widely used to mean
very different things. Some people seem to mean any large movement in
prices. Others mean large movements in prices that do correspond to low
or perhaps negative expected excess returns (I think this is what Shiller
[2000] has in mind), rather than a violation of the terminal condition,
but these expected returns are somehow disconnected from the rest of the
economy.

A Simple Model for Digesting Predictability

To unite the various predictability and return observations, I construct
a simple VAR representation for returns, price growth, dividend growth,
dividend/price ratio. I start only with a slow-moving expected return and
unforecastable dividends.

This specification implies that d/p ratios reveal expected returns.
This specification implies return forecastability. To believe in a lower

predictability of returns, you must either believe that dividend growth really
is predictable, or that the d/p ratio is really much more persistent than it
appears to be.

This specification shows that small but persistent changes in expected
returns add up to large price changes.

We have isolated two important features of the long-horizon forecast
phenomenon: dividend/price ratios are highly persistent, and dividend
growth is essentially unforecastable. Starting with these two facts, a simple
VAR representation can tie together many of the predictability and volatility
phenomena.

Start by specifying a slow-moving state variable x t that drives expected
returns, and unforecastable dividend growth,

x t = bx t−1 + δt , (20.14)

rt+1 = x t + εr t+1, (20.15)

�d t+1 = εd t+1. (20.16)

All variables are de-meaned logs. (The term structure models of Chapter 19
were of this form.)

From this specification, using the linearized present-value identity and
return, we can derive a VAR representation for prices, returns, dividends,
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and the dividend/price ratio (ignoring constants),

(d t+1 − pt+1) = b(d t − pt )+ δt+1

1 − ρb
, (20.17)

rt+1 = (1 − ρb)(d t − pt )+
(
εd t+1 − ρ

1 − ρb
δt+1

)
, (20.18)

�pt+1 = (1 − b)(d t − pt )+
(
εd t+1 − 1

1 − ρb
δt+1

)
, (20.19)

�d t+1 = εd t+1. (20.20)

I derive each of these equations, I look at data to come up with parameter
values, and then I use this system to digest predictability.

Dividend/price ratio: Using the approximate present-value identity (20.9), we
can find the dividend/price ratio

d t − pt = Et

∞∑
j=1

ρ j−1(Et rt+j − Et�d t+j ) = x t

1 − ρb
. (20.21)

Equation (20.17) follows. Equation (20.21) makes precise my comment that
the dividend/price ratio reveals expected returns xt . Obviously, the feature
that the dividend/price ratio is exactly proportional to the expected return
xt does not generalize. If dividend growth is also forecastable, then the
dividend/price ratio is a combination of dividend growth and return fore-
casts. Actual return forecasting exercises can often benefit from cleaning
up the dividend/price ratio to focus on the implied return forecast.

Returns: Since we know where the dividend/price ratio and dividends
are going, we can figure out where returns are going. Use the return
linearization (this is equivalent to (20.7))

R t+1 =
(

1 + Pt+1

Dt+1

)
Dt+1

Dt

/
Pt

Dt
,

rt+1 = ρ(pt+1 − d t+1)+ (d t+1 − d t )− (pt − d t ). (20.22)

Now, plug in from (20.17) and (20.16) to get (20.18).

Prices: Write

pt+1 − pt = −(d t+1 − pt+1)+ (d t − pt )+ (d t+1 − d t ). (20.23)

Then, plugging in from (20.17) and (20.16), we get (20.19).
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Parameters
We can back out parameters from the reduced form return – d/p VAR. (Any
two equations carry all the information of this system.) Table 20.4 presents
some estimates.

I report both the more intuitive coefficients of returns on the actual d/p
ratio, denoted a, D/P and the coefficients on the log d/p ratio, denoted a,
which is a more useful specification for our transformations. The two line
up; a coefficient of 5 on Dt/Pt implies a coefficient of 5 × D/P ≈ 0.25 on
(Dt/Pt )/(D/P ).

You can see that the parameters depend somewhat on the sample. In
particular, the dramatic returns of the late 1990s, despite low dividend yields,
cut the postwar return forecast coefficients in half and the overall sample
estimate by about one third. That dramatic decline in the d/p ratio also
induces a very high apparent persistence in the d/p ratio, rising to a 0.97
estimate in the 48–98 sample. (Faced with an apparent trend in the data,
an autoregression estimates a root near unity.)

With these estimates in mind, given the considerations outlined below,
I make calculations using parameters

b = 0.9,

ρ = 0.96,

σ(εr ) = 15, (20.24)

σ(εdp) = 12.5,

ρ(εr , εdp) = −0.7.

Table 20.4. Estimates of log excess return and log dividend/price ratio regressions,
using annual CRSP data

Sample a a, D/P b σ(εr ) σ (εdp) ρ(εr , εdp)

27–98 0.16 4.7 0.92 19.2 15.2 −0.72
48–98 0.14 4.0 0.97 15.0 12.6 −0.71
27–92 0.28 6.7 0.82 19.0 15.0 −0.69
48–92 0.27 6.2 0.87 14.5 12.4 −0.67

r is the difference between the log value-weighted return and the log treasury bill rate.
The estimates are of the system

rt+1 = a(d t − pt )+ εr t+1,
d t+1 − pt+1 = b(d t − pt )+ εdp t+1,

and
rt+1 = (a, D/P ) Dt

Pt
+ εt+1.
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From these parameters, we can find the underlying parameters of
(20.14)–(20.16). I comment on each one below as it becomes useful.
From (20.17)

σ(δ) = σ(εdp)(1 − ρb) = 1.7. (20.25)

From (20.18),

σ(εd ) = σ(εr + ρεdp)

=
√
σ 2(εr )+ ρ2σ 2(εdp)+ 2ρσ(εr , εdp) = 10.82,

σ(εd , εdp) = σ(εr , εdp)+ ρσ 2(εdp),

and hence

ρ(εd , εdp) = ρ(εr εdp)σ (εr )+ ρσ(εdp)

σ (εd )
= 0.139. (20.26)

Now we are ready to use (20.17)–(20.20) in order to integrate predictability
issues.

The Size of the Return Forecasting Coefficient.
Does the magnitude of the estimated return predictability make sense?
Given the statistical uncertainties, do other facts guide us to higher or lower
predictability?

The coefficient of the one-year excess return on the dividend/price
ratio in Table 20.1 is about 5, and the estimates in Table 20.4 vary from
4 to 6 depending on the sample. These values are surprisingly large. For
example, a naive investor might think that dividend yields move one-for-one
with returns; if they pay more dividends, you get more money. This logic
implies a coefficient of 1. Before predictability, we would have explained
that high dividend yield means that prices are low now in anticipation of
lower future dividends, leaving the expected return unchanged. This logic
implies a coefficient of 0. Now we recognize the possibility of time-varying
expected returns, but does it make sense that expected returns move even
more than dividend yields?

Return forecastability follows from the fact that dividends are not forecastable,
and that the dividend/price ratio is highly but not completely persistent. We see this
in the calculated coefficients of prices and returns on the dividend price
ratio in (20.18) and (20.19). We derived

rt+1 = (1 − ρb)(d t − pt )+ εr t+1,

�pt+1 = (1 − b)(d t − pt )+ εp t+1.

To transform units to regressions on D/P, multiply by 25, e.g.,

rt+1 = 1 − ρb
D/P

Dt

Pt
+ εr t+1.
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Suppose the d/p ratio were not persistent at all, b = 0. Then both
return and price growth coefficients should be 1 in logs or about 25 in
levels! If the D/P ratio is one percentage point above its average, we must
forecast enough of a rise in prices to restore the D/P ratio to its average in
one year. The average D/P ratio is about 4%, though, so prices and hence
returns must rise by 25% to change the D/P ratio by one percentage point.
d(D/P ) = −D/P d(P )/P .

Suppose instead that the d/p ratio were completely persistent, i.e., a
random walk with b = 1. Then the return coefficient is 1 − ρ = 0.04, and
about 1.0 in levels, while the price coefficient is 0. If the d/p ratio is one
percent above average and expected to stay there, and dividends are not
forecastable, then prices must not be forecast to change either. The return
is one percentage point higher, because you get the higher dividends as
well. Thus, the naive investor who expects dividend yield to move one for
one with expected returns not only implicitly assumes that dividends are not
forecastable—which turns out to be true—but also that the d/p ratio will
stay put forever.

A persistence parameter b = 0.90 implies price and return regression
coefficients of

1 − b = 0.10,

1 − ρb = 1 − 0.96 × 0.90 = 0.14
(20.27)

or about 2.5 and 3.4 on D/P. If the dividend yield is one percentage point
high, and is expected to be 0.9 percentage points high one year from now,
then prices must be expected to increase by P/D × 0.1 = 2.5 percentage
points in the next year. The return gets the additional dividend as well as the
expected price change. This, fundamentally, is how unforecastable dividend
growth together with persistent D/P imply that expected returns move more
than one for one with the dividend yield.

Now, we can turn to the central question: how much return forecasta-
bility should we believe? The calculations of equation (20.27) are a little
below most of the estimates in Table 20.1 and Table 20.4, which suggest
coefficients on D/P of 4–6. In the sample, a high price seems to forecast
lower dividend growth. This is the wrong sign, which is hard to believe.
To believe in this much return forecastability without such perverse divi-
dend growth forecastability, we have to lower the persistence coefficient.
For example, a persistence coefficient b = 0.8 implies a return coefficient
(1 − ρb) = (1 − 0.96 × 0.8) = 0.23 or 0.23 × 25 = 5.75 on D/P. However,
given the slow movement of D/P seen in Figure 20.1 and the fact that autore-
gression estimates are downward biased, it is hard to believe that D/P ratios
really do revert that much more quickly. It seems more sensible to believe
b = 0.9 and hence that return predictability is in fact something like 0.14, or
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roughly 3.4 on D/P. This value is equal to the estimate in the 48–98 sample,
though distinctly lower than in some earlier samples.

Going in the other direction, statistical uncertainty, the recent runup in
stocks despite low dividend yields, and the dramatic portfolio implications of
time-varying returns for investors whose risks or risk aversion do not change
over time all lead one to consider even lower return predictability. As we see
from these calculations though, there are only two ways to make sense of
lower predictability. You have to believe that high prices really do forecast
higher dividend growth, or you have to believe that dividend price ratios
are substantially more persistent than b = 0.9.

Much more persistent d/p is a tough road to follow, since D/P ratios
already move very slowly. They basically change sign once a generation; high
in the 50’s, low in the 60’s, high in the mid-70’s, and decreasing ever since
(see Figure 20.1.) Can this be a sample of unusually fast D/P movement? As
a quantitative example, suppose the D/P ratio had an AR(1) coefficient of
0.96 in annual data. This means a half life of ln 0.5/ ln 0.96 = 17 years. In
this case, the price coefficient would be

1 − b
D/P

= 1 − 0.96
0.04

= 1

and the return coefficient would be

1 − ρb
D/P

= 1 − 0.962

0.04
≈ 2

A one percentage point higher d/p ratio means that prices must rise
1 percentage point next year, so returns must be about 2 percentage points
higher. A two for one movement of expected returns with the dividend yield
thus seems about the lower bound for return predictability.

The only other option is to believe that dividend growth really is fore-
castable. ‘‘New economy’’ advocates believe that this time, prices really are
rising on advance news of dividend growth, even though prices have not
forecast dividend growth in the past. This would be wonderful if it were
true. However, you have to face the fact that every variation of the market
D/P in the past was not followed by unusual dividend growth. You have to
believe that our data were generated from a very unlucky sample.

Persistence, Price Volatility, and Expected Returns
From the dividend/price ratio equation (20.17) we can find the volatility
of the dividend/price ratio and relate it to the volatility and persistence of
expected returns:

σ(d t − pt ) = 1
1 − ρb

σ(x t ).
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With b = 0.9, 1/(1 − ρb) = 1/(1 − 0.96 × 0.9) = 7.4. Thus, the persistence
of expected returns means that a small expected return variation translates
into a large price variation. A one percentage point change in expected
returns with persistence b = 0.9 corresponds to a 7.4% increase in price.

The Gordon growth model is a classic and even simpler way to see this
point. With constant dividend growth g and return r , the present-value
identity becomes

P = D
r − g

.

A price/dividend ratio of 25 means r − g = 0.04. Then, a one percentage
point permanent change in expected return translates into a 25 percentage
point change in price! This is an overstatement, since expected returns are
not this persistent, but it allows you clearly to see the point.

This point also shows that small market imperfections in expected
returns can translate into substantial market imperfections in prices, if
those expected return changes are persistent. We know markets cannot
be perfectly efficient (Grossman and Stiglitz [1980]). If they were per-
fectly efficient, there would be no traders around to make them efficient.
Especially where short sales or arbitrage are constrained by market fric-
tions, prices of similar assets can be substantially different, while the expected
returns of those assets are almost the same. For example the ‘‘closed-end
fund’’ puzzle (Thompson [1978]) noted that baskets of securities sold for
substantial price discounts relative to the sum of the individual securities.
Even if we concede this as an anomaly, it is a small difference in expected
returns. The price differentials persist for a long time. You cannot short
the closed-end funds to buy the securities and keep that short position on
for years.

Mean Reversion

I introduce long-horizon return regressions and variance ratios. I show
that they are related: each one picks up a string of small negative return
autocorrelations. I show though that the direct evidence for mean-reversion
and Sharpe ratios that rise with horizon is weak.

Long-Run Regressions and Variance Ratios
The first important evidence of long-run forecastability in the stock market
did not come from regressions of returns on d/p ratios, but rather from
clever ways of looking at the long-run univariate properties of returns. Fama
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and French (1988a) ran regressions of long-horizon returns on past long-
horizon returns,

rt→t+k = a + bkrt−k→t + εt+k , (20.28)

basically updating classic autocorrelation tests from the 1960s to long-
horizon data. They found negative and significant b coefficients: a string
of good past returns forecasts bad future returns.

Poterba and Summers (1988) considered a related ‘‘variance ratio’’
statistic. If stock returns are i.i.d., then the variance of long-horizon returns
should grow with the horizon,

var(rt→t+k) = var(rt+1 + rt+2 + · · · + rt+k) = kvar(rt+1). (20.29)

They computed the variance ratio statistic

vk = 1
k

var(rt→t+k)

var(rt+1)
.

They found variance ratios below one. Stocks, it would seem, really are safer
for ‘‘long-run investors’’ who can ‘‘afford to wait out the ups and downs of
the market,’’ common Wall Street advice, long maligned by academics.

These two statistics are closely related, and reveal the same basic fact:
stock returns have a string of small negative autocorrelations. To see this
relation, write the variance ratio statistic

vk = 1
k

var
(∑k

j=1 rt+j

)
var(rt+1)

=
k∑

j=−k

|k − j |
k

ρj = 1 + 2
k∑

j=1

|k − j |
k

ρj , (20.30)

and write the regression coefficient in (20.28),

bk = 1
var(rt→t+k)

cov

⎛
⎝ k∑

j=1

rt+j ,
k∑

j=1

rt−j+1

⎞
⎠

= kvar(rt+1)

var(rt→t+k)

k∑
j=−k

|k − j |
k

ρk+j = 1
vk

k∑
j=−k

|k − j |
k

ρk+j .

Both statistics are based on tent-shaped sums of autocorrelations, as illus-
trated by Figure 20.3. If there are many small negative autocorrelations
which bring returns back slowly after a shock, these autocorrelations might
be individually insignificant. Their sum might be economically and sta-
tistically significant, however, and these two statistics will reveal that fact
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Figure 20.3. Long-horizon regression and variance ratio weights on autocorrelations.

by focusing on the sum of autocorrelations. The long-horizon regression
weights emphasize the middle of the autocorrelation function, so a k-year
horizon long-horizon regression is comparable to a somewhat longer
variance ratio.

Impulse-Response Function and Mean-Reversion
We think of many negative higher order autocorrelations as ‘‘bringing prices
back after a shock,’’ so it is natural to characterize mean-reversion via the
impulse-response function of prices to a shock directly. If, after a shock,
prices are expected to trend upward, we have ‘‘momentum.’’ If, after a
shock, prices are expected to come back a bit, we have ‘‘mean-reversion.’’

To think about this characterization more precisely, start by writing
returns as a moving average of their own shocks. From a regression of returns
on past returns

a(L)rt = εt (20.31)

you can find the θj in the representation

rt =
∞∑

j=0

θjεt−j = θ(L)εt = a(L)−1εt .

(Most simply, just simulate [20.31] forward.) The θj are the moving average
representation or impulse-response function—they tell you what happens
to all future expected returns following a shock. Let pt represent the cumu-
lative returns, or the log value of a dollar invested, pt − pt−1 = rt . Then, the
partial sum

∑k
j=1 θj tells you the effect on invested wealth pt+k of a uni-

variate shock εt . The sum
∑∞

j=1 θj = θ(1) measures the long-run effect
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of a shock. I normalize the scale of the moving average representation
with θ0 = 1.

A natural measure of mean-reversion, then, is whether the long-run
effect of a shock is greater or less than its instantaneous effect—whether
θ(1) is greater than, equal to, or less than one.

This measure is also closely related to autocorrelations, long-horizon
regressions, and variance ratios, by

lim
k→∞

vk = 1 + 2
∞∑

j=1

ρj = θ(1)2∑∞
j=0 θ

2
j

. (20.32)

If returns are i.i.d., the variance ratio is one at all horizons; all autocorrela-
tions are zero, and all θ past the first are zero so θ(1) = 1,

∑
θ 2

j = 1. A long
string of small negative autocorrelations means a variance ratio less than
one, and means

∑∞
j=0 θj < 1 so the long-run effect on price is lower than

the impact effect—that is ‘‘mean-reversion.’’
The right-hand equality of (20.32) follows by just taking the k → ∞

in (20.30). For the second equality, you can recognize in both expressions
the spectral density of r at frequency zero. The

∑
θ 2

j term enters because
the variance ratio is scaled by the variance of the series, and the long-run
response is scaled by the impact response, or equivalently by the variance of
the shock to the series. It is possible in extreme cases for the variance ratio
to be below one, but θ(1) > 1 and vice versa.

Numbers
Table 20.5 presents long-horizon return regressions and an estimate of the
variance of long-horizon returns. The long-horizon regressions do show
some interesting mean reversion, especially in the 2–4 year range. However,
that turns around at year 7 and disappears by year 10. The variance ratios

Table 20.5. Mean-reversion using logs, 1926–1996

Horizon k (years)
1 2 3 5 7 10

σ(rk)/
√

k 19.8 20.6 19.7 18.2 16.5 16.3
βk 0.08 −0.15 −0.22 −0.04 0.24 0.08
Sharpe/

√
k 0.31 0.30 0.30 0.31 0.36 0.39

r denotes the difference between the log value-weighted NYSE return and the log treasury
bill return. σ(rk ) = σ(rt→t+k ) is the variance of long-horizon returns. βk is the long-
horizon regression coefficient in rt→t+k = α + βk rt−k→t + εt+k . The Sharpe ratio is
E (rt→t+k )/σ (rt→t+k ).
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do show some long-horizon stabilization. At year 10, the variance ratio is
(16.3/19.8)2 = 0.68.

The last row of Table 20.5 calculates Sharpe ratios, to evaluate whether
stocks really are safer in the long run. The mean log return grows linearly
with horizon whether returns are autocorrelated or not—E (r1 +r2) = 2E (r ).
If the variance also grows linearly with the horizon, as it does for nonauto-
correlated returns, then the Sharpe ratio grows with the square root of
the horizon. If the variance grows more slowly than the horizon, then the
Sharpe ratio grows faster than the square root of the horizon. This is the
fundamental question for whether stocks are (unconditionally) ‘‘safer for
the long run.’’ Table 20.5 includes the long-horizon Sharpe ratios, and you
can see that they do increase.

You would not be to blame if you thought that the evidence of Table 20.5
was rather weak, especially compared with the dramatic dividend/price
regressions. It is, and it is for this reason that most current evidence for
predictability focuses on other variables such as the d/p ratio.

In addition, Table 20.6 shows that the change from log returns to levels
of returns, while having a small effect on long-horizon regressions, destroys
any evidence for higher Sharpe ratios at long horizons. Table 20.7 shows
the same results in the postwar period. Some of the negative long-horizon
regression coefficients are negative and significant, but there are just as
large positive coefficients, and no clear pattern. The variance ratios are flat
or even rising with horizons, and the Sharpe ratios are flat or even declining
with horizon.

In sum, the direct evidence for mean-reversion in index returns seems
quite weak. I consider next whether indirect evidence, values of these statis-
tics implied by other estimation techniques, still indicate mean-reversion.
(The mean-reversion of individual stock returns as examined by Fama
and French (1988a) is somewhat stronger, and results in the stronger
cross-sectional ‘‘reversal’’ effect described in Section 20.2.)

Table 20.6. Mean-reversion using gross returns, 1926–1996

Horizon k (years)
1 2 3 5 7 10

σ(rk)/
√

k 20.6 22.3 22.5 24.9 28.9 39.5
βk 0.02 −0.21 −0.22 −0.03 0.22 −0.63
Sharpe/

√
k 0.41 0.41 0.41 0.40 0.40 0.38

r denotes the difference between the gross (not log) long-horizon value-weighted NYSE
return and the gross treasury bill return.



“chap20” — 2004/9/14 — page 415 — #31

20.1. Time-Series Predictability 415

Table 20.7. Mean-reversion in postwar data

Horizon k (years)
1947–1996 logs 1 2 3 5 7 10

σ(rk)/
√

k 15.6 14.9 13.0 13.9 15.0 15.6
βk −0.10 −0.29∗ 0.30∗ 0.30 0.17 −0.18
Sharpe/

√
k 0.44 0.46 0.51 0.46 0.41 0.36

1947–1996 levels 1 2 3 5 7 10

σ(rk)/
√

k 17.1 17.9 16.8 21.9 29.3 39.8
βk −0.13 −0.33∗ 0.30 0.25 0.13 −0.25
Sharpe/

√
k 0.50 0.51 0.55 0.48 0.41 0.37

Mean-Reversion and Forecastability

I reconcile large forecastability from d/p ratios with a small mean-
reversion. I calculate the univariate return process implied by the simple VAR,
and find that it displays little mean-reversion.

I show that if dividend shocks are uncorrelated with expected return
shocks, there must be some mean-reversion. If we rule out the small positive
correlation between dividend and expected return shocks in our sample, we
get a slightly higher estimate of univariate mean-reversion.

I tie the strong negative correlation between return and d/p shocks to
an essentially zero correlation between expected return and dividend growth
shocks.

How is it possible that variables such as the dividend/price ratio forecast
returns strongly, but there seems to be little evidence for mean-reversion
in stock returns? To answer this question, we have to connect the d/p
regressions and the mean-reversion statistics.

Forecastability from variables such as the dividend/price ratios is related
to, but does not necessarily imply, mean-reversion. (Campbell [1991]
emphasizes this point.) Mean-reversion, is about the univariate properties of
the return series, forecasts of rt+j based on {rt , rt−1, rt−2, . . .}. Predictability is
about the multivariate properties, forecasts of rt+j based on {x t , x t−1, x t−2, . . .}
as well as {rt , rt−1, rt−2, . . .}. Variables {x t−j } can forecast rt+1, while {rt−j } fail to
forecast rt+1. As a simple example, suppose that returns are i.i.d., but you get
to see tomorrow’s newspaper. You forecast returns very well with x t = rt+1,
but lagged returns do not forecast returns at all.

To examine the relationship between d/p forecasts and mean-reversion,
continue with the VAR representation built up from a slowly moving
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expected return and unforecastable dividend growth, (20.14)–(20.20). We
want to find the univariate return process implied by this VAR: what would
happen if you took infinite data from the system and ran a regression of
returns on lagged returns? The answer, derived below, is of the form

rt = 1 − γL
1 − bL

νt . (20.33)

This is just the kind of process that can display slow mean-reversion or
momentum. The moving average representation is

rt = νt − (γ − b)νt−1 − b(γ − b)νt−2

− b2(γ − b)νt−3 − b3(γ − b)νt−4 − · · · . (20.34)

Thus, if γ > b, a positive return shock sets off a long string of small negative
returns, which cumulatively bring the value back towards where it started. If
γ < b, a positive shock sets off a string of small positive returns, which add
‘‘momentum’’ to the original increase in value.

Now, what value of γ does our VAR predict? Is there a sensible structure
of the VAR that generates substantial predictability but little mean-reversion?
The general formula, derived below, is that γ solves

1 + γ 2

γ
= (1 + b2)σ 2(εd )+ (1 + ρ2)σ 2(εdp)− 2(ρ + b)σ (εd , εdp)

bσ 2(εd )+ ρσ 2(εdp)− (1 + ρb)σ (εd , εdp)
= 2q ,

(20.35)
and hence,

γ = q −
√

q2 − 1.

Case 1: No Predictability
If returns are not predictable in this system—if σ(δ) = 0 so σ(εdp) = 0, then
(20.35) specializes to

1 + γ 2

γ
= 1 + b2

b
.

γ = b, so returns in (20.33) are not autocorrelated. Sensibly enough, no
predictability implies no mean-reversion.

Case 2: Constant Dividend Growth
Next, suppose that dividend growth is constant; σ(εd ) = 0 and variation in
expected returns is the only reason that ex-post returns vary at all. In this
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case, (20.35) specializes quickly to

1 + γ 2

γ
= 1 + ρ2

ρ
,

and thus γ = ρ.
These parameters imply a substantial amount of mean-reversion.

(γ − b) in (20.34) is then 0.96 − 0.90 = 0.06, so that each year j after
a shock returns come back by 6 × bj percent of the original shock. The
cumulative impact is that value ends up at (1 − γ )/(1 − b) = (1 − 0.96)/
(1 − 0.9) = 0.4 or only 40% of the original shock.

Case 3: Dividend Growth Uncorrelated With Expected Return Shocks
Pure variation in expected returns is of course not realistic. Dividends do
vary. If we add dividend growth uncorrelated with expected return shocks
σ(εdp , εd ) = 0, (20.35) specializes to

1 + γ 2

γ
= 1 + b2

b
θ + 1 + ρ2

ρ
(1 − θ) = 2q ; (20.36)

θ = bσ 2(εd )

bσ 2(εd )+ ρσ 2(εdp)
.

In this case, b < γ < ρ. There will be some mean reversion in returns—this
model cannot generate γ ≤ b. However, the mean-reversion in returns
will be lower than with constant dividend growth, because dividend growth
obscures the information in ex post returns about time-varying expected
returns. How much lower depends on the parameters.

Using the parameters (20.24), I find that (20.36) implies

γ = q −
√

q2 − 1 = 0.928.

Our baseline VAR with no correlation between dividend growth and
expected return shocks thus generates a univariate return process that is
slightly on the mean-reversion edge of uncorrelated. The long-run response
to a shock is

1 − γ

1 − b
= 1 − 0.928

1 − 0.9
= 0.72.

This is a lot less mean-reversion than 0.4, but still somewhat more mean-
reversion than we see in direct estimates such as Tables 20.5–20.7.

This case is an important baseline worth stressing. If expected returns are
positively correlated, realized returns are negatively autocorrelated. If (unchanged)
expected dividends are discounted at a higher rate, today’s price falls. You
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can see this most easily by just looking at the return or its linearization,
(20.22),

rt+1 = �d t+1 − ρ(d t+1 − pt+1)+ (d t − pt ). (20.37)

The d−p ratio is proportional to expected returns. Thus, the second term on
the right hand side implies that a positive shock to expected returns, uncor-
related with dividend growth, lowers actual returns. A little more deeply,
look at the return innovation identity (20.11),

rt − Et−1rt = (Et − Et−1)

⎡
⎣ ∞∑

j=0

ρ j�d t+j −
∞∑

j=1

ρ j rt+j

⎤
⎦ . (20.38)

If expected returns (Et − Et−1)
∑∞

j=1 ρ
j rt+j increase, with no concurrent news

about current or future dividends, then rt − Et−1rt decreases.
This is the point to remark on a curious feature of the return-

dividend/price VAR: the negative correlation between ex post return shocks
and dividend/price ratio shocks. All the estimates were around −0.7. At
first glance such a strong correlation between VAR residuals seems strange.
At second glance, it is expected. From (20.37) you can see that a positive
innovation to the dividend price ratio will correspond to a negative return
innovation, unless a striking dividend correlation gets in the way. More
deeply, you can see the point in (20.38). Quantitatively, from (20.18), the
return shock is related to the dividend growth shock and the expected return
shock by

εr = εd − ρ

1 − ρb
δ = εd − ρεdp .

Thus, a zero correlation between the underlying dividend growth and
expected return shocks, ρ(εd , δ) = 0, implies a negative covariance between
return shocks and expected return shocks,

σ(εr , δ) = − ρ

1 − ρb
σ 2(δ).

The correlation is a perfect −1 if there are no dividend growth shocks. At
the parameters σ(εdp) = 12.5, σ(εr ) = 15, we obtain

ρ(εr , δ) = ρ(εr , εdp) = − ρ

1 − ρb
σ(δ)

σ (ε)

= −ρ σ(εdp)

σ (ε)
= −0.96 × 12.5

15
= −0.8.

The slight 0.1 positive correlation between dividend growth and expected
return shocks in (20.26) results (or, actually, results from) a slightly lower
−0.7 specification for the correlation of return and d/p shocks.



“chap20” — 2004/9/14 — page 419 — #35

20.1. Time-Series Predictability 419

The strong negative correlation between return shocks and expected
return shocks, expected from a low correlation between dividend growth
shocks and expected return shocks, is crucial to the finding that returns are
not particularly correlated despite predictability. Consider what would hap-
pen if the correlation ρ(εr , εdp) = ρ(εr , δ) were zero. The expected return
x t is slow moving. If it is high now, it has been high for a while, and there
has likely been a series of good past returns. But it also will remain high for
a while, leading to a period of high future returns. This is ‘‘momentum,’’
positive return autocorrelation, the opposite of mean-reversion.

Case 4: Dividend Growth Shocks Positively Correlated With Expected Return Shocks
As we have seen, the VAR with no correlation between expected return
and dividend growth shocks cannot deliver uncorrelated returns or positive
‘‘momentum’’ correlation patterns. At best, volatile dividend growth can
obscure an underlying negative correlation pattern. However, looking at
(20.37) or (20.38), you can see that adding dividend growth shocks posi-
tively correlated with expected return shocks could give us uncorrelated or
positively correlated returns.

The estimates in Table 20.4 and (20.24) implied a slight positive correla-
tion of dividend growth and expected return shocks, ρεd δ = 0.14 in (20.26).
If we use that estimate in (20.35), we recover an estimate

γ = 0.923,
1 − γ

1 − b
= 0.77.

This γ is quite close to b = 0.9, and the small mean-reversion is more closely
consistent with the direct estimates in Tables 20.5–20.7.

Recall that point estimates as in Table 20.1 showed that a high d/p
ratio forecast slightly higher dividends—the wrong sign. This point estimate
means that shocks to the d/p ratio and expected returns are positively corre-
lated with shocks to expected dividend growth. If you generalize the VAR to
allow such shocks, along with a richer specification allowing additional lags
and variables, you find that VARs give point estimates with slight but very
small mean-reversion. (See Cochrane [1994a] for a plot.) The estimated
univariate process has slight mean-reversion, with an impulse response end-
ing up at about 0.8 of its starting value, and no different from the direct
estimate.

Can we generate unforecastable returns in this system? To do so, we
have to increase further the correlation between expected return shocks and
dividend growth. Equating (20.35) to (1 + b2)/b and solving for ρ(εd , εdp),
we obtain

ρ(εd , εdp) = (1 − ρb)(ρ − b)
(1 − b)2(ρ + b)

σ (εdp)

σ (εd )
= 0.51.
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This is possible, but not likely. Any positive correlation between divi-
dend growth and expected return shocks strikes me as suspect. If anything,
I would expect that since expected returns rise in ‘‘bad times’’ when risk
or risk aversion increases, we should see a positive shock to expected
returns associated with a negative shock to current or future dividend
growth. Similarly, if we are going to allow dividend/price ratios to fore-
cast dividend growth, a high dividend/price ratio should forecast lower
dividends.

Tying together all these thoughts, I think it is reasonable to impose zero
dividend forecastability and zero correlation between dividend growth and
expected return shocks. This specification means that returns are really less
forecastable than they seem in some samples. As we have seen, b = 0.9 and
no dividend forecastability means that the coefficient of return on D/P is
really about 3.4 rather than 5 or 6. This specification means that expected
returns really account for 100% rather than 130% of the price/dividend
variance. However, it also means that univariate mean reversion is slightly
stronger than it seems in our sample.

This section started with the possibility that the implied mean-reversion
from a multivariate system could be a lot larger than that revealed by direct
estimates. Instead, we end up by reconciling strong predictability and slight
mean-reversion.

How to Find the Univariate Return Representation
This section ties up one technical loose end—how to derive equation
(20.33). To find the implied univariate representation, we have to start with
the VAR and find a representation

rt+1 = a(L)νt (20.39)

in which the a(L) is invertible. The Wold decomposition theorem tells us
that there is a unique moving invertible moving average representation in
which the νt are the one-step-ahead forecast error shocks, i.e., the errors in
a regression model a(L)rt+1 = νt+1. Thus, if you find any invertible moving
average representation, you know you have the right one. We cannot do
this by simply manipulating the systems starting with (20.14), because they
are expressed in terms of multivariate shocks, errors in regressions that
include x .

There are three fundamental representations of a time series: its Wold
moving average representation, its autocorrelation function, and its spectral
density. To find the univariate representation (20.39), you either calculate
the autocorrelations E (rt rt−j ) from (20.14) and then try to recognize what
process has that autocorrelation pattern, or you calculate the spectral density
and try to recognize what process has that spectral density.
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In our simple setup, we can write the return-(d − p) VAR (20.17)–
(20.18) as

rt+1 = (1 − ρb)(d t − pt )+ (εd t+1 − ρεdp t+1),

(d t+1 − pt+1) = b(d t − pt )+ εdp t+1.

Then, write returns as

rt+1 = (1 − ρb)
1 − bL

εdp t + (εd t+1 − ρεdp t+1),

(1 − bL)rt+1 = (1 − ρb)εdp t + (εd t+1 − ρεdp t+1)− b(εdt − ρεdp t ),

and hence,

(1 − bL)rt+1 = (εd t+1 − ρεdp t+1)+ (εdp t − bεdt ). (20.40)

Here, you can see that rt must follow an ARMA(1,1) with one root equal
to b and the other root to be determined. Define yt = (1 − bL)rt , and thus
yt = (1 − γL)νt . Then the autocovariances of y from (20.40) are

E (y2
t+1) = (1 + b2)σ 2(εd )+ (1 + ρ2)σ 2(εdp)− 2(ρ + b)σ (εd , εdp),

E (yt+1yt ) = −bσ 2(εd )− ρσ 2(εdp)+ (1 + ρb)σ (εd , εdp),

while yt = (1 − γL)νt implies

E
(

y2
t+1

) = (1 + γ 2)σ 2
ν ,

E ( yt+1yt ) = −γ σ 2
ν .

Hence, we can find γ from the condition

1 + γ 2

γ
= (1 + b2)σ 2(εd )+ (1 + ρ2)σ 2(εdp)− 2(ρ + b)σ (εd , εdp)

bσ 2(εd )+ ρσ 2(εdp)− (1 + ρb)σ (εd , εdp)
= 2q .

The solution (the root less than one) is

γ = q −
√

q2 − 1.

For more general processes, such as computations from an estimated
VAR, it is better to approach the problem via the spectral density. This
approach allows you to construct the univariate representation directly with-
out relying on cleverness. If you write yt = [rt x t ]′, the VAR is yt = A(L)ηt .
Then spectral density of returns Sr (z) is given by the top left element of
Sy(z) = A(z)E (ηη′)A(z−1)′ with z = e−iω. Like the autocorrelation, the
spectral density is the same object whether it comes from the univari-
ate or multivariate representation. You can find the autocorrelations by
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(numerically) inverse-Fourier transforming the spectral density of returns.
To find the univariate, invertible moving average representation from the
spectral density, you have to factor the spectral density Srr (z) = a(z)a(z−1),
where a(z) is a polynomial with roots outside the unit circle, a(z) =
(1 − γ1z)(1 − γ2z) · · · γi < 1. Then, since a(L) is invertible, rt = a(L)εt

σ 2
ε = 1 is the univariate representation of the return process.

The autocorrelations and spectral densities are directly revealing: a
string of small negative autocorrelations or a dip in the spectral density near
frequency zero correspond to mean-reversion; positive autocorrelations or
a spectral density higher at frequency zero than elsewhere corresponds to
momentum.

Multivariate Mean-Reversion

I calculate the responses to multivariate rather than univariate shocks.
In a multivariate system you can isolate expected return shocks and divi-
dend growth shocks. The price response to expected return shocks is entirely
stationary.

We are left with a troubling set of facts: high price/dividend ratios
strongly forecast low returns, yet high past returns do not seem to forecast
low subsequent returns. Surely, there must be some sense in which ‘‘high
prices’’ forecast lower subsequent returns?

The resolution must involve dividends (or earnings, book value, or a
similar divisor for prices). A price rise with no change in dividends results in
lower subsequent returns. A price rise that comes with a dividend rise does
not result in lower subsequent returns. A high return combines dividend
news and price/dividend news, and so obscures the lower expected return
message. In a more time-series language, instead of looking at the response
to a univariate return shock, a return that was unanticipated based on lagged
returns, let us look at the responses to multivariate shocks, a return that was
unanticipated based on lagged returns and dividends.

This is easy to do in our simple VAR. We can simulate (20.17)–(20.20)
forward and trace the responses to a dividend growth shock and an expected
return (d/p ratio) shock. Figures 20.4 and 20.5 present the results of this
calculation. (Cochrane [1994a] presents a corresponding calculation using
an unrestricted VAR, and the results are very similar.)

Start with Figure 20.4. The negative expected return shock raises prices
and the p-d ratio immediately. We can identify such a shock in the data as
a return shock with no contemporaneous movement in dividends. The p-d
ratio then reverts to its mean. Dividends are not forecastable, so they show
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Figure 20.4. Responses to a one-standard-deviation (1.7%) negative expected return shock
in the simple VAR.

Figure 20.5. Responses to a one-standard-deviation (14%) dividend growth shock in the
simple VAR.
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no immediate or eventual response to the expected return shock. Prices
show a long and complete reversion back to the level of dividends. This shock
looks a lot like a negative yield shock to bonds: such a shock raises prices now
so that bonds end up at the same maturity value despite a smaller expected
return.

The cumulative return ‘‘mean-reverts’’ even more than prices. For given
prices, dividends are now smaller (smaller d-p) so returns deviate from their
mean by more than price growth. The cumulative return ends up below its
previously expected value. Compare this value response to the univariate
value response, which we calculated above, and ends up at about 0.8 of its
initial response.

The dividend shock shown in Figure 20.5 raises prices and cumulative
returns immediately and proportionally to dividends, so the price/dividend
ratio does not change. Expected returns or the discount rate, reflected in
any slope of the value line, do not change. If the world were i.i.d., this is the
only kind of shock we would see, and dividend/price ratios would always be
constant.

Figures 20.4 and 20.5 plot the responses to ‘‘typical,’’ one-standard-
deviation shocks. Thus you can see that actual returns are typically about
half dividend shocks and half expected return shocks. That is why returns
alone are a poor indicator of expected returns.

In sum, at last we can see some rather dramatic ‘‘mean-reversion.’’ Good
past returns by themselves are not a reliable signal of lower subsequent
returns, because they contain substantial dividend growth noise. Good
returns that do not include good dividends isolate an expected return shock.
This does signal low subsequent returns. It sets off a completely transitory
variation in prices.

Cointegration and Short- vs. Long-Run Volatility

If d − p, �p, and �d are stationary, then the long-run variance of �d
and �p must be the same, long-run movements in d and p must be perfectly
correlated, and d and p must end up in the same place after any shock. Thus,
the patterns of predictability, volatility, and univariate, and multivariate mean-
reversion really all just stem from these facts, the persistence of d − p and the
near-unforecastability of �d .

You might think that the facts about predictability depend on the exact
structure of the VAR, including parameter estimates. In fact, most of what
we have learned about predictability and mean-reversion comes down to
a few facts: the dividend/price ratio, returns, and dividend growth are all
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stationary; dividend growth is not (or is at best weakly) forecastable, and
dividend growth varies less than returns.

These facts imply that the dividend and price responses to each shock
are eventually equal in Figures 20.4 and 20.5. If d − p, �p, and �d are
stationary, then d and p must end up in the same place following a shock.
The responses of a stationary variable (d − p) must die out. If dividends are
not forecastable, then it must be the case that prices do all the adjustment
following a price shock that does not affect dividends.

Stationary d − p, �p, and �d also implies that the variance of long-
horizon �p must equal the variance of long-horizon �d :

lim
k→∞

1
k

var(pt+k − pt ) = lim
k→∞

1
k

var(d t+k − d t ), (20.41)

and the correlation of long-run price and dividend growth must approach
one. These facts follow from the fact that the variance ratio of a stationary
variable must approach zero, and d − p is stationary. Intuitively, long-run
price growth cannot be more volatile than long-run dividend growth, or the
long-run p − d ratio would not be stationary.

Now, if dividend growth is not forecastable, its long-run volatility is the
same as its short-run volatility—its variance ratio is one. Short-run price
growth is more volatile than short-run dividend growth, so we conclude that
prices must be mean-reverting; their variance ratio must be below one.

Quantitatively, this observation supports the magnitude of univariate
mean-reversion that we have found so far. Dividend growth has a short run,
and thus long-run, standard deviation of about 10% per year, while returns
and prices have a standard deviation of about 15% per year. Thus, prices
must have a long-run variance ratio of about (2/3)2, or a long-run response
to univariate shocks of 2/3.

The work of Lettau and Ludvigson (2001b) suggests that we may get
much more dramatic implications by including consumption data. The ratio
of stock market values to consumption should also be stationary; if wealth
were to explode people would surely consume more and vice versa. The ratio
of dividends to aggregate consumption should also be stationary. Consump-
tion growth seems independent at all horizons, and consumption growth is
very stable, with roughly 1% annual standard deviation. For example, Lettau
and Ludvigson (2001b) find that none of the variables that forecast returns
in Table 20.2—including d −p and a consumption to wealth ratio—forecast
consumption growth at any horizon.

These facts suggest that aggregate dividends are forecastable, by the
consumption/dividend ratio, and strongly so—the long-run volatility of
aggregate dividend growth must be the 1% volatility of consumption growth,
not the 10% short-run volatility of dividend growth.
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These facts also suggest that almost all of the 15% or more variation
in annual stock market wealth must be transitory—the long-run volatility
of stock market value must be no more than the 1% consumption growth
volatility!

However, total market value is not the same thing as price, price is not
the same thing as cumulated return, and aggregate dividends are not the
same thing as the dividend concept we have used so far (dividends paid to a
dollar investment with dividends consumed), or dividends paid to a dollar
investment with dividends reinvested. Lettau and Ludvigson show that the
consumption/wealth ratio does forecast returns, but no one has yet worked
out the mean-reversion implications of this fact.

My statements about the implications of stationary d − p,�d ,�p, r
are developed in detail in Cochrane (1994b). They are special cases of
the representation theorems for cointegrated variables developed by Engle
and Granger (1987). A regression of a difference like �p on a ratio like
p − d is called the error-correction representation of a cointegrated system.
Error-correction regressions have subtly and dramatically changed almost
all empirical work in finance and macroeconomics. The vast majority of the
successful return forecasting regressions in this section, both time-series
and cross-section, are error-correction regressions of one sort or another.
Corporate finance is being redone with regressions of growth rates on ratios,
as is macroeconomic forecasting. For example, the consumption/GDP ratio
is a powerful forecaster of GDP growth.

Bonds

The expectations model of the term structure works well on average and
for horizons of four years or greater. At the one-year horizon, however, a
forward rate one percentage point higher than the spot rate seems entirely to
indicate a one percentage point higher expected excess return rather than a
one percentage point rise in future interest rates.

The venerable expectations model of the term structure specifies that
long-term bond yields are equal to the average of expected future short-
term bond yields. As with the CAPM and random walk, the expectations
model was the workhorse of empirical finance for a generation. And as with
those other views, a new round of research has significantly modified the
traditional view.

Table 20.8 calculates the average return on bonds of different maturi-
ties. The expectations hypothesis seems to do pretty well. Average holding
period returns do not seem very different across bond maturities, despite
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Table 20.8. Average continuously compounded (log)
one-year holding period returns on zero-coupon bonds of

varying maturity

Maturity Avg. Return Std. Std. dev.
N E

(
hpr(N )t+1

)
error σ

(
hpr(N )t+1

)

1 5.83 0.42 2.83
2 6.15 0.54 3.65
3 6.40 0.69 4.66
4 6.40 0.85 5.71
5 6.36 0.98 6.58

Annual data from CRSP 1953–1997.

the increasing standard deviation of bond returns as maturity rises. The
small increase in returns for long-term bonds, equivalent to a slight average
upward slope in the yield curve, is usually excused as a small ‘‘liquidity pre-
mium.’’ In fact, the curious pattern in Table 20.8 is that bonds do not share
the high Sharpe ratios of stocks. Whatever factors account for the volatility
of bond returns, they seem to have very small risk prices.

Table 20.8 is again a tip of an iceberg of an illustrious career for the
expectations hypothesis. Especially in times of great inflation and exchange
rate instability, the expectations hypothesis does a very good first-order job.

However, one can ask a more subtle question. Perhaps there are times
when long-term bonds can be forecast to do better, and other times when
short-term bonds are expected to do better. If the times even out, the uncon-
ditional averages in Table 20.8 will show no pattern. Equivalently, we might
want to check whether a forward rate that is unusually high forecasts an
unusual increase in spot rates.

Table 20.9 gets at these issues, updating Fama and Bliss’ (1987) classic
regression tests. (Campbell and Shiller [1991] and Campbell [1995] make
the same point with regressions of yield changes on yield spreads.) The
left-hand panel presents a regression of the change in yields on the forward-
spot spread. The expectations hypothesis predicts a coefficient of 1.0, since
the forward rate should equal the expected future spot rate. At a one-year
horizon we see instead coefficients near zero and a negative adjusted R 2.
Forward rates one year out seem to have no predictive power whatsoever
for changes in the spot rate one year from now. On the other hand, by four
years out, we see coefficients within one standard error of 1.0. Thus, the
expectations hypothesis seems to do poorly at short (1 year) horizons, but
much better at longer horizons and on average (Table 20.8).

If the yield expression of the expectations hypothesis does not work at
one-year horizons, then the expected return expression of the expectations
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Table 20.9. Forecasts based on forward-spot spread

Change in yields Holding period returns

y(1)t+N − y(1)t hpr(N +1)
t+1 −y(1)t

= a + b
(

f (N →N +1)
t − y(1)t

)+ εt+N = a + b
(

f (N →N +1)
t − y(1)t

)+ εt+1

N a σ(a) b σ(b) R
2

a σ(a) b σ(b) R
2

1 0.1 0.3 −0.10 0.36 −0.02 −0.1 0.3 1.10 0.36 0.16
2 −0.01 0.4 0.37 0.33 0.005 −0.5 0.5 1.46 0.44 0.19
3 −0.04 0.5 0.41 0.33 0.013 −0.4 0.8 1.30 0.54 0.10
4 −0.3 0.5 0.77 0.31 0.11 −0.5 1.0 1.31 0.63 0.07

OLS regressions 1953–1997 annual data. Yields and returns in annual percentages. The left-hand panel
runs the change in the one-year yield on the forward-spot spread. The right-hand panel runs the one-period
excess return on the forward-spot spread.

hypothesis must not hold either—one must be able to forecast one-year
bond returns. To check this fact, the right-hand panel of Table 20.9 runs
regressions of the one-year excess return on long-term bonds on the forward-
spot spread. Here, the expectations hypothesis predicts a coefficient of zero:
no signal (including the forward-spot spread) should be able to tell you that
this is a particularly good time for long bonds versus short bonds. As you can
see, the coefficients in the right-hand panel of Table 20.9 are all about 1.0.
A high forward rate does not indicate that interest rates will be higher one
year from now; it seems entirely to indicate that you will earn that much more
holding long-term bonds. (The coefficients in yield and return regressions
are linked. For example in the first row 1.10+ (−0.10) = 1.0, and this holds
as an identity. Fama and Bliss call them ‘‘complementary regressions.’’)

Figures 20.6 and 20.7 provide a pictorial version of the results in
Table 20.9. Suppose that the yield curve is upward sloping as in the top
panel. What does this mean? A naive investor might think this pattern indi-
cates that long-term bonds give a higher return than short-term bonds. The
expectations hypothesis denies this conclusion. If the expectations hypoth-
esis were true, the forward rates plotted against maturity in the top panel
would translate one-for-one to the forecast of future spot rates in the bottom
panel, as plotted in the line marked ‘‘Expectations model.’’ Rises in future
short rates should lower bond prices, cutting off the one-period advantage
of long-term bonds. The rising short rates would directly raise the multiyear
advantage of short-term bonds.

We can calculate the actual forecast of future spot rates from the esti-
mates in the left-hand panel of Table 20.9, and these are given by the line
marked ‘‘Estimates’’ in Figure 20.7. The essence of the phenomenon is slug-
gish adjustment of the short rates. The short rates do eventually rise to meet
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Figure 20.6. If the current yield curve is as plotted here. . . .

Figure 20.7. . . . this is the forecast of future one-year interest rates. The dashed line gives
the forecast from the expectations hypothesis. The solid line is constructed from the estimates in
Table 20.8.
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the forward rate forecasts, but not as quickly as the forward rates predict
that they should.

As dividend growth should be forecastable so that returns are not fore-
castable, short-term yields should be forecastable so that returns are not
forecastable. In fact, yield changes are almost unforecastable at a one-year
horizon, so, mechanically, bond returns are. We see this directly in the first
row of the left-hand panel of Table 20.9 for the one-period yield. It is an
implication of the right-hand panel as well. If

hpr(N +1)
t+1 − y(1)t = 0 + 1

(
f (N →N +1)
t − y(1)t

)+ εt+1, (20.42)

then, writing out the definition of holding period return and forward rate,

p(N )t+1 − p(N +1)
t + p(1)t = 0 + 1

(
p(N )t − p(N +1)

t + p(1)t

)+ εt+1,

p(N )t+1 = 0 + 1
(

p(N )t

)+ εt+1, (20.43)

y(N )t+1 = 0 + 1
(

y(N )t

)− εt+1/N .

A coefficient of 1.0 in (20.42) is equivalent to yields or bond prices that
follow random walks: yield changes that are completely unpredictable.

Of course yields are stationary and not totally unpredictable. How-
ever, they move slowly. Thus, yield changes are very unpredictable at short
horizons but much more predictable at long horizons. That is why the coef-
ficients in the right-hand panel of Table 20.9 build with horizon. If we did
holding period return regressions at longer horizons, they would gradually
approach the expectations hypothesis result.

The roughly 1.0 coefficients in the right-hand panel of Table 20.9 mean
that a one percentage point increase in forward rate translates into a one
percentage point increase in expected return. It seems that old fallacy of
confusing bond yields with their expected returns also contains a grain
of truth, at least for the first year. However, the one-for-one variation of
expected returns with forward rates does not imply a one-for-one variation
of expected returns with yield spreads. Forward rates are related to the slope
of the yield curve,

f (N →N +1)
t − y(1)t = p(N )t − p(N +1)

t − y(1)t

= −Ny(N )t + (N + 1)y(N +1)
t − y(1)t

= N
(

y(N +1)
t − y(N )t

)+ (
y(N +1)

t − y(1)t

)
.

Thus, the forward-spot spread varies more than the yield spread, so regres-
sion coefficients of holding period yields on yield spreads give coefficients
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greater than one. Expected returns move more than one-for-one with yield
spreads. Campbell (1995) reports coefficients of excess returns on yield
spreads that rise from one at a two-month horizon to 5 at a five-year horizon.

The facts are analogous to the dividend/price regression. There, div-
idends should be forecastable so that returns are not forecastable. But
dividends were essentially unforecastable and the dividend yield was per-
sistent. These facts implied that a one percentage point change in dividend
yield implied a 3–5 percentage point change in expected excess returns.

Of course, there is risk: the R 2 are all about 0.1–0.2, about the same
values as the R 2 from the dividend/price regression at a one-year horizon,
so this strategy will often go wrong. Still, 0.1–0.2 is not zero, so the strategy
does pay off more often than not, in violation of the expectations hypothesis.
Furthermore, the forward-spot spread is a slow-moving variable, typically
reversing sign once per business cycle. Thus, the R 2 build with horizon
as with the D/P regression, peaking in the 30% range (Fama and French
[1989]). (Also, Cochrane and Piazzesi (2003) extend these regressions to
more maturities on the right-hand side, and find R 2 as high as 44%.)

The fact that the regressions in Table 20.9 run the change in yield and
the excess return on the forward-spot spread is very important. The over-
all level of interest rates moves up and down a great deal but slowly over
time. Thus, if you run y(N )t+j = a + bf (N +1)

t + εt+N , you will get a coefficient
b almost exactly equal to 1.0 and a stupendous R 2, seemingly a stunning
validation of the expectations hypothesis. If you run a regression of tomor-
row’s temperature on today’s temperature, the regression coefficient will
be near 1.0 with a huge R 2 as well, since the temperature varies a lot over
the year. But today’s temperature is not a useful temperature forecast. To
measure a temperature forecast we want to know if the forecast can predict
the change in temperature. Is (forecast − today’s temperature) a good mea-
sure of (tomorrow’s temperature − today’s temperature)? Table 20.9 runs
this regression.

The decomposition in (20.43) warns us of one of several econometric
traps in this kind of regression. Notice that two of the three right-hand
variables are the same. Thus any measurement error in p(N +1)

t and p(1)t will
induce a spurious common movement in left- and right-hand variables. In
addition, since the variables are a triple difference, the difference may elim-
inate a common signal and isolate measurement error or noise. There are
pure measurement errors in the bond data, and we seldom observe pure
discount bonds of the exactly desired maturity. In addition, various liquidity
and microstructure effects can influence the yields of particular bonds in
ways that are not exploitable for typical investors.

As an example of what this sort of ‘‘measurement error’’ can do, suppose
all bond yields are 5%, but there is one ‘‘error’’ in the two-period bond price
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Table 20.10. Numerical example of the effect of measurement
error in yields on yield regressions

t 0 1 2 3

p(1)t −5 −5 −5 −5
p(2)t −10 −15 −10 −10
p(3)t −15 −15 −15 −15

y(i)t , i 	= 2 5 5 5 5
y(2)t 5 7.5 5 5

f (1→2)
t 5 10 5 5

f (1→2)
t − y(1)t 0 5 0 0

hpr(2→1)
t −y(1)t 0 0 5 0

at time 1: rather than being −10 it is −15. Table 20.10 tracks the effects of
this error. It implies a blip of the one-year forward rate in year one, and
then a blip in the return from holding this bond from year one to year two.
The price and forward rate ‘‘error’’ automatically turns into a subsequent
return when the ‘‘error’’ is corrected. If the price is real, of course, this is
just the kind of event we want the regression to tell us about—the forward
rate did not correspond to a change in future spot rate, so there was a large
return; it was a price that was ‘‘out of line’’ and if you could trade on it, you
should. But the regression will also pounce on measurement error in prices
and indicate spuriously forecastable returns.

Foreign Exchange

The expectations model works well on average. However, a foreign inter-
est rate one percentage point higher than its usual differential with the U.S.
rate (equivalently, a one percentage point higher forward-spot spread) seems
to indicate even more than one percentage point expected excess return;
a further appreciation of the foreign currency.

Suppose interest rates are higher in Germany than in the United States.
Does this mean that one can earn more money by investing in German
bonds? There are several reasons that the answer might be no. First, of
course, is default risk. While not a big problem for German government
bonds, Russia and other governments have defaulted on bonds in the past
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and may do so again. Second, and more important, is the risk of devaluation.
If German interest rates are 10%, U.S. interest rates are 5%, but the Euro falls
5% relative to the dollar during the year, you make no more money holding
the German bonds despite their attractive interest rate. Since lots of investors
are making this calculation, it is natural to conclude that an interest rate
differential across countries on bonds of similar credit risk should reveal
an expectation of currency devaluation. The logic is exactly the same as
the ‘‘expectations hypothesis’’ in the term structure. Initially attractive yield
or interest rate differentials should be met by an offsetting event so that
you make no more money on average in one country or another, or in
one maturity versus another. As with bonds, the expectations hypothesis is
slightly different from pure risk neutrality since the expectation of the log
is not the log of the expectation. Again, the size of the phenomena we study
usually swamps this distinction.

As with the expectations hypothesis in the term structure, the expected
depreciation view ruled for many years, and still constitutes an important
first-order understanding of interest rate differentials and exchange rates.
For example, interest rates in east Asian currencies were very high on the
eve of the currency collapses of 1997, and many banks were making tidy
sums borrowing at 5% in dollars to lend at 20% in local currencies. This
situation should lead one to suspect that traders expect a 15% devaluation,
or a small chance of a larger devaluation. That is, in this case, exactly what
happened. Many observers and policy analysts who ought to know better
often attribute high nominal interest rates in troubled countries to ‘‘tight
monetary policy’’ that is ‘‘strangling the economy’’ to ‘‘defend the currency.’’
In fact, one’s first-order guess should be that such high nominal rates reflect
a large probability of devaluation—loose monetary and fiscal policy—and
that they correspond to much lower real rates.

Still, does a 5% interest rate differential correspond to an exactly 5%
expected depreciation, or does some of it still represent a high expected
return from holding debt in that country’s currency? Furthermore, while
expected depreciation is clearly a large part of the story for high interest rates
in countries that have constant high inflation or that may suffer spectacular
depreciation of a pegged exchange rate, how does the story work for, say,
the United States versus Germany, where inflation rates diverge little, yet
exchange rates fluctuate a surprisingly large amount?

Table 20.11 presents the facts, as summarized by Hodrick (forthcoming)
and Engel (1996). The first row of Table 20.11 presents the average appre-
ciation of the dollar against the indicated currency over the sample period.
The dollar fell against DM, yen, and Swiss Franc, but appreciated against
the pound. The second row gives the average interest rate differential—the
amount by which the foreign interest rate exceeds the U.S. interest rate.
According to the expectations hypothesis, these two numbers should
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Table 20.11.

DM £ � SF

Mean appreciation −1.8 3.6 −5.0 −3.0
Mean interest differential −3.9 2.1 −3.7 −5.9
b, 1975–1989 −3.1 −2.0 −2.1 −2.6
R 2 .026 .033 .034 .033
b, 1976–1996 −0.7 −1.8 −2.4 −1.3

The first row gives the average appreciation of the dollar against the indicated
currency, in percent per year. The second row gives the average interest differ-
ential—foreign interest rate less domestic interest rate, measured as the forward
premium—the 30-day forward rate less the spot exchange rate. The third through
fifth rows give the coefficients and R2 in a regression of exchange rate changes on
the interest differential = forward premium,

st+1 − st = a + b( ft − st )+ εt+1 = a + b
(
r

f
t − r d

t
)+ εt+1,

where s = log spot exchange rate, f = forward rate, r f = foreign interest rate,
r d = domestic interest rate.
Source: Hodrick (forthcoming) and Engel (1996).

be equal—interest rates should be higher in countries whose currencies
depreciate against the dollar.

The second row shows roughly the right pattern. Countries with steady
long-term inflation have steadily higher interest rates, and steady depreci-
ation. The numbers in the first and second rows are not exactly the same,
but exchange rates are notoriously volatile so these averages are not well
measured. Hodrick shows that the difference between the first and second
rows is not statistically different from zero. This fact is exactly analogous to
the fact of Table 20.8 that the expectations hypothesis works well ‘‘on aver-
age’’ for U.S. bonds and is the tip of an iceberg of empirical successes for
the expectations hypothesis as applied to currencies.

As in the case of bonds, however, we can also ask whether times of
temporarily higher or lower interest rate differentials correspond to times of
above and below average depreciation as they should. The third and fifth
rows of Table 20.11 address this question, updating Hansen and Hodrick’s
(1980) and Fama’s (1984) regression tests. The number here should be
+1.0 in each case—an extra percentage point interest differential should
correspond to one extra percentage point expected depreciation. As you
can see, we have exactly the opposite pattern: a higher than usual interest
rate abroad seems to lead, if anything, to further appreciation. It seems that
the old fallacy of confusing interest rate differentials across countries with
expected returns, forgetting about depreciation, also contains a grain of
truth. This is the ‘‘forward discount puzzle,’’ and takes its place alongside
the forecastability of stock and bond returns. Of course it has produced a
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similar avalanche of academic work dissecting whether it is really there and
if so, why. Hodrick (1987), Engel (1996), and Lewis (1995) provide surveys.

The R 2 shown in Table 20.11 are quite low. However, like D/P, the inter-
est differential is a slow-moving forecasting variable, so the return forecast
R 2 build with horizon. Bekaert and Hodrick (1992) report that the R 2 rise
to the 30–40% range at six-month horizons and then decline again. Still,
taking advantage of this predictability, like the bond strategies described
above, is quite risky.

The puzzle does not say that one earns more by holding bonds from
countries with higher interest rates than others. Average inflation, depreci-
ation, and interest rate differentials line up as they should. If you just buy
bonds with high interest rates, you end up with debt from Turkey and Brazil,
whose currencies inflate and depreciate steadily. The puzzle does say that one
earns more by holding bonds from countries whose interest rates are higher
than usual relative to U.S. interest rates.

However, the fact that the ‘‘usual’’ rate of depreciation and ‘‘usual’’
interest differential varies through time, if they are well-defined concepts at
all, may diminish if not eliminate the out-of-sample performance of trading
rules based on these regressions.

The foreign exchange regressions offer a particularly clear-cut case in
which ‘‘Peso problems’’ can skew forecasting regressions. Lewis (1995) cred-
its Milton Friedman for coining the term to explain why Mexican interest
rates were persistently higher than U.S. interest rates in the early 1970s even
though the currency had been pegged for more than a decade. A small prob-
ability of a huge devaluation each period can correspond to a substantial
interest differential. You will see long stretches of data in which the expec-
tations hypothesis seems not to be satisfied, because the collapse does not
occur in sample. The Peso subsequently collapsed, giving substantial weight
to this view. Since then, ‘‘Peso problems’’ have become a generic term for
the effects of small probabilities of large events on empirical work. Rietz
(1988) offered a Peso problem explanation for the equity premium that
investors are afraid of another great depression which has not happened
in sample. Selling out-of-the-money put options and earthquake insurance
in Los Angeles are similar strategies whose average returns in a sample will
be severely affected by rare events that may not be seen in surprisingly long
samples.

20.2 The Cross Section: CAPM and Multifactor Models

Having studied how average returns change over time, now we study how
average returns change across different stocks or portfolios.
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The CAPM

For a generation, portfolios with high average returns also had high betas.
I illustrate with the size-based portfolios.

The first tests of the CAPM such as Lintner (1965b) were not a great
success. If you plot or regress the average returns versus betas of individual
stocks, you find a lot of dispersion, and the slope of the line is much too
flat—it does not go through any plausible risk-free rate.

Miller and Scholes (1972) diagnosed the problem. Betas are mea-
sured with error, and measurement error in right-hand variables biases
down regression coefficients. Fama and MacBeth (1973) and Black, Jensen,
and Scholes (1972) addressed the problem by grouping stocks into port-
folios. Portfolio betas are better measured because the portfolio has lower
residual variance. Also, individual stock betas vary over time as the size, lever-
age, and risks of the business change. Portfolio betas may be more stable
over time, and hence easier to measure accurately.

There is a second reason for portfolios. Individual stock returns are
so volatile that you cannot reject the hypothesis that all average returns
are the same. σ/

√
T is big when σ = 40–80%. By grouping stocks into

portfolios based on some characteristic (other than firm name) related to
average returns, you reduce the portfolio variance and thus make it possible
to see average return deferences. Finally, I think much of the attachment to
portfolios comes from a desire to more closely mimic what actual investors
would do rather than simply form a statistical test.

Fama and MacBeth and Black, Jensen, and Scholes formed their port-
folios on betas. They found individual stock betas, formed stocks into
portfolios based on their betas, and then estimated the portfolio’s beta in
the following period. More recently, size, book/market, industry, and many
other characteristics have been used to form portfolios.

Ever since, the business of testing asset pricing models has been
conducted in a simple loop:

1. Find a characteristic that you think is associated with average returns.
Sort stocks into portfolios based on the characteristic, and check that
there is a difference in average returns between portfolios. Worry here
about measurement, survival bias, fishing bias, and all the other things
that can ruin a pretty picture out of sample.

2. Compute betas for the portfolios, and check whether the average return
spread is accounted for by the spread in betas.

3. If not, you have an anomaly. Consider multiple betas.

This is the traditional procedure, but econometrics textbooks urge you
not to group data in this way. They urge you to use the characteristic as an
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instrument for the poorly measured right-hand variable instead. It is an inter-
esting and unexplored idea whether this instrumental variables approach
could fruitfully bring us back to the examination of individual securities
rather than portfolios.

The CAPM proved stunningly successful in empirical work. Time after
time, every strategy or characteristic that seemed to give high average returns
turned out to also have high betas. Strategies that one might have thought
gave high average returns (such as holding very volatile stocks) turned out
not to have high average returns when they did not have high betas.

To give some sense of that empirical work, Figure 20.8 presents a typ-
ical evaluation of the Capital Asset Pricing Model. (Chapter 15 presented
some of the methodological issues surrounding this evaluation; here I focus
on the facts.) I examine 10 portfolios of NYSE stocks sorted by size (total
market capitalization), along with a portfolio of corporate bonds and long-
term government bonds. As the spread along the vertical axis shows, there
is a sizeable spread in average returns between large stocks (lower average
return) and small stocks (higher average return), and also a large spread
between stocks and bonds. The figure plots these average returns against
market betas. You can see how the CAPM prediction fits: portfolios with
higher average returns have higher betas. In particular, notice that the

Figure 20.8. The CAPM. Average returns vs. betas on the NYSE value-weighted portfolio for
10 size-sorted stock portfolios, government bonds, and corporate bonds, 1947–1996. The solid
line draws the CAPM prediction by fitting the market proxy and treasury bill rates exactly (a
time-series test). The dashed line draws the CAPM prediction by fitting an OLS cross-sectional
regression to the displayed data points. The small-firm portfolios are at the top right. The points
far down and to the left are the government bond and treasury bill returns.
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long-term and corporate bonds have mean returns in line with their low
betas, despite their standard deviations nearly as high as those of stocks.
Comparing this graph with the similar Figure 2.4 of the consumption-based
model, the CAPM fits very well.

In fact, Figure 20.8 captures one of the first significant failures of the
CAPM. The smallest firms (the far right portfolio) seem to earn an average
return a few percent too high given their betas. This is the celebrated ‘‘small-
firm effect’’ (Banz [1981]). Would that all failed economic theories worked
so well! It is also atypical in that the estimated market line through the
stock portfolios is steeper than predicted, while measurement error in betas
usually means that the estimated market line is too flat.

Fama–French 3 Factors

Book market sorted portfolios show a large variation in average returns
that is unrelated to market betas. The Fama and French three-factor model
successfully explains the average returns of the 25 size and book market sorted
portfolios with a three-factor model, consisting of the market, a small minus
big (SMB) portfolio, and a high minus low (HML) portfolio.

In retrospect, it is surprising that the CAPM worked so well for so long.
The assumptions on which it is built are very stylized and simplified. Asset
pricing theory recognized at least since Merton (1971, 1973a) the theoretical
possibility, indeed probability, that we should need factors, state variables,
or sources of priced risk beyond movements in the market portfolio in order
to explain why some average returns are higher than others.

The Fama–French model is one of the most popular multifactor models
that now dominate empirical research. Fama and French (1993) presents
the model; Fama and French (1996) gives an excellent summary, and also
shows how the three-factor model performs in evaluating expected return
puzzles beyond the size and value effects that motivated it.

‘‘Value’’ stocks have market values that are small relative to the accoun-
tant’s book value. (Book values essentially track past investment expen-
ditures. Book value is a better divisor for individual-firm price than are
dividends or earnings, which can be negative.) This category of stocks
has given large average returns. ‘‘Growth’’ stocks are the opposite of value
and have had low average returns. Since low prices relative to dividends,
earnings, or book value forecast times when the market return will be high,
it is natural to suppose that these same signals forecast categories of stocks
that will do well; the ‘‘value effect’’ is the cross-sectional analogy to price-ratio
predictability in the time series.
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Figure 20.9. Average returns vs. market beta for 25 stock portfolios sorted on the basis of size
and book/market ratio.

High average returns are consistent with the CAPM, if these categories
of stocks have high sensitivities to the market, high betas. However, small
and especially value stocks seem to have abnormally high returns even after
accounting for market beta. Conversely, ‘‘growth’’ stocks seem to do sys-
tematically worse than their CAPM betas suggest. Figure 20.9 shows this
value-size puzzle. It is just like Figure 20.8, except that the stocks are sorted
into portfolios based on size and book/market ratio1 rather than size alone.
As you can see, the highest portfolios have three times the average excess
return of the lowest portfolios, and this variation has nothing at all to do
with market betas.

Figures 20.10 and 20.11 dig a little deeper to diagnose the problem, by
connecting portfolios that have different size within the same book/market
category, and different book/market within size category. As you can see,
variation in size produces a variation in average returns that is positively
related to variation in market betas, as we had in Figure 20.9. Variation in
book/market ratio produces a variation in average return that is negatively
related to market beta. Because of this value effect, the CAPM is a disaster
when confronted with these portfolios. (Since the size effect disappeared in
1980, it is likely that almost the whole story can be told with book/market
effects alone.)

To explain these patterns in average returns, Fama and French advocate
a multifactor model with the market return, the return of small less big stocks

1 I thank Gene Fama for providing me with these data.



“chap20” — 2004/9/14 — page 440 — #56

440 20. Expected Returns in the Time Series and Cross Section

Figure 20.10. Average excess returns vs. market beta. Lines connect portfolios with different
size category within book market categories.

Figure 20.11. Average excess returns vs. market beta. Lines connect portfolios with different
book market categories within size categories.

(SMB) and the return of high book/market minus low book/market stocks
(HML) as three factors. They show that variation in average returns of the
25 size and book/market portfolios can be explained by varying loadings
(betas) on the latter two factors. (All their portfolios have betas close to
one on the market portfolio. Thus, market beta explains the average return
difference between stocks and bonds, but not across categories of stocks.)
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Figure 20.12. Average excess return vs. prediction of the Fama–French three-factor model.
Lines connect portfolios of different size categories within book/market category.

Figure 20.13. Average excess return vs. prediction of the Fama–French three-factor model.
Lines connect portfolios of different book market category within the same size category.

Figures 20.12 and 20.13 illustrate Fama and French’s results. The vertical
axis is still the average return of the 25 size and book/market portfolios. Now,
the horizontal axis is the predicted values from the Fama–French three-
factor model. The points should all lie on a 45◦ line if the model is correct.
The points lie much closer to this prediction than they do in Figures 20.10
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and 20.11. The worst fit is for the growth stocks (lowest line, Figure 20.12),
for which there is little variation in average return despite large variation in
size beta as one moves from small to large firms.

What Are the Size and Value Factors?

What are the macroeconomic risks for which the Fama–French factors
are proxies or mimicking portfolios? There are hints of some sort of ‘‘distress’’
or ‘‘recession’’ factor at work.

A central part of the Fama–French model is the fact that these three
pricing factors also explain a large part of the ex post variation in the 25
portfolios—the R 2 in time-series regressions are very high. In this sense, one
can regard it as an APT rather than a macroeconomic factor model.

The Fama–French model is not a tautology, despite the fact that factors
and test portfolios are based on the same set of characteristics.

We would like to understand the real, macroeconomic, aggregate,
nondiversifiable risk that is proxied by the returns of the HML and SMB
portfolios. Why are investors so concerned about holding stocks that do
badly at the times that the HML (value less growth) and SMB (small-cap less
large-cap) portfolios do badly, even though the market does not fall?

Fama and French (1996) note that the typical ‘‘value’’ firm has a price
that has been driven down from a long string of bad news, and is now in
or near financial distress. Stocks bought on the verge of bankruptcy have
come back more often than not, which generates the high average returns of
this strategy. This observation suggests a natural interpretation of the value
premium: If a credit crunch, liquidity crunch, flight to quality, or similar
financial event comes along, stocks in financial distress will do very badly,
and this is just the sort of time at which one particularly does not want to hear
that one’s stocks have become worthless! (One cannot count the ‘‘distress’’
of the individual firm as a ‘‘risk factor.’’ Such distress is idiosyncratic and
can be diversified away. Only aggregate events that average investors care
about can result in a risk premium.) Unfortunately, empirical support for
this theory is weak, since the HML portfolio does not covary strongly with
other measures of aggregate financial distress. Still, it is a possible and not
totally tested interpretation, since we have so few events of actual systematic
financial stress in recent history.

Heaton and Lucas’ (1997b) results add to this story for the value effect.
They note that the typical stockholder is the proprietor of a small, privately
held business. Such an investor’s income is of course particularly sensitive to
the kinds of financial events that cause distress among small firms and dis-
tressed value firms. Such an investor would therefore demand a substantial
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premium to hold value stocks, and might hold growth stocks despite a low
premium.

Lettau and Ludvigson (2001a) (also discussed in the next section) doc-
ument that HML has a time-varying beta on both the market return and on
consumption. Thus, though there is very little unconditional correlation
between HML and recession measures, Lettau and Ludvigson document
that HML is sensitive to bad news in bad times.

Liew and Vassalou (1999) is an example of current attempts to link value
and small-firm returns to macroeconomic events. They find that in many
countries counterparts to HML and SMB contain information above and
beyond that in the market return for forecasting GDP growth. For example,
they report a regression

GDPt→t+1 = a + 0.065 MKTt−1→t + 0.058 HMLt−1→t + εt+1.

GDPt→t+1 denotes the next year’s GDP growth and MKT , HML denote the
previous year’s return on the market index and HML portfolio. Thus, a 10%
HML return reflects a 1/2 percentage point rise in the GDP forecast.

On the other hand, one can ignore Fama and French’s motivation and
regard the model as an arbitrage pricing theory. If the returns of the 25 size
and book/market portfolios could be perfectly replicated by the returns
of the three-factor portfolios—if the R 2 in the time-series regressions were
100%—then the multifactor model would have to hold exactly, in order to
preclude arbitrage opportunities. In fact the R 2 of Fama and French’s time-
series regressions are all in the 90–95% range, so extremely high Sharpe
ratios for the residuals would have to be invoked for the model not to fit
well. Equivalently, given the average returns and the failure of the CAPM
to explain those returns, there would be near-arbitrage opportunities if
value and small stocks did not move together in the way described by the
Fama–French model.

One way to assess whether the three factors proxy for real macroeco-
nomic risks is by checking whether the multifactor model prices additional
portfolios, and especially portfolios that do not have high R 2 values. Fama
and French (1996) extend their analysis in this direction: They find that the
SMB and HML portfolios comfortably explain strategies based on alterna-
tive price multiples (P/E, B/M), strategies based on five-year sales growth
(this is especially interesting since it is the only strategy that does not form
portfolios based on price variables), and the tendency of five-year returns
to reverse. All of these strategies are not explained by CAPM betas. How-
ever, they all also produce portfolios with high R 2 values in a time-series
regression on the HML and SMB portfolios! This is good and bad news. It
might mean that the model is a good APT: that the size and book/market
characteristics describe the major sources of priced variation in all stocks.
On the other hand, it might mean that these extra sorts just have not iden-
tified other sources of priced variation in stock returns. (Fama and French
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also find that HML and SMB do not explain ‘‘momentum,’’ despite large
R 2 values. More on momentum later.)

One’s first reaction may be that explaining portfolios sorted on the basis
of size and book/market by factors sorted on the same basis is a tautology.
This is not the case. For example, suppose that average returns were higher
for stocks whose ticker symbols start later in the alphabet. (Maybe investors
search for stocks alphabetically, so the later stocks are ‘‘overlooked.’’) This
need not trouble us if Z stocks happened to have higher betas. If not—if
letter of the alphabet were a CAPM anomaly like book/market—however, it
would not necessarily follow that letter-based stock portfolios move together.
Adding A–L and M–Z portfolios to the right-hand side of a regression of the
26 A,B,C, etc. portfolios on the market portfolio need not (and probably
does not) increase the R 2 at all. The size and book/market premia are hard
to measure, and seem to have declined substantially in recent years. But
even if they decline back to CAPM values, Fama and French will still have
found a surprisingly large source of common movement in stock returns.

More to the point, in testing a model, it is exactly the right thing to
do to sort stocks into portfolios based on characteristics related to expected
returns. When Black, Jensen, and Scholes and Fama and MacBeth first tested
the CAPM, they sorted stocks into portfolios based on betas, because betas
are a good characteristic for sorting stocks into portfolios that have a spread
in average returns. If your portfolios have no spread in average returns—if
you just choose 25 random portfolios, then there will be nothing for the
asset pricing model to test.

In fact, despite the popularity of the Fama–French 25, there is really
no fundamental reason to sort portfolios based on two-way or larger sorts
of individual characteristics. You should use all the characteristics at hand
that (believably!) indicate high or low average returns and simply sort stocks
according to a one-dimensional measure of expected returns.

The argument over the status of size and book/market factors contin-
ues, but the important point is that it does so. Faced with the spectacular
failure of the CAPM documented in Figures 20.9 and 20.11 one might
have thought that any hope for a rational asset pricing theory was over.
Now we are back where we were, examining small anomalies and argu-
ing over refinements and interpretations of the theory. That is quite an
accomplishment!

Macroeconomic Factors

Labor income, industrial production, news variables, and conditional
asset pricing models have also all had some successes as multifactor models.
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I have focused on the size and value factors since they provide the
most empirically successful multifactor model to date, and have therefore
attracted much attention.

Several authors have used macroeconomic variables as factors in order
to examine directly the story that stock performance during bad macroeco-
nomic times determines average returns. Jagannathan and Wang (1996) and
Reyfman (1997) use labor income; Chen, Roll, and Ross (1986) use indus-
trial production and inflation among other variables. Cochrane (1996) uses
investment growth. All these authors find that average returns line up against
betas calculated using these macroeconomic indicators. The factors are the-
oretically easier to motivate, but none explains the value and size portfolios
as well as the (theoretically less solid, so far) size and value factors.

Lettau and Ludvigson (2001a) specify a macroeconomic model that
does just as well as the Fama–French factors in explaining the 25 Fama–
French portfolios. Their plots of actual average returns versus model pre-
dictions show a relation as strong as those of Figures 20.12 and 20.13. Their
model is

m t+1 = a + b(cayt )�ct+1,

where cay is a measure of the consumption-wealth ratio. This is a ‘‘scaled
factor model’’ of the sort advocated in Chapter 8. You can think of it as
capturing a time-varying risk aversion.

Though Merton’s (1971, 1973a) theory says that variables which predict
market returns should show up as factors which explain cross-sectional vari-
ation in average returns, surprisingly few papers have actually tried to see
whether this is true, now that we do have variables that we think forecast the
market return. Campbell (1996) and Ferson and Harvey (1999) are among
the few exceptions.

Momentum and Reversal

Sorting stocks based on past performance, you find that a portfolio
that buys long-term losers and sells long-term winners does better than the
opposite—individual stock long-term returns mean-revert. This ‘‘reversal’’
effect makes sense given return predictability and mean-reversion, and
is explained by the Fama–French three-factor model. However, a port-
folio that buys short-term winners and sells short-term losers also does
well—‘‘momentum.’’ This effect is a puzzle.

Since a string of good returns gives a high price, it is not surprising
that stocks that do well for a long time (and hence build up a high price)
subsequently do poorly, and stocks that do poorly for a long time (and
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Table 20.12. Average monthly returns from reversal and
momentum strategies

Portfolio Average
Formation Return, 10-1

Strategy Period Months (Monthly %)

Reversal 6307-9312 60-13 −0.74
Momentum 6307-9312 12-2 +1.31

Reversal 3101-6302 60-13 −1.61
Momentum 3101-6302 12-2 +0.38

Each month, allocate all NYSE firms on CRSP to 10 portfolios based on
their performance during the ‘‘portfolio formation months’’ interval. For
example, 60–13 forms portfolios based on returns from 5 years ago to 1 year,
1 month ago. Then buy the best-performing decile portfolio and short the
worst-performing decile portfolio.
Source: Fama and French (1996, Table VI).

hence dwindle down to a low price, market value, or market/book ratio)
subsequently do well. Table 20.12, taken from Fama and French (1996),
reveals that this is in fact the case. (As usual, this table is the tip of an iceberg
of research on these effects, starting with DeBont and Thaler [1985] and
Jegadeesh and Titman [1993].)

Reversal
Here is the ‘‘reversal’’ strategy. Each month, allocate all stocks to 10 port-
folios based on performance in year −5 to year −1. Then, buy the best-
performing portfolio and short the worst-performing portfolio. The first
row of Table 20.12 shows that this strategy earns a hefty −0.74% monthly
return.2 Past long-term losers come back and past winners do badly.
This is a cross-sectional counterpart to the mean-reversion that we stud-
ied in Section 1.4. Fama and French (1988a) already found substantial
mean-reversion—negative long-horizon return autocorrelations—in disag-
gregated stock portfolios, so one would expect this phenomenon.

Spreads in average returns should correspond to spreads in betas. Fama
and French verify that these portfolio returns are explained by their three-
factor model. Past losers have a high HML beta; they move together with
value stocks, and so inherit the value stock premium.

2 Fama and French do not provide direct measures of standard deviations for these portfo-
lios. One can infer, however, from the betas, R 2 values, and standard deviation of market and
factor portfolios that the standard deviations are roughly 1–2 times that of the market return,
so that Sharpe ratios of these strategies are comparable to that of the market return.
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Momentum
The second row of Table 20.12 tracks the average monthly return from
a ‘‘momentum’’ strategy. Each month, allocate all stocks to 10 portfolios
based on performance in the last year. Now, quite surprisingly, the winners
continue to win, and the losers continue to lose, so that buying the winners
and shorting the losers generates a positive 1.31% monthly return.

At every moment there is a most-studied anomaly, and momentum is
that anomaly as I write. It is not explained by the Fama–French three-factor
model. The past losers have low prices and tend to move with value stocks.
Hence the model predicts they should have high average returns, not low
average returns. Momentum stocks move together, as do value and small
stocks, so a ‘‘momentum factor’’ works to ‘‘explain’’ momentum portfolio
returns. This is so obviously ad hoc (i.e., an APT factor that will only explain
returns of portfolios organized on the same characteristic as the factor) that
nobody wants to add it as a risk factor.

A momentum factor is more palatable as a performance attribution
factor. If we run fund returns on factors including momentum, we may
be able to say that a fund did well by following a mechanical momentum
strategy rather than by stock-picking ability, leaving aside why a momentum
strategy should work. Carhart (1997) uses it in this way.

Momentum is really a new way of looking at an old phenomenon, the
small apparent predictability of monthly individual stock returns. A tiny
regression R 2 for forecasting monthly returns of 0.0025 (1/4%) is more
than adequate to generate the momentum results of Table 20.12. The key
is the large standard deviation of individual stock returns, typically 40% or
more at an annual basis. The average return of the best performing decile
of a normal distribution is 1.76 standard deviations above the mean,3 so the
winning momentum portfolio typically went up about 80% in the previous
year, and the typical losing portfolio went down about 60% per year. Only
a small amount of continuation will give a 1% monthly return when multi-
plied by such large past returns. To be precise, the monthly individual stock
standard deviation is about 40%/

√
12 ≈ 12%. If the R 2 is 0.0025, the stan-

dard deviation of the predictable part of returns is
√

0.0025 × 12% = 0.6%.
Hence, the decile predicted to perform best will earn 1.76 × 0.6% ≈ 1%

3 We are looking for

E (r |r ≥ x) =
∫∞

x rf (r ) dr∫∞
x f (r ) dr

,

where x is defined as the top 10th cutoff,
∫ ∞

x
f (r ) dr = 1

10
.

With a normal distribution, x = 1.2816σ and E (r |r ≥ x) = 1.755σ .
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above the mean. Since the strategy buys the winners and shorts the losers,
an R 2 of 0.0025 implies that one should earn a 2% monthly return by
the momentum strategy—more even than the 1.3% shown in Table 20.12.
Lewellen (2000) offers a related explanation for momentum coming from
small cross-correlations of returns.

We have known at least since Fama (1965) that monthly and higher-
frequency stock returns have slight, statistically significant predictability
with R 2 in the 0.01 range. However, such small though statistically signif-
icant high-frequency predictability, especially in small stock returns, has
also since the 1960s always failed to yield exploitable profits after one
accounts for transactions costs, thin trading, high short-sale costs, and other
microstructure issues. Hence, one naturally worries whether momentum is
really exploitable after transactions costs.

Momentum does require frequent trading. The portfolios in Table 20.12
are reformed every month. Annual winners and losers will not change that
often, but the winning and losing portfolios must still be turned over at
least once per year. Carhart (1997) calculates transactions costs and con-
cludes that momentum is not exploitable after those costs are taken into
account. Moskowitz and Grinblatt (1999) note that most of the appar-
ent gains come from short positions in small, illiquid stocks, positions
that also have high transactions costs. They also find that a large part
of momentum profits come from short positions taken November, antic-
ipating tax-loss selling in December. This sounds a lot more like a small
microstructure glitch rather than a central parable for risk and return in
asset markets.

Table 20.12 already shows that the momentum effect essentially dis-
appears in the earlier data sample, while reversal is even stronger in that
sample. Ahn, Boudoukh, Richardson, and Whitelaw (2002) show that appar-
ent momentum in international index returns is missing from the futures
markets, also suggesting a microstructure explanation.

Of course, it is possible that a small positive autocorrelation is there and
related to some risk. However, it is hard to generate real positive autocorre-
lation in realized returns. As we saw in Section 20.2, a slow and persistent
variation in expected returns most naturally generates negative autocorre-
lation in realized returns. News that expected returns are higher means
future dividends are discounted at a higher rate, so today’s price and return
declines. The only way to overturn this prediction is to suppose that expected
return shocks are positively correlated with shocks to current or expected
future dividend growth. A convincing story for such correlation has not yet
been constructed. On the other hand, the required positive correlation is
very small and not very persistent.
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20.3 Summary and Interpretation

While the list of new facts appears long, similar patterns show up in every
case. Prices reveal slow-moving market expectations of subsequent excess
returns, because potential offsetting events seem sluggish or absent. The
patterns suggest that there are substantial expected return premia for taking
on risks of recession and financial stress unrelated to the market return.

Magnifying Glasses
The effects are not completely new. We knew since the 1960s that high-
frequency returns are slightly predictable, with R 2 of 0.01 to 0.1 in daily
to monthly returns. These effects were dismissed because there did not
seem to be much that one could do about them. A 51/49 bet is not very
attractive, especially if there is any transactions cost. Also, the increased
Sharpe ratio one can obtain by exploiting predictability is directly related
to the forecast R 2, so tiny R 2, even if exploitable, did not seem like an
important phenomenon.

Many of the new facts amount to clever magnifying glasses, ways of
making small facts economically interesting. For forecasting market returns,
we now realize that R 2 rise with horizon when the forecasting variables are
slow-moving. Hence small R 2 at high frequency can mean really substantial
R 2, in the 30–50% range, at longer horizons. Equivalently, we realize that
small expected return variation can add up to striking price variation if
the expected return variation is persistent. For momentum and reversal
effects, the ability to sort stocks and funds into momentum-based portfolios
means that small predictability times portfolios with huge past returns gives
important subsequent returns.

Dogs that Did Not Bark
In each case, an apparent difference in yield should give rise to an offsetting
movement, but seems not to do so. Something should be predictable so that
returns are not predictable, and it is not.

The d/p forecasts of the market return were driven by the fact that
dividends should be predictable, so that returns are not. Instead, divi-
dend growth seems nearly unpredictable. As we saw, this fact and the
speed of the d/p mean-reversion imply the observed magnitude of return
predictability.

The term structure forecasts of bond returns were driven by the fact that
bond yields should be predictable, so that returns are not. Instead, yields
seem nearly unpredictable at the one-year horizon. This fact means that
the forward rate moves one for one with expected returns, and that a one
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percentage point increase in yield spread signals as much as a 5 percentage
point increase in expected return.

Exchange rates should be forecastable so that foreign exchange returns
are not. Instead, a one percentage point increase in interest rate abroad
seems to signal a greater than one percentage point increase in expected
return.

Prices Reveal Expected Returns
If expected returns rise, prices are driven down, since future dividends or
other cash flows are discounted at a higher rate. A ‘‘low’’ price, then, can
reveal a market expectation of a high expected or required return.

Most of our results come from this effect. Low price/dividend, price/
earnings, price/book values signal times when the market as a whole will
have high average returns. Low market value (price times shares) relative
to book value signals securities or portfolios that earn high average returns.
The ‘‘small-firm’’ effect derives from low prices—other measures of size such
as number of employees or book value alone have no predictive power for
returns (Berk [1997]). The ‘‘5 year reversal’’ effect derives from the fact that
five years of poor returns lead to a low price. A high long-term bond yield
means that the price of long-term bonds is ‘‘low,’’ and this seems to signal a
time of good long-term bonds returns. A high foreign interest rate means a
low price on foreign bonds, and this seems to indicate good returns on the
foreign bonds.

The most natural interpretation of all these effects is that the expected
or required return—the risk premium—on individual securities as well as
the market as a whole varies slowly over time. Thus we can track market
expectations of returns by watching price/dividend, price/earnings, or
book/market ratios.

Macroeconomic Risks
The price-based patterns in time-series and cross-sectional expected returns
suggest a premium for holding risks related to recession and economy-wide
financial distress. All of the forecasting variables are connected to macro-
economic activity (Fama and French [1989]). The dividend/price ratio is
highly correlated with the default spread and rises in bad times. The term
spread forecasts bond and stock returns, and is also one of the best recession
forecasters. It rises steeply at the bottoms of recessions, and is inverted at
the top of a boom. Thus, return forecasts are high at the bottom of busi-
ness cycles and low at the top of booms. ‘‘Value’’ and ‘‘small-cap’’ stocks
are typically distressed. Formal quantitative and empirically successful eco-
nomic models of the recession and distress premia are still in their infancy
(I think Campbell and Cochrane [1999] is a good start), but the story is
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at least plausible, and the effects have been expected by theorists for a
generation.

To make this point come to life, think concretely about what you have
to do to take advantage of the value or predictability strategies. You have
to buy stocks or long-term bonds at the bottom, when stock prices are low
after a long and depressing bear market; in the bottom of a recession or
financial panic; a time when long-term bond prices and corporate bond
prices are unusually low. This is a time when few people have the guts (the
risk-tolerance) or the wallet to buy risky stocks or risky long-term bonds.
Looking across stocks rather than over time, you have to invest in ‘‘value’’
companies, dogs by any standards. These are companies with years of poor
past returns, years of poor sales, companies on the edge of bankruptcy,
far off of any list of popular stocks to buy. Then, you have to sell stocks
and long-term bonds in good times, when stock prices are high relative
to dividends, earnings, and other multiples, when the yield curve is flat
or inverted so that long-term bond prices are high. You have to sell the
popular ‘‘growth’’ stocks with good past returns, good sales, and earnings
growth.

I am going on a bit here to counter the widespread impression, best
crystallized by Shiller (2000) that high price/earnings ratios must signal
‘‘irrational exuberance.’’ Perhaps, but is it just a coincidence that this exu-
berance comes at the top of an unprecedented economic expansion, a time
when the average investor is surely feeling less risk averse than ever, and
willing to hold stocks despite historically low risk premia? I do not know the
answer, but the rational explanation is surely not totally impossible! Is it just
a coincidence that we are finding premia just where a generation of theo-
rists said we ought to—in recessions, credit crunches, bad labor markets,
investment opportunity set variables, and so forth?

This line of explanation for the foreign exchange puzzle is still a bit
farther off, though there are recent attempts to make economic sense of
the puzzle. (See Engel’s [1996] survey; Atkeson, Alvarez, and Kehoe [1999]
is a recent example.) At a verbal level, the strategy leads you to invest in
countries with high interest rates. High interest rates are often a sign of
monetary instability or other economic trouble, and thus may mean that
the investments may be more exposed to the risks of global financial stress
or a global recession than are investments in the bonds of countries with
low interest rates, who are typically enjoying better times.

Overall, the new view of finance amounts to a profound change. We
have to get used to the fact that most returns and price variation come
from variation in risk premia, not variation in expected cash flows, interest
rates, etc. Most interesting variation in priced risk comes from nonmar-
ket factors. These are easy to say, but profoundly change our view of the
world.
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Doubts
Momentum is, so far, unlike all the other results. The underlying phe-
nomenon is a small predictability of high-frequency returns. However, the
price-based phenomena make this predictability important by noting that,
with a slow-moving forecasting variable, the R 2 build over horizon. Momen-
tum is based on a fast-moving forecast variable—the last year’s return.
Therefore the R 2 decline with horizon. Instead, momentum makes the tiny
autocorrelation of high-frequency returns significant by forming portfolios
of extreme winners and losers, so a small continuation of huge past returns
gives a large current return. All the other results are easily digestible as a
slow, business-cycle-related time-varying expected return. This specification
gives negative autocorrelation (unless we add a distasteful positive corre-
lation of expected return and dividend shocks) and so does not explain
momentum. Momentum returns have also not yet been linked to business
cycles or financial distress in even the informal way that I suggested for
the price-based strategies. Thus, it still lacks much of a plausible economic
interpretation. To me, this adds weight to the view that it is not there, it is
not exploitable, or it represents a small illiquidity (tax-loss selling of small
illiquid stocks) that will be quickly remedied once a few traders understand
it. In the entire history of finance there has always been an anomaly-du-jour,
and momentum is it right now. We will have to wait to see how it is resolved.

Many of the anomalous risk premia seem to be declining over time.
The small-firm effect completely disappeared in 1980; you can date this as
the publication of the first small-firm effect papers or the founding of small-
firm mutual funds that made diversified portfolios of small stocks available to
average investors. To emphasize this point, Figure 20.14 plots size portfolio
average returns versus beta in the period since 1979. You can see that not
only has the small-firm premium disappeared, the size-related variation in
beta and expected return has disappeared.

The value premium has been cut roughly in half in the 1990s, and 1990
is roughly the date of widespread popularization of the value effect, though
σ/

√
T leaves a lot of room for error here. As you saw in Table 20.4, the last

five years of high market returns have cut the estimated return predictability
from the dividend/price ratio in half.

These facts suggest an uncomfortable implication: that at least some of
the premium the new strategies yielded in the past was due to the fact that
they were simply overlooked, they were artifacts of data-dredging, or they
survived only until funds were created that allow many investors to hold
diversified portfolios that exploit them.

Since they are hard to measure, one is tempted to put less emphasis on
these average returns. However, they are crucial to our interpretation of the
facts. The CAPM is perfectly consistent with the fact that there are additional
sources of common variation. For example, it was long understood that
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Figure 20.14. Average returns vs. market betas. CRSP size portfolios less treasury bill rate,
monthly data 1979–1998.

stocks in the same industry move together; the fact that value or small
stocks also move together need not cause a ripple. The surprise is that
investors seem to earn an average return premium for holding these addi-
tional sources of common movement, whereas the CAPM predicts that
(given beta) such common movements should have no effect on a portfolio’s
average returns.

Problems—Chapter 20

1. Does equation (20.11) condition down to information sets coarser than
those observed by agents? Or must we assume that whatever VAR is used by
the econometrician contains all information seen by agents?

2. Show that the two regressions in Table 20.9 are complementary—that
the coefficients add up to one, mechanically, in sample.

3. Derive the return innovation decomposition (20.11), directly. Write the
return

rt = �d t + ρ
(
pt − d t

)− (pt−1 − d t−1).
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Apply Et − Et−1 to both sides,

rt − Et−1rt = (Et − Et−1)�d t + ρ(Et − Et−1)(pt − d t ). (20.44)

Use the price/dividend identity and iterate forward to obtain (20.11).

4. Find the univariate representation and mean-reversion statistics for
prices implied by the simple VAR and the three dividend examples.

5. Find the univariate return representation from a general return fore-
casting VAR,

rt+1 = ax t + εr t+1,

x t+1 = bx t + εx t+1.

Find the correlation between return and x shocks necessary to generate
uncorrelated returns.

6. Show that stationary x t − yt , �x t , �yt imply that x t and yt must have
the same limiting variance of k th differences (as k → ∞), and that long-
run differences must become perfectly correlated. Start by showing that the
long-run variance limk→∞ var(x t+k − x t )/k for any stationary variable must
be zero. Apply that fact to x t − yt .

7. Compute the long-horizon regression coefficients and R 2 in the VAR
(20.14)–(20.20). Show that the R 2 do indeed rise with horizon. Do
coefficients and R 2 rise forever, or do they turn around at some point?
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Equity Premium Puzzle and
Consumption-Based Models

The original specification of the consumption-based model was not a
great success, as we saw in Chapter 2. Still, it is in some sense the only model
we have. The central task of financial economics is to figure out what are
the real risks that drive asset prices and expected returns. Something like
the consumption-based model—investors’ first-order conditions for savings
and portfolio choice—has to be the starting point.

Rather than dream up models, test them, and reject them, financial
economists since the work of Mehra and Prescott (1985) and Hansen and
Jagannathan (1991) have been able to work backwards to some extent, char-
acterizing the properties that discount factors must have in order to explain
asset return data. Among other things, we learned that the discount factor
had to be extremely volatile, while not too conditionally volatile; the risk-free
rate or conditional mean had to be pretty steady. This knowledge is now lead-
ing to a much more successful set of variations on the consumption-based
model.

455
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21.1 Equity Premium Puzzles

The Basic Equity Premium/Risk-Free Rate Puzzle

The postwar U.S. market Sharpe ratio is about 0.5—an 8% return and
16% standard deviation. The basic Hansen–Jagannathan bound

E (R e )

σ (R e )
≤ σ(m)

E (m)
≈ γ σ(�c)

implies σ(m) ≥ 50% on an annual basis, requiring huge risk aversion or
consumption growth volatility.

The average risk-free rate is about 1%, so E (m) ≈ 0.99. High risk aversion
with power utility implies a very high risk-free rate, or requires a negative
subjective discount factor.

Interest rates are quite stable over time and across countries, so Et (m)
varies little. High risk aversion with power utility implies that interest rates are
very volatile.

In Chapter 1, we derived the basic Hansen–Jagannathan (1991) bounds.
These are characterizations of the discount factors that price a given set of
asset returns. Manipulating 0 = E (mR e ), we found

σ(m)
E (m)

≥ |E (R e )|
σ(R e )

. (21.1)

In continuous time, or as an approximation in discrete time, we found that
time-separable utility implies

γ σ(�c) ≥ |E (R e )|
σ(R e )

, (21.2)

where γ = −cu ′′/u ′ is the local curvature of the utility function, and risk
aversion coefficient for the power case.

Equity Premium Puzzle
The postwar mean value-weighted NYSE is about 8% per year over the T-bill
rate, with a standard deviation of about 16%. Thus, the market Sharpe ratio
E (R e )/σ (R e ) is about 0.5 for an annual investment horizon. If there were a
constant risk-free rate,

E (m) = 1/R f

would nail down E (m). The T-bill rate is not very risky, so E (m) is not far from
the inverse of the mean T-bill rate, or about E (m) ≈ 0.99. Thus, these basic
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facts about the mean and variance of stocks and bonds imply σ(m) > 0.5.
The volatility of the discount factor must be about 50% of its level in annual
data!

Per capita consumption growth has standard deviation about 1% per
year. With log utility, that implies σ(m) = 0.01 = 1% which is off by a factor
of 50. To match the equity premium we need γ > 50, which seems a huge
level of risk aversion. Equivalently, a log utility investor with consumption
growth of 1% and facing a 0.5 Sharpe ratio should be investing dramatically
more in the stock market, borrowing to do so. He should invest so much
that his wealth and hence consumption growth does vary by 50% each year.

Correlation Puzzle
The bound takes the extreme possibility that consumption and stock
returns are perfectly correlated. They are not, in the data. Correlations are
hard to measure, since they are sensitive to data definition, timing, time-
aggregation, and so forth. Still, the correlation of annual stock returns and
nondurable plus services consumption growth in postwar U.S. data is no
more than about 0.2. If we use this information as well—if we characterize
the mean and standard deviation of all discount factors that have correlation
less than 0.2 with the market return, the calculation becomes

σ(m)
E (m)

≥ 1
|ρm,Re |

|E (R e )|
σ(R e )

= 1
0.2

0.5 = 2.5

with σ(m) ≈ γ σ(�c); we now need a risk aversion coefficient of 250!
Here is a classier way to state the correlation puzzle. Remember that

proj(m|X ) should price assets just as well as m itself. Now, m = proj(m|X )+
ε and σ 2(m) = σ 2(proj(m|X )) + σ 2(ε). Some of the early resolutions of
the equity premium puzzle ended up adding noise uncorrelated with asset
payoffs to the discount factor. This modification increased discount factor
volatility and satisfied the bound. But as you can see, adding ε increases
σ 2(m) with no effect whatsoever on the model’s ability to price assets. As you
add ε, the correlation between m and asset returns declines. A bound with
correlation, or equivalently comparing σ 2(proj(m|X )) rather than σ 2(m) to
the bound, avoids this trap.

Average Interest Rates and Subjective Discount Factors
It has been traditional to use risk aversion numbers of 1 to 5 or so, but
perhaps this is tradition, not fact. What is wrong with γ = 50 to 250?

The most basic piece of evidence for low γ comes from the relation
between consumption growth and interest rates:

1

R f
t

= Et (m t+1) = Et

[
β

(
Ct+1

Ct

)−γ]
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or, in continuous time,

r f
t = δ + γEt (�c)− 1

2
γ (γ + 1)σ 2

t (�c) . (21.3)

Real interest rates are typically quite low, about 1%. However, with a
1% mean and 1% standard deviation of consumption growth, the predicted
interest rate rises quickly as we raise γ . For example, with γ = 50 and a typical
1% δ = 0.01, we predict r f = 0.01 + 50 × 0.01 − 1

2 × 50 × 51 × 0.012 = 0.38
or 38%. To get a reasonable 1% real interest rate, we have to use a subjective
discount factor of negative 37%. That is not impossible—an economic model
can be well specified, and in particular present values can converge, with
negative discount rates (Kocherlakota [1990])—but it doesn’t seem very
reasonable. People prefer earlier utility.

The second term in (21.3) opens another possibility. As risk aversion
increases, this precautionary saving term starts to offset the first, intertem-
poral substitution term. At an extreme value of risk aversion, γ = 199 (still
using E (�c) = 0.01, σ(�c) = 0.01), they exactly offset, leaving r f = δ. The
discrete time formula behaves similarly, though at a somewhat different very
high value of γ .

Interest Rate Variation and the Conditional Mean of the Discount Factor
Again, however, maybe we are being too doctrinaire. What evidence is there
against γ = 50 with δ = −0.38 or γ = 199 with δ = 0.01?

Real interest rates are not only low on average, they are also relatively
stable over time and across countries. γ = 50 in equation (21.3) means that a
country or a boom time with consumption growth 1 percentage point higher
than normal must have real interest rates 50 percentage points higher than
normal, and consumption 1 percentage point lower than normal should
be accompanied by real interest rates of 50 percentage points lower than
normal—you pay them 48% to keep your money. We do not see anything
like this.

γ = 50 to 250 in a time-separable utility function implies that consumers
are essentially unwilling to substitute (expected) consumption over time, so
huge interest rate variation must force them to make the small variations in
consumption growth that we do see. This level of aversion to intertemporal
substitution is too large. For example, think about what interest rate you
need to convince someone to skip a vacation. Take a family with $50,000
per year consumption, which spends $2,500 (5%) on an annual vacation.
If interest rates are good enough, though, the family can be persuaded
to skip this year’s vacation and go on a much more lavish vacation next
year. The required interest rate is ($52,500/$47,500)γ − 1. For γ = 250,
that is an interest rate of 3 × 1011! For γ = 50, we still need an interest
rate of 14,800%. I think most of us would give in and defer the vacation
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for somewhat lower interest rates! A reasonable willingness to substitute
intertemporally is central to most macroeconomic models that try to capture
the dynamics of output, investment, consumption, etc.

As always, we can express the observation as a desired characteristic
of the discount factor. Though m t+1 must vary a lot, its conditional mean
Et (m t+1) = 1/R f

t must not vary much. You can get variance in two ways—
variance in the conditional mean and variance in the unexpected compo-
nent; var(x) = var[Et (x)] + var[x − Et (x)]. The fact that interest rates are
stable means that almost all of the 50% or more unconditional discount
factor variance must come from the second term.

The power functional form is really not an issue. To get past the
equity premium and these related puzzles, we will have to introduce other
arguments to the marginal utility function—some nonseparability. One
important key will be to introduce some nonseparability that distinguishes
intertemporal substitution from risk aversion.

Variations

Just raising the interest rate will not help, as all-stock portfolios have high
Sharpe ratios too.

Uninsured individual risk is not an obvious solution. Individual consump-
tion is not volatile enough to satisfy the bounds, and is less correlated with
stock returns than aggregate consumption.

The average return in postwar data may overstate the true expected
return; a target of 3–4% is not unreasonable.

Is the Interest Rate ‘‘Too Low’’?
A large literature has tried to explain the equity premium puzzle by intro-
ducing frictions that make treasury bills ‘‘money-like’’ and so argues that
the short-term interest rate is artificially low. (Aiyagari and Gertler [1991] is
an example). However, high historical Sharpe ratios are pervasive in finan-
cial markets. Portfolios long small stocks and short big stocks, or long value
(high book/market) and short growth stocks, give Sharpe ratios of 0.5 or
more as well.

Individual Shocks
Maybe we should abandon the representative agent assumption. Individual
income shocks are not perfectly insured, so individual income and con-
sumption is much more volatile than aggregate consumption. Furthermore,
through most of the sample, only a small portion of the population held
any stocks at all.
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This line of argument faces a steep uphill battle. The basic pricing
equation applies to each investor. Individual income growth may be more
volatile than the aggregate, but it is not credible that any individual’s
consumption growth varies by 50–250% per year! Keep in mind, this is non-
durable and services consumption and the flow of services from durables,
not durables purchases.

Furthermore, individual consumption growth is likely to be less cor-
related with stock returns than is aggregate consumption growth, and the
more volatile it is, the less correlated. As a simple example, write individ-
ual consumption growth equal to aggregate consumption growth plus an
idiosyncratic shock, uncorrelated with economywide variables,

�c i
t = �ca

t + εi
t .

Hence,

cov(�c i
t , rt ) = cov(�ca

t + εi
t , rt ) = cov(�ca

t , rt ).

As we add more idiosyncratic variation, the correlation of consumption with
any aggregate such as stock returns declines in exact proportion. Follow-
ing correlation puzzle logic, the asset pricing implications are completely
unaffected.

Luck and a Lower Target
One nagging doubt is that a large part of the U.S. postwar average stock
return may represent good luck rather than ex ante expected return.

First of all, the standard deviation of stock returns is so high that
standard errors are surprisingly large. Using the standard formula σ/

√
T ,

the standard error of average stock returns in 50 years of data is about
16/

√
50 ≈ 2.3. This fact means that a two-standard-error confidence interval

for the expected return extends from about 3% to about 13%!
This is a pervasive, simple, but surprisingly underappreciated prob-

lem in empirical asset pricing. In 20 years of data, 16/
√

20 = 3.6 so we
can barely say that an 8% average return is above zero. Five-year perfor-
mance averages of something like a stock return are close to meaningless
on a statistical basis, since 16/

√
5 = 7.2. (This is one reason that many

funds are held to tracking error limits relative to a benchmark. You may be
able to measure performance relative to a benchmark, even if your return
and the benchmark are both very volatile. If σ(R i − R m) is small, then
σ(R i − R m)/

√
T can be small, even if σ(R i) and σ(R m) are large.)

However, large standard errors can argue that the equity premium is
really higher than the postwar return. Several other arguments suggest a
bias—that a substantial part of the 8% average excess return of the last
50 years was good luck, and that the true equity premium is more like 3–4%.
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Brown, Goetzmann, and Ross (1995) suggest that the U.S. data suffer
from selection bias. One of the reasons that I write this book in the United
States, and that the data has been collected from the United States, is pre-
cisely because U.S. stock returns and growth have been so good for the last
50–100 years.

One way to address this question is to look at other samples. Average
returns were a lot lower in the United States before WWII. In Shiller’s (1989)
annual data from 1871–1940, the S&P500 average excess return was only
4.1%. However, Campbell (1999, table 1) looks across countries for which
we have stock market data from 1970–1995, and finds the average equity
premium practically the same as that for the United States in that period.
The other countries averaged a 4.6% excess return while the United States
had a 4.4% average excess return in that period.

On the other hand, Campbell’s countries are Canada, Japan, Australia,
and Western Europe. These probably shared a lot of the U.S. ‘‘good luck’’
in the postwar period. There are lots of countries for which we do not
have data, and usually because returns were very low in those countries.
As Brown, Goetzmann, and Ross (1995) put it, ‘‘Looking back over the
history of the London or the New York stock markets can be extraordinarily
comforting to an investor—equities appear to have provided a substantial
premium over bonds, and markets appear to have recovered nicely after
huge crashes. . . . Less comforting is the past history of other major markets:
Russia, China, Germany and Japan. Each of these markets has had one
or more major interruptions that prevent their inclusion in long term studies’’
[my emphasis].

Think of the things that did not happen in the last 50 years. We had no
banking panics, and no depressions; no civil wars, no constitutional crises;
we did not lose the Cold War, no missiles were fired over Berlin, Cuba,
Korea, or Vietnam. If any of these things had happened, we might well have
seen a calamitous decline in stock values, and I would not be writing about
the equity premium puzzle.

A view that stocks are subject to occasional and highly non-normal
crashes—world wars, great depressions, etc.—makes sampling uncertainty
even larger, and means that the average return from any sample that does
not include a crash will be larger than the actual average return—the Peso
Problem again (Reitz [1988]).

Fama and French (2000) notice that the price/dividend ratio is low at
the beginning of the sample and high at the end. Much of that is luck—the
dividend yield is stationary in the very long run, with slow-moving vari-
ation through good and bad times. We can understand their alternative
calculation most easily using the return linearization,

rt+1 = �dt+1 + (dt − pt )− ρ(dt+1 − pt+1).
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Then, imposing the view that the dividend/price ratio is stationary, we can
estimate the average return as

E (rt+1) = E (�dt+1)+ (1 − ρ)E (dt − pt ).

The right-hand expression gives an estimate of the unconditional average
return on stocks equal to 3.4%. This differs from the sample average return
of 9%, because the d/p ratio declined dramatically in the postwar sample.

Here is the fundamental issue: Was it clear to people in 1947 (or 1871,
or whenever one starts the sample) and throughout the period that the aver-
age return on stocks would be 8% greater than that of bonds, subject only to
the 16% year-to-year variation? Given that knowledge, would investors have
changed their portfolios, or would they have stayed pat, patiently explain-
ing that these average returns are earned in exchange for risk that they
are not prepared to take? If people expected these mean returns, then we
face a tremendous challenge of explaining why people did not buy more
stocks. This is the basic assumption and challenge of the equity premium
puzzle. But phrased this way, the answer is not so clear. I do not think it
was obvious in 1947 that the United States would not slip back into depres-
sion, or another world war, but would instead experience a half century
of economic growth and stock returns never before seen in human history.
Eight percent seems like an extremely—maybe even irrationally—exuberant
expectation for stock returns as of 1947, or 1871. (You can ask the same ques-
tion, by the way, about value effects, market timing, or other puzzles we try
to explain. Only if you can reasonably believe that people understood the
average returns and shied away because of the risks does it make sense to
explain the puzzles by risk rather than luck. Only in that case will the return
premia continue!)

This consideration mitigates, but cannot totally solve, the equity pre-
mium puzzle. Even a 3% equity premium is tough to understand with 1%
consumption volatility. If the premium is 3%, the Sharpe ratio is 3/16 ≈ 0.2,
so we still need risk aversion of 20, and 100 if we include correlation. Twenty
to 100 is a lot better than 50–250, but is still quite a challenge.

Predictability and the Equity Premium

The Sharpe ratio varies over time. This means that discount factor volatil-
ity must vary over time. Since consumption volatility does not seem to vary over
time, this suggests that risk aversion must vary over time—a conditional equity
premium puzzle.
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Conventional portfolio calculations suggest that people are not terri-
bly risk averse. These calculations implicitly assume that consumption moves
proportionally to wealth, and inherits the large wealth volatility.

If stock returns mean-revert, E (R e )/σ (R e ) and hence σ(m)/E (m) rises
faster than the square root of the horizon. Consumption growth is roughly
i.i.d., so σ(�c) rises about with the square root of horizon. Thus, mean-
reversion means that the equity premium puzzle is even worse for long-horizon
investors and long-horizon returns.

We have traced the implications of the unconditional Sharpe ratio,
and of low and relatively constant interest rates. The predictability of stock
returns also has important implications for discount factors.

Heteroskedasticity in the Discount Factor–Conditional Equity Premium Puzzle
The Hansen–Jagannathan bound applies conditionally of course,

Et (R e
t+1)

σt (R e
t+1)

= −ρt (R e
t+1, m t+1)

σt (m t+1)

Et (m t+1)
.

Mean returns are predictable, and the standard deviation of returns varies
over time. So far, however, the two moments are forecasted by different sets
of variables and at different horizons—d/p, term premium, etc. forecast
the mean at long horizons; past squared returns and implied volatility fore-
cast the variance at shorter horizons—and these variables move at different
times. Hence, it seems that the conditional Sharpe ratio on the left-hand
side moves over time. (Glosten, Jagannathan, and Runkle [1993], French,
Schwert, and Stambaugh [1987], and Yan [2000] find some co-movements
in conditional mean and variance, but do not find that all movement in one
moment is matched by movement in the other.)

On the right-hand side, the conditional mean discount factor equals
the risk-free rate and so must be relatively stable over time. Time-varying
conditional correlations are a possibility, but hard to interpret. Thus, the
predictability of returns strongly suggests that the discount factor must be
conditionally heteroskedastic—σt (m t+1) must vary through time. Certainly
the discount factors on the volatility bound, or the mimicking portfolios
for discount factors must have time-varying volatility, since both of them
have ρ = 1.

In the standard time-separable model, σt (m t+1) = γtσt (�ct+1). Thus,
we need either time-varying consumption risk or time-varying curvature;
loosely speaking, a time-varying risk aversion. The data do not show much
evidence of conditional heteroskedasticity in consumption growth, leading
one to favor a time-varying curvature. However, this is a case in which high
curvature helps: if γ is sufficiently high, a small and perhaps statistically
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hard-to-measure amount of consumption heteroskedasticity can generate
a lot of discount factor heteroskedasticity. (Kandel and Stambaugh [1990]
follow this approach to explain predictability.)

CAPM, Portfolios, and Consumption
The equity premium puzzle is centrally about the smoothness of consump-
tion. This is why it was not noticed as a major puzzle in the early development
of financial theory. In turn, the smoothness of consumption is centrally
related to the predictability of returns.

In standard portfolio analyses, there is no puzzle that people with nor-
mal levels of risk aversion do not want to hold far more stocks. From the
usual first-order condition and with � = VW (W ), we can also write the
Hansen–Jagannathan bound in terms of wealth, analogously to (21.2),

|E (r )− r f |
σ(r )

≤ −WVWW

VW
σ(�w). (21.4)

The quantity −WWWW /VW is in fact the measure of risk aversion correspond-
ing to most survey and introspection evidence, since it represents aversion
to bets on wealth rather than to bets on consumption.

For an investor who holds the market portfolio of stocks, σ(�w) is the
standard deviation of that return, about 16%. With a market Sharpe ratio
of 0.5, we find the lower bound on risk aversion,

−WVWW

VW
= 0.5

0.16
≈ 3.

Furthermore, the correlation between wealth and the stock market is one
in this calculation, so no correlation puzzle crops up to raise the required
risk aversion. This is the heart of the oft-cited Friend and Blume (1975)
calculation of risk aversion, one source of the idea that 3–5 is about the
right level of risk aversion rather than 50 or 250.

The Achilles heel is the hidden simplifying assumption that returns are
independent over time, and the investor has no other source of income,
so no variables other than wealth show up in its marginal value VW . In
such an i.i.d. world, consumption moves one-for-one with wealth, and
σ(�c) = σ(�w). If your wealth doubles and nothing else has changed,
you double consumption. This calculation thus hides a consumption-based
‘‘model,’’ and the model has the drastically counterfactual implication that
consumption growth has a 16% standard deviation!

All this calculation has done is say that ‘‘in a model in which consump-
tion has a 16% volatility like stock returns, we do not need high risk aversion
to explain the equity premium.’’ Hence the central point—the equity pre-
mium is about consumption smoothness. Just looking at wealth and portfolios,
you do not notice anything unusual.
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In the same way, retreating to the CAPM or factor models does not solve
the puzzle either. The CAPM is a specialization of the consumption-based
model, not an alternative to it, and thus hides an equity premium puzzle.
Most implementations of the CAPM take the market premium as given,
ignoring the link to consumption in the model’s derivation, and estimate
the market premium as a free parameter. The equity premium puzzle asks
whether the market premium itself makes any sense.

The Long-Run Equity Premium Puzzle
The fact that annual consumption is much smoother than wealth is an
important piece of information. In the long run, consumption must move
one-for-one with wealth, so consumption and wealth volatility must be
the same. Therefore, we know that the world is very far from i.i.d., so
predictability will be an important issue in understanding risk premia.

Predictability can imply mean-reversion and Sharpe ratios that rise faster
than the square root of horizon. Thus,

E
(
R e

t→t+k

)
σ
(
R e

t→t+k

) ≤ σ
(
m t→t+k

)
E
(
m t→t+k

) ≈ γ σ
(
�ct→t+k

)
.

If stocks do mean-revert, then discount factor volatility must increase faster
than the square root of the horizon. Consumption growth is close to i.i.d.,
so the volatility of consumption growth only increases with the square root
of horizon. Thus mean-reversion implies that the equity premium puzzle is
even worse at long investment horizons.

21.2 New Models

We want to end up with a model that explains a high market Sharpe ratio,
and the high level and volatility of stock returns, with low and relatively con-
stant interest rates, roughly i.i.d. consumption growth with small volatility,
and that explains the predictability of excess returns—the fact that high
prices today correspond to low excess returns in the future. Eventually,
we would like the model to explain the predictability of bond and foreign
exchange returns as well, the time-varying volatility of stock returns and the
cross-sectional variation of expected returns, and it would be nice if in addi-
tion to fitting all of the facts, people in the models did not display unusually
high aversion to wealth bets.

I start with a general outline of the features shared by most models that
address these puzzles. Then, I focus on two models, the Campbell–Cochrane
(1999) habit persistence model and the Constantinides and Duffie (1996)
model with uninsured idiosyncratic risks. The mechanisms we uncover in
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these models apply to a large class. The Campbell–Cochrane model is a
representative from the literature that attacks the equity premium by modi-
fying the representative agent’s preferences. The Constantinides and Duffie
model is a representative of the literature that attacks the equity premium
by modeling uninsured idiosyncratic risks, market frictions, and limited
participation.

Outlines of New Models

Additional state variables are the natural route to solving the empirical puz-
zles. Investors must not be particularly scared of the wealth or consumption
effects of holding stocks, but of the fact that stocks do badly at particular
times, or in particular states of nature. Broadly speaking, most solutions
introduce something like a ‘‘recession’’ state variable. This fact makes stocks
different, and more feared, than pure wealth bets, whose risk is unrelated
to the state of the economy.

In the ICAPM view, we get models of this sort by specifying things so
there is an additional recession state variable z in the value function V (W , z).
Then, expected returns are

E (r )− r f = −WVWW

VW
cov(�W , r )− zVWz

VW
cov(z, r ). (21.5)

In a utility framework, we add other arguments to the utility function
u(C , z), so

E (r )− r f = −CuCC

uC
cov(�C , r )− zuCz

uC
cov(z, r ). (21.6)

The extra utility function arguments must enter nonseparably. If u(C , z) =
f (C ) + g (z), then uCz = 0. All utility function modifications are of this
sort—they add extra goods like leisure, nonseparability over time in the
form of habit persistence, or nonseparability across states of nature so that
consumption if it rains affects marginal utility if it shines.

The lesson of the equity premium literature is that the second term
must account for essentially all of the market premium. Since the cross-
sectional work surveyed in Chapter 20 seemed to point to something
like a recession factor as the primary determinant of cross-sectional vari-
ation in expected returns, and since the time-series work pointed to a
recession-related time-varying risk premium, a gratifying unity seems close
at hand—and a fundamental revision of the CAPM-i.i.d. view of the source
of risk prices.

The predictability of returns suggests a natural source of state variables.
Unfortunately, the sign is wrong. The fact that stocks go up when their
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expected subsequent returns are low means that stocks, like bonds, are good
hedges for shocks to their own opportunity sets. Therefore, adding the
effects of predictability typically lowers expected returns. (The ‘‘typically’’
in this sentence is important. The sign of this effect—the sign of zVWz—does
depend on the utility function and environment. For example, there is no
risk premium for log utility.)

Thus, we need an additional state variable, and one strong enough to
not only explain the equity premium, given that the first terms in (21.5) and
(21.6) are not up to the job, but one stronger still to overcome the effects of
predictability. Recessions are times of low prices and high expected returns.
We want a model in which recessions are bad times, so that investors fear
bad stock returns in recessions. But high expected returns are good times
for a pure Merton investor. Thus, the other state variable(s) that describe a
recession—high risk aversion, low labor income, high labor income uncer-
tainty, liquidity, etc.—must overcome the ‘‘good times’’ of high expected
returns and indicate that times really are bad after all.

Habits

A natural explanation for the predictability of returns from price/dividend
ratios is that people get less risk averse as consumption and wealth increase
in a boom, and more risk averse as consumption and wealth decrease in
a recession. We cannot tie risk aversion to the level of consumption and
wealth, since that increases over time while equity premia have not declined.
Thus, to pursue this idea, we must specify a model in which risk aversion
depends on the level of consumption or wealth relative to some ‘‘trend’’ or
the recent past.

Following this idea, Campbell and Cochrane (1999) specify that people
slowly develop habits for higher or lower consumption. Thus, the ‘‘habits’’
form the ‘‘trend’’ in consumption. The idea is not implausible. Anyone
who has had a large pizza dinner or smoked a cigarette knows that what
you consumed yesterday can have an impact on how you feel about more
consumption today. Might a similar mechanism apply for consumption in
general and at a longer time horizon? Perhaps we get used to an accustomed
standard of living, so a fall in consumption hurts after a few years of good
times, even though the same level of consumption might have seemed very
pleasant if it arrived after years of bad times. This thought can at least explain
the perception that recessions are awful events, even though a recession year
may be just the second or third best year in human history rather than the
absolute best. Law, custom, and social insurance also insure against falls in
consumption as much as low levels of consumption.

We specify an external, or ‘‘keep up with the Joneses’’ form of habit
formation, following Abel (1990). In the model, this is primarily a technical
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convenience, and we argue that it does not make much difference to the
results for aggregate consumption and asset prices. (See problem 2.) It
does seem to capture much interesting behavior, however. Many investors
seem more concerned about staying ahead of their colleagues that they
are in absolute performance. They demand low ‘‘tracking error’’ of their
investments, meaning that they give up average return opportunities (such
as value) to make sure that their investments do not fall behind as the market
rises. We also argue that this specification may be crucial to reconcile strong
habits in the aggregate with microeconomic data. Given a windfall, most
people spend it quickly. This behavior is consistent with an internal habit,
but if each person’s habit were driven by his own consumption, consumption
would ramp up slowly following a windfall.

The Model
We model an endowment economy with i.i.d. consumption growth:

�ct+1 = g + vt+1, vt+1 ∼ i.i.d. N (0, σ 2).

We replace the utility function u(C ) with u(C − X ), where X denotes the
level of habits:

E
∞∑

t=0

δt (Ct − Xt )
1−γ − 1

1 − γ
.

Habits should move slowly in response to consumption, something like

xt ≈ λ

∞∑
j=0

φ j ct−j (21.7)

or, equivalently,

xt = φxt−1 + λct . (21.8)

(Small letters denote the logs of large letters throughout this section;
ct = ln Ct , etc.)

Rather than letting habit itself follow an AR(1), we let the ‘‘surplus
consumption ratio’’ of consumption to habit follow an AR(1):

St = Ct − Xt

Ct
,

st+1 = (1 − φ)s̄ + φst + λ(st )(ct+1 − ct − g ). (21.9)

Since s contains c and x , this equation also specifies how x responds to c ,
and it is locally the same as (21.7). We also allow consumption to affect habit
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differently in different states by specifying a square root type process rather
than a simple AR(1),

λ(st ) = 1
	S
√

1 − 2(st − s̄ )− 1, (21.10)

	S = σ

√
γ

1 − φ
. (21.11)

The extra complication of (21.9) rather than (21.7) means consumption is
always above habit, since S = e s > 0. Other habit models in endowment
economies can give consumption below habit which leads to infinite or
imaginary marginal utility.

St becomes the single state variable in this economy. Time-varying
expected returns, price/dividend ratios, etc. are all functions of this state
variable.

Marginal utility is

uc(Ct , Xt ) = (Ct − Xt )
−γ = S−γ

t C −γ
t .

The model assumes an external habit—each individual’s habit is determined
by everyone else’s consumption. This simplification, allows us to ignore
terms by which current consumption affect future habits.

With marginal utility, we now have a discount factor:

M t+1 ≡ δ
uc(Ct+1, Xt+1)

uc(Ct , Xt )
= δ

(
St+1

St

Ct+1

Ct

)−γ
.

Since we have a stochastic process for S and C , and each is lognormal, we
can evaluate the conditional mean of the discount factor to evaluate the
risk-free rate,

r f
t = − ln Et

(
M t+1

) = − ln(δ)+ γ g − 1
2
γ (1 − φ). (21.12)

We gave up on analytic solutions and evaluated the price/dividend ratio as
a function of the state variable by iteration on a grid:

Pt

Ct
(st ) = Et

[
M t+1

Ct+1

Ct

(
1 + Pt+1

Ct+1
(st+1)

)]
.

With price/dividend ratios, we can calculate returns, expected returns, etc.
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Table 21.1. Means and standard deviations of simulated and historical
data

Consumption Dividend Postwar
Statistic claim claim data

E (R − R)∗/σ(R − R)∗ 0.50 0.50
E (r − r f ) 6.64 6.52 6.69
σ(r − r f ) 15.2 20.0 15.7

exp[E (p − d)] 18.3 18.7 24.7
σ(p − d) 0.27 0.29 0.26

The model is simulated at a monthly frequency; statistics are calculated from
artificial time-averaged data at an annual frequency. Asterisks (*) denote statis-
tics that model parameters were chosen to replicate. All returns are annual
percentages.

Equity Premium and Predictability
We choose parameters, simulate 100,000 artificial data points, and report
standard statistics and tests in artificial data. The parameters g = 1.89, σ =
1.50, r f = 0.94 match their values in postwar data. The parameter φ = 0.87
matches the autocorrelation of the price/dividend ratio and the choice
γ = 2.00 matches the postwar Sharpe ratio. δ = 0.89, 	S = 0.057 follow
from the model.

Table 21.1 presents means and standard deviations predicted by the
model. The model replicates the postwar Sharpe ratio, with a constant 0.94%
risk-free rate and a reasonable subjective discount factor δ < 1. Of course, we
picked the parameters to do this, but given the equity premium discussion
it is already an achievement that we are able to pick any parameters to hit
these moments.

Some models can replicate the Sharpe ratio, but do not replicate the
level of expected returns and return volatility. E = 1% and σ = 2% will give
an 0.5 Sharpe ratio. This model predicts the right levels as well. The model
also gets the level of the price/dividend ratio about right.

Table 21.2 shows how the artificial data match the predictability of
returns from price/dividend ratios. The paper goes on, and shows how
the model matches the volatility test result that almost all return variation is
due to variation in expected excess returns, the ‘‘leverage effect’’ of higher
volatility after a big price decline, and several related phenomena.

How Does It Work?
How does this model get around all the equity premium − risk-free rate
difficulties described above, and explain predictability as well?
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Table 21.2. Long-horizon return regressions

Consumption claim Postwar dataHorizon
(Years) 10 × coef. R 2 10 × coef. R 2

1 −2.0 0.13 −2.6 0.18
2 −3.7 0.23 −4.3 0.27
3 −5.1 0.32 −5.4 0.37
5 −7.5 0.46 −9.0 0.55
7 −9.4 0.55 −12.1 0.65

When a consumer has a habit, local curvature depends on how far
consumption is above the habit, as well as the power γ ,

ηt ≡ −Ct ucc(Ct − Xt )

uc(Ct − Xt )
= γ

St
.

As consumption falls toward habit, people become much less willing to
tolerate further falls in consumption; they become very risk averse. Thus a
low power coefficient γ can still mean a high, and time-varying curvature.
Recall our fundamental equation for the Sharpe ratio,

Et (r )− r f
t

σt (r )
≈ ηtσt (�c)corrt (�c , r ).

High curvature ηt means that the model can explain the equity premium,
and curvature ηt that varies over time as consumption rises in booms
and falls toward habit in recessions means that the model can explain
a time-varying and countercyclical (high in recessions, low in booms)
Sharpe ratio, despite constant consumption volatility σt (�c) and correlation
corrt (�c , r ).

So far so good, but did we not just learn that raising curvature implies
high and time-varying interest rates? This model gets around interest rate
problems with precautionary saving. Suppose we are in a bad time, in which
consumption is low relative to habit. People want to borrow against future,
higher, consumption, and this force should drive up interest rates. (In fact,
many habit models have very volatile interest rates.) However, people are
also much more risk averse when consumption is low. This consideration
induces them to save more, in order to build up assets against the event that
tomorrow might be even worse. This ‘‘precautionary’’ desire to save drives
down interest rates. Our λ(s) specification makes these two forces exactly
offset, leading to constant real rates.
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The precautionary saving motive also makes the model more plausibly
consistent with variation in consumption growth across time and countries.
Adding (21.11) to (21.12), we can write

r f = ρ + γ g − 1
2

(
γ

	S
)2

σ 2.

The power coefficient γ = 2 controls the relation between consumption
growth and interest rates, while the curvature coefficient γ /St controls
the risk premium. Thus this habit model allows high ‘‘risk aversion’’ with
low ‘‘aversion to intertemporal substitution,’’ and it is consistent with the
consumption and interest rate data.

As advertised, this model explains the equity premium and predictabil-
ity by fundamentally changing the story for why consumers are afraid
of holding stocks. The k-period stochastic discount factor is

M t→t+k = δk

(
St+k

St

Ct+k

Ct

)−γ
.

Covariances with S shocks now drive average returns as well as covariances
with C shocks. S = (C −X )/C is a recession indicator—it is low after several
quarters of consumption declines and high in booms.

While
(
Ct+k/Ct

)−γ
and

(
St+k/St

)−γ
enter symmetrically in the formula,

the volatility of
(
Ct+k/Ct

)−γ
with γ = 2 is so low that it accounts for essen-

tially no risk premia. Therefore, it must be true, and it is, that variation in(
St+k/St

)−γ
is much larger, and accounts for nearly all risk premia. In the

Merton language of (21.5) and (21.6), variation across assets in expected
returns is driven by variation across assets in covariances with recessions
far more than by variation across assets in covariances with consumption
growth.

At short horizons, shocks to St+1 and Ct+1 move together, so the dis-
tinction between a recession state variable and consumption risk is minor;
one can regard S as an amplification mechanism for consumption risks in
marginal utility. dS/∂C ≈ 50, so this amplification generates the required
volatility of the discount factor.

At long horizons, however, St+k becomes less and less conditionally
correlated with Ct+k . St+k depends on Ct+k relative to its recent past, but
the overall level of consumption may be high or low. Therefore, investors fear
stocks because they do badly in occasional serious recessions, times of recent belt-
tightening. These risks are at the long run unrelated to the risks of long-run
average consumption growth.
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As another way to digest how this model works, we can substitute in the
s process from (21.9) and write the marginal rate of substitution as

M t+1 = δ

(
St+1

St

Ct+1

Ct

)−γ
,

ln Mt+1 = ln δ − γ
(
st+1 − st

)− γ (ct+1 − ct )

= {
ln δ − γ (1 − φ)s̄

}+ {
γ
(
1 − φ

)
st + γ gλ

(
st

)}
− γ

[
λ
(
st

)+ 1
](

ct+1 − ct

)
= a + b(st )+ d(st )(ct+1 − ct ).

Up to the question of logs versus levels, this is a ‘‘scaled factor model’’ of the
form we studied in Chapter 8. It still is a consumption-based model, but the
sensitivity of the discount factor to consumption changes over time.

The long-run equity premium is even more of a puzzle. Most recession
state variables, such as GDP growth, labor, and instruments for time-varying
expected returns (‘‘shifts in the investment opportunity set’’), are station-
ary. Hence, the standard deviation of their growth rates eventually stops
growing with horizon. At a long enough horizon, the standard deviation of
the discount factor is dominated by the standard deviation of the consump-
tion growth term, and we return to the equity premium puzzle at a long
enough run.

Since this model produces predictability of the right sign, it produces a
long-run equity premium puzzle. How it manages this feat with a stationary
state variable St is subtle (and we did not notice it until the penultimate
draft!). The answer is that while St is stationary, S−γ

t is not. St has a fat tail
approaching zero so the conditional variance of S−γ

t+k grows without bound.
While the distinction between stationary S and nonstationary S−γ seems

initially minor, it is in fact central. Any model that wishes to explain the equity
premium at long and short runs by means of an additional, stationary state
variable must find some similar transformation so that the volatility of the
stochastic discount factor remains high at long horizons.

This model does have high risk aversion. The utility curvature and value
function curvature are both high. Many authors require that a ‘‘solution’’ of
the equity premium puzzle display low risk aversion. This is a laudable goal,
and no current model has attained it. No current model generates the equity
premium with a low and relatively constant interest rate, low risk aversion,
and the right pattern of predictability—high prices forecast low returns, not
high returns, and consumption is roughly a random walk. Constantinides
(1990) and Boldrin, Christiano, and Fisher (2001) are habit models with a
large equity premium and low risk aversion, but they do not get the pattern
of predictability right. Boldrin, Christiano, and Fisher have highly variable
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interest rates to keep consumption from being predictable. Constantinides
(1990) has a constant interest rate, but consumption growth that is serially
correlated, so consumption rises to meet i.i.d. wealth growth. The long-run
equity premium is solved with counterfactually high long-run consumption
volatility.

Heterogeneous Agents and Idiosyncratic Risks

A long, increasing, and important literature in the equity premium attacks
the problem with relatively standard preferences, but instead adds unin-
sured idiosyncratic risk. As with the preference literature, this literature
is interesting beyond the equity premium. We are learning a lot about
who holds stocks and why, what risks they face. We are challenged to
think of new assets and creative ways of using existing assets to share risks
better.

Constantinides and Duffie (1996) provide a very clever and simple
model in which idiosyncratic risk can be tailored to generate any pattern
of aggregate consumption and asset prices. It can generate the equity
premium, predictability, relatively constant interest rates, smooth and
unpredictable aggregate consumption growth, and so forth. Furthermore,
it requires no transactions costs, borrowing constraints, or other frictions,
and the individual consumers can have any nonzero value of risk aversion.
Of course, we still have to evaluate whether the idiosyncratic risk process we
construct to explain asset pricing phenomena are reasonable and consistent
with microeconomic data.

A Simple Version of the Model
I start with a very simplified version of the Constantinides–Duffie model.
Each consumer i has power utility,

U = E
∑

t

e−δt C 1−γ
it .

Individual consumption growth Cit+1 is determined by an independent,
idiosyncratic normal (0,1) shock ηit ,

ln
(

Cit+1

Ci , t

)
= ηit+1yt+1 − 1

2
y2

t+1, (21.13)

where yt+1 is, by construction since it multiplies the shock ηit , the cross-
sectional standard deviation of consumption growth. yt+1 is dated t + 1 since
it is the cross-sectional standard deviation given aggregates at t + 1. The
aggregates are determined first, and then the shocks ηit+1 are handed out.
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Now, yt+1 is specified so that people suffer a high cross-sectional variance
of consumption growth on dates of a low market return Rt+1,

yt+1 = σ

[
ln
(

Cit+1

Cit

)∣∣∣∣Rt+1

]
=
√

2
γ (γ + 1)

√
δ − ln Rt+1. (21.14)

Given this structure, the individual is exactly happy to consume
{
Cit

}
without further trading in the stock. (We can call Cit income Iit , and prove
the optimal decision rule is to consume income Cit = Iit .) His first-order
condition for an optimal consumption-portfolio decision

1 = Et

[
e−δ
(

Cit+1

Cit

)−γ
Rt+1

]

holds, exactly.
To prove this assertion, just substitute in for Cit+1/Cit and take the

expectation:

1 = Et exp
[

− δ − γ ηit+1yt+1 + 1
2
γ y2

t+1 + ln R t+1

]
.

Since η is independent of everything else, we can use E
[

f (ηy)
] =

E
[
E ( f (ηy|y)]. Now, with η normal (0,1),

E
(
exp

[− γ ηit+1yt+1

] | yt+1

) = exp
[

1
2
γ 2y2

t+1

]
.

Therefore, we have

1 = Et exp
[

− δ + 1
2
γ 2y2

t+1 + 1
2
γ y2

t+1 + ln R t+1

]
.

Substituting in from (21.14),

1 = Et exp
[

− δ + 1
2
γ (γ + 1)

(
2

γ (γ + 1)

)(
δ − ln R t+1

)+ ln R t+1

]

= 1!

The General Model
In the general model, Constantinides and Duffie define

yt+1 =
√

2
γ (γ + 1)

√
ln m t+1 + δ + γ ln

Ct+1

Ct
, (21.15)
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where Ct denotes aggregate consumption and m t is a strictly positive
discount factor that prices all assets under consideration,

pt = Et

[
m t+1xt+1

]
for all xt+1 ∈ X . (21.16)

By starting with a discount factor that can price a large collection of assets,
where I used the discount factor R−1

t+1 to price the single return R t+1 in
(21.14), idiosyncratic risk can be constructed to price exactly a large collec-
tion of assets. We can exactly match the Sharpe ratio, return forecastability,
and other features of the data.

Then, they let

ln
(

vit+1

vit

)
= ηit+1yt+1 − 1

2
y2

t+1,

Cit+1 = vit+1Ct+1.

yt+1 is still the conditional standard deviation of consumption growth, given
aggregates—returns and aggregate consumption. This variation allows
uncertainty in aggregate consumption. We can tailor the idiosyncratic risk
to and consumption-interest rate facts as well.

Following exactly the same argument as before, we can now show that

1 = Et

[
e−δ
(

Cit+1

Cit

)−γ
R t+1

]

for all the assets priced by m.

A Technical Assumption
Astute readers will notice the possibility that the square root term in (21.14)
and (21.15) might be negative. Constantinides and Duffie rule out this
possibility by assuming that the discount factor m satisfies

ln m t+1 ≥ −
(
δ + γ ln

Ct+1

Ct

)
(21.17)

in every state of nature, so that the square root term is positive.
We can sometimes construct such discount factors by picking parame-

ters a, b in mt+1 = max[a + b ′xt+1, e δ(Ct+1/Ct )
γ ] to satisfy (21.16). However,

neither this construction nor a discount factor satisfying (21.17) is guaran-
teed to exist for any set of assets. The restriction (21.17) is a tighter form
of the familiar restriction that m t+1 ≥ 0 that is equivalent to the absence
of arbitrage in the assets under consideration. Bernardo and Ledoit (2000)
show that the restriction m > a is equivalent to restrictions on the maximum
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gain/loss ratio available from the set of assets under consideration. Thus,
the theorem really does not apply to any set of arbitrage-free payoffs.

The example m = 1/R is a positive discount factor that prices a single
asset return 1 = E (R−1R), but does not necessarily satisfy restriction (21.17).
For high R , we can have very negative ln 1/R . This example only works if
the distribution of R is limited to R ≤ e δ.

How the Model Works
As the Campbell–Cochrane model is blatantly (and proudly) reverse-
engineered to surmount (and here, to illustrate) the known pitfalls
of representative consumer models, the Constantinides–Duffie model is
reverse-engineered to surmount the known pitfalls of idiosyncratic risk
models.

Idiosyncratic risk stories face two severe challenges, as explained in
Section 21.1. First, the basic pricing equation applies to each individual.
If we are to have low risk aversion and power utility, the required huge
volatility of consumption is implausible for any individual. Second, if you
add idiosyncratic risk uncorrelated with asset returns, it has no effect on
pricing implications. Constantinides and Duffie’s central contribution is
very cleverly to solve the second problem.

In idiosyncratic risk models, we cannot specify individual consumption
directly as we do in representative agent endowment economies, and go
straight to finding prices. The endowment economy structure says that
aggregate consumption is fixed, and prices have to adjust so that consumers
are happy consuming the given aggregate consumption stream. However,
individuals can always trade consumption with each other. The whole point
of assets is that one individual can sell another some consumption, in
exchange for the promise of some consumption in return in the next period.
We have to give individuals idiosyncratic income shocks, and then either
check that they do not want to trade away the idiosyncratic shock, or find
the equilibrium consumption after they do so.

Early idiosyncratic risk papers found quickly how clever the consumers
could be in getting rid of the idiosyncratic risks by trading the existing set
of assets. Telmer (1993) and Lucas (1994) found that if you give people
transitory but uninsured income shocks, they respond by borrowing and
lending or by building up a stock of savings. As in the classic permanent
income model, consumption then only responds by the interest rate times
the change in permanent income, and at low enough interest rates, not at
all. ‘‘Self-insurance through storage’’ removes the extra income volatility
and we are back to smooth individual consumption and an equity premium
puzzle.

Constantinides and Duffie get around this problem by making
the idiosyncratic shocks permanent. The normal ηit shocks determine
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consumption growth. In an evaluation in microeconomic data, this makes us
look for sources of permanent shocks.

This, at a deeper level, is why idiosyncratic consumption shocks have
to be uncorrelated with the market. We can give individuals idiosyncratic
income shocks that are correlated with the market. Say, agent A gets more
income when the market is high, and agent B gets more income when it is
low. But then A will short the market, B will go long, and they will trade away
any component of the shock that is correlated with the returns on available
assets. I argued in Section 21.1 that this effect made idiosyncratic shocks
unlikely candidates to explain the equity premium puzzle. Shocks uncorre-
lated with asset returns have no effect on asset pricing, and shocks correlated
with asset returns are quickly traded away.

The only way out is to exploit the nonlinearity of marginal utility. We can
give people income shocks that are uncorrelated with returns, so they cannot
be traded away. Then we have a nonlinear marginal utility function turn
these shocks into marginal utility shocks that are correlated with asset returns,
and hence can affect pricing implications. This is why Constantinides and
Duffie specify that the variance of idiosyncratic risk rises when the market
declines. If marginal utility were linear, an increase in variance would have
no effect on the average level of marginal utility. Therefore, Constantinides
and Duffie specify power utility, and the interaction of nonlinear marginal
utility and changing conditional variance produces an equity premium.

As a simple calculation that shows the basic idea, start with individuals
i with power utility so

0 = E
[(

C i
t+1

C i
t

)−γ
R e

t+1

]
.

Now aggregate across people by summing over i , with EN = 1
N

∑N
i=1,

0 = E
[

EN

((
C i

t+1

C i
t

)−γ)
R e

t+1

]
.

If the cross-sectional variation of consumption growth is lognormally
distributed,

0 = E
[(

e−γEN �ci
t+1+ γ 2

2 σ2
N �ci

t+1

)
R e

t+1

]
.

As you see, the economy displays more risk aversion than would a ‘‘repre-
sentative agent’’ with aggregate consumption �ca

t+1 = EN�cit+1. That risk
aversion can also vary over time if σN varies over time, and this variation can
generate risk premia.
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Microeconomic Evaluation and Risk Aversion
Like the Campbell–Cochrane model, this could be either a new view of
stock market (and macroeconomic) risk, or just a clever existence proof
for a heretofore troubling class of models. The first question is whether the
microeconomic picture painted by this model is correct, or even plausible.
Is idiosyncratic risk large enough? Does idiosyncratic risk really rise when
the market falls, and enough to account for the equity premium? Are there
enough permanent idiosyncratic shocks? Do people really shy away from
stocks because stock returns are low at times of high labor market risk?

This model does not change the first puzzle. To get power utility
consumers to shun stocks, they still must have tremendously volatile con-
sumption growth or high risk aversion. The point of this model is to
show how consumers can get stuck with high consumption volatility in
equilibrium, already a difficult task.

More seriously than volatility itself, consumption growth variance also
represents the amount by which the distribution of individual consumption
and income spreads out over time, since the shocks must be permanent
and independent across people. The 50% or larger consumption growth
volatility that we require to reconcile the Sharpe ratio with risk aversion of
one means that the distribution of consumption (and income) must also
spread out by 50% per year. The distribution of consumption does spread
out, but not this much.

For example, Deaton and Paxson (1994) report that the cross-sectional
variance of log consumption within an age cohort rises from about 0.2 at
age 20 to 0.6 at age 60. This estimate means that the cross-sectional stan-
dard deviation of consumption rises from

√
0.2 = . 45 or 45% at age 20 to√

0.6 = . 77 or 77% at age 60. (77% means that an individual one standard
deviation better off than the mean consumes 77% more than the mean
consumer.) We are back to about 1% per year.

Finally, and most crucially, the cross-sectional uncertainty about indi-
vidual income must not only be large, it must be higher when the market is
lower. This risk factor is after all the central element of Constantinides and
Duffie’s explanation for the market premium. Figure 21.1 shows how the
cross-sectional standard deviation of consumption growth varies with the
market return and risk aversion in my simple version of Constantinides and
Duffie’s model. If we insist on low (γ = 1 to 2) risk aversion, the cross-
sectional standard deviation of consumption growth must be extremely
sensitive to the level of the market return. Looking at the γ = 2 line, for
example, is it plausible that a year with 5% market return would show a 10%
cross-sectional variation in consumption growth, while a mild 5% decline in
the market is associated with a 25% cross-sectional variation?

All of these empirical problems are avoided if we allow high risk aver-
sion rather than a large risk to drive the equity premium. The γ = 25 line
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Figure 21.1. Cross-sectional standard deviation of individual consumption growth as a
function of the market return in the simple version of the Constantinides-Duffie model. The

plot is the variable yt =
√

2
γ (γ+1)

√
ln 1

Rt
+ δ + γ ln Ct

Ct−1
. Parameter values are ρ = 0.05,

ln Ct/Ct−1 = 0.01.

in Figure 21.1 looks possible; a γ = 50 line would look even better. With
high risk aversion, we do not need to specify highly volatile individual con-
sumption growth, spreading out of the income distribution, or dramatic
sensitivity of the cross-sectional variance to the market return.

As in any model, a high equity premium must come from a large risk, or
from large risk aversion. Labor market risk correlated with the stock market
does not seem large enough to account for the equity premium without
high risk aversion.

The larger set of asset pricing facts has not yet been studied in this
model. It is clearly able to generate return predictability, but that requires
a pattern of variation in idiosyncratic risk that remains to be characterized
and evaluated. It can generate cross-sectional patterns such as value premia
if value stocks decline at times of higher cross-sectional volatility; that too
remains to be studied.

Summary
In the end, the Constantinides–Duffie model and the Campbell–Cochrane
model are quite similar in spirit. First, both models make a similar, funda-
mental change in the description of stock market risk. Consumers do not
fear much the loss of wealth of a bad market return per se. They fear that
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loss of wealth because it tends to come in recessions, in one case defined as
times of heightened idiosyncratic labor market risk, and in the other case
defined as a fall of consumption relative to its recent past. This recession
state variable or risk factor drives most variation in expected returns.

Second, both models require high risk aversion. While Constantinides
and Duffie’s proof shows that one can dream up a labor income process to
rationalize the equity premium for any risk aversion coefficient, we see that
even vaguely plausible characterizations of actual labor income uncertainty
require high risk aversion to explain the historical equity premium.

Third, both models provide long-sought demonstrations that it is possi-
ble to rationalize the equity premium in their respective class of models. This
existence proof is particularly stunning in Constantinides and Duffie’s case.
Many authors (myself included) had come to the conclusion that the effort
to generate an equity premium from idiosyncratic risk was hopeless because
any idiosyncratic risk that would affect asset prices would be traded away.

21.3 Bibliography

Shiller (1982) made the first calculation that showed either a large risk
aversion coefficient or counterfactually large consumption variability was
required to explain means and variances of asset returns. Mehra and
Prescott (1985) labeled this fact the ‘‘equity premium puzzle.’’ However,
they described these puzzles in the context of a two-state Markov model for
consumption growth, identifying a stock as a claim to consumption and a
risk-free bond. Weil (1989) emphasized the interaction between equity pre-
mium and risk-free rate puzzles. Hansen and Jagannathan (1991) sparked
the kind of calculations I report here in a simplified manner. Cochrane and
Hansen (1992) derived many of the extra discount factor moment restric-
tions I surveyed here, calculating bounds in each case. Luttmer (1996, 1999)
tackled the important extension to transactions costs.

Kocherlakota (1996) is a nice summary of equity premium facts and
models. Much of the material in this chapter is adapted from a survey in
Cochrane (1997). Campbell (1999) and (2000) are two excellent recent
surveys. Ferson (1995) is a nice survey of consumption-based model varia-
tions as well as some of the beta pricing models discussed in the last chapter.

The Campbell–Cochrane model I presented here is a tip of
an iceberg of habit research, including prominent contributions by
Constantinides (1990), Ferson and Constantinides (1991), Heaton (1995),
and Abel (1990).

Models can be nonseparable across goods as well. Leisure is the most natural
extra variable to add to a utility function. It is not clear a priori whether
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more leisure enhances the marginal utility of consumption (why bother
buying a boat if you are at the office all day and cannot use it) or vice
versa (if you have to work all day, it is more important to come home to
a really nice big TV). However, we can let the data speak on this matter.
Explicit versions of this approach have not been very successful to date
(Eichenbaum, Hansen, and Singleton [1988]). On the other hand, recent
research has found that adding labor income as an extra ad hoc ‘‘factor’’ can
be useful in explaining the cross section of average stock returns, especially
if it is scaled by a conditioning variable ( Jagannathan and Wang [1996],
Reyfman [1997], Lettau and Ludvigson [2001a]).

The non-state separable utility functions following Epstein and Zin
(1989) are a major omission of this presentation. The expectation E in the
standard utility function sums over states of nature, e.g.,

U = prob(rain)× u(C if it rains)+ prob(shine)× u(C if it shines).

‘‘Separability’’ means one adds across states, so the marginal utility of con-
sumption in one state is unaffected by what happens in another state. But
perhaps the marginal utility of a little more consumption in the sunny state
of the world is affected by the level of consumption in the rainy state of the
world. Epstein and Zin (1989), and Hansen, Sargent, and Tallarini (1999)
propose recursive utility functions of the form

Ut = C 1−γ
t + βf

[
Et f −1(Ut+1)

]
.

If f (x) = x , this expression reduces to power utility. These utility functions
are not state separable. As with habits, these utility functions distinguish
risk aversion from intertemporal substitution—one coefficient can be set
to capture the consumption-interest rate facts, and a completely separate
coefficient can be set to capture the equity premium. So far, this style of
model as in Epstein and Zin (1989), Weil (1989), Kandel and Stambaugh
(1991), and Campbell (1996) does not generate time-varying risk aversion,
but that modification should not be too difficult, and could lead to a model
that works very much like the habit model I surveyed here.

Habit persistence is the opposite of durability. If you buy a durable
good yesterday, that lowers your marginal utility of an additional purchase
today, while buying a habit-forming good raises your marginal utility of an
additional purchase today. Thus the durability of goods should introduce
a non–time-separability of the form u(ct + θxt ), xt = f (ct−1, ct−2, . . .) rather
than the habit persistence form u(ct −θxt ). Since goods are durable, and we
have a lot of data on durables purchases, it would be good to include both
durability and habit persistence in our models. (In fact, even ‘‘nondurables’’
data contain items like clothing; the truly nondurable purchases are such a
small fraction of total consumption that we rely on very little data.)
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One must be careful with the time horizon in such a specification. At
a sufficiently small time horizon, all goods are durable. A pizza eaten at
noon lowers marginal utility of more pizza at 12:05. Thus, our common
continuous-time, time-separable assumption really cannot be taken liter-
ally. Hindy and Huang (1992) argue that consumption should be ‘‘locally
substitutable’’ in continuous-time models. Heaton (1993) found that at
monthly horizons, consumption growth displays the negative autocorrela-
tion suggestive of durability with constant interest rates, while at longer
horizons consumption is nearly unforecastable after accounting for time
aggregation.

There is also a production first-order condition that must be solved,
relating asset prices to marginal rates of transformation. The standard here
is the q theory of investment, which is based on an adjustment cost. If the
stock market is really high, you issue stock and make new investments. The
trouble with this view is that f ′(K ) declines very slowly, so the observed price
volatility implies huge investment volatility. The q theory adds adjustment
costs to damp the investment volatility. The q theory has had as much trou-
ble fitting the data as the consumption-based model. Cochrane (1991d)
reports one success when you transform the data to returns—high stock
returns are associated with high investment growth. The more recent invest-
ment literature has focused on specifying the adjustment cost problem with
asymmetries and irreversibilities, for example, Abel and Eberly (1996) but
has not yet been applied to asset pricing puzzles.

There is an important literature that puts new utility functions together
with production functions, to construct complete explicit economic mod-
els that replicate the asset pricing facts. Such efforts should also at least
preserve if not enhance our ability to understand the broad range of
dynamic microeconomic, macroeconomic, international, and growth facts
that the standard models were constructed around. Jermann (1998) tried
putting habit-persistence consumers in a model with a standard technology
Y = θ f (K , L) from real business cycle models. The easy opportunities for
intertemporal transformation provided by that technology meant that the
consumers used it to smooth consumption dramatically, destroying the pre-
diction of a high equity premium. To generate the equity premium, Jermann
added an adjustment cost technology, as the production-side literature had
found necessary. This modification resulted in a high equity premium, but
also large variation in risk-free rates.

Boldrin, Christiano, and Fisher (2001) also added habit-persistence
preferences to real business cycle models with frictions in the allocation
of resources to two sectors. They generate about 1/2 the historical Sharpe
ratio. They find some quantity dynamics are improved over the standard
model. However, they still predict highly volatile interest rates and persistent
consumption growth.
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To avoid the implications of highly volatile interest rates, I suspect we
will need representations of technology that allow easy transformation across
time but not across states of nature, analogous to the need for easy intertem-
poral substitution but high risk aversion in preferences. Alternatively, the
Campbell–Cochrane model above already produces the equity premium
with constant interest rates, which can be interpreted as a linear production
function f (K ). Models with this kind of precautionary savings motive may
not be as severely affected by the presence of inter-temporal transformation
opportunities in production.

Tallarini (1999) uses non–state-separable preferences similar to those
of Epstein and Zin in a general equilibrium model with production. He
shows a beautiful observational equivalence result: A model with standard
preferences and a model with non–state-separable preferences can predict
the same path of quantity variables (output, investment, consumption, etc.)
but differ dramatically on asset prices. This result offers one explanation of
how the real business cycle and growth literature could go on for 25 years
examining quantity data in detail and miss all the modifications to prefer-
ences that we seem to need to explain asset pricing data. It also means that
asset price information is crucial to identifying preferences and calculating
welfare costs of policy experiments. Finally, it offers hope that adding the
deep modifications necessary to explain asset pricing phenomena will not
demolish the success of standard models at describing the movements of
quantities.

The Constantinides and Duffie model has roots in a calculation by
Mankiw (1986) that idiosyncratic risk could make the representative con-
sumer seem more risk averse than the individuals. Work on evaluating the
mechanisms in this model in microeconomic data is starting. Heaton and
Lucas (1996) calibrate idiosyncratic risk from the PSID, but their model
explains at best 1/2 of the sample average stock return, and less still if
they allow a net supply of bonds with which people can smooth transitory
shocks. More direct tests of these features in microeconomic consumption
data are underway, for example Brav, Constantinides, and Geczy (1999),
Storesletten, Telmer, and Yaron (1999), and Vissing-Jorgenson (1999).

Keim and Stambaugh (1986) present a model in which a small amount
of time-varying consumption volatility and a high risk aversion coefficient
generate the large time-varying discount factor volatility we need to generate
returns predictability.

Aiyagari and Gertler (1991), though aimed at the point that the equity
premium might be explained by a ‘‘too low’’ riskless rate, nonetheless
was an important paper in specifying and solving models with unin-
sured individual risks and transactions costs to keep people from trading
them away.
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Problems—Chapter 21

1. Suppose habit accumulation is linear, and there is a constant risk-
free rate or linear technology equal to the discount rate, R f = 1/δ. The
consumer’s problem is then

max E
∞∑

t=0

δt (Ct − Xt )
1−γ

1 − γ
s.t . E

∑
t

δt Ct = E
∑

t

δt et + W0,

Xt = θ

∞∑
j=1

φ j Ct−j ,

where et is a stochastic endowment. In an internal habit specification,
the consumer considers all the effects that current consumption has on
future utility through Xt+j . In an external habit specification, the consumer
ignores such terms. Show that the two specifications give identical asset
pricing predictions in this simple model, by showing that internal habit
marginal utility is proportional to external habit marginal utility, state by
state.

2. Suppose a consumer has quadratic utility with a constant interest rate
equal to the subjective discount rate, but a habit or durable consumption
good, so that utility is

u(ct − θct−1) = −1
2
(c∗ − ct + θct−1)

2.

Show that external habit persistence θ > 0 implies positive serial correlation
in consumption changes. Show that the same solution holds for internal
habits, or durability. Show that durability leads to negative serial correlation
in consumption changes.

3. Many models predict too much variation in the conditional mean dis-
count factor, or too much interest rate variation. This problem guides
you through a simple example. Introduce a simple form of external habit
formation,

u = (Ct − θCt−1)
1−γ ,

and suppose consumption growth Ct+1/Ct is i.i.d. Show that interest rates
still vary despite i.i.d. consumption growth.

4. We showed that if m satisfies the Hansen–Jagannathan bound, then
proj(m|X ) should also do so. Hansen and Jagannathan also compute bounds
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with positivity, solutions to

min σ(m) s.t . p = E (mx), m ≥ 0, E (m) = µ.

Does proj(m|X ) also lie in the same bound?

5. One most often compares consumption-based models to Hansen–
Jagannathan bounds. Can you compare the CAPM discount factor m =
a − bR em to the bound? To the bound with positivity?
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Appendix
Continuous Time

This appendix is a brief introduction to the mechanics of continuous-time
stochastic processes; i.e., how to use dz and dt . I presume the reader is famil-
iar with discrete-time ARMA models, i.e., models of the sort x t = ρx t−1 + εt .
I draw analogies of continuous-time constructs to those models.

The formal mathematics of continuous-time processes are a bit impos-
ing. For example, the basic random walk z t is not time-differentiable, so
one needs to rethink the definition of an integral and differential to write
obvious things like z t = ∫ t

s=0 dzs . Also, since z t is a random variable, one
has to specify not only the usual measure-theoretic foundations of random
variables, but their evolution over a continuous-time index. However, with a
few basic, intuitive rules like dz2 = dt , you can use continuous-time processes
quite quickly, and that is the aim of this chapter.

A.1 Brownian Motion

z t , dz t are defined by z t+� − z t ∼ N (0,�).

Diffusion models are a standard way to represent random variables in con-
tinuous time. The ideas are analogous to discrete-time stochastic processes.
We start with a simple shock series, εt in discrete time and dz t in contin-
uous time. Then we build up more complex models by building on this
foundation.

The basic building block is a Brownian motion, which is the natural
generalization of a random walk in discrete time. For a random walk

z t − z t−1 = εt ,

489
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the variance scales with time; var(z t+2 − z t ) = 2 var(z t+1 − z t ). Thus, define
a Brownian motion as a process z t for which

z t+� − z t ∼ N (0,�). (A.1)

We have added the normal distribution to the usual definition of a ran-
dom walk. As E (εtεt−1) = 0 in discrete time, increments to z for nonover-
lapping intervals are also independent. I use the notation z t to denote z as
a function of time, in conformity with discrete-time formulas; many people
prefer to use the standard representation of a function z(t).

It is natural to want to look at very small time intervals. We use the
notation dz t to represent z t+� − z t for arbitrarily small time intervals�, and
we sometimes drop the subscript when it is obvious we are talking about
time t . Conversely, the level of z t is the sum of its small differences, so we
can write the stochastic integral

z t − z 0 =
∫ t

s=0
dzs .

The variance of a random walk scales with time, so the standard devi-
ation scales with the square root of time. The standard deviation is the
‘‘typical size’’ of a movement in a normally distributed random variable, so
the ‘‘typical size’’ of z t+� − z t in time interval � is

√
�. This fact means

that (z t+� − z t )/� has typical size 1/
√
�, so though the sample path of z t

is continuous, z t is not differentiable.
For this reason, it is important to be a little careful with notation. dz, dz t ,

or dz(t) mean z t+� − z t for arbitrarily small �. We are used to thinking
about dz as the derivative of a function, but since a Brownian motion is not
a differentiable function of time, dz = (dz(t)/dt) dt makes no sense.

From (A.1), it is clear that

Et (dz t ) = 0.

Again, the notation is initially confusing—how can you take an expectation
at t of a random variable dated t? Keep in mind, however, that dz t = z t+�−z t

is the forward difference. The variance is the same as the second moment,
so we write it as

Et

(
dz2

t

) = dt .

It turns out that not only is the variance of dz t equal to dt , but

dz2
t = dt .

As one simple way to see this point, since z t+� − z t is normal, this means
that (z t+� − z t )

2 is a χ 2 random variable,

z t+� − z t ∼ N (0,�) → (z t+� − z t )
2

�
∼ χ 2

1 .
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Taking moments,

E
[
(z t+� − z t )

2] = �E (χ 2
1 ) = �

var
[
(z t+� − z t )

2] = �2 var(χ 2
1 ) = 2�2.

Before, we had var(z t+� − z t ) ∼ O(�) so σ(z t+� − z t ) ∼ O(
√
�). But

now var
[
(z t+� − z t )

2
] ∼ O(�2) so σ

[
(z t+� − z t )

2
] ∼ O(�), it vanishes as

order dt .

A.2 Diffusion Model

I form more complicated time-series processes by adding drift and
diffusion terms,

dx t = µ(·) dt + σ(·) dz t .

I introduce some common examples,

Random walk with drift: dx t = µ dt + σ dz t ,

AR(1): dx t = −φ(x − µ) dt + σdz t ,

Square root process: dx t = −φ(x − µ) dt + σ
√

x t dz t ,

Price process:
dpt

pt
= µ dt + σdz t .

You can simulate a diffusion process by approximating it for a small time
interval,

x t+� − x t = µ(·)�t + σ(·)√�t εt+�, εt+� ∼ N (0, 1).

As we add up serially uncorrelated shocks εt to form discrete-time
ARMA models, we build on the shocks dz t to form diffusion models. I proceed
by example, introducing some popular examples in turn.

Random walk with drift. In discrete time, we model a random walk with
drift as

x t = µ+ x t−1 + εt .

The obvious continuous-time analogue is

dx t = µ dt + σdz t .
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Integrating both sides from 0 to t , we can find the implications of this process
for discrete horizons,

x t = x 0 + µt + σ(z t − z 0)

or
x t = x 0 + µt + εt , εt ∼ N (0, σ 2t).

This is a random walk with drift.
AR(1). The simplest discrete-time process is an AR(1),

x t = (1 − ρ)µ+ ρx t−1 + εt

or
x t − x t−1 = −(1 − ρ)(x t−1 − µ)+ εt .

The continuous-time analogue is

dx t = −φ(x t − µ) dt + σdz t .

This is known as the Ohrnstein--Uhlenbeck process. The mean or drift is

Et (dx t ) = −φ(x t − µ) dt .

This force pulls x back to its steady-state value µ, but the shocks σdz t move
it around.

Square root process. Like its discrete-time counterpart, the continuous-
time AR(1) ranges over the whole real numbers. It would be nice to have
a process that was always positive, so it could capture a price or an interest
rate. An extension of the continuous-time AR(1) is a workhorse of such
applications,

dx t = −φ(x t − µ) dt + σ
√

x t dz t .

Now, volatility also varies over time,

Et (dx2
t ) = σ 2x t dt ;

as x approaches zero, the volatility declines. At x = 0, the volatility is
entirely turned off, so x drifts up towards µ.

This is a nice example because it is decidedly nonlinear. Its discrete-time
analogue

x t = (1 − ρ)µ+ ρx t−1 + √
x tεt

is not a standard ARMA model, so standard linear time-series tools would
fail us. We could not, for example, give a pretty equation for the distribu-
tion of x t+s for finite s. It turns out that we can do this in continuous time.
Thus, one advantage of continuous-time formulations is that they give rise
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to a toolkit of interesting nonlinear time-series models for which we have
closed-form solutions.

Price processes. A modification of the random walk with drift is the most
common model for prices. We want the return or proportional increase in
price to be uncorrelated over time. The most natural way to do this is to
specify

dpt = ptµdt + ptσdz t ,

or more simply,
dpt

pt
= µdt + σdz t .

Diffusion models more generally. A general picture should emerge. We form
more complex models of stochastic time series by changing the local mean
and variance of the underlying Brownian motion:

dx t = µ(x t ) dt + σ(x t ) dz t .

More generally, we can allow the drift µ and diffusion to be a function of
other variables and of time explicitly. We often write

dx t = µ(·) dt + σ(·) dz t

to remind us of such possible dependence. There is nothing mysterious
about this class of processes; they are just like easily understandable discrete-
time processes

x t+� − x t = µ(·)�t + σ(·)√�t εt+�, εt+� ∼ N (0, 1). (A.2)

In fact, when analytical methods fail us, we can figure out how diffusion
models work by simulating the discretized version (A.2) for a fine time
interval �.

The local mean of a diffusion model is

Et (dx t ) = µ(·) dt

and the local variance is

dx2
t = Et (dx2

t ) = σ 2(·) dt .

Variance is equal to second moment because means scale linearly with
time interval �, so mean squared scales with �2, while the second moment
scales with �.

Stochastic integrals. For many purposes, simply understanding the dif-
ferential representation of a process is sufficient. However, we often want
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to understand the random variable x t at longer horizons. For example, we
might want to know the distribution of x t+s given information at time t .

Conceptually, what we want to do is to think of a diffusion model as a
stochastic differential equation and solve it forward through time to obtain the
finite-time random variable x t+s . Putting some arguments in for µ and σ for
concreteness, we can think of evaluating the integral

x t − x 0 =
∫ t

0
dxs =

∫ t

0
µ(xs , s, . . .) ds +

∫ t

0
σ(xs , s, . . .) dzs .

We have already seen how z t = z 0 + ∫ t
0 dzs generates the random variable

z t ∼ N (0, t), so you can see how expressions like this one generate random
variables x t . The objective of solving a stochastic differential equation is thus
to find the distribution of x at some future date, or at least some character-
izations of that distribution such as conditional mean, variance, etc. Some
authors dislike the differential characterization and always write processes
in terms of stochastic integrals.

A.3 Ito’s Lemma

Do second-order Taylor expansions; keep only dz, dt , and dz2 = dt terms:

dy = f ′(x) dx + 1
2

f ′′(x) dx2,

dy =
(

f ′(x)µx + 1
2

f ′′(x)σ 2
x

)
dt + f ′(x)σx dz.

You often have a diffusion representation for one variable, say

dx t = µx(·) dt + σx(·) dz t .

Then you define a new variable in terms of the old one,

yt = f (x t ). (A.3)

Naturally, you want a diffusion representation for yt . Ito’s lemma tells you
how to get it. It says,

Use a second-order Taylor expansion, and think of dz as
√

dt ; thus as
�t → 0, keep terms dz, dt , and dz2 = dt , but terms dt × dz, dt 2, and
higher go to zero.
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Applying these rules to (A.3), start with the second order expansion

dy = df (x)
dx

dx + 1
2

d2f (x)
dx2

dx2.

Expanding the second term,

dx2 = [µx dt + σx dz]2 = µ2
x dt 2 + σ 2

x dz2 + 2µxσx dt dz.

Now apply the rule dt 2 = 0, dz2 = dt , and dt dz = 0. Thus,

dx2 = σ 2
x dt .

Substituting for dx and dx2,

dy = df (x)
dx

(µx dt + σx dz)+ 1
2

d2f (x)
dx2

σ 2
x dt

=
(df (x)

dx
µx + 1

2
d2f (x)

dx2
σ 2

x

)
dt + df (x)

dx
σx dz.

Thus, Ito’s lemma:

dy =
(

df (x)
dx

µx(·)+ 1
2

d2f (x)
dx2

σ 2
x (·)

)
dt + df (x)

dx
σx(·) dz.

The surprise here is the second term in the drift. Intuitively, this term
captures a ‘‘Jensen’s inequality’’ effect. If a is a mean zero random variable
and b = f (a) with f ′′(a) > 0, then the mean of b is higher than the mean
of a. The more variance of a, and the more concave the function, the higher
the mean of b.

Problems—Appendix

1. If
dp
p

= µdt + σdz

find the diffusion followed by the log price,

y = ln(p).

2. Find the diffusion followed by xy.

3. Suppose y = f (x , t). Find the diffusion representation for y. (Follow the
obvious multivariate extension of Ito’s lemma.)
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4. Suppose y = f (x , w), with both x , w diffusions. Find the diffusion
representation for y. Denote the correlation between dzx and dzw by ρ.

5. What is wrong with the following argument? Apply Ito’s lemma to dz2.
You get dz2 = 2zdz + 1

2 2dt = 2zdz + dt . So dz2 is random. E (dz2) = dt , but
it’s not true that dz2 = dt after the fact.

6. Here is a way to convince yourself that E (dz2) = dz2 = dt . Simulate
three random walks z t+� = zt + �εt+�t ε ∼ N (0, 1), for � = 1/10, 1/100.
Plot zt in each case and note how the three examples converge to Brownian
motion. Now plot the cumulative sum of (z t+� − zt )

2. You should see the
three cases converging to a straight line—i.e., dz2 = dt .
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stochastic, 6--7, 50
subjective, 5
term structure models and, 358,

360--64, 366--67 (see also term
structure models)

distribution theory, 187
asymptotic (see asymptotic

distribution theory)
finite-sample, 302--3
Generalized Method of Moments

and, 189, 198--99, 204, 271
Ordinary Least Squares

cross-sectional regression, 236--37
spectral density matrix and, 220
unknowable question asked by, 306

dividend/earnings ratio, 392--93
dividend/price ratios. See price/

dividend ratios
Durbin--Watson statistic, 298
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dynamic programming, 155, 158
dynamic spanning, 134

earnings/dividend ratio, 392--93
efficiency

in Generalized Method of Moments,
204, 213--14

informational, 390
of markets, 126--27

empirical methods/research, xvi, 387
Capital Asset Pricing Model and,

121--22, 171--72, 437--38
error-correction regressions and, 426
expected returns and (see expected

returns)
fishing expeditions, 123--26, 151,

170--71
generations of, 389--91
history of and statistical testing,

304--6
Intertemporal Capital Asset Pricing

Model and, 172
maximum likelihood and, 294--95
regressions (see regressions)
returns, use of, 8--9
strategies for, 40
See also statistical methods

endowment economy model, 39--40,
40--41

envelope condition, 156
equilibrium, general. See general

equilibrium
equity premium puzzle, 20--22

additional state variable, need for to
explain, 466--67, 473

basic statement of, 456--59
bibliography regarding, 481--84
Campbell--Cochrane habit

persistence model, 465--73, 480--81
Constantinides--Duffie idiosyncratic

risk model, 465--66, 474--81
correlation puzzle, 457
habit models, additional, 473--74
predictability and, 462--65
variations, 459--62

equivalence theorems, 121--29
error-correction regressions, 426

errors
Hansen--Hodrick, 209--10
pricing (see pricing errors)
sampling, 246
standard (see standard errors)

estimating free parameters. See
parameter estimates

European options, 313, 337--39
exact factor model, 176
excess returns, 9, 80

factor-mimicking portfolios and, 110
factor pricing models and, 150
linear factor models, Generalized

Method of Moments for and,
256--59

linear factor models, testing of and,
230

exchange rates. See foreign exchange
existence theorems, 121--29
expectations hypothesis, 355--60

bonds and, 426--32
foreign exchange and, 432--35
term structure models and, 371--76

expected return-beta representations,
77--80, 121

Arbitrage Pricing Theory and, 176
conditioning information and,

138--39
priced factors, testing for, 260--61
See also beta models/representations

expected returns
Capital Asset Pricing Model and,

436--38
multifactor models and

(see multifactor models)
patterns in, 449--53
time-series predictability (see time-

series predictability)
See also expected return-beta

representations; returns
explicit discount factor model

applying Generalized Method of
Moments in, 196--99

Generalized Method of Moments
basic recipe in, 190--92

interpreting Generalized Method of
Moments in, 192--96
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exponential utility, 154
ex post mean-variance efficient

portfolios, 123--25

factor analysis, 175
factor decomposition, 19, 174,

179
‘‘factor,’’ disparate uses of the term, 174
factor-mimicking portfolios, 101,

109--11, 125--26, 170--71
factor pricing models, 149--51

as alternatives to consumption-based
models, 44--45

Arbitrage Pricing Theory (see
Arbitrage Pricing Theory)

beta representation of (see beta
models/representations)

Capital Asset Pricing Model (see
Capital Asset Pricing Model)

conditioning information and,
136--43

discount factors and, 106--10
excess returns and, 80
fixed-weight, 139
identifying risk factors in, 125
Intertemporal Capital Asset Pricing

Model (see Intertemporal Capital
Asset Pricing Model)

law of one price and, 177--80
linear factor models (see linear factor

models)
portfolio approach and the

derivation of, 171--72
testing of conditional, 144--45
See also Cox--Ingersoll--Ross model;

discount factors
factor risk premium, 108
factor structure, 174--75, 182, 225
Fama--Bliss regressions, 380
Fama--French model, 438--44, 446
Fama--MacBeth procedure, 245--51
Federal Reserve, 380
Feynman--Kac solution, 326
finance, classic issues in, 10

expected return-beta representation,
16--17

idiosyncratic risk and prices, 15--16

mean-standard deviation frontier,
slope of and the equity premium
puzzle, 20--22

mean-variance frontier, 17--19
present-value statement, 24--25
random walks and time-varying

expected returns, 22--24
risk corrections, 13--15
risk-free rate, 10--12

fishing metaphor, 123--26, 151,
170--71

forecastability
of bonds, 427--31
of dividends, 424--26
errors and, 197--98
macroeconomic activity and,

450--51
mean-reversion and, 415--22
Peso problems and, 435
variables of, 150
See also predictability

foreign exchange
depreciation, 433--34
evolution of finance and, 389--91
expectations hypothesis and,

432--35
forward discount puzzle, 434--35
puzzle, 450--51

forward rates, 352--53, 358
free parameters, estimating. See

parameter estimates
frontier returns, 17--19

general equilibrium, 37--41
alternatives to consumption-based

models and, 44
factor pricing models and, 45, 151
linear quadratic permanent income

model, 46
Generalized Least Squares (GLS)

regressions
cross-sectional regression, 238--39,

241, 279--80, 282--85
excess returns and cross-sectional

regression, 258
linear factor models, testing of,

279--80, 282--85
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Ordinary Least Squares vs., 212,
295--98

pricing errors and cross-sectional
regression, 254--55

Generalized Method of Moments
(GMM), 201

cross-sectional regressions and,
241--43

estimating and evaluating models
using, 187, 189

explicit discount factor model and,
190--99

first- and second-stage, choice
between, 295

general formulas, 202--6
instrumental variables estimation,

133
linear discount factor model and

(see linear factor models)
maximum likelihood and, 270--72,

293--307 (see also maximum
likelihood)

moments, estimating on one group
and testing on another,
218--19

Monte Carlo tests and bootstraps
applied to, 287--91

nonlinear models and, 169
regressions, using for, 207--10
regression tests and, 233--34
small samples and, 280
spectral density matrix, estimating

the, 219--27
standard errors, deriving, 207
testing moments, 206
weighting matrices, prespecified,

210--18
Gibbons--Ross--Shanken (GRS) test,

230, 232, 240, 247, 304
GLS. See Generalized Least Squares

(GLS) regressions
GMM. See Generalized Method of

Moments
good-deal option price bounds, 328

basis risk and real options,
337--39

in continuous time, 339--45, 347

idea of, roots and extensions of,
345--47

one-period, 329--36
one-period applied to Black--Scholes,

334--36
one-period with both constraints

binding, 333--34
one-period with positivity binding,

volatility slack, 334
one-period with volatility binding,

positivity slack, 330--32
with recursive bounds, 336--37

good-deal pricing, Arbitrage Pricing
Theory context, 182

Gordon growth model, 410
growth optimal portfolio, 33, 75
GRS test. See Gibbons--Ross--Shanken

(GRS) test

habit persistence model, 465--73,
480--81

Hansen--Jagannathan bounds, 92--97,
456, 463--64

Hansen--Richard critique, 143
Hansen’s lemma 4.1 (distribution of

sample moments), 204--5
happy-meal theorem, 50
hedging, of option payoffs, 327--28,

332
heteroskedasticity

conditional, 207--9, 359
consistent standard errors, 209
correcting for using parametric

models, 222--23
discount factor and the equity

premium puzzle, 463--64
factor models, testing of and, 233--34

Hilbert space, 59
holding period returns, 351
homoskedasticity, 208--9, 230--32
horse races, 259
human capital, 36

ICAPM. See Intertemporal Capital Asset
Pricing Model

identity weighting matrix, 217--18
idiosyncratic returns, 88
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idiosyncratic risk
Constantinides--Duffie model and,

465--66, 474--81, 484
factor pricing and, 179
shocks and, 55--56
systematic risk vs., 15--16

income, outside sources of, 36
informational efficiency, 390
information matrix, 269, 271--72,

274--75
instrumental variables estimation, 133
instruments, 9, 197, 271
insurance, 13--14
interest rates

bond yields, 350--51
consumption and real, 11--12
equity premium puzzle and, 457--59
federal funds rate, 380--81
foreign exchange and, 432--35,

450--51
market price of risk and, 382
nominal, level of, 199
Peso problems, 435
regressions of, 380
risk-free rate (see risk-free rates)
risk management through swaps, 354
term structure of (see term structure

models)
time-varying and forecastability of

excess returns, 393
See also bonds

Intertemporal Capital Asset Pricing
Model (ICAPM), 165--67

Arbitrage Pricing Theory vs., 182--83
consumption-based models and, 45,

169--70
empirical work and, 172
as fishing license, 170--71
general equilibrium in, 39, 151
portfolio intuition and recession state

variables, 171--72
state variables and, 151, 165--67,

170--71, 466
value function, variables allowed in,

156
See also Capital Asset Pricing Model;

factor pricing models

intertemporal substitution, 458--59
investment/capital ratio, 392
iterated expectations, law of, 133,

140--41
iteration procedure for estimating

spectral density, 226--27
Ito’s lemma

Black--Scholes formula, application
in deriving, 325

continuous time, application in,
28--30, 344, 494--95

term structure models and, 365, 377

Jensen’s alphas, 193
Jensen’s inequality, 33, 495

Kronecker product, 145, 197
Kuhn--Tucker multiplier, 333

Lagrange multipliers, 330, 333
Lagrangian approach to mean-variance

frontier, 82--83
law of iterated expectations, 133,

140--41
law of one price, 61--70, 73--74

Arbitrage Pricing Theory and,
173--74, 176--82

asset pricing research, application in,
123

Black--Scholes formula and, 320--21,
327

option pricing and, 317
leisure, in utility functions, 481--82
likelihood function, 268--69, 273
likelihood ratio test, 270, 275
linear factor models, 137, 144

cross-sectional regression testing,
235--45

derivation of, 161--65
estimation and evaluation of, 229
excess returns in, 256--59
the Fama--MacBeth procedure,

245--51
horse races, testing for, 259
maximum likelihood, evaluation by

(see maximum likelihood)
mean-variance frontier and, 262--64
priced factors, testing for, 260--61
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pricing errors of, 253--55
testing for characteristics of, 264--65
testing of, 253--65, 279--80, 283--86
three approaches to testing, 279--91
times-series regression testing,

230--35
See also factor pricing models

linear quadratic permanent income
model, 46

linear technology models, 39--40
See also Capital Asset Pricing Model;

Cox--Ingersoll--Ross model
log utility, 160--65, 168
long-horizon return regressions,

391--95, 410--15
long-run covariance matrix, 222
low-frequency time-series models, 298
Lucas’ money-demand estimate,

298--99

macroeconomics
finance and, xiv--xv
models, 444--45
risks, 450--51

managed portfolios, 9, 133--36, 140
marginal rate of substitution, 7, 68
marginal utility

consumption and, 3--6
factor pricing models and, 150--51
indicators of, 3--4
nonlinearity of, 478
quadratic utility assumption and, 153
See also utility functions

market price of risk
continuous-time pricing problems

and, 339, 342, 347
practical questions and assumptions

regarding, xiv
risk-neutral dynamic approaches and,

366--67
term structure models and, 382
yield curve and, 360

market return predictability. See
expected returns; predictability

markets
contingent claims (see contingent

claims)

imperfections in returns and prices,
410

rationality/irrationality or efficiency/
inefficiency of, 126--27

Markov process, 47
martingales, 22, 28
matrices

identity, 217
information, 269, 271--72
long-run covariance, 222
portfolios, invariance to, 297
second-moment, 216--17, 220--21
second-moment and identity,

comparing, 218
spectral density (see spectral density

matrix)
weighting, 193--95, 210--19

maximum likelihood (ML), 267
auxiliary statistical model,

requirement of, 302
cross-sectional regression when

factors are not excess returns,
275--77

Generalized Method of Moments
and, 270--72, 293--307

principle of, 268--70
term structure models and, 381--82
testing of linear factor models and,

282
time-series regression when factors

are returns, 272--75
mean-reversion

equity premium puzzle and, 465
forecastability and, 415--22
long-horizon returns and, 410--15,

446
multivariate, 422--24
short- vs. long-run volatility and,

424--26
mean-standard deviation frontier,

20--21
mean-standard deviation space, 88
mean-variance efficient returns, 19,

31--32, 36
beta representations and, 119,

122
zero-beta returns and, 112
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mean-variance frontiers
asset pricing theory and, 17--19
beta representations and, 99--100,

103--6, 119--20
conditional vs. unconditional, 95
conditioning information and,

139--43
discount factors and, 99--100, 103--6,

117--19, 127--29
factor-mimicking portfolios and,

110--11
of fixed-weight portfolios, 140
Gibbons--Ross--Shanken test and, 232
Hansen--Jagannathan bounds and,

92--97
Lagrangian approach to, 81--83
orthogonal characterization of,

84--88
orthogonal decomposition

characterization of, 141
performance evaluation and, 262--64
properties of special returns that

generate the, 89--92
returns on, 110--11
Sharpe ratios and, 32
spanning of, 88--89, 262--64
zero-beta return on, 113

mean-variance geometry, xv, 87--88
measurement error, 431--32
Mehra--Prescott model, 47
minimum-variance frontier, 81
minimum-variance portfolio, 83
minimum-variance returns

beta representations and, 119--20
risk-free rates and, 111, 114, 116

ML. See maximum likelihood
model misspecification

addressing, 300--301
Generalized Method of Moments vs.

maximum likelihood regarding,
293--307

Ordinary Least Squares vs.
Generalized Least Squares
cross-sectional regressions
regarding, 295--98

trading off efficiency for robustness
in, 298--300

models
comparison of, 205--6
evaluation of (see Generalized

Method of Moments; maximum
likelihood)

testing of on moments or pricing
errors, 206

See names of specific models
moment conditions, 190, 193, 211--18
moments

conditional, 36, 79
conditional vs. unconditional, 23
conditioning information and

(see conditioning information)
economically interesting, 215
Generalized Method of Moments

(see Generalized Method of
Moments)

model evaluation regarding
particular, 206

population, 232
momentum

positive return autocorrelation, 419
as stock trading strategy, 447--48,

452
Monte Carlo experiments/methods

estimating spectral density,
procedures for, 226--27

forecastability of returns and, 395
linear factor models, testing of,

279--80
null hypothesis and, 224
sampling variability, standard error

formulas and, 287--90
standard errors, obtaining accurate,

223
multifactor models

Fama--French model, 438--44, 446
macroeconomic factors, 444--45
size and value factors, 442--44

Newey--West spectral density estimator,
221, 280, 285

no-arbitrage pricing. See Black--Scholes
formula/model

nominal discount factors, 9--10
nonparametric techniques, 222
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nonseparability, 44, 466, 481--82
null hypothesis, 223--24, 273, 275, 277

Ohrnstein--Uhlenbeck process, 492
OLS regressions. See Ordinary Least

Squares (OLS) regressions
one price, law of. See law of one price
one-step procedure for estimating

spectral density, 226--27
option pricing, 311

arbitrage bounds and, 181, 318--19,
329--30, 334--36

background for, 313--20
Black--Scholes formula and, 320--29,

334--35, 338--39 (see also Black--
Scholes formula/model)

good-deal bounds (see good-deal
option price bounds)

hedging payoffs, 327--28
merging of no-arbitrage and

absolute, 328
options

American, 313, 317, 319--20
Black--Scholes pricing model

(see Black--Scholes formula/model)
call, 313--15, 336, 354
Capital Asset Pricing Model and, 168
European, 313, 337--39
on fixed-income securities, 354
payoff and profit distinguished, 314
put, 313--15
put-call parity, 317, 320
real, 327--28, 337--39
strategies of, 316
valuation theories for, 42

Ordinary Least Squares (OLS)
regressions, 195, 207--8, 212--13

cross-sectional regression, 236--37,
239, 241

excess returns and cross-sectional
regression, 258

Generalized Least Squares vs., 212,
295--98

in Generalized Method of Moments,
217

linear factor models, testing of,
230--34, 279--80, 282--85

maximum likelihood and, 273--74
pooled time-series cross-sectional

estimates and, 248--50
pricing errors and cross-sectional

regression, 254--55
standard errors in, simplification of,

224
overriding restrictions, test of, 192

parameter estimates
Generalized Method of Moments,

using the, 189 (see also Generalized
Method of Moments)

Generalized Method of Moments vs.
time-series regressions, using the,
289--91

model evaluation and, 187, 284--86
predictability, model for digesting

and, 406--7
parametric structures in spectral density

estimates, 222--23
Pareto optimality, 55
payoffs

in consumption-based models,
8--10

in option pricing, 313--15, 327--28
risk and covariance of discount

factors, 13--14
scaled, 132--34

payoff space, 61--63
permanent income models, 38--39, 46
Peso problems, 435, 461
Poisson jump, 327
Ponzi scheme, 402
pooled times-series cross-section

estimate, 247--48
population moments, 232
portfolios

Arbitrage Pricing Theory and (see
Arbitrage Pricing Theory)

asset pricing model tests and choice
of, 218

assumptions of, 36
Black--Scholes formula and, 320
Capital Asset Pricing Model and,

436--38
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portfolios (continued)
constant-mimicking return

(see constant-mimicking portfolio
returns)

discount factor approach vs., xv,
346--47

diversified, 179
expected returns and multifactor

models (see multifactor models)
expected returns and time-series

predictability (see time-series
predictability)

ex post mean-variance efficient,
123--25

factor-mimicking (see factor-
mimicking portfolios)

factor models, derivation of, 171--72
Fama--French model and, 438--44,

446
fixed-weight, 140
formation assumption, 62--63
growth optimal, 33, 75
HML and SMB, 442--44
insurance strategies, 327
law of one price and, 64
managed, 9, 133--36, 140
management contracts, 315
management of and returns, 390--91
marginal change in, 37
market value and, 37
minimum-variance, 83
optimal, finding as side issue, xvi
options and, 315--16
reasons for, 436
risk hedging in option pricing, 328,

332
term structure models and, 380
of two assets, 81
wealth (see wealth portfolio)
zero-cost, 9
See also stocks

positivity of the discount factor, 329--34,
341, 345--47

precautionary saving, 12, 471--72, 484
predictability

dividend/price ratio and, 394--95
expected returns, patterns in, 449--50

habit models and, 467--74
model for digestion of, 404--10
momentum strategy and, 447--48
of returns, 389--91
of time-series regressions (see time-

series predictability)
See also forecastability

present-value statement, 24--25
price/dividend ratios

bubbles and, 401--4
equity premium puzzle and, 461--62
macroeconomic risks and, 450
mean-reversion and, 415, 422--24
negative correlation with return

innovation, 418
predictability, model for digesting

and, 405--10
stock return predictability and,

392--400, 449--50
variance of, decomposing the,

399--400
price/earnings ratios, 451
prices

in consumption-based models, 8--10
diffusion model of processes, 493
expected returns and, 450 (see also

expected returns)
idiosyncratic risk and, 15--16
impulse-response function to a

shock, 412
martingales and, 22
mean-reversion and, 412--13
random walks and, 22--23

pricing
absolute vs. relative, xiv, 183
arbitrage, 181--82
asset, central formula for, 5--6
basic equation for, 4--6, 35--37
Black--Scholes (see Black--Scholes

formula/model)
of bonds (see term structure models)
contingent claims and the state-space

diagram, 56--59
factor pricing models (see factor

pricing models)
‘‘good-deal,’’ 182
law of one price, 61--70, 73--74
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mean-variance efficient return and,
19, 36

near-arbitrage, 45
no-arbitrage (see Black--Scholes

formula/model)
number of factors, 127
of options (see option pricing)
Poisson jump, 327
small firm effect and, 206

pricing errors
in a cross-sectional regression, 79
in the Generalized Method of

Moments procedure, 193
linear discount factor models,

Generalized Method of Moments
on, 253--59, 264

linear factor models, testing of and,
230--32, 237, 240--48, 280--83

model evaluation and, 187, 206
See also standard errors

pricing kernel, 7
put options, 313--15

See also option pricing

quadratic utility function, 153, 155,
157--60

quadratic value function, 155--60

random walks
Brownian motion and, 489--90
consumption and, 150
with drift, 491--93
prices and, 22--23
returns, unforecastability of, 399

rational bubbles, 402--3
rationality, 126--27
recessions

asset pricing and, xiv--xv
employment status and stock

holdings in, 172
habits and perceptions of, 467, 472
wealth, loss of and, 481

regressions
choice of variables in, 124
cross-sectional (see cross-sectional

regressions)
error-correction, 426

Generalized Least Squares (see
Generalized Least Squares
regressions)

Generalized Method of Moments,
use of, 207--10

long-horizon, 391--95, 410--15
measurement error, 431--32
Ordinary Least Squares (see Ordinary

Least Squares regressions)
return-forecasting, 225
time-series (see time-series

regressions)
times series vs. cross section, 243--45
two-pass estimate, 236

relative pricing, xiv, 183
return-forecasting regressions, 225
returns

constant-mimicking portfolio, 89
discount factors and, 93
excess, 80
expected (see expected returns)
expected return-beta representations

(see expected return-beta
representations)

factor-mimicking portfolios and,
110--11

holding period, 351
idiosyncratic, 88
maximum likelihood and,

272--77
means and variances of, 17--19
multivariate mean-reversion and,

422--24
normal distributions and

linearization in discrete time,
163--65

options and, 315
predictability of, 389--91
price/dividend ratio forecasts of,

391--400, 407--9
risk and, 13--15, 31
scaled, 134--36
stocks and the equity premium

puzzle, 460--62 (see also equity
premium puzzle)

testing asset pricing models using,
196--98
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returns (continued)
univariate representation, finding

the, 420--22
zero-beta, 89

reversal strategy, 446
Riesz representation theorem, 65--66,

70
risk

asset pricing and, xiii--xiv
aversion to (see risk aversion)
‘‘basis risk’’ option pricing, 328,

337--39
corrections, 13--15
factors identifying, 125
forecastability of excess returns and,

393
foreign currency, devaluation of,

433--34
HML and SMB portfolios and,

442--43
idiosyncratic (see idiosyncratic risk)
macroeconomic, 450--51
market price of (see market price of

risk)
price of, 16
quantity of, 16
random walks and, 22--24
risk-free rates (see risk-free rates)
sharing, contingent claims and,

54--56
swaps, managing through, 354
systematic, 15--17, 31

risk aversion
Capital Asset Pricing Model,

derivation of and, 154--55
coefficient of absolute, 31, 154
coefficient of relative, 31, 166
equity premium puzzle (see equity

premium puzzle)
high, necessity of, xv
risk neutrality and, 51
slope of the mean-standard deviation

frontier and, 20--21
risk-free rates

analogues to, 111--16
beta models and, 101--3, 108
as classic issue in finance, 10--12

constant-mimicking portfolio returns
and, 111, 115

discount factors in continuous time
and, 29

factor pricing models and, 150
mean-variance frontier and, 142--43
mean-variance frontier in

performance evaluation and, 262
mean-variance special cases and

absence of, 117--20
minimum-variance returns and, 111,

114
puzzle of (see equity premium puzzle)
zero-beta return and, 111--13

risk neutrality, 51--52, 356, 366
risk premia, 357, 360

anomalous, 452
macroeconomic risks, 450--51
on stocks vs. interest rate, xiv--xv
variation over time of, 450

risky asset frontier, 81
Roll critique, 143
Ross bounds, 345

sampling error, 246
savings, precautionary, 12
scaled factors, 144--45, 445, 473
scaled payoffs, 132--34
scaled returns, 134--36
second-moment matrix, 216--17, 220--21
securities

bonds (see bonds)
closed-end fund puzzle, 410
limits in pricing options on real,

327--28
options on fixed-income, 354
risk sharing and, 56
stationarity of returns, 198--99
stocks (see stocks)

separability, 481--82
Shanken correction, 240, 258
Sharpe ratios, 20--21

Arbitrage Pricing Theory and,
181--82

of bonds and stocks, 427
Campbell--Cochrane model and, 470
cross-sectional regressions and, 240
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equity premium puzzle and, 456--57,
459, 462--65

long horizons and, 414--15
mean-variance frontiers and, 32,

93--94, 96, 232--33
option pricing and, 328--29, 335--36,

339, 347
predictability and, 449
of reversal strategies, 446n
stock market volatility and, 391
term structure models and, 366
utility curvature and consumption

volatility, relation to, 30
shocks

dividend growth and, 416--20
dividend vs. price responses to, 425
equity premium puzzle and, 459--60
idiosyncratic consumption, 477--78
mean-reversion and, 411--13
multivariate, response to, 422--24

small firm effect, 206, 282, 286, 438,
450, 452

S matrix. See spectral density matrix
spanning

dynamic, 134
of the mean-variance frontier, 88--89,

262--64
spectral density matrix, 195

estimating the, 219--27
in the Generalized Method of

Moments, 213, 215--16
testing linear factor models and,

279--80, 283--86
univariate return representation,

finding, 420--22
standard errors

of average stock returns, 460
in cross-sectional regressions,

240--42
by Delta method, 207
Fama--MacBeth procedure and,

245--51, 248--49
in Generalized Method of Moments,

212--13
heteroskedasticity consistent, 209
Monte Carlos and bootstraps,

deriving through, 223

Ordinary Least Squares vs.
Generalized Least Squares, 212

sampling variability and, 287--91
testing discount factor models and,

284--86
See also pricing errors

state-price density, 7, 50
state-space geometry, xv, 56--59, 77
state variables, new models addressing

the equity premium puzzle and,
466--67

stationarity, 198--99
statistical methods

estimating and evaluating models
using, 187

Generalized Least Squares
(see Generalized Least Squares
regressions)

Generalized Method of Moments
(see Generalized Method of
Moments)

Ordinary Least Squares (see Ordinary
Least Squares regressions)

philosophy of, 304--6
See also empirical methods/research

Stein’s lemma, 163--65
stochastic differential equations, 494
stochastic discount factor, 6--7, 50
stochastic singularity, 299--300
stocks

Arbitrage Pricing Theory and (see
Arbitrage Pricing Theory)

bubbles, 401--4
Capital Asset Pricing Model and,

436--38, 444
equity premium puzzle (see equity

premium puzzle)
expected returns, long-horizon

regressions and, 391--95
macroeconomic risks and,

450--51
momentum strategy, 447--48, 452
multifactor models and (see

multifactor models)
options and (see option pricing)
performance evaluation, 262--64
portfolios, grouping into, 436, 444
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stocks (continued)
predictability of returns, 389--90,

410--11
returns, standard errors in data

regarding, 460--61
reversal strategy, 446
value effect, 442--43
value vs. growth, 438
variance ratio and, 411
volatility of markets, 390--91, 396
See also portfolios

straddles, 316
strategies, option, 316
subjective discount factor, 5
substitution, marginal rate of, 7
swaps, 354
systematic risk, 15--17, 31

Taylor expansions, 161, 398, 494
term structure models, 349

affine models, 300, 363, 376--79
as alternative to consumption-based

models, 45
continuous-time, 362--67
Cox--Ingersoll--Ross model, 45, 363,

375--76
definitions and notation, 349--54
discount factor existence theorem

and, 358
discrete-time, 360--62
expectations hypothesis, 355--60

(see also expectations hypothesis)
linear, 368--79
risk premium and, 357
varieties of and literature on,

379--82
Vasicek model, 363, 368--75

test of overriding restrictions, 192
time

Black--Scholes formula and, 320
continuous (see continuous time)
discount factors in continuous, 25--30
discount factors in discrete and

continuous, 72--75
discrete and term structure models,

360--62
intertemporal substitution, 458--59

linearizing in continuous, 161--63
long horizons and the equity

premium puzzle, 465
random walks and variation of

expected returns, 22--24
risk-neutral representation in

continuous, 52
time-series regressions (see time-series

regressions)
time-series models, low-frequency, 298
time-series predictability

bonds and the expectations
hypothesis, 426--32

cointegration and short- vs. long-run
volatility, 424--26

foreign exchange and the
expectations hypothesis, 432--35

long-horizon stock return
regressions, 391--95

mean-reversion and forecastability,
415--22

mean-reversion and long-horizon
returns, 410--15

model for digesting, 404--10
multivariate mean-reversion,

422--24
volatility and, 396--404

time-series regressions, 78--80
cross-sectional regressions vs.,

243--45
linear factor models, estimating and

evaluating, 229--35, 279--82
maximum likelihood and, 272--76
Monte Carlo tests and bootstraps

applied to, 287--91
predictability of (see time-series

predictability)
transaction costs, 136, 448
transversality condition, 24--25
two-pass regression estimate, 236

unconditional mean-variance frontier,
140

unconditional moments, 23, 131--32
See also conditioning information

univariate return representation,
420--22
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utility
log, 160--65, 168
See also consumption

utility functions
alternatives to consumption-based

models and, 44
assumptions of the basic model

and, 36
Capital Asset Pricing Model,

derivation of and, 153, 155--60
consumption and, 5
exponential utility, 154
investors and, 128
modifications of and nonseparability,

466, 482
quadratic, 153, 155, 157--60
See also marginal utility

value effect, 442--43
value function, quadratic, 155--60
variables

state (see state variables)
stationarity of, 198--99

variance ratio, 411--14
Vasicek model, 363, 368--75
volatility

bonds and, 357, 359
in the dividend/price ratio and

persistence in expected returns,
409--10

equity premium puzzle and,
456--57

excess, 396
option pricing and, 316, 329--34, 341,

346--47

short- vs. long-run, 425--26
stock market, 390--91, 396
time-series predictability and,

396--404

Wald tests, 274--75
wealth

Capital Asset Pricing Model and, 152,
160

consumption and, 464--65
Hansen--Jagannathan bounds and,

464
Intertemporal Capital Asset Pricing

Model and, 165--67
in a utility function, 157

wealth portfolio
Capital Asset Pricing Model and, 152,

160, 169 (see also Capital Asset
Pricing Model)

Intertemporal Capital Asset Pricing
Model and, 167

weighting matrices, 193--95, 210--19,
225

White standard errors, 209
Wold decomposition theorem, 420

yield curve, 355--57
yields, 350--51, 380--82, 427--31

zero-beta asset, 112
zero-beta rate, 80, 90, 102, 112--13,

119
zero-beta returns, 89, 111--13, 116
zero-cost portfolio, 9
zero-coupon bonds, 350



“s-index” — 2004/10/19 — page 534 — #18



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue true
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


